ipw2200: expire and use oldest BSS on adhoc create
[linux-2.6/sactl.git] / mm / rmap.c
blobbf0a5b7cfb8e7a97369271ed235a714bd11dfd12
1 /*
2 * mm/rmap.c - physical to virtual reverse mappings
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins <hugh@veritas.com> 2003, 2004
21 * Lock ordering in mm:
23 * inode->i_mutex (while writing or truncating, not reading or faulting)
24 * inode->i_alloc_sem (vmtruncate_range)
25 * mm->mmap_sem
26 * page->flags PG_locked (lock_page)
27 * mapping->i_mmap_lock
28 * anon_vma->lock
29 * mm->page_table_lock or pte_lock
30 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
31 * swap_lock (in swap_duplicate, swap_info_get)
32 * mmlist_lock (in mmput, drain_mmlist and others)
33 * mapping->private_lock (in __set_page_dirty_buffers)
34 * inode_lock (in set_page_dirty's __mark_inode_dirty)
35 * sb_lock (within inode_lock in fs/fs-writeback.c)
36 * mapping->tree_lock (widely used, in set_page_dirty,
37 * in arch-dependent flush_dcache_mmap_lock,
38 * within inode_lock in __sync_single_inode)
41 #include <linux/mm.h>
42 #include <linux/pagemap.h>
43 #include <linux/swap.h>
44 #include <linux/swapops.h>
45 #include <linux/slab.h>
46 #include <linux/init.h>
47 #include <linux/rmap.h>
48 #include <linux/rcupdate.h>
49 #include <linux/module.h>
50 #include <linux/kallsyms.h>
51 #include <linux/memcontrol.h>
53 #include <asm/tlbflush.h>
55 struct kmem_cache *anon_vma_cachep;
57 /* This must be called under the mmap_sem. */
58 int anon_vma_prepare(struct vm_area_struct *vma)
60 struct anon_vma *anon_vma = vma->anon_vma;
62 might_sleep();
63 if (unlikely(!anon_vma)) {
64 struct mm_struct *mm = vma->vm_mm;
65 struct anon_vma *allocated, *locked;
67 anon_vma = find_mergeable_anon_vma(vma);
68 if (anon_vma) {
69 allocated = NULL;
70 locked = anon_vma;
71 spin_lock(&locked->lock);
72 } else {
73 anon_vma = anon_vma_alloc();
74 if (unlikely(!anon_vma))
75 return -ENOMEM;
76 allocated = anon_vma;
77 locked = NULL;
80 /* page_table_lock to protect against threads */
81 spin_lock(&mm->page_table_lock);
82 if (likely(!vma->anon_vma)) {
83 vma->anon_vma = anon_vma;
84 list_add_tail(&vma->anon_vma_node, &anon_vma->head);
85 allocated = NULL;
87 spin_unlock(&mm->page_table_lock);
89 if (locked)
90 spin_unlock(&locked->lock);
91 if (unlikely(allocated))
92 anon_vma_free(allocated);
94 return 0;
97 void __anon_vma_merge(struct vm_area_struct *vma, struct vm_area_struct *next)
99 BUG_ON(vma->anon_vma != next->anon_vma);
100 list_del(&next->anon_vma_node);
103 void __anon_vma_link(struct vm_area_struct *vma)
105 struct anon_vma *anon_vma = vma->anon_vma;
107 if (anon_vma)
108 list_add_tail(&vma->anon_vma_node, &anon_vma->head);
111 void anon_vma_link(struct vm_area_struct *vma)
113 struct anon_vma *anon_vma = vma->anon_vma;
115 if (anon_vma) {
116 spin_lock(&anon_vma->lock);
117 list_add_tail(&vma->anon_vma_node, &anon_vma->head);
118 spin_unlock(&anon_vma->lock);
122 void anon_vma_unlink(struct vm_area_struct *vma)
124 struct anon_vma *anon_vma = vma->anon_vma;
125 int empty;
127 if (!anon_vma)
128 return;
130 spin_lock(&anon_vma->lock);
131 list_del(&vma->anon_vma_node);
133 /* We must garbage collect the anon_vma if it's empty */
134 empty = list_empty(&anon_vma->head);
135 spin_unlock(&anon_vma->lock);
137 if (empty)
138 anon_vma_free(anon_vma);
141 static void anon_vma_ctor(struct kmem_cache *cachep, void *data)
143 struct anon_vma *anon_vma = data;
145 spin_lock_init(&anon_vma->lock);
146 INIT_LIST_HEAD(&anon_vma->head);
149 void __init anon_vma_init(void)
151 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
152 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
156 * Getting a lock on a stable anon_vma from a page off the LRU is
157 * tricky: page_lock_anon_vma rely on RCU to guard against the races.
