2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
8 * Version: $Id: tcp_input.c,v 1.243 2002/02/01 22:01:04 davem Exp $
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Florian La Roche, <flla@stud.uni-sb.de>
15 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16 * Linus Torvalds, <torvalds@cs.helsinki.fi>
17 * Alan Cox, <gw4pts@gw4pts.ampr.org>
18 * Matthew Dillon, <dillon@apollo.west.oic.com>
19 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20 * Jorge Cwik, <jorge@laser.satlink.net>
25 * Pedro Roque : Fast Retransmit/Recovery.
27 * Retransmit queue handled by TCP.
28 * Better retransmit timer handling.
29 * New congestion avoidance.
33 * Eric : Fast Retransmit.
34 * Randy Scott : MSS option defines.
35 * Eric Schenk : Fixes to slow start algorithm.
36 * Eric Schenk : Yet another double ACK bug.
37 * Eric Schenk : Delayed ACK bug fixes.
38 * Eric Schenk : Floyd style fast retrans war avoidance.
39 * David S. Miller : Don't allow zero congestion window.
40 * Eric Schenk : Fix retransmitter so that it sends
41 * next packet on ack of previous packet.
42 * Andi Kleen : Moved open_request checking here
43 * and process RSTs for open_requests.
44 * Andi Kleen : Better prune_queue, and other fixes.
45 * Andrey Savochkin: Fix RTT measurements in the presence of
47 * Andrey Savochkin: Check sequence numbers correctly when
48 * removing SACKs due to in sequence incoming
50 * Andi Kleen: Make sure we never ack data there is not
51 * enough room for. Also make this condition
52 * a fatal error if it might still happen.
53 * Andi Kleen: Add tcp_measure_rcv_mss to make
54 * connections with MSS<min(MTU,ann. MSS)
55 * work without delayed acks.
56 * Andi Kleen: Process packets with PSH set in the
58 * J Hadi Salim: ECN support
61 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
62 * engine. Lots of bugs are found.
63 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
67 #include <linux/module.h>
68 #include <linux/sysctl.h>
70 #include <net/inet_common.h>
71 #include <linux/ipsec.h>
72 #include <asm/unaligned.h>
73 #include <net/netdma.h>
75 int sysctl_tcp_timestamps __read_mostly
= 1;
76 int sysctl_tcp_window_scaling __read_mostly
= 1;
77 int sysctl_tcp_sack __read_mostly
= 1;
78 int sysctl_tcp_fack __read_mostly
= 1;
79 int sysctl_tcp_reordering __read_mostly
= TCP_FASTRETRANS_THRESH
;
80 int sysctl_tcp_ecn __read_mostly
;
81 int sysctl_tcp_dsack __read_mostly
= 1;
82 int sysctl_tcp_app_win __read_mostly
= 31;
83 int sysctl_tcp_adv_win_scale __read_mostly
= 2;
85 int sysctl_tcp_stdurg __read_mostly
;
86 int sysctl_tcp_rfc1337 __read_mostly
;
87 int sysctl_tcp_max_orphans __read_mostly
= NR_FILE
;
88 int sysctl_tcp_frto __read_mostly
= 2;
89 int sysctl_tcp_frto_response __read_mostly
;
90 int sysctl_tcp_nometrics_save __read_mostly
;
92 int sysctl_tcp_moderate_rcvbuf __read_mostly
= 1;
93 int sysctl_tcp_abc __read_mostly
;
95 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
96 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
97 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
98 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
99 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
100 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
101 #define FLAG_ECE 0x40 /* ECE in this ACK */
102 #define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */
103 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
104 #define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */
105 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
106 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
107 #define FLAG_NONHEAD_RETRANS_ACKED 0x1000 /* Non-head rexmitted data was ACKed */
109 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
110 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
111 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
112 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
113 #define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
115 #define IsSackFrto() (sysctl_tcp_frto == 0x2)
117 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
118 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
120 /* Adapt the MSS value used to make delayed ack decision to the
123 static void tcp_measure_rcv_mss(struct sock
*sk
,
124 const struct sk_buff
*skb
)
126 struct inet_connection_sock
*icsk
= inet_csk(sk
);
127 const unsigned int lss
= icsk
->icsk_ack
.last_seg_size
;
130 icsk
->icsk_ack
.last_seg_size
= 0;
132 /* skb->len may jitter because of SACKs, even if peer
133 * sends good full-sized frames.
135 len
= skb_shinfo(skb
)->gso_size
?: skb
->len
;
136 if (len
>= icsk
->icsk_ack
.rcv_mss
) {
137 icsk
->icsk_ack
.rcv_mss
= len
;
139 /* Otherwise, we make more careful check taking into account,
140 * that SACKs block is variable.
142 * "len" is invariant segment length, including TCP header.
144 len
+= skb
->data
- skb_transport_header(skb
);
145 if (len
>= TCP_MIN_RCVMSS
+ sizeof(struct tcphdr
) ||
146 /* If PSH is not set, packet should be
147 * full sized, provided peer TCP is not badly broken.
148 * This observation (if it is correct 8)) allows
149 * to handle super-low mtu links fairly.
151 (len
>= TCP_MIN_MSS
+ sizeof(struct tcphdr
) &&
152 !(tcp_flag_word(tcp_hdr(skb
)) & TCP_REMNANT
))) {
153 /* Subtract also invariant (if peer is RFC compliant),
154 * tcp header plus fixed timestamp option length.
155 * Resulting "len" is MSS free of SACK jitter.
157 len
-= tcp_sk(sk
)->tcp_header_len
;
158 icsk
->icsk_ack
.last_seg_size
= len
;
160 icsk
->icsk_ack
.rcv_mss
= len
;
164 if (icsk
->icsk_ack
.pending
& ICSK_ACK_PUSHED
)
165 icsk
->icsk_ack
.pending
|= ICSK_ACK_PUSHED2
;
166 icsk
->icsk_ack
.pending
|= ICSK_ACK_PUSHED
;
170 static void tcp_incr_quickack(struct sock
*sk
)
172 struct inet_connection_sock
*icsk
= inet_csk(sk
);
173 unsigned quickacks
= tcp_sk(sk
)->rcv_wnd
/ (2 * icsk
->icsk_ack
.rcv_mss
);
177 if (quickacks
> icsk
->icsk_ack
.quick
)
178 icsk
->icsk_ack
.quick
= min(quickacks
, TCP_MAX_QUICKACKS
);
181 void tcp_enter_quickack_mode(struct sock
*sk
)
183 struct inet_connection_sock
*icsk
= inet_csk(sk
);
184 tcp_incr_quickack(sk
);
185 icsk
->icsk_ack
.pingpong
= 0;
186 icsk
->icsk_ack
.ato
= TCP_ATO_MIN
;
189 /* Send ACKs quickly, if "quick" count is not exhausted
190 * and the session is not interactive.
193 static inline int tcp_in_quickack_mode(const struct sock
*sk
)
195 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
196 return icsk
->icsk_ack
.quick
&& !icsk
->icsk_ack
.pingpong
;
199 static inline void TCP_ECN_queue_cwr(struct tcp_sock
*tp
)
201 if (tp
->ecn_flags
&TCP_ECN_OK
)
202 tp
->ecn_flags
|= TCP_ECN_QUEUE_CWR
;
205 static inline void TCP_ECN_accept_cwr(struct tcp_sock
*tp
, struct sk_buff
*skb
)
207 if (tcp_hdr(skb
)->cwr
)
208 tp
->ecn_flags
&= ~TCP_ECN_DEMAND_CWR
;
211 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock
*tp
)
213 tp
->ecn_flags
&= ~TCP_ECN_DEMAND_CWR
;
216 static inline void TCP_ECN_check_ce(struct tcp_sock
*tp
, struct sk_buff
*skb
)
218 if (tp
->ecn_flags
&TCP_ECN_OK
) {
219 if (INET_ECN_is_ce(TCP_SKB_CB(skb
)->flags
))
220 tp
->ecn_flags
|= TCP_ECN_DEMAND_CWR
;
221 /* Funny extension: if ECT is not set on a segment,
222 * it is surely retransmit. It is not in ECN RFC,
223 * but Linux follows this rule. */
224 else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb
)->flags
)))
225 tcp_enter_quickack_mode((struct sock
*)tp
);
229 static inline void TCP_ECN_rcv_synack(struct tcp_sock
*tp
, struct tcphdr
*th
)
231 if ((tp
->ecn_flags
&TCP_ECN_OK
) && (!th
->ece
|| th
->cwr
))
232 tp
->ecn_flags
&= ~TCP_ECN_OK
;
235 static inline void TCP_ECN_rcv_syn(struct tcp_sock
*tp
, struct tcphdr
*th
)
237 if ((tp
->ecn_flags
&TCP_ECN_OK
) && (!th
->ece
|| !th
->cwr
))
238 tp
->ecn_flags
&= ~TCP_ECN_OK
;
241 static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock
*tp
, struct tcphdr
*th
)
243 if (th
->ece
&& !th
->syn
&& (tp
->ecn_flags
&TCP_ECN_OK
))
248 /* Buffer size and advertised window tuning.
250 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
253 static void tcp_fixup_sndbuf(struct sock
*sk
)
255 int sndmem
= tcp_sk(sk
)->rx_opt
.mss_clamp
+ MAX_TCP_HEADER
+ 16 +
256 sizeof(struct sk_buff
);
258 if (sk
->sk_sndbuf
< 3 * sndmem
)
259 sk
->sk_sndbuf
= min(3 * sndmem
, sysctl_tcp_wmem
[2]);
262 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
264 * All tcp_full_space() is split to two parts: "network" buffer, allocated
265 * forward and advertised in receiver window (tp->rcv_wnd) and
266 * "application buffer", required to isolate scheduling/application
267 * latencies from network.
268 * window_clamp is maximal advertised window. It can be less than
269 * tcp_full_space(), in this case tcp_full_space() - window_clamp
270 * is reserved for "application" buffer. The less window_clamp is
271 * the smoother our behaviour from viewpoint of network, but the lower
272 * throughput and the higher sensitivity of the connection to losses. 8)
274 * rcv_ssthresh is more strict window_clamp used at "slow start"
275 * phase to predict further behaviour of this connection.
276 * It is used for two goals:
277 * - to enforce header prediction at sender, even when application
278 * requires some significant "application buffer". It is check #1.
279 * - to prevent pruning of receive queue because of misprediction
280 * of receiver window. Check #2.
282 * The scheme does not work when sender sends good segments opening
283 * window and then starts to feed us spaghetti. But it should work
284 * in common situations. Otherwise, we have to rely on queue collapsing.