159 static struct anon_vma *page_lock_anon_vma(struct page *page)
161 struct anon_vma *anon_vma;
162 unsigned long anon_mapping;
164 rcu_read_lock();
165 anon_mapping = (unsigned long) page->mapping;
166 if (!(anon_mapping & PAGE_MAPPING_ANON))
167 goto out;
168 if (!page_mapped(page))
169 goto out;
171 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
172 spin_lock(&anon_vma->lock);
173 return anon_vma;
174 out:
175 rcu_read_unlock();
176 return NULL;
179 static void page_unlock_anon_vma(struct anon_vma *anon_vma)
181 spin_unlock(&anon_vma->lock);
182 rcu_read_unlock();
186 * At what user virtual address is page expected in @vma?
187 * Returns virtual address or -EFAULT if page's index/offset is not
188 * within the range mapped the @vma.
190 static inline unsigned long
191 vma_address(struct page *page, struct vm_area_struct *vma)
193 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
194 unsigned long address;
196 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
197 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
198 /* page should be within @vma mapping range */
199 return -EFAULT;
201 return address;
205 * At what user virtual address is page expected in vma? checking that the
206 * page matches the vma: currently only used on anon pages, by unuse_vma;
208 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
210 if (PageAnon(page)) {
211 if ((void *)vma->anon_vma !=
212 (void *)page->mapping - PAGE_MAPPING_ANON)
213 return -EFAULT;
214 } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
215 if (!vma->vm_file ||
216 vma->vm_file->f_mapping != page->mapping)
217 return -EFAULT;
218 } else
219 return -EFAULT;
220 return vma_address(page, vma);
224 * Check that @page is mapped at @address into @mm.
226 * On success returns with pte mapped and locked.
228 pte_t *page_check_address(struct page *page, struct mm_struct *mm,
229 unsigned long address, spinlock_t **ptlp)
231 pgd_t *pgd;
232 pud_t *pud;
233 pmd_t *pmd;
234 pte_t *pte;
235 spinlock_t *ptl;
237 pgd = pgd_offset(mm, address);
238 if (!pgd_present(*pgd))
239 return NULL;
241 pud = pud_offset(pgd, address);
242 if (!pud_present(*pud))
243 return NULL;
245 pmd = pmd_offset(pud, address);
246 if (!pmd_present(*pmd))
247 return NULL;
249 pte = pte_offset_map(pmd, address);
250 /* Make a quick check before getting the lock */
251 if (!pte_present(*pte)) {
252 pte_unmap(pte);
253 return NULL;
256 ptl = pte_lockptr(mm, pmd);
257 spin_lock(ptl);
258 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
259 *ptlp = ptl;
260 return pte;
262 pte_unmap_unlock(pte, ptl);
263 return NULL;
267 * Subfunctions of page_referenced: page_referenced_one called
268 * repeatedly from either page_referenced_anon or page_referenced_file.
270 static int page_referenced_one(struct page *page,
271 struct vm_area_struct *vma, unsigned int *mapcount)
273 struct mm_struct *mm = vma->vm_mm;
274 unsigned long address;
275 pte_t *pte;
276 spinlock_t *ptl;
277 int referenced = 0;
279 address = vma_address(page, vma);
280 if (address == -EFAULT)
281 goto out;
283 pte = page_check_address(page, mm, address, &ptl);
284 if (!pte)
285 goto out;
287 if (vma->vm_flags & VM_LOCKED) {
288 referenced++;
289 *mapcount = 1; /* break early from loop */
290 } else if (ptep_clear_flush_young(vma, address, pte))
291 referenced++;
293 /* Pretend the page is referenced if the task has the
294 swap token and is in the middle of a page fault. */
295 if (mm != current->mm && has_swap_token(mm) &&
296 rwsem_is_locked(&mm->mmap_sem))
297 referenced++;
299 (*mapcount)--;
300 pte_unmap_unlock(pte, ptl);
301 out:
302 return referenced;
305 static int page_referenced_anon(struct page *page,
306 struct mem_cgroup *mem_cont)
308 unsigned int mapcount;
309 struct anon_vma *anon_vma;
310 struct vm_area_struct *vma;
311 int referenced = 0;
313 anon_vma = page_lock_anon_vma(page);
314 if (!anon_vma)
315 return referenced;
317 mapcount = page_mapcount(page);
318 list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
320 * If we are reclaiming on behalf of a cgroup, skip
321 * counting on behalf of references from different
322 * cgroups
324 if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
325 continue;
326 referenced += page_referenced_one(page, vma, &mapcount);
327 if (!mapcount)
328 break;
331 page_unlock_anon_vma(anon_vma);
332 return referenced;
336 * page_referenced_file - referenced check for object-based rmap
337 * @page: the page we're checking references on.
338 * @mem_cont: target memory controller
340 * For an object-based mapped page, find all the places it is mapped and
341 * check/clear the referenced flag. This is done by following the page->mapping
342 * pointer, then walking the chain of vmas it holds. It returns the number
343 * of references it found.
345 * This function is only called from page_referenced for object-based pages.
347 static int page_referenced_file(struct page *page,
348 struct mem_cgroup *mem_cont)
350 unsigned int mapcount;
351 struct address_space *mapping = page->mapping;
352 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
353 struct vm_area_struct *vma;
354 struct prio_tree_iter iter;
355 int referenced = 0;
358 * The caller's checks on page->mapping and !PageAnon have made
359 * sure that this is a file page: the check for page->mapping
360 * excludes the case just before it gets set on an anon page.
362 BUG_ON(PageAnon(page));
365 * The page lock not only makes sure that page->mapping cannot
366 * suddenly be NULLified by truncation, it makes sure that the
367 * structure at mapping cannot be freed and reused yet,
368 * so we can safely take mapping->i_mmap_lock.
370 BUG_ON(!PageLocked(page));
372 spin_lock(&mapping->i_mmap_lock);
375 * i_mmap_lock does not stabilize mapcount at all, but mapcount
376 * is more likely to be accurate if we note it after spinning.
378 mapcount = page_mapcount(page);
380 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
382 * If we are reclaiming on behalf of a cgroup, skip
383 * counting on behalf of references from different
384 * cgroups
386 if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
387 continue;
388 if ((vma->vm_flags & (VM_LOCKED|VM_MAYSHARE))
389 == (VM_LOCKED|VM_MAYSHARE)) {
390 referenced++;
391 break;
393 referenced += page_referenced_one(page, vma, &mapcount);
394 if (!mapcount)
395 break;
398 spin_unlock(&mapping->i_mmap_lock);
399 return referenced;
403 * page_referenced - test if the page was referenced
404 * @page: the page to test
405 * @is_locked: caller holds lock on the page
406 * @mem_cont: target memory controller
408 * Quick test_and_clear_referenced for all mappings to a page,
409 * returns the number of ptes which referenced the page.
411 int page_referenced(struct page *page, int is_locked,
412 struct mem_cgroup *mem_cont)
414 int referenced = 0;
416 if (TestClearPageReferenced(page))
417 referenced++;
419 if (page_mapped(page) && page->mapping) {
420 if (PageAnon(page))
421 referenced += page_referenced_anon(page, mem_cont);
422 else if (is_locked)
423 referenced += page_referenced_file(page, mem_cont);
424 else if (TestSetPageLocked(page))
425 referenced++;
426 else {
427 if (page->mapping)
428 referenced +=
429 page_referenced_file(page, mem_cont);
430 unlock_page(page);
434 if (page_test_and_clear_young(page))
435 referenced++;
437 return referenced;
440 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma)
442 struct mm_struct *mm = vma->vm_mm;
443 unsigned long address;
444 pte_t *pte;
445 spinlock_t *ptl;
446 int ret = 0;
448 address = vma_address(page, vma);
449 if (address == -EFAULT)
450 goto out;
452 pte = page_check_address(page, mm, address, &ptl);
453 if (!pte)
454 goto out;
456 if (pte_dirty(*pte) || pte_write(*pte)) {
457 pte_t entry;
459 flush_cache_page(vma, address, pte_pfn(*pte));
460 entry = ptep_clear_flush(vma, address, pte);
461 entry = pte_wrprotect(entry);
462 entry = pte_mkclean(entry);
463 set_pte_at(mm, address, pte, entry);
464 ret = 1;
467 pte_unmap_unlock(pte, ptl);
468 out:
469 return ret;
472 static int page_mkclean_file(struct address_space *mapping, struct page *page)
474 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
475 struct vm_area_struct *vma;
476 struct prio_tree_iter iter;
477 int ret = 0;
479 BUG_ON(PageAnon(page));
481 spin_lock(&mapping->i_mmap_lock);
482 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