287 /* Slow part of check#2. */
288 static int __tcp_grow_window(const struct sock
*sk
, const struct sk_buff
*skb
)
290 struct tcp_sock
*tp
= tcp_sk(sk
);
292 int truesize
= tcp_win_from_space(skb
->truesize
)/2;
293 int window
= tcp_win_from_space(sysctl_tcp_rmem
[2])/2;
295 while (tp
->rcv_ssthresh
<= window
) {
296 if (truesize
<= skb
->len
)
297 return 2 * inet_csk(sk
)->icsk_ack
.rcv_mss
;
305 static void tcp_grow_window(struct sock
*sk
,
308 struct tcp_sock
*tp
= tcp_sk(sk
);
311 if (tp
->rcv_ssthresh
< tp
->window_clamp
&&
312 (int)tp
->rcv_ssthresh
< tcp_space(sk
) &&
313 !tcp_memory_pressure
) {
316 /* Check #2. Increase window, if skb with such overhead
317 * will fit to rcvbuf in future.
319 if (tcp_win_from_space(skb
->truesize
) <= skb
->len
)
322 incr
= __tcp_grow_window(sk
, skb
);
325 tp
->rcv_ssthresh
= min(tp
->rcv_ssthresh
+ incr
, tp
->window_clamp
);
326 inet_csk(sk
)->icsk_ack
.quick
|= 1;
331 /* 3. Tuning rcvbuf, when connection enters established state. */
333 static void tcp_fixup_rcvbuf(struct sock
*sk
)
335 struct tcp_sock
*tp
= tcp_sk(sk
);
336 int rcvmem
= tp
->advmss
+ MAX_TCP_HEADER
+ 16 + sizeof(struct sk_buff
);
338 /* Try to select rcvbuf so that 4 mss-sized segments
339 * will fit to window and corresponding skbs will fit to our rcvbuf.
340 * (was 3; 4 is minimum to allow fast retransmit to work.)
342 while (tcp_win_from_space(rcvmem
) < tp
->advmss
)
344 if (sk
->sk_rcvbuf
< 4 * rcvmem
)
345 sk
->sk_rcvbuf
= min(4 * rcvmem
, sysctl_tcp_rmem
[2]);
348 /* 4. Try to fixup all. It is made immediately after connection enters
351 static void tcp_init_buffer_space(struct sock
*sk
)
353 struct tcp_sock
*tp
= tcp_sk(sk
);
356 if (!(sk
->sk_userlocks
& SOCK_RCVBUF_LOCK
))
357 tcp_fixup_rcvbuf(sk
);
358 if (!(sk
->sk_userlocks
& SOCK_SNDBUF_LOCK
))
359 tcp_fixup_sndbuf(sk
);
361 tp
->rcvq_space
.space
= tp
->rcv_wnd
;
363 maxwin
= tcp_full_space(sk
);
365 if (tp
->window_clamp
>= maxwin
) {
366 tp
->window_clamp
= maxwin
;
368 if (sysctl_tcp_app_win
&& maxwin
> 4 * tp
->advmss
)
369 tp
->window_clamp
= max(maxwin
-
370 (maxwin
>> sysctl_tcp_app_win
),
374 /* Force reservation of one segment. */
375 if (sysctl_tcp_app_win
&&
376 tp
->window_clamp
> 2 * tp
->advmss
&&
377 tp
->window_clamp
+ tp
->advmss
> maxwin
)
378 tp
->window_clamp
= max(2 * tp
->advmss
, maxwin
- tp
->advmss
);
380 tp
->rcv_ssthresh
= min(tp
->rcv_ssthresh
, tp
->window_clamp
);
381 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
384 /* 5. Recalculate window clamp after socket hit its memory bounds. */
385 static void tcp_clamp_window(struct sock
*sk
)
387 struct tcp_sock
*tp
= tcp_sk(sk
);
388 struct inet_connection_sock
*icsk
= inet_csk(sk
);
390 icsk
->icsk_ack
.quick
= 0;
392 if (sk
->sk_rcvbuf
< sysctl_tcp_rmem
[2] &&
393 !(sk
->sk_userlocks
& SOCK_RCVBUF_LOCK
) &&
394 !tcp_memory_pressure
&&
395 atomic_read(&tcp_memory_allocated
) < sysctl_tcp_mem
[0]) {
396 sk
->sk_rcvbuf
= min(atomic_read(&sk
->sk_rmem_alloc
),
399 if (atomic_read(&sk
->sk_rmem_alloc
) > sk
->sk_rcvbuf
)
400 tp
->rcv_ssthresh
= min(tp
->window_clamp
, 2U*tp
->advmss
);
404 /* Initialize RCV_MSS value.
405 * RCV_MSS is an our guess about MSS used by the peer.
406 * We haven't any direct information about the MSS.
407 * It's better to underestimate the RCV_MSS rather than overestimate.
408 * Overestimations make us ACKing less frequently than needed.
409 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
411 void tcp_initialize_rcv_mss(struct sock
*sk
)
413 struct tcp_sock
*tp
= tcp_sk(sk
);
414 unsigned int hint
= min_t(unsigned int, tp
->advmss
, tp
->mss_cache
);
416 hint
= min(hint
, tp
->rcv_wnd
/2);
417 hint
= min(hint
, TCP_MIN_RCVMSS
);
418 hint
= max(hint
, TCP_MIN_MSS
);
420 inet_csk(sk
)->icsk_ack
.rcv_mss
= hint
;
423 /* Receiver "autotuning" code.
425 * The algorithm for RTT estimation w/o timestamps is based on
426 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
427 * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
429 * More detail on this code can be found at
430 * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
431 * though this reference is out of date. A new paper
434 static void tcp_rcv_rtt_update(struct tcp_sock
*tp
, u32 sample
, int win_dep
)
436 u32 new_sample
= tp
->rcv_rtt_est
.rtt
;
442 if (new_sample
!= 0) {
443 /* If we sample in larger samples in the non-timestamp
444 * case, we could grossly overestimate the RTT especially
445 * with chatty applications or bulk transfer apps which
446 * are stalled on filesystem I/O.
448 * Also, since we are only going for a minimum in the
449 * non-timestamp case, we do not smooth things out
450 * else with timestamps disabled convergence takes too
454 m
-= (new_sample
>> 3);
456 } else if (m
< new_sample
)
459 /* No previous measure. */
463 if (tp
->rcv_rtt_est
.rtt
!= new_sample
)
464 tp
->rcv_rtt_est
.rtt
= new_sample
;
467 static inline void tcp_rcv_rtt_measure(struct tcp_sock
*tp
)
469 if (tp
->rcv_rtt_est
.time
== 0)
471 if (before(tp
->rcv_nxt
, tp
->rcv_rtt_est
.seq
))
473 tcp_rcv_rtt_update(tp
,
474 jiffies
- tp
->rcv_rtt_est
.time
,
478 tp
->rcv_rtt_est
.seq
= tp
->rcv_nxt
+ tp
->rcv_wnd
;
479 tp
->rcv_rtt_est
.time
= tcp_time_stamp
;
482 static inline void tcp_rcv_rtt_measure_ts(struct sock
*sk
, const struct sk_buff
*skb
)
484 struct tcp_sock
*tp
= tcp_sk(sk
);
485 if (tp
->rx_opt
.rcv_tsecr
&&
486 (TCP_SKB_CB(skb
)->end_seq
-
487 TCP_SKB_CB(skb
)->seq
>= inet_csk(sk
)->icsk_ack
.rcv_mss
))
488 tcp_rcv_rtt_update(tp
, tcp_time_stamp
- tp
->rx_opt
.rcv_tsecr
, 0);
492 * This function should be called every time data is copied to user space.
493 * It calculates the appropriate TCP receive buffer space.
495 void tcp_rcv_space_adjust(struct sock
*sk
)
497 struct tcp_sock
*tp
= tcp_sk(sk
);
501 if (tp
->rcvq_space
.time
== 0)
504 time
= tcp_time_stamp
- tp
->rcvq_space
.time
;
505 if (time
< (tp
->rcv_rtt_est
.rtt
>> 3) ||
506 tp
->rcv_rtt_est
.rtt
== 0)
509 space
= 2 * (tp
->copied_seq
- tp
->rcvq_space
.seq
);
511 space
= max(tp
->rcvq_space
.space
, space
);
513 if (tp
->rcvq_space
.space
!= space
) {
516 tp
->rcvq_space
.space
= space
;
518 if (sysctl_tcp_moderate_rcvbuf
&&
519 !(sk
->sk_userlocks
& SOCK_RCVBUF_LOCK
)) {
520 int new_clamp
= space
;
522 /* Receive space grows, normalize in order to
523 * take into account packet headers and sk_buff
524 * structure overhead.
529 rcvmem
= (tp
->advmss
+ MAX_TCP_HEADER
+
530 16 + sizeof(struct sk_buff
));
531 while (tcp_win_from_space(rcvmem
) < tp
->advmss
)
534 space
= min(space
, sysctl_tcp_rmem
[2]);
535 if (space
> sk
->sk_rcvbuf
) {
536 sk
->sk_rcvbuf
= space
;
538 /* Make the window clamp follow along. */
539 tp
->window_clamp
= new_clamp
;
545 tp
->rcvq_space
.seq
= tp
->copied_seq
;
546 tp
->rcvq_space
.time
= tcp_time_stamp
;
549 /* There is something which you must keep in mind when you analyze the
550 * behavior of the tp->ato delayed ack timeout interval. When a
551 * connection starts up, we want to ack as quickly as possible. The
552 * problem is that "good" TCP's do slow start at the beginning of data
553 * transmission. The means that until we send the first few ACK's the
554 * sender will sit on his end and only queue most of his data, because
555 * he can only send snd_cwnd unacked packets at any given time. For
556 * each ACK we send, he increments snd_cwnd and transmits more of his
559 static void tcp_event_data_recv(struct sock
*sk
, struct sk_buff
*skb
)
561 struct tcp_sock
*tp
= tcp_sk(sk
);
562 struct inet_connection_sock
*icsk
= inet_csk(sk
);
565 inet_csk_schedule_ack(sk
);
567 tcp_measure_rcv_mss(sk
, skb
);
569 tcp_rcv_rtt_measure(tp
);
571 now
= tcp_time_stamp
;
573 if (!icsk
->icsk_ack
.ato
) {
574 /* The _first_ data packet received, initialize
575 * delayed ACK engine.
577 tcp_incr_quickack(sk
);
578 icsk
->icsk_ack
.ato
= TCP_ATO_MIN
;
580 int m
= now
- icsk
->icsk_ack
.lrcvtime
;
582 if (m
<= TCP_ATO_MIN
/2) {
583 /* The fastest case is the first. */
584 icsk
->icsk_ack
.ato
= (icsk
->icsk_ack
.ato
>> 1) + TCP_ATO_MIN
/ 2;
585 } else if (m
< icsk
->icsk_ack
.ato
) {
586 icsk
->icsk_ack
.ato
= (icsk
->icsk_ack
.ato
>> 1) + m
;
587 if (icsk
->icsk_ack
.ato
> icsk
->icsk_rto
)
588 icsk
->icsk_ack
.ato
= icsk
->icsk_rto
;
589 } else if (m
> icsk
->icsk_rto
) {
590 /* Too long gap. Apparently sender failed to
591 * restart window, so that we send ACKs quickly.