483 if (vma->vm_flags & VM_SHARED)
484 ret += page_mkclean_one(page, vma);
486 spin_unlock(&mapping->i_mmap_lock);
487 return ret;
490 int page_mkclean(struct page *page)
492 int ret = 0;
494 BUG_ON(!PageLocked(page));
496 if (page_mapped(page)) {
497 struct address_space *mapping = page_mapping(page);
498 if (mapping) {
499 ret = page_mkclean_file(mapping, page);
500 if (page_test_dirty(page)) {
501 page_clear_dirty(page);
502 ret = 1;
507 return ret;
509 EXPORT_SYMBOL_GPL(page_mkclean);
512 * __page_set_anon_rmap - setup new anonymous rmap
513 * @page: the page to add the mapping to
514 * @vma: the vm area in which the mapping is added
515 * @address: the user virtual address mapped
517 static void __page_set_anon_rmap(struct page *page,
518 struct vm_area_struct *vma, unsigned long address)
520 struct anon_vma *anon_vma = vma->anon_vma;
522 BUG_ON(!anon_vma);
523 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
524 page->mapping = (struct address_space *) anon_vma;
526 page->index = linear_page_index(vma, address);
529 * nr_mapped state can be updated without turning off
530 * interrupts because it is not modified via interrupt.
532 __inc_zone_page_state(page, NR_ANON_PAGES);
536 * __page_check_anon_rmap - sanity check anonymous rmap addition
537 * @page: the page to add the mapping to
538 * @vma: the vm area in which the mapping is added
539 * @address: the user virtual address mapped
541 static void __page_check_anon_rmap(struct page *page,
542 struct vm_area_struct *vma, unsigned long address)
544 #ifdef CONFIG_DEBUG_VM
546 * The page's anon-rmap details (mapping and index) are guaranteed to
547 * be set up correctly at this point.
549 * We have exclusion against page_add_anon_rmap because the caller
550 * always holds the page locked, except if called from page_dup_rmap,
551 * in which case the page is already known to be setup.
553 * We have exclusion against page_add_new_anon_rmap because those pages
554 * are initially only visible via the pagetables, and the pte is locked
555 * over the call to page_add_new_anon_rmap.
557 struct anon_vma *anon_vma = vma->anon_vma;
558 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
559 BUG_ON(page->mapping != (struct address_space *)anon_vma);
560 BUG_ON(page->index != linear_page_index(vma, address));
561 #endif
565 * page_add_anon_rmap - add pte mapping to an anonymous page
566 * @page: the page to add the mapping to
567 * @vma: the vm area in which the mapping is added
568 * @address: the user virtual address mapped
570 * The caller needs to hold the pte lock and the page must be locked.
572 void page_add_anon_rmap(struct page *page,
573 struct vm_area_struct *vma, unsigned long address)
575 VM_BUG_ON(!PageLocked(page));
576 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
577 if (atomic_inc_and_test(&page->_mapcount))
578 __page_set_anon_rmap(page, vma, address);
579 else {
580 __page_check_anon_rmap(page, vma, address);
582 * We unconditionally charged during prepare, we uncharge here
583 * This takes care of balancing the reference counts
585 mem_cgroup_uncharge_page(page);
590 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
591 * @page: the page to add the mapping to
592 * @vma: the vm area in which the mapping is added
593 * @address: the user virtual address mapped
595 * Same as page_add_anon_rmap but must only be called on *new* pages.
596 * This means the inc-and-test can be bypassed.
597 * Page does not have to be locked.
599 void page_add_new_anon_rmap(struct page *page,
600 struct vm_area_struct *vma, unsigned long address)
602 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
603 atomic_set(&page->_mapcount, 0); /* elevate count by 1 (starts at -1) */
604 __page_set_anon_rmap(page, vma, address);
608 * page_add_file_rmap - add pte mapping to a file page
609 * @page: the page to add the mapping to
611 * The caller needs to hold the pte lock.
613 void page_add_file_rmap(struct page *page)
615 if (atomic_inc_and_test(&page->_mapcount))
616 __inc_zone_page_state(page, NR_FILE_MAPPED);
617 else
619 * We unconditionally charged during prepare, we uncharge here
620 * This takes care of balancing the reference counts
622 mem_cgroup_uncharge_page(page);
625 #ifdef CONFIG_DEBUG_VM
627 * page_dup_rmap - duplicate pte mapping to a page
628 * @page: the page to add the mapping to
629 * @vma: the vm area being duplicated
630 * @address: the user virtual address mapped
632 * For copy_page_range only: minimal extract from page_add_file_rmap /
633 * page_add_anon_rmap, avoiding unnecessary tests (already checked) so it's
634 * quicker.
636 * The caller needs to hold the pte lock.
638 void page_dup_rmap(struct page *page, struct vm_area_struct *vma, unsigned long address)
640 BUG_ON(page_mapcount(page) == 0);
641 if (PageAnon(page))
642 __page_check_anon_rmap(page, vma, address);
643 atomic_inc(&page->_mapcount);
645 #endif
648 * page_remove_rmap - take down pte mapping from a page
649 * @page: page to remove mapping from
650 * @vma: the vm area in which the mapping is removed
652 * The caller needs to hold the pte lock.
654 void page_remove_rmap(struct page *page, struct vm_area_struct *vma)
656 if (atomic_add_negative(-1, &page->_mapcount)) {
657 if (unlikely(page_mapcount(page) < 0)) {
658 printk (KERN_EMERG "Eeek! page_mapcount(page) went negative! (%d)\n", page_mapcount(page));
659 printk (KERN_EMERG " page pfn = %lx\n", page_to_pfn(page));
660 printk (KERN_EMERG " page->flags = %lx\n", page->flags);
661 printk (KERN_EMERG " page->count = %x\n", page_count(page));
662 printk (KERN_EMERG " page->mapping = %p\n", page->mapping);
663 print_symbol (KERN_EMERG " vma->vm_ops = %s\n", (unsigned long)vma->vm_ops);
664 if (vma->vm_ops) {
665 print_symbol (KERN_EMERG " vma->vm_ops->fault = %s\n", (unsigned long)vma->vm_ops->fault);
667 if (vma->vm_file && vma->vm_file->f_op)
668 print_symbol (KERN_EMERG " vma->vm_file->f_op->mmap = %s\n", (unsigned long)vma->vm_file->f_op->mmap);
669 BUG();
673 * It would be tidy to reset the PageAnon mapping here,
674 * but that might overwrite a racing page_add_anon_rmap
675 * which increments mapcount after us but sets mapping
676 * before us: so leave the reset to free_hot_cold_page,
677 * and remember that it's only reliable while mapped.
678 * Leaving it set also helps swapoff to reinstate ptes
679 * faster for those pages still in swapcache.
681 if (page_test_dirty(page)) {
682 page_clear_dirty(page);
683 set_page_dirty(page);
685 mem_cgroup_uncharge_page(page);
687 __dec_zone_page_state(page,
688 PageAnon(page) ? NR_ANON_PAGES : NR_FILE_MAPPED);
693 * Subfunctions of try_to_unmap: try_to_unmap_one called
694 * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
696 static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
697 int migration)
699 struct mm_struct *mm = vma->vm_mm;
700 unsigned long address;
701 pte_t *pte;
702 pte_t pteval;
703 spinlock_t *ptl;
704 int ret = SWAP_AGAIN;
706 address = vma_address(page, vma);
707 if (address == -EFAULT)
708 goto out;
710 pte = page_check_address(page, mm, address, &ptl);
711 if (!pte)
712 goto out;
715 * If the page is mlock()d, we cannot swap it out.
716 * If it's recently referenced (perhaps page_referenced
717 * skipped over this mm) then we should reactivate it.
719 if (!migration && ((vma->vm_flags & VM_LOCKED) ||
720 (ptep_clear_flush_young(vma, address, pte)))) {
721 ret = SWAP_FAIL;
722 goto out_unmap;
725 /* Nuke the page table entry. */
726 flush_cache_page(vma, address, page_to_pfn(page));
727 pteval = ptep_clear_flush(vma, address, pte);
729 /* Move the dirty bit to the physical page now the pte is gone. */
730 if (pte_dirty(pteval))
731 set_page_dirty(page);
733 /* Update high watermark before we lower rss */
734 update_hiwater_rss(mm);
736 if (PageAnon(page)) {
737 swp_entry_t entry = { .val = page_private(page) };
739 if (PageSwapCache(page)) {
741 * Store the swap location in the pte.