593 tcp_incr_quickack(sk
);
594 sk_stream_mem_reclaim(sk
);
597 icsk
->icsk_ack
.lrcvtime
= now
;
599 TCP_ECN_check_ce(tp
, skb
);
602 tcp_grow_window(sk
, skb
);
605 static u32
tcp_rto_min(struct sock
*sk
)
607 struct dst_entry
*dst
= __sk_dst_get(sk
);
608 u32 rto_min
= TCP_RTO_MIN
;
610 if (dst
&& dst_metric_locked(dst
, RTAX_RTO_MIN
))
611 rto_min
= dst
->metrics
[RTAX_RTO_MIN
-1];
615 /* Called to compute a smoothed rtt estimate. The data fed to this
616 * routine either comes from timestamps, or from segments that were
617 * known _not_ to have been retransmitted [see Karn/Partridge
618 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
619 * piece by Van Jacobson.
620 * NOTE: the next three routines used to be one big routine.
621 * To save cycles in the RFC 1323 implementation it was better to break
622 * it up into three procedures. -- erics
624 static void tcp_rtt_estimator(struct sock
*sk
, const __u32 mrtt
)
626 struct tcp_sock
*tp
= tcp_sk(sk
);
627 long m
= mrtt
; /* RTT */
629 /* The following amusing code comes from Jacobson's
630 * article in SIGCOMM '88. Note that rtt and mdev
631 * are scaled versions of rtt and mean deviation.
632 * This is designed to be as fast as possible
633 * m stands for "measurement".
635 * On a 1990 paper the rto value is changed to:
636 * RTO = rtt + 4 * mdev
638 * Funny. This algorithm seems to be very broken.
639 * These formulae increase RTO, when it should be decreased, increase
640 * too slowly, when it should be increased quickly, decrease too quickly
641 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
642 * does not matter how to _calculate_ it. Seems, it was trap
643 * that VJ failed to avoid. 8)
648 m
-= (tp
->srtt
>> 3); /* m is now error in rtt est */
649 tp
->srtt
+= m
; /* rtt = 7/8 rtt + 1/8 new */
651 m
= -m
; /* m is now abs(error) */
652 m
-= (tp
->mdev
>> 2); /* similar update on mdev */
653 /* This is similar to one of Eifel findings.
654 * Eifel blocks mdev updates when rtt decreases.
655 * This solution is a bit different: we use finer gain
656 * for mdev in this case (alpha*beta).
657 * Like Eifel it also prevents growth of rto,
658 * but also it limits too fast rto decreases,
659 * happening in pure Eifel.
664 m
-= (tp
->mdev
>> 2); /* similar update on mdev */
666 tp
->mdev
+= m
; /* mdev = 3/4 mdev + 1/4 new */
667 if (tp
->mdev
> tp
->mdev_max
) {
668 tp
->mdev_max
= tp
->mdev
;
669 if (tp
->mdev_max
> tp
->rttvar
)
670 tp
->rttvar
= tp
->mdev_max
;
672 if (after(tp
->snd_una
, tp
->rtt_seq
)) {
673 if (tp
->mdev_max
< tp
->rttvar
)
674 tp
->rttvar
-= (tp
->rttvar
-tp
->mdev_max
)>>2;
675 tp
->rtt_seq
= tp
->snd_nxt
;
676 tp
->mdev_max
= tcp_rto_min(sk
);
679 /* no previous measure. */
680 tp
->srtt
= m
<<3; /* take the measured time to be rtt */
681 tp
->mdev
= m
<<1; /* make sure rto = 3*rtt */
682 tp
->mdev_max
= tp
->rttvar
= max(tp
->mdev
, tcp_rto_min(sk
));
683 tp
->rtt_seq
= tp
->snd_nxt
;
687 /* Calculate rto without backoff. This is the second half of Van Jacobson's
688 * routine referred to above.
690 static inline void tcp_set_rto(struct sock
*sk
)
692 const struct tcp_sock
*tp
= tcp_sk(sk
);
693 /* Old crap is replaced with new one. 8)
696 * 1. If rtt variance happened to be less 50msec, it is hallucination.
697 * It cannot be less due to utterly erratic ACK generation made
698 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
699 * to do with delayed acks, because at cwnd>2 true delack timeout
700 * is invisible. Actually, Linux-2.4 also generates erratic
701 * ACKs in some circumstances.
703 inet_csk(sk
)->icsk_rto
= (tp
->srtt
>> 3) + tp
->rttvar
;
705 /* 2. Fixups made earlier cannot be right.
706 * If we do not estimate RTO correctly without them,
707 * all the algo is pure shit and should be replaced
708 * with correct one. It is exactly, which we pretend to do.
712 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
713 * guarantees that rto is higher.
715 static inline void tcp_bound_rto(struct sock
*sk
)
717 if (inet_csk(sk
)->icsk_rto
> TCP_RTO_MAX
)
718 inet_csk(sk
)->icsk_rto
= TCP_RTO_MAX
;
721 /* Save metrics learned by this TCP session.
722 This function is called only, when TCP finishes successfully
723 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
725 void tcp_update_metrics(struct sock
*sk
)
727 struct tcp_sock
*tp
= tcp_sk(sk
);
728 struct dst_entry
*dst
= __sk_dst_get(sk
);
730 if (sysctl_tcp_nometrics_save
)
735 if (dst
&& (dst
->flags
&DST_HOST
)) {
736 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
739 if (icsk
->icsk_backoff
|| !tp
->srtt
) {
740 /* This session failed to estimate rtt. Why?
741 * Probably, no packets returned in time.
744 if (!(dst_metric_locked(dst
, RTAX_RTT
)))
745 dst
->metrics
[RTAX_RTT
-1] = 0;
749 m
= dst_metric(dst
, RTAX_RTT
) - tp
->srtt
;
751 /* If newly calculated rtt larger than stored one,
752 * store new one. Otherwise, use EWMA. Remember,
753 * rtt overestimation is always better than underestimation.
755 if (!(dst_metric_locked(dst
, RTAX_RTT
))) {
757 dst
->metrics
[RTAX_RTT
-1] = tp
->srtt
;
759 dst
->metrics
[RTAX_RTT
-1] -= (m
>>3);
762 if (!(dst_metric_locked(dst
, RTAX_RTTVAR
))) {
766 /* Scale deviation to rttvar fixed point */
771 if (m
>= dst_metric(dst
, RTAX_RTTVAR
))
772 dst
->metrics
[RTAX_RTTVAR
-1] = m
;
774 dst
->metrics
[RTAX_RTTVAR
-1] -=
775 (dst
->metrics
[RTAX_RTTVAR
-1] - m
)>>2;
778 if (tp
->snd_ssthresh
>= 0xFFFF) {
779 /* Slow start still did not finish. */
780 if (dst_metric(dst
, RTAX_SSTHRESH
) &&
781 !dst_metric_locked(dst
, RTAX_SSTHRESH
) &&
782 (tp
->snd_cwnd
>> 1) > dst_metric(dst
, RTAX_SSTHRESH
))
783 dst
->metrics
[RTAX_SSTHRESH
-1] = tp
->snd_cwnd
>> 1;
784 if (!dst_metric_locked(dst
, RTAX_CWND
) &&
785 tp
->snd_cwnd
> dst_metric(dst
, RTAX_CWND
))
786 dst
->metrics
[RTAX_CWND
-1] = tp
->snd_cwnd
;
787 } else if (tp
->snd_cwnd
> tp
->snd_ssthresh
&&
788 icsk
->icsk_ca_state
== TCP_CA_Open
) {
789 /* Cong. avoidance phase, cwnd is reliable. */
790 if (!dst_metric_locked(dst
, RTAX_SSTHRESH
))
791 dst
->metrics
[RTAX_SSTHRESH
-1] =
792 max(tp
->snd_cwnd
>> 1, tp
->snd_ssthresh
);
793 if (!dst_metric_locked(dst
, RTAX_CWND
))
794 dst
->metrics
[RTAX_CWND
-1] = (dst
->metrics
[RTAX_CWND
-1] + tp
->snd_cwnd
) >> 1;
796 /* Else slow start did not finish, cwnd is non-sense,
797 ssthresh may be also invalid.
799 if (!dst_metric_locked(dst
, RTAX_CWND
))
800 dst
->metrics
[RTAX_CWND
-1] = (dst
->metrics
[RTAX_CWND
-1] + tp
->snd_ssthresh
) >> 1;
801 if (dst
->metrics
[RTAX_SSTHRESH
-1] &&
802 !dst_metric_locked(dst
, RTAX_SSTHRESH
) &&
803 tp
->snd_ssthresh
> dst
->metrics
[RTAX_SSTHRESH
-1])
804 dst
->metrics
[RTAX_SSTHRESH
-1] = tp
->snd_ssthresh
;
807 if (!dst_metric_locked(dst
, RTAX_REORDERING
)) {
808 if (dst
->metrics
[RTAX_REORDERING
-1] < tp
->reordering
&&
809 tp
->reordering
!= sysctl_tcp_reordering
)
810 dst
->metrics
[RTAX_REORDERING
-1] = tp
->reordering
;
815 /* Numbers are taken from RFC3390.
817 * John Heffner states:
819 * The RFC specifies a window of no more than 4380 bytes
820 * unless 2*MSS > 4380. Reading the pseudocode in the RFC
821 * is a bit misleading because they use a clamp at 4380 bytes
822 * rather than use a multiplier in the relevant range.
824 __u32
tcp_init_cwnd(struct tcp_sock
*tp
, struct dst_entry
*dst
)
826 __u32 cwnd
= (dst
? dst_metric(dst
, RTAX_INITCWND
) : 0);
829 if (tp
->mss_cache
> 1460)
832 cwnd
= (tp
->mss_cache
> 1095) ? 3 : 4;
834 return min_t(__u32
, cwnd
, tp
->snd_cwnd_clamp
);
837 /* Set slow start threshold and cwnd not falling to slow start */
838 void tcp_enter_cwr(struct sock
*sk
, const int set_ssthresh
)
840 struct tcp_sock
*tp
= tcp_sk(sk
);
841 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
843 tp
->prior_ssthresh
= 0;
845 if (icsk
->icsk_ca_state
< TCP_CA_CWR
) {
848 tp
->snd_ssthresh
= icsk
->icsk_ca_ops
->ssthresh(sk
);
849 tp
->snd_cwnd
= min(tp
->snd_cwnd
,
850 tcp_packets_in_flight(tp
) + 1U);
851 tp
->snd_cwnd_cnt
= 0;
852 tp
->high_seq
= tp
->snd_nxt
;
853 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
854 TCP_ECN_queue_cwr(tp
);
856 tcp_set_ca_state(sk
, TCP_CA_CWR
);
861 * Packet counting of FACK is based on in-order assumptions, therefore TCP
862 * disables it when reordering is detected
864 static void tcp_disable_fack(struct tcp_sock
*tp
)
866 /* RFC3517 uses different metric in lost marker => reset on change */
868 tp
->lost_skb_hint
= NULL
;
869 tp
->rx_opt
.sack_ok
&= ~2;
872 /* Take a notice that peer is sending D-SACKs */
873 static void tcp_dsack_seen(struct tcp_sock
*tp
)
875 tp
->rx_opt
.sack_ok
|= 4;
878 /* Initialize metrics on socket. */
880 static void tcp_init_metrics(struct sock
*sk
)
882 struct tcp_sock
*tp
= tcp_sk(sk
);
883 struct dst_entry
*dst
= __sk_dst_get(sk
);
890 if (dst_metric_locked(dst
, RTAX_CWND
))
891 tp
->snd_cwnd_clamp
= dst_metric(dst
, RTAX_CWND
);
892 if (dst_metric(dst
, RTAX_SSTHRESH
)) {
893 tp
->snd_ssthresh
= dst_metric(dst
, RTAX_SSTHRESH
);
894 if (tp
->snd_ssthresh
> tp
->snd_cwnd_clamp
)
895 tp
->snd_ssthresh
= tp
->snd_cwnd_clamp
;
897 if (dst_metric(dst
, RTAX_REORDERING
) &&
898 tp
->reordering
!= dst_metric(dst
, RTAX_REORDERING
)) {
899 tcp_disable_fack(tp
);
900 tp
->reordering
= dst_metric(dst
, RTAX_REORDERING
);
903 if (dst_metric(dst
, RTAX_RTT
) == 0)
906 if (!tp
->srtt
&& dst_metric(dst
, RTAX_RTT
) < (TCP_TIMEOUT_INIT
<< 3))
909 /* Initial rtt is determined from SYN,SYN-ACK.
910 * The segment is small and rtt may appear much
911 * less than real one. Use per-dst memory
912 * to make it more realistic.
914 * A bit of theory. RTT is time passed after "normal" sized packet
915 * is sent until it is ACKed. In normal circumstances sending small
916 * packets force peer to delay ACKs and calculation is correct too.
917 * The algorithm is adaptive and, provided we follow specs, it
918 * NEVER underestimate RTT. BUT! If peer tries to make some clever
919 * tricks sort of "quick acks" for time long enough to decrease RTT
920 * to low value, and then abruptly stops to do it and starts to delay
921 * ACKs, wait for troubles.
923 if (dst_metric(dst
, RTAX_RTT
) > tp
->srtt
) {
924 tp
->srtt
= dst_metric(dst
, RTAX_RTT
);
925 tp
->rtt_seq
= tp
->snd_nxt
;
927 if (dst_metric(dst
, RTAX_RTTVAR
) > tp
->mdev
) {
928 tp
->mdev
= dst_metric(dst
, RTAX_RTTVAR
);
929 tp
->mdev_max
= tp
->rttvar
= max(tp
->mdev
, tcp_rto_min(sk
));
933 if (inet_csk(sk
)->icsk_rto
< TCP_TIMEOUT_INIT
&& !tp
->rx_opt
.saw_tstamp
)
935 tp
->snd_cwnd
= tcp_init_cwnd(tp
, dst
);
936 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
940 /* Play conservative. If timestamps are not
941 * supported, TCP will fail to recalculate correct
942 * rtt, if initial rto is too small. FORGET ALL AND RESET!
944 if (!tp
->rx_opt
.saw_tstamp
&& tp
->srtt
) {
946 tp
->mdev
= tp
->mdev_max
= tp
->rttvar
= TCP_TIMEOUT_INIT
;
947 inet_csk(sk
)->icsk_rto
= TCP_TIMEOUT_INIT
;
951 static void tcp_update_reordering(struct sock
*sk
, const int metric
,
954 struct tcp_sock
*tp
= tcp_sk(sk
);
955 if (metric
> tp
->reordering
) {
956 tp
->reordering
= min(TCP_MAX_REORDERING
, metric
);
958 /* This exciting event is worth to be remembered. 8) */
960 NET_INC_STATS_BH(LINUX_MIB_TCPTSREORDER
);
961 else if (tcp_is_reno(tp
))
962 NET_INC_STATS_BH(LINUX_MIB_TCPRENOREORDER
);
963 else if (tcp_is_fack(tp
))
964 NET_INC_STATS_BH(LINUX_MIB_TCPFACKREORDER
);
966 NET_INC_STATS_BH(LINUX_MIB_TCPSACKREORDER
);
967 #if FASTRETRANS_DEBUG > 1
968 printk(KERN_DEBUG
"Disorder%d %d %u f%u s%u rr%d\n",
969 tp
->rx_opt
.sack_ok
, inet_csk(sk
)->icsk_ca_state
,
973 tp
->undo_marker
? tp
->undo_retrans
: 0);
975 tcp_disable_fack(tp
);
979 /* This procedure tags the retransmission queue when SACKs arrive.
981 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
982 * Packets in queue with these bits set are counted in variables
983 * sacked_out, retrans_out and lost_out, correspondingly.
985 * Valid combinations are:
986 * Tag InFlight Description
987 * 0 1 - orig segment is in flight.
988 * S 0 - nothing flies, orig reached receiver.
989 * L 0 - nothing flies, orig lost by net.
990 * R 2 - both orig and retransmit are in flight.
991 * L|R 1 - orig is lost, retransmit is in flight.
992 * S|R 1 - orig reached receiver, retrans is still in flight.
993 * (L|S|R is logically valid, it could occur when L|R is sacked,
994 * but it is equivalent to plain S and code short-curcuits it to S.
995 * L|S is logically invalid, it would mean -1 packet in flight 8))
997 * These 6 states form finite state machine, controlled by the following events:
998 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
999 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1000 * 3. Loss detection event of one of three flavors:
1001 * A. Scoreboard estimator decided the packet is lost.
1002 * A'. Reno "three dupacks" marks head of queue lost.
1003 * A''. Its FACK modfication, head until snd.fack is lost.
1004 * B. SACK arrives sacking data transmitted after never retransmitted
1005 * hole was sent out.
1006 * C. SACK arrives sacking SND.NXT at the moment, when the
1007 * segment was retransmitted.
1008 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1010 * It is pleasant to note, that state diagram turns out to be commutative,
1011 * so that we are allowed not to be bothered by order of our actions,
1012 * when multiple events arrive simultaneously. (see the function below).
1014 * Reordering detection.
1015 * --------------------
1016 * Reordering metric is maximal distance, which a packet can be displaced
1017 * in packet stream. With SACKs we can estimate it:
1019 * 1. SACK fills old hole and the corresponding segment was not
1020 * ever retransmitted -> reordering. Alas, we cannot use it
1021 * when segment was retransmitted.
1022 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1023 * for retransmitted and already SACKed segment -> reordering..
1024 * Both of these heuristics are not used in Loss state, when we cannot
1025 * account for retransmits accurately.
1027 * SACK block validation.
1028 * ----------------------
1030 * SACK block range validation checks that the received SACK block fits to
1031 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1032 * Note that SND.UNA is not included to the range though being valid because
1033 * it means that the receiver is rather inconsistent with itself reporting
1034 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1035 * perfectly valid, however, in light of RFC2018 which explicitly states
1036 * that "SACK block MUST reflect the newest segment. Even if the newest
1037 * segment is going to be discarded ...", not that it looks very clever
1038 * in case of head skb. Due to potentional receiver driven attacks, we
1039 * choose to avoid immediate execution of a walk in write queue due to
1040 * reneging and defer head skb's loss recovery to standard loss recovery
1041 * procedure that will eventually trigger (nothing forbids us doing this).
1043 * Implements also blockage to start_seq wrap-around. Problem lies in the
1044 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1045 * there's no guarantee that it will be before snd_nxt (n). The problem
1046 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1049 * <- outs wnd -> <- wrapzone ->
1050 * u e n u_w e_w s n_w
1052 * |<------------+------+----- TCP seqno space --------------+---------->|
1053 * ...-- <2^31 ->| |<--------...
1054 * ...---- >2^31 ------>| |<--------...
1056 * Current code wouldn't be vulnerable but it's better still to discard such
1057 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1058 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1059 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1060 * equal to the ideal case (infinite seqno space without wrap caused issues).
1062 * With D-SACK the lower bound is extended to cover sequence space below
1063 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1064 * again, D-SACK block must not to go across snd_una (for the same reason as
1065 * for the normal SACK blocks, explained above). But there all simplicity
1066 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1067 * fully below undo_marker they do not affect behavior in anyway and can
1068 * therefore be safely ignored. In rare cases (which are more or less
1069 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1070 * fragmentation and packet reordering past skb's retransmission. To consider
1071 * them correctly, the acceptable range must be extended even more though
1072 * the exact amount is rather hard to quantify. However, tp->max_window can
1073 * be used as an exaggerated estimate.
1075 static int tcp_is_sackblock_valid(struct tcp_sock
*tp
, int is_dsack
,
1076 u32 start_seq
, u32 end_seq
)
1078 /* Too far in future, or reversed (interpretation is ambiguous) */
1079 if (after(end_seq
, tp
->snd_nxt
) || !before(start_seq
, end_seq
))
1082 /* Nasty start_seq wrap-around check (see comments above) */
1083 if (!before(start_seq
, tp
->snd_nxt
))
1086 /* In outstanding window? ...This is valid exit for D-SACKs too.
1087 * start_seq == snd_una is non-sensical (see comments above)
1089 if (after(start_seq
, tp
->snd_una
))
1092 if (!is_dsack
|| !tp
->undo_marker
)
1095 /* ...Then it's D-SACK, and must reside below snd_una completely */
1096 if (!after(end_seq
, tp
->snd_una
))
1099 if (!before(start_seq
, tp
->undo_marker
))
1103 if (!after(end_seq
, tp
->undo_marker
))
1106 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1107 * start_seq < undo_marker and end_seq >= undo_marker.
1109 return !before(start_seq
, end_seq
- tp
->max_window
);
1112 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1113 * Event "C". Later note: FACK people cheated me again 8), we have to account
1114 * for reordering! Ugly, but should help.
1116 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1117 * less than what is now known to be received by the other end (derived from
1118 * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1119 * retransmitted skbs to avoid some costly processing per ACKs.