742 * See handle_pte_fault() ...
744 swap_duplicate(entry);
745 if (list_empty(&mm->mmlist)) {
746 spin_lock(&mmlist_lock);
747 if (list_empty(&mm->mmlist))
748 list_add(&mm->mmlist, &init_mm.mmlist);
749 spin_unlock(&mmlist_lock);
751 dec_mm_counter(mm, anon_rss);
752 #ifdef CONFIG_MIGRATION
753 } else {
755 * Store the pfn of the page in a special migration
756 * pte. do_swap_page() will wait until the migration
757 * pte is removed and then restart fault handling.
759 BUG_ON(!migration);
760 entry = make_migration_entry(page, pte_write(pteval));
761 #endif
763 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
764 BUG_ON(pte_file(*pte));
765 } else
766 #ifdef CONFIG_MIGRATION
767 if (migration) {
768 /* Establish migration entry for a file page */
769 swp_entry_t entry;
770 entry = make_migration_entry(page, pte_write(pteval));
771 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
772 } else
773 #endif
774 dec_mm_counter(mm, file_rss);
777 page_remove_rmap(page, vma);
778 page_cache_release(page);
780 out_unmap:
781 pte_unmap_unlock(pte, ptl);
782 out:
783 return ret;
787 * objrmap doesn't work for nonlinear VMAs because the assumption that
788 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
789 * Consequently, given a particular page and its ->index, we cannot locate the
790 * ptes which are mapping that page without an exhaustive linear search.
792 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
793 * maps the file to which the target page belongs. The ->vm_private_data field
794 * holds the current cursor into that scan. Successive searches will circulate
795 * around the vma's virtual address space.
797 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
798 * more scanning pressure is placed against them as well. Eventually pages
799 * will become fully unmapped and are eligible for eviction.
801 * For very sparsely populated VMAs this is a little inefficient - chances are
802 * there there won't be many ptes located within the scan cluster. In this case
803 * maybe we could scan further - to the end of the pte page, perhaps.
805 #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
806 #define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
808 static void try_to_unmap_cluster(unsigned long cursor,
809 unsigned int *mapcount, struct vm_area_struct *vma)
811 struct mm_struct *mm = vma->vm_mm;
812 pgd_t *pgd;
813 pud_t *pud;
814 pmd_t *pmd;
815 pte_t *pte;
816 pte_t pteval;
817 spinlock_t *ptl;
818 struct page *page;
819 unsigned long address;
820 unsigned long end;
822 address = (vma->vm_start + cursor) & CLUSTER_MASK;
823 end = address + CLUSTER_SIZE;
824 if (address < vma->vm_start)
825 address = vma->vm_start;
826 if (end > vma->vm_end)
827 end = vma->vm_end;
829 pgd = pgd_offset(mm, address);
830 if (!pgd_present(*pgd))
831 return;
833 pud = pud_offset(pgd, address);
834 if (!pud_present(*pud))
835 return;
837 pmd = pmd_offset(pud, address);
838 if (!pmd_present(*pmd))
839 return;
841 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
843 /* Update high watermark before we lower rss */
844 update_hiwater_rss(mm);
846 for (; address < end; pte++, address += PAGE_SIZE) {
847 if (!pte_present(*pte))
848 continue;
849 page = vm_normal_page(vma, address, *pte);
850 BUG_ON(!page || PageAnon(page));
852 if (ptep_clear_flush_young(vma, address, pte))
853 continue;
855 /* Nuke the page table entry. */
856 flush_cache_page(vma, address, pte_pfn(*pte));
857 pteval = ptep_clear_flush(vma, address, pte);
859 /* If nonlinear, store the file page offset in the pte. */
860 if (page->index != linear_page_index(vma, address))
861 set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
863 /* Move the dirty bit to the physical page now the pte is gone. */
864 if (pte_dirty(pteval))
865 set_page_dirty(page);
867 page_remove_rmap(page, vma);
868 page_cache_release(page);
869 dec_mm_counter(mm, file_rss);
870 (*mapcount)--;
872 pte_unmap_unlock(pte - 1, ptl);
875 static int try_to_unmap_anon(struct page *page, int migration)
877 struct anon_vma *anon_vma;
878 struct vm_area_struct *vma;
879 int ret = SWAP_AGAIN;
881 anon_vma = page_lock_anon_vma(page);
882 if (!anon_vma)
883 return ret;
885 list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
886 ret = try_to_unmap_one(page, vma, migration);
887 if (ret == SWAP_FAIL || !page_mapped(page))
888 break;
891 page_unlock_anon_vma(anon_vma);
892 return ret;
896 * try_to_unmap_file - unmap file page using the object-based rmap method
897 * @page: the page to unmap
898 * @migration: migration flag
900 * Find all the mappings of a page using the mapping pointer and the vma chains
901 * contained in the address_space struct it points to.