1121 static int tcp_mark_lost_retrans(struct sock
*sk
)
1123 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
1124 struct tcp_sock
*tp
= tcp_sk(sk
);
1125 struct sk_buff
*skb
;
1128 u32 new_low_seq
= tp
->snd_nxt
;
1129 u32 received_upto
= TCP_SKB_CB(tp
->highest_sack
)->end_seq
;
1131 if (!tcp_is_fack(tp
) || !tp
->retrans_out
||
1132 !after(received_upto
, tp
->lost_retrans_low
) ||
1133 icsk
->icsk_ca_state
!= TCP_CA_Recovery
)
1136 tcp_for_write_queue(skb
, sk
) {
1137 u32 ack_seq
= TCP_SKB_CB(skb
)->ack_seq
;
1139 if (skb
== tcp_send_head(sk
))
1141 if (cnt
== tp
->retrans_out
)
1143 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->snd_una
))
1146 if (!(TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_RETRANS
))
1149 if (after(received_upto
, ack_seq
) &&
1151 !before(received_upto
,
1152 ack_seq
+ tp
->reordering
* tp
->mss_cache
))) {
1153 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_RETRANS
;
1154 tp
->retrans_out
-= tcp_skb_pcount(skb
);
1156 /* clear lost hint */
1157 tp
->retransmit_skb_hint
= NULL
;
1159 if (!(TCP_SKB_CB(skb
)->sacked
& (TCPCB_LOST
|TCPCB_SACKED_ACKED
))) {
1160 tp
->lost_out
+= tcp_skb_pcount(skb
);
1161 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
1162 flag
|= FLAG_DATA_SACKED
;
1163 NET_INC_STATS_BH(LINUX_MIB_TCPLOSTRETRANSMIT
);
1166 if (before(ack_seq
, new_low_seq
))
1167 new_low_seq
= ack_seq
;
1168 cnt
+= tcp_skb_pcount(skb
);
1172 if (tp
->retrans_out
)
1173 tp
->lost_retrans_low
= new_low_seq
;
1178 static int tcp_check_dsack(struct tcp_sock
*tp
, struct sk_buff
*ack_skb
,
1179 struct tcp_sack_block_wire
*sp
, int num_sacks
,
1182 u32 start_seq_0
= ntohl(get_unaligned(&sp
[0].start_seq
));
1183 u32 end_seq_0
= ntohl(get_unaligned(&sp
[0].end_seq
));
1186 if (before(start_seq_0
, TCP_SKB_CB(ack_skb
)->ack_seq
)) {
1189 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKRECV
);
1190 } else if (num_sacks
> 1) {
1191 u32 end_seq_1
= ntohl(get_unaligned(&sp
[1].end_seq
));
1192 u32 start_seq_1
= ntohl(get_unaligned(&sp
[1].start_seq
));
1194 if (!after(end_seq_0
, end_seq_1
) &&
1195 !before(start_seq_0
, start_seq_1
)) {
1198 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFORECV
);
1202 /* D-SACK for already forgotten data... Do dumb counting. */
1204 !after(end_seq_0
, prior_snd_una
) &&
1205 after(end_seq_0
, tp
->undo_marker
))
1211 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1212 * the incoming SACK may not exactly match but we can find smaller MSS
1213 * aligned portion of it that matches. Therefore we might need to fragment
1214 * which may fail and creates some hassle (caller must handle error case
1217 static int tcp_match_skb_to_sack(struct sock
*sk
, struct sk_buff
*skb
,
1218 u32 start_seq
, u32 end_seq
)
1221 unsigned int pkt_len
;
1223 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
) &&
1224 !before(end_seq
, TCP_SKB_CB(skb
)->end_seq
);
1226 if (tcp_skb_pcount(skb
) > 1 && !in_sack
&&
1227 after(TCP_SKB_CB(skb
)->end_seq
, start_seq
)) {
1229 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
);
1232 pkt_len
= start_seq
- TCP_SKB_CB(skb
)->seq
;
1234 pkt_len
= end_seq
- TCP_SKB_CB(skb
)->seq
;
1235 err
= tcp_fragment(sk
, skb
, pkt_len
, skb_shinfo(skb
)->gso_size
);
1243 static int tcp_sacktag_one(struct sk_buff
*skb
, struct tcp_sock
*tp
,
1244 int *reord
, int dup_sack
, int fack_count
)
1246 u8 sacked
= TCP_SKB_CB(skb
)->sacked
;
1249 /* Account D-SACK for retransmitted packet. */
1250 if (dup_sack
&& (sacked
& TCPCB_RETRANS
)) {
1251 if (after(TCP_SKB_CB(skb
)->end_seq
, tp
->undo_marker
))
1253 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->snd_una
) &&
1254 (sacked
& TCPCB_SACKED_ACKED
))
1255 *reord
= min(fack_count
, *reord
);
1258 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1259 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->snd_una
))
1262 if (!(sacked
& TCPCB_SACKED_ACKED
)) {
1263 if (sacked
& TCPCB_SACKED_RETRANS
) {
1264 /* If the segment is not tagged as lost,
1265 * we do not clear RETRANS, believing
1266 * that retransmission is still in flight.
1268 if (sacked
& TCPCB_LOST
) {
1269 TCP_SKB_CB(skb
)->sacked
&=
1270 ~(TCPCB_LOST
|TCPCB_SACKED_RETRANS
);
1271 tp
->lost_out
-= tcp_skb_pcount(skb
);
1272 tp
->retrans_out
-= tcp_skb_pcount(skb
);
1274 /* clear lost hint */
1275 tp
->retransmit_skb_hint
= NULL
;
1278 if (!(sacked
& TCPCB_RETRANS
)) {
1279 /* New sack for not retransmitted frame,
1280 * which was in hole. It is reordering.
1282 if (before(TCP_SKB_CB(skb
)->seq
,
1283 tcp_highest_sack_seq(tp
)))
1284 *reord
= min(fack_count
, *reord
);
1286 /* SACK enhanced F-RTO (RFC4138; Appendix B) */
1287 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->frto_highmark
))
1288 flag
|= FLAG_ONLY_ORIG_SACKED
;
1291 if (sacked
& TCPCB_LOST
) {
1292 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_LOST
;
1293 tp
->lost_out
-= tcp_skb_pcount(skb
);
1295 /* clear lost hint */
1296 tp
->retransmit_skb_hint
= NULL
;
1300 TCP_SKB_CB(skb
)->sacked
|= TCPCB_SACKED_ACKED
;
1301 flag
|= FLAG_DATA_SACKED
;
1302 tp
->sacked_out
+= tcp_skb_pcount(skb
);
1304 fack_count
+= tcp_skb_pcount(skb
);
1306 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1307 if (!tcp_is_fack(tp
) && (tp
->lost_skb_hint
!= NULL
) &&
1308 before(TCP_SKB_CB(skb
)->seq
,
1309 TCP_SKB_CB(tp
->lost_skb_hint
)->seq
))
1310 tp
->lost_cnt_hint
+= tcp_skb_pcount(skb
);
1312 if (fack_count
> tp
->fackets_out
)
1313 tp
->fackets_out
= fack_count
;
1315 if (after(TCP_SKB_CB(skb
)->seq
, tcp_highest_sack_seq(tp
)))
1316 tp
->highest_sack
= skb
;
1319 if (dup_sack
&& (sacked
& TCPCB_RETRANS
))
1320 *reord
= min(fack_count
, *reord
);
1323 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1324 * frames and clear it. undo_retrans is decreased above, L|R frames
1325 * are accounted above as well.
1327 if (dup_sack
&& (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_RETRANS
)) {
1328 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_RETRANS
;
1329 tp
->retrans_out
-= tcp_skb_pcount(skb
);
1330 tp
->retransmit_skb_hint
= NULL
;
1337 tcp_sacktag_write_queue(struct sock
*sk
, struct sk_buff
*ack_skb
, u32 prior_snd_una
)
1339 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
1340 struct tcp_sock
*tp
= tcp_sk(sk
);
1341 unsigned char *ptr
= (skb_transport_header(ack_skb
) +
1342 TCP_SKB_CB(ack_skb
)->sacked
);
1343 struct tcp_sack_block_wire
*sp
= (struct tcp_sack_block_wire
*)(ptr
+2);
1344 struct sk_buff
*cached_skb
;
1345 int num_sacks
= (ptr
[1] - TCPOLEN_SACK_BASE
)>>3;
1346 int reord
= tp
->packets_out
;
1348 int found_dup_sack
= 0;
1349 int cached_fack_count
;
1351 int first_sack_index
;
1354 if (!tp
->sacked_out
) {
1355 if (WARN_ON(tp
->fackets_out
))
1356 tp
->fackets_out
= 0;
1357 tp
->highest_sack
= tcp_write_queue_head(sk
);
1360 found_dup_sack
= tcp_check_dsack(tp
, ack_skb
, sp
,
1361 num_sacks
, prior_snd_una
);
1363 flag
|= FLAG_DSACKING_ACK
;
1365 /* Eliminate too old ACKs, but take into
1366 * account more or less fresh ones, they can
1367 * contain valid SACK info.
1369 if (before(TCP_SKB_CB(ack_skb
)->ack_seq
, prior_snd_una
- tp
->max_window
))
1372 if (!tp
->packets_out
)
1376 * if the only SACK change is the increase of the end_seq of
1377 * the first block then only apply that SACK block
1378 * and use retrans queue hinting otherwise slowpath */
1380 for (i
= 0; i
< num_sacks
; i
++) {
1381 __be32 start_seq
= sp
[i
].start_seq
;
1382 __be32 end_seq
= sp
[i
].end_seq
;
1385 if (tp
->recv_sack_cache
[i
].start_seq
!= start_seq
)
1388 if ((tp
->recv_sack_cache
[i
].start_seq
!= start_seq
) ||
1389 (tp
->recv_sack_cache
[i
].end_seq
!= end_seq
))
1392 tp
->recv_sack_cache
[i
].start_seq
= start_seq
;
1393 tp
->recv_sack_cache
[i
].end_seq
= end_seq
;
1395 /* Clear the rest of the cache sack blocks so they won't match mistakenly. */
1396 for (; i
< ARRAY_SIZE(tp
->recv_sack_cache
); i
++) {
1397 tp
->recv_sack_cache
[i
].start_seq
= 0;
1398 tp
->recv_sack_cache
[i
].end_seq
= 0;
1401 first_sack_index
= 0;
1406 tp
->fastpath_skb_hint
= NULL
;
1408 /* order SACK blocks to allow in order walk of the retrans queue */
1409 for (i
= num_sacks
-1; i
> 0; i
--) {
1410 for (j
= 0; j
< i
; j
++){
1411 if (after(ntohl(sp
[j
].start_seq
),
1412 ntohl(sp
[j
+1].start_seq
))){
1413 struct tcp_sack_block_wire tmp
;
1419 /* Track where the first SACK block goes to */
1420 if (j
== first_sack_index
)
1421 first_sack_index
= j
+1;
1428 /* Use SACK fastpath hint if valid */
1429 cached_skb
= tp
->fastpath_skb_hint
;
1430 cached_fack_count
= tp
->fastpath_cnt_hint
;
1432 cached_skb
= tcp_write_queue_head(sk
);
1433 cached_fack_count
= 0;
1436 for (i
= 0; i
< num_sacks
; i
++) {
1437 struct sk_buff
*skb
;
1438 __u32 start_seq
= ntohl(sp
->start_seq
);
1439 __u32 end_seq
= ntohl(sp
->end_seq
);
1441 int dup_sack
= (found_dup_sack
&& (i
== first_sack_index
));
1442 int next_dup
= (found_dup_sack
&& (i
+1 == first_sack_index
));
1446 if (!tcp_is_sackblock_valid(tp
, dup_sack
, start_seq
, end_seq
)) {
1448 if (!tp
->undo_marker
)
1449 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKIGNOREDNOUNDO
);
1451 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKIGNOREDOLD
);
1453 /* Don't count olds caused by ACK reordering */
1454 if ((TCP_SKB_CB(ack_skb
)->ack_seq
!= tp
->snd_una
) &&
1455 !after(end_seq
, tp
->snd_una
))
1457 NET_INC_STATS_BH(LINUX_MIB_TCPSACKDISCARD
);
1463 fack_count
= cached_fack_count
;
1465 /* Event "B" in the comment above. */
1466 if (after(end_seq
, tp
->high_seq
))
1467 flag
|= FLAG_DATA_LOST
;
1469 tcp_for_write_queue_from(skb
, sk
) {
1472 if (skb
== tcp_send_head(sk
))
1476 cached_fack_count
= fack_count
;
1477 if (i
== first_sack_index
) {
1478 tp
->fastpath_skb_hint
= skb
;
1479 tp
->fastpath_cnt_hint
= fack_count
;
1482 /* The retransmission queue is always in order, so
1483 * we can short-circuit the walk early.
1485 if (!before(TCP_SKB_CB(skb
)->seq
, end_seq
))
1488 dup_sack
= (found_dup_sack
&& (i
== first_sack_index
));
1490 /* Due to sorting DSACK may reside within this SACK block! */
1492 u32 dup_start
= ntohl(sp
->start_seq
);
1493 u32 dup_end
= ntohl(sp
->end_seq
);
1495 if (before(TCP_SKB_CB(skb
)->seq
, dup_end
)) {
1496 in_sack
= tcp_match_skb_to_sack(sk
, skb
, dup_start
, dup_end
);
1502 /* DSACK info lost if out-of-mem, try SACK still */
1504 in_sack
= tcp_match_skb_to_sack(sk
, skb
, start_seq
, end_seq
);
1505 if (unlikely(in_sack
< 0))
1509 flag
|= tcp_sacktag_one(skb
, tp
, &reord
, dup_sack
, fack_count
);
1511 fack_count
+= tcp_skb_pcount(skb
);
1514 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1515 * due to in-order walk
1517 if (after(end_seq
, tp
->frto_highmark
))
1518 flag
&= ~FLAG_ONLY_ORIG_SACKED
;
1521 flag
|= tcp_mark_lost_retrans(sk
);
1523 tcp_verify_left_out(tp
);
1525 if ((reord
< tp
->fackets_out
) &&
1526 ((icsk
->icsk_ca_state
!= TCP_CA_Loss
) || tp
->undo_marker
) &&
1527 (!tp
->frto_highmark
|| after(tp
->snd_una
, tp
->frto_highmark
)))
1528 tcp_update_reordering(sk
, tp
->fackets_out
- reord
, 0);
1532 #if FASTRETRANS_DEBUG > 0
1533 BUG_TRAP((int)tp
->sacked_out
>= 0);
1534 BUG_TRAP((int)tp
->lost_out
>= 0);
1535 BUG_TRAP((int)tp
->retrans_out
>= 0);
1536 BUG_TRAP((int)tcp_packets_in_flight(tp
) >= 0);
1541 /* If we receive more dupacks than we expected counting segments
1542 * in assumption of absent reordering, interpret this as reordering.
1543 * The only another reason could be bug in receiver TCP.
1545 static void tcp_check_reno_reordering(struct sock
*sk
, const int addend
)
1547 struct tcp_sock
*tp
= tcp_sk(sk
);
1550 holes
= max(tp
->lost_out
, 1U);
1551 holes
= min(holes
, tp
->packets_out
);
1553 if ((tp
->sacked_out
+ holes
) > tp
->packets_out
) {
1554 tp
->sacked_out
= tp
->packets_out
- holes
;
1555 tcp_update_reordering(sk
, tp
->packets_out
+ addend
, 0);
1559 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1561 static void tcp_add_reno_sack(struct sock
*sk
)
1563 struct tcp_sock
*tp
= tcp_sk(sk
);
1565 tcp_check_reno_reordering(sk
, 0);
1566 tcp_verify_left_out(tp
);
1569 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1571 static void tcp_remove_reno_sacks(struct sock
*sk
, int acked
)
1573 struct tcp_sock
*tp
= tcp_sk(sk
);
1576 /* One ACK acked hole. The rest eat duplicate ACKs. */
1577 if (acked
-1 >= tp
->sacked_out
)
1580 tp
->sacked_out
-= acked
-1;
1582 tcp_check_reno_reordering(sk
, acked
);
1583 tcp_verify_left_out(tp
);
1586 static inline void tcp_reset_reno_sack(struct tcp_sock
*tp
)
1591 /* F-RTO can only be used if TCP has never retransmitted anything other than
1592 * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
1594 int tcp_use_frto(struct sock
*sk
)
1596 const struct tcp_sock
*tp
= tcp_sk(sk
);
1597 struct sk_buff
*skb
;
1599 if (!sysctl_tcp_frto
)
1605 /* Avoid expensive walking of rexmit queue if possible */
1606 if (tp
->retrans_out
> 1)
1609 skb
= tcp_write_queue_head(sk
);
1610 skb
= tcp_write_queue_next(sk
, skb
); /* Skips head */
1611 tcp_for_write_queue_from(skb
, sk
) {
1612 if (skb
== tcp_send_head(sk
))
1614 if (TCP_SKB_CB(skb
)->sacked
&TCPCB_RETRANS
)
1616 /* Short-circuit when first non-SACKed skb has been checked */
1617 if (!(TCP_SKB_CB(skb
)->sacked
&TCPCB_SACKED_ACKED
))
1623 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
1624 * recovery a bit and use heuristics in tcp_process_frto() to detect if
1625 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
1626 * keep retrans_out counting accurate (with SACK F-RTO, other than head
1627 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
1628 * bits are handled if the Loss state is really to be entered (in
1629 * tcp_enter_frto_loss).
1631 * Do like tcp_enter_loss() would; when RTO expires the second time it
1633 * "Reduce ssthresh if it has not yet been made inside this window."
1635 void tcp_enter_frto(struct sock
*sk
)
1637 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
1638 struct tcp_sock
*tp
= tcp_sk(sk
);
1639 struct sk_buff
*skb
;
1641 if ((!tp
->frto_counter
&& icsk
->icsk_ca_state
<= TCP_CA_Disorder
) ||
1642 tp
->snd_una
== tp
->high_seq
||
1643 ((icsk
->icsk_ca_state
== TCP_CA_Loss
|| tp
->frto_counter
) &&
1644 !icsk
->icsk_retransmits
)) {
1645 tp
->prior_ssthresh
= tcp_current_ssthresh(sk
);
1646 /* Our state is too optimistic in ssthresh() call because cwnd
1647 * is not reduced until tcp_enter_frto_loss() when previous F-RTO
1648 * recovery has not yet completed. Pattern would be this: RTO,
1649 * Cumulative ACK, RTO (2xRTO for the same segment does not end
1651 * RFC4138 should be more specific on what to do, even though
1652 * RTO is quite unlikely to occur after the first Cumulative ACK
1653 * due to back-off and complexity of triggering events ...
1655 if (tp
->frto_counter
) {
1657 stored_cwnd
= tp
->snd_cwnd
;
1659 tp
->snd_ssthresh
= icsk
->icsk_ca_ops
->ssthresh(sk
);
1660 tp
->snd_cwnd
= stored_cwnd
;
1662 tp
->snd_ssthresh
= icsk
->icsk_ca_ops
->ssthresh(sk
);
1664 /* ... in theory, cong.control module could do "any tricks" in
1665 * ssthresh(), which means that ca_state, lost bits and lost_out
1666 * counter would have to be faked before the call occurs. We
1667 * consider that too expensive, unlikely and hacky, so modules
1668 * using these in ssthresh() must deal these incompatibility
1669 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
1671 tcp_ca_event(sk
, CA_EVENT_FRTO
);
1674 tp
->undo_marker
= tp
->snd_una
;
1675 tp
->undo_retrans
= 0;
1677 skb
= tcp_write_queue_head(sk
);
1678 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_RETRANS
)
1679 tp
->undo_marker
= 0;
1680 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_RETRANS
) {
1681 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_RETRANS
;
1682 tp
->retrans_out
-= tcp_skb_pcount(skb
);
1684 tcp_verify_left_out(tp
);
1686 /* Too bad if TCP was application limited */
1687 tp
->snd_cwnd
= min(tp
->snd_cwnd
, tcp_packets_in_flight(tp
) + 1);
1689 /* Earlier loss recovery underway (see RFC4138; Appendix B).
1690 * The last condition is necessary at least in tp->frto_counter case.
1692 if (IsSackFrto() && (tp
->frto_counter
||
1693 ((1 << icsk
->icsk_ca_state
) & (TCPF_CA_Recovery
|TCPF_CA_Loss
))) &&
1694 after(tp
->high_seq
, tp
->snd_una
)) {
1695 tp
->frto_highmark
= tp
->high_seq
;
1697 tp
->frto_highmark
= tp
->snd_nxt
;
1699 tcp_set_ca_state(sk
, TCP_CA_Disorder
);
1700 tp
->high_seq
= tp
->snd_nxt
;
1701 tp
->frto_counter
= 1;
1704 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
1705 * which indicates that we should follow the traditional RTO recovery,
1706 * i.e. mark everything lost and do go-back-N retransmission.
1708 static void tcp_enter_frto_loss(struct sock
*sk
, int allowed_segments
, int flag
)
1710 struct tcp_sock
*tp
= tcp_sk(sk
);
1711 struct sk_buff
*skb
;
1714 tp
->retrans_out
= 0;
1715 if (tcp_is_reno(tp
))
1716 tcp_reset_reno_sack(tp
);
1718 tcp_for_write_queue(skb
, sk
) {
1719 if (skb
== tcp_send_head(sk
))
1722 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_LOST
;
1724 * Count the retransmission made on RTO correctly (only when
1725 * waiting for the first ACK and did not get it)...