903 * This function is only called from try_to_unmap for object-based pages.
905 static int try_to_unmap_file(struct page *page, int migration)
907 struct address_space *mapping = page->mapping;
908 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
909 struct vm_area_struct *vma;
910 struct prio_tree_iter iter;
911 int ret = SWAP_AGAIN;
912 unsigned long cursor;
913 unsigned long max_nl_cursor = 0;
914 unsigned long max_nl_size = 0;
915 unsigned int mapcount;
917 spin_lock(&mapping->i_mmap_lock);
918 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
919 ret = try_to_unmap_one(page, vma, migration);
920 if (ret == SWAP_FAIL || !page_mapped(page))
921 goto out;
924 if (list_empty(&mapping->i_mmap_nonlinear))
925 goto out;
927 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
928 shared.vm_set.list) {
929 if ((vma->vm_flags & VM_LOCKED) && !migration)
930 continue;
931 cursor = (unsigned long) vma->vm_private_data;
932 if (cursor > max_nl_cursor)
933 max_nl_cursor = cursor;
934 cursor = vma->vm_end - vma->vm_start;
935 if (cursor > max_nl_size)
936 max_nl_size = cursor;
939 if (max_nl_size == 0) { /* any nonlinears locked or reserved */
940 ret = SWAP_FAIL;
941 goto out;
945 * We don't try to search for this page in the nonlinear vmas,
946 * and page_referenced wouldn't have found it anyway. Instead
947 * just walk the nonlinear vmas trying to age and unmap some.
948 * The mapcount of the page we came in with is irrelevant,
949 * but even so use it as a guide to how hard we should try?
951 mapcount = page_mapcount(page);
952 if (!mapcount)
953 goto out;
954 cond_resched_lock(&mapping->i_mmap_lock);
956 max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
957 if (max_nl_cursor == 0)
958 max_nl_cursor = CLUSTER_SIZE;
960 do {
961 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
962 shared.vm_set.list) {
963 if ((vma->vm_flags & VM_LOCKED) && !migration)
964 continue;
965 cursor = (unsigned long) vma->vm_private_data;
966 while ( cursor < max_nl_cursor &&
967 cursor < vma->vm_end - vma->vm_start) {
968 try_to_unmap_cluster(cursor, &mapcount, vma);
969 cursor += CLUSTER_SIZE;
970 vma->vm_private_data = (void *) cursor;
971 if ((int)mapcount <= 0)
972 goto out;
974 vma->vm_private_data = (void *) max_nl_cursor;
976 cond_resched_lock(&mapping->i_mmap_lock);
977 max_nl_cursor += CLUSTER_SIZE;
978 } while (max_nl_cursor <= max_nl_size);
981 * Don't loop forever (perhaps all the remaining pages are
982 * in locked vmas). Reset cursor on all unreserved nonlinear
983 * vmas, now forgetting on which ones it had fallen behind.
985 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
986 vma->vm_private_data = NULL;
987 out:
988 spin_unlock(&mapping->i_mmap_lock);
989 return ret;
993 * try_to_unmap - try to remove all page table mappings to a page
994 * @page: the page to get unmapped
995 * @migration: migration flag
997 * Tries to remove all the page table entries which are mapping this
998 * page, used in the pageout path. Caller must hold the page lock.
999 * Return values are:
1001 * SWAP_SUCCESS - we succeeded in removing all mappings
1002 * SWAP_AGAIN - we missed a mapping, try again later
1003 * SWAP_FAIL - the page is unswappable
1005 int try_to_unmap(struct page *page, int migration)
1007 int ret;
1009 BUG_ON(!PageLocked(page));
1011 if (PageAnon(page))
1012 ret = try_to_unmap_anon(page, migration);
1013 else
1014 ret = try_to_unmap_file(page, migration);
1016 if (!page_mapped(page))
1017 ret = SWAP_SUCCESS;
1018 return ret;