1727 if ((tp
->frto_counter
== 1) && !(flag
&FLAG_DATA_ACKED
)) {
1728 /* For some reason this R-bit might get cleared? */
1729 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_RETRANS
)
1730 tp
->retrans_out
+= tcp_skb_pcount(skb
);
1731 /* ...enter this if branch just for the first segment */
1732 flag
|= FLAG_DATA_ACKED
;
1734 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_RETRANS
)
1735 tp
->undo_marker
= 0;
1736 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_RETRANS
;
1739 /* Don't lost mark skbs that were fwd transmitted after RTO */
1740 if (!(TCP_SKB_CB(skb
)->sacked
&TCPCB_SACKED_ACKED
) &&
1741 !after(TCP_SKB_CB(skb
)->end_seq
, tp
->frto_highmark
)) {
1742 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
1743 tp
->lost_out
+= tcp_skb_pcount(skb
);
1746 tcp_verify_left_out(tp
);
1748 tp
->snd_cwnd
= tcp_packets_in_flight(tp
) + allowed_segments
;
1749 tp
->snd_cwnd_cnt
= 0;
1750 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
1751 tp
->frto_counter
= 0;
1752 tp
->bytes_acked
= 0;
1754 tp
->reordering
= min_t(unsigned int, tp
->reordering
,
1755 sysctl_tcp_reordering
);
1756 tcp_set_ca_state(sk
, TCP_CA_Loss
);
1757 tp
->high_seq
= tp
->frto_highmark
;
1758 TCP_ECN_queue_cwr(tp
);
1760 tcp_clear_retrans_hints_partial(tp
);
1763 static void tcp_clear_retrans_partial(struct tcp_sock
*tp
)
1765 tp
->retrans_out
= 0;
1768 tp
->undo_marker
= 0;
1769 tp
->undo_retrans
= 0;
1772 void tcp_clear_retrans(struct tcp_sock
*tp
)
1774 tcp_clear_retrans_partial(tp
);
1776 tp
->fackets_out
= 0;
1780 /* Enter Loss state. If "how" is not zero, forget all SACK information
1781 * and reset tags completely, otherwise preserve SACKs. If receiver
1782 * dropped its ofo queue, we will know this due to reneging detection.
1784 void tcp_enter_loss(struct sock
*sk
, int how
)
1786 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
1787 struct tcp_sock
*tp
= tcp_sk(sk
);
1788 struct sk_buff
*skb
;
1790 /* Reduce ssthresh if it has not yet been made inside this window. */
1791 if (icsk
->icsk_ca_state
<= TCP_CA_Disorder
|| tp
->snd_una
== tp
->high_seq
||
1792 (icsk
->icsk_ca_state
== TCP_CA_Loss
&& !icsk
->icsk_retransmits
)) {
1793 tp
->prior_ssthresh
= tcp_current_ssthresh(sk
);
1794 tp
->snd_ssthresh
= icsk
->icsk_ca_ops
->ssthresh(sk
);
1795 tcp_ca_event(sk
, CA_EVENT_LOSS
);
1798 tp
->snd_cwnd_cnt
= 0;
1799 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
1801 tp
->bytes_acked
= 0;
1802 tcp_clear_retrans_partial(tp
);
1804 if (tcp_is_reno(tp
))
1805 tcp_reset_reno_sack(tp
);
1808 /* Push undo marker, if it was plain RTO and nothing
1809 * was retransmitted. */
1810 tp
->undo_marker
= tp
->snd_una
;
1811 tcp_clear_retrans_hints_partial(tp
);
1814 tp
->fackets_out
= 0;
1815 tcp_clear_all_retrans_hints(tp
);
1818 tcp_for_write_queue(skb
, sk
) {
1819 if (skb
== tcp_send_head(sk
))
1822 if (TCP_SKB_CB(skb
)->sacked
&TCPCB_RETRANS
)
1823 tp
->undo_marker
= 0;
1824 TCP_SKB_CB(skb
)->sacked
&= (~TCPCB_TAGBITS
)|TCPCB_SACKED_ACKED
;
1825 if (!(TCP_SKB_CB(skb
)->sacked
&TCPCB_SACKED_ACKED
) || how
) {
1826 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_ACKED
;
1827 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
1828 tp
->lost_out
+= tcp_skb_pcount(skb
);
1831 tcp_verify_left_out(tp
);
1833 tp
->reordering
= min_t(unsigned int, tp
->reordering
,
1834 sysctl_tcp_reordering
);
1835 tcp_set_ca_state(sk
, TCP_CA_Loss
);
1836 tp
->high_seq
= tp
->snd_nxt
;
1837 TCP_ECN_queue_cwr(tp
);
1838 /* Abort F-RTO algorithm if one is in progress */
1839 tp
->frto_counter
= 0;
1842 static int tcp_check_sack_reneging(struct sock
*sk
)
1844 struct sk_buff
*skb
;
1846 /* If ACK arrived pointing to a remembered SACK,
1847 * it means that our remembered SACKs do not reflect
1848 * real state of receiver i.e.
1849 * receiver _host_ is heavily congested (or buggy).
1850 * Do processing similar to RTO timeout.
1852 if ((skb
= tcp_write_queue_head(sk
)) != NULL
&&
1853 (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
)) {
1854 struct inet_connection_sock
*icsk
= inet_csk(sk
);
1855 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRENEGING
);
1857 tcp_enter_loss(sk
, 1);
1858 icsk
->icsk_retransmits
++;
1859 tcp_retransmit_skb(sk
, tcp_write_queue_head(sk
));
1860 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_RETRANS
,
1861 icsk
->icsk_rto
, TCP_RTO_MAX
);
1867 static inline int tcp_fackets_out(struct tcp_sock
*tp
)
1869 return tcp_is_reno(tp
) ? tp
->sacked_out
+1 : tp
->fackets_out
;
1872 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
1873 * counter when SACK is enabled (without SACK, sacked_out is used for
1876 * Instead, with FACK TCP uses fackets_out that includes both SACKed
1877 * segments up to the highest received SACK block so far and holes in
1880 * With reordering, holes may still be in flight, so RFC3517 recovery
1881 * uses pure sacked_out (total number of SACKed segments) even though
1882 * it violates the RFC that uses duplicate ACKs, often these are equal
1883 * but when e.g. out-of-window ACKs or packet duplication occurs,
1884 * they differ. Since neither occurs due to loss, TCP should really
1887 static inline int tcp_dupack_heurestics(struct tcp_sock
*tp
)
1889 return tcp_is_fack(tp
) ? tp
->fackets_out
: tp
->sacked_out
+ 1;
1892 static inline int tcp_skb_timedout(struct sock
*sk
, struct sk_buff
*skb
)
1894 return (tcp_time_stamp
- TCP_SKB_CB(skb
)->when
> inet_csk(sk
)->icsk_rto
);
1897 static inline int tcp_head_timedout(struct sock
*sk
)
1899 struct tcp_sock
*tp
= tcp_sk(sk
);
1901 return tp
->packets_out
&&
1902 tcp_skb_timedout(sk
, tcp_write_queue_head(sk
));
1905 /* Linux NewReno/SACK/FACK/ECN state machine.
1906 * --------------------------------------
1908 * "Open" Normal state, no dubious events, fast path.
1909 * "Disorder" In all the respects it is "Open",
1910 * but requires a bit more attention. It is entered when
1911 * we see some SACKs or dupacks. It is split of "Open"
1912 * mainly to move some processing from fast path to slow one.
1913 * "CWR" CWND was reduced due to some Congestion Notification event.
1914 * It can be ECN, ICMP source quench, local device congestion.
1915 * "Recovery" CWND was reduced, we are fast-retransmitting.
1916 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
1918 * tcp_fastretrans_alert() is entered:
1919 * - each incoming ACK, if state is not "Open"
1920 * - when arrived ACK is unusual, namely:
1925 * Counting packets in flight is pretty simple.
1927 * in_flight = packets_out - left_out + retrans_out
1929 * packets_out is SND.NXT-SND.UNA counted in packets.
1931 * retrans_out is number of retransmitted segments.
1933 * left_out is number of segments left network, but not ACKed yet.
1935 * left_out = sacked_out + lost_out
1937 * sacked_out: Packets, which arrived to receiver out of order
1938 * and hence not ACKed. With SACKs this number is simply
1939 * amount of SACKed data. Even without SACKs
1940 * it is easy to give pretty reliable estimate of this number,
1941 * counting duplicate ACKs.
1943 * lost_out: Packets lost by network. TCP has no explicit
1944 * "loss notification" feedback from network (for now).
1945 * It means that this number can be only _guessed_.
1946 * Actually, it is the heuristics to predict lossage that
1947 * distinguishes different algorithms.
1949 * F.e. after RTO, when all the queue is considered as lost,
1950 * lost_out = packets_out and in_flight = retrans_out.
1952 * Essentially, we have now two algorithms counting
1955 * FACK: It is the simplest heuristics. As soon as we decided
1956 * that something is lost, we decide that _all_ not SACKed
1957 * packets until the most forward SACK are lost. I.e.
1958 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
1959 * It is absolutely correct estimate, if network does not reorder
1960 * packets. And it loses any connection to reality when reordering
1961 * takes place. We use FACK by default until reordering
1962 * is suspected on the path to this destination.
1964 * NewReno: when Recovery is entered, we assume that one segment
1965 * is lost (classic Reno). While we are in Recovery and
1966 * a partial ACK arrives, we assume that one more packet
1967 * is lost (NewReno). This heuristics are the same in NewReno
1970 * Imagine, that's all! Forget about all this shamanism about CWND inflation
1971 * deflation etc. CWND is real congestion window, never inflated, changes
1972 * only according to classic VJ rules.
1974 * Really tricky (and requiring careful tuning) part of algorithm
1975 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
1976 * The first determines the moment _when_ we should reduce CWND and,
1977 * hence, slow down forward transmission. In fact, it determines the moment
1978 * when we decide that hole is caused by loss, rather than by a reorder.
1980 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
1981 * holes, caused by lost packets.
1983 * And the most logically complicated part of algorithm is undo
1984 * heuristics. We detect false retransmits due to both too early
1985 * fast retransmit (reordering) and underestimated RTO, analyzing
1986 * timestamps and D-SACKs. When we detect that some segments were
1987 * retransmitted by mistake and CWND reduction was wrong, we undo
1988 * window reduction and abort recovery phase. This logic is hidden
1989 * inside several functions named tcp_try_undo_<something>.
1992 /* This function decides, when we should leave Disordered state
1993 * and enter Recovery phase, reducing congestion window.
1995 * Main question: may we further continue forward transmission
1996 * with the same cwnd?
1998 static int tcp_time_to_recover(struct sock
*sk
)
2000 struct tcp_sock
*tp
= tcp_sk(sk
);
2003 /* Do not perform any recovery during F-RTO algorithm */
2004 if (tp
->frto_counter
)
2007 /* Trick#1: The loss is proven. */
2011 /* Not-A-Trick#2 : Classic rule... */
2012 if (tcp_dupack_heurestics(tp
) > tp
->reordering
)
2015 /* Trick#3 : when we use RFC2988 timer restart, fast
2016 * retransmit can be triggered by timeout of queue head.
2018 if (tcp_is_fack(tp
) && tcp_head_timedout(sk
))
2021 /* Trick#4: It is still not OK... But will it be useful to delay
2024 packets_out
= tp
->packets_out
;
2025 if (packets_out
<= tp
->reordering
&&
2026 tp
->sacked_out
>= max_t(__u32
, packets_out
/2, sysctl_tcp_reordering
) &&
2027 !tcp_may_send_now(sk
)) {
2028 /* We have nothing to send. This connection is limited
2029 * either by receiver window or by application.
2037 /* RFC: This is from the original, I doubt that this is necessary at all:
2038 * clear xmit_retrans hint if seq of this skb is beyond hint. How could we
2039 * retransmitted past LOST markings in the first place? I'm not fully sure
2040 * about undo and end of connection cases, which can cause R without L?
2042 static void tcp_verify_retransmit_hint(struct tcp_sock
*tp
,
2043 struct sk_buff
*skb
)
2045 if ((tp
->retransmit_skb_hint
!= NULL
) &&
2046 before(TCP_SKB_CB(skb
)->seq
,
2047 TCP_SKB_CB(tp
->retransmit_skb_hint
)->seq
))
2048 tp
->retransmit_skb_hint
= NULL
;
2051 /* Mark head of queue up as lost. With RFC3517 SACK, the packets is
2052 * is against sacked "cnt", otherwise it's against facked "cnt"
2054 static void tcp_mark_head_lost(struct sock
*sk
, int packets
, int fast_rexmit
)
2056 struct tcp_sock
*tp
= tcp_sk(sk
);
2057 struct sk_buff
*skb
;
2060 BUG_TRAP(packets
<= tp
->packets_out
);
2061 if (tp
->lost_skb_hint
) {
2062 skb
= tp
->lost_skb_hint
;
2063 cnt
= tp
->lost_cnt_hint
;
2065 skb
= tcp_write_queue_head(sk
);
2069 tcp_for_write_queue_from(skb
, sk
) {
2070 if (skb
== tcp_send_head(sk
))
2072 /* TODO: do this better */
2073 /* this is not the most efficient way to do this... */
2074 tp
->lost_skb_hint
= skb
;
2075 tp
->lost_cnt_hint
= cnt
;
2077 if (tcp_is_fack(tp
) ||
2078 (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
))
2079 cnt
+= tcp_skb_pcount(skb
);
2081 if (((!fast_rexmit
|| (tp
->lost_out
> 0)) && (cnt
> packets
)) ||
2082 after(TCP_SKB_CB(skb
)->end_seq
, tp
->high_seq
))
2084 if (!(TCP_SKB_CB(skb
)->sacked
& (TCPCB_SACKED_ACKED
|TCPCB_LOST
))) {
2085 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
2086 tp
->lost_out
+= tcp_skb_pcount(skb
);
2087 tcp_verify_retransmit_hint(tp
, skb
);
2090 tcp_verify_left_out(tp
);
2093 /* Account newly detected lost packet(s) */
2095 static void tcp_update_scoreboard(struct sock
*sk
, int fast_rexmit
)
2097 struct tcp_sock
*tp
= tcp_sk(sk
);
2099 if (tcp_is_reno(tp
)) {
2100 tcp_mark_head_lost(sk
, 1, fast_rexmit
);
2101 } else if (tcp_is_fack(tp
)) {
2102 int lost
= tp
->fackets_out
- tp
->reordering
;
2105 tcp_mark_head_lost(sk
, lost
, fast_rexmit
);
2107 int sacked_upto
= tp
->sacked_out
- tp
->reordering
;
2108 if (sacked_upto
< 0)
2110 tcp_mark_head_lost(sk
, sacked_upto
, fast_rexmit
);
2113 /* New heuristics: it is possible only after we switched
2114 * to restart timer each time when something is ACKed.
2115 * Hence, we can detect timed out packets during fast
2116 * retransmit without falling to slow start.
2118 if (tcp_is_fack(tp
) && tcp_head_timedout(sk
)) {
2119 struct sk_buff
*skb
;
2121 skb
= tp
->scoreboard_skb_hint
? tp
->scoreboard_skb_hint
2122 : tcp_write_queue_head(sk
);
2124 tcp_for_write_queue_from(skb
, sk
) {
2125 if (skb
== tcp_send_head(sk
))
2127 if (!tcp_skb_timedout(sk
, skb
))
2130 if (!(TCP_SKB_CB(skb
)->sacked
& (TCPCB_SACKED_ACKED
|TCPCB_LOST
))) {
2131 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
2132 tp
->lost_out
+= tcp_skb_pcount(skb
);
2133 tcp_verify_retransmit_hint(tp
, skb
);
2137 tp
->scoreboard_skb_hint
= skb
;
2139 tcp_verify_left_out(tp
);
2143 /* CWND moderation, preventing bursts due to too big ACKs
2144 * in dubious situations.
2146 static inline void tcp_moderate_cwnd(struct tcp_sock
*tp
)
2148 tp
->snd_cwnd
= min(tp
->snd_cwnd
,
2149 tcp_packets_in_flight(tp
)+tcp_max_burst(tp
));
2150 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2153 /* Lower bound on congestion window is slow start threshold
2154 * unless congestion avoidance choice decides to overide it.
2156 static inline u32
tcp_cwnd_min(const struct sock
*sk
)
2158 const struct tcp_congestion_ops
*ca_ops
= inet_csk(sk
)->icsk_ca_ops
;
2160 return ca_ops
->min_cwnd
? ca_ops
->min_cwnd(sk
) : tcp_sk(sk
)->snd_ssthresh
;
2163 /* Decrease cwnd each second ack. */
2164 static void tcp_cwnd_down(struct sock
*sk
, int flag
)
2166 struct tcp_sock
*tp
= tcp_sk(sk
);
2167 int decr
= tp
->snd_cwnd_cnt
+ 1;
2169 if ((flag
&(FLAG_ANY_PROGRESS
|FLAG_DSACKING_ACK
)) ||
2170 (tcp_is_reno(tp
) && !(flag
&FLAG_NOT_DUP
))) {
2171 tp
->snd_cwnd_cnt
= decr
&1;
2174 if (decr
&& tp
->snd_cwnd
> tcp_cwnd_min(sk
))
2175 tp
->snd_cwnd
-= decr
;
2177 tp
->snd_cwnd
= min(tp
->snd_cwnd
, tcp_packets_in_flight(tp
)+1);
2178 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2182 /* Nothing was retransmitted or returned timestamp is less
2183 * than timestamp of the first retransmission.
2185 static inline int tcp_packet_delayed(struct tcp_sock
*tp
)
2187 return !tp
->retrans_stamp
||
2188 (tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
&&
2189 (__s32
)(tp
->rx_opt
.rcv_tsecr
- tp
->retrans_stamp
) < 0);
2192 /* Undo procedures. */
2194 #if FASTRETRANS_DEBUG > 1
2195 static void DBGUNDO(struct sock
*sk
, const char *msg
)
2197 struct tcp_sock
*tp
= tcp_sk(sk
);
2198 struct inet_sock
*inet
= inet_sk(sk
);
2200 printk(KERN_DEBUG
"Undo %s %u.%u.%u.%u/%u c%u l%u ss%u/%u p%u\n",
2202 NIPQUAD(inet
->daddr
), ntohs(inet
->dport
),
2203 tp
->snd_cwnd
, tcp_left_out(tp
),
2204 tp
->snd_ssthresh
, tp
->prior_ssthresh
,
2208 #define DBGUNDO(x...) do { } while (0)
2211 static void tcp_undo_cwr(struct sock
*sk
, const int undo
)
2213 struct tcp_sock
*tp
= tcp_sk(sk
);
2215 if (tp
->prior_ssthresh
) {
2216 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2218 if (icsk
->icsk_ca_ops
->undo_cwnd
)
2219 tp
->snd_cwnd
= icsk
->icsk_ca_ops
->undo_cwnd(sk
);
2221 tp
->snd_cwnd
= max(tp
->snd_cwnd
, tp
->snd_ssthresh
<<1);
2223 if (undo
&& tp
->prior_ssthresh
> tp
->snd_ssthresh
) {
2224 tp
->snd_ssthresh
= tp
->prior_ssthresh
;
2225 TCP_ECN_withdraw_cwr(tp
);
2228 tp
->snd_cwnd
= max(tp
->snd_cwnd
, tp
->snd_ssthresh
);
2230 tcp_moderate_cwnd(tp
);
2231 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2233 /* There is something screwy going on with the retrans hints after
2235 tcp_clear_all_retrans_hints(tp
);
2238 static inline int tcp_may_undo(struct tcp_sock
*tp
)
2240 return tp
->undo_marker
&&
2241 (!tp
->undo_retrans
|| tcp_packet_delayed(tp
));
2244 /* People celebrate: "We love our President!" */
2245 static int tcp_try_undo_recovery(struct sock
*sk
)
2247 struct tcp_sock
*tp
= tcp_sk(sk
);
2249 if (tcp_may_undo(tp
)) {
2250 /* Happy end! We did not retransmit anything
2251 * or our original transmission succeeded.
2253 DBGUNDO(sk
, inet_csk(sk
)->icsk_ca_state
== TCP_CA_Loss
? "loss" : "retrans");
2254 tcp_undo_cwr(sk
, 1);
2255 if (inet_csk(sk
)->icsk_ca_state
== TCP_CA_Loss
)
2256 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO
);
2258 NET_INC_STATS_BH(LINUX_MIB_TCPFULLUNDO
);
2259 tp
->undo_marker
= 0;
2261 if (tp
->snd_una
== tp
->high_seq
&& tcp_is_reno(tp
)) {
2262 /* Hold old state until something *above* high_seq
2263 * is ACKed. For Reno it is MUST to prevent false
2264 * fast retransmits (RFC2582). SACK TCP is safe. */
2265 tcp_moderate_cwnd(tp
);
2268 tcp_set_ca_state(sk
, TCP_CA_Open
);
2272 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2273 static void tcp_try_undo_dsack(struct sock
*sk
)
2275 struct tcp_sock
*tp
= tcp_sk(sk
);
2277 if (tp
->undo_marker
&& !tp
->undo_retrans
) {
2278 DBGUNDO(sk
, "D-SACK");
2279 tcp_undo_cwr(sk
, 1);
2280 tp
->undo_marker
= 0;
2281 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKUNDO
);
2285 /* Undo during fast recovery after partial ACK. */
2287 static int tcp_try_undo_partial(struct sock
*sk
, int acked
)
2289 struct tcp_sock
*tp
= tcp_sk(sk
);
2290 /* Partial ACK arrived. Force Hoe's retransmit. */
2291 int failed
= tcp_is_reno(tp
) || (tcp_fackets_out(tp
) > tp
->reordering
);
2293 if (tcp_may_undo(tp
)) {
2294 /* Plain luck! Hole if filled with delayed
2295 * packet, rather than with a retransmit.
2297 if (tp
->retrans_out
== 0)
2298 tp
->retrans_stamp
= 0;
2300 tcp_update_reordering(sk
, tcp_fackets_out(tp
) + acked
, 1);
2303 tcp_undo_cwr(sk
, 0);
2304 NET_INC_STATS_BH(LINUX_MIB_TCPPARTIALUNDO
);
2306 /* So... Do not make Hoe's retransmit yet.
2307 * If the first packet was delayed, the rest
2308 * ones are most probably delayed as well.
2315 /* Undo during loss recovery after partial ACK. */
2316 static int tcp_try_undo_loss(struct sock
*sk
)
2318 struct tcp_sock
*tp
= tcp_sk(sk
);
2320 if (tcp_may_undo(tp
)) {
2321 struct sk_buff
*skb
;
2322 tcp_for_write_queue(skb
, sk
) {
2323 if (skb
== tcp_send_head(sk
))
2325 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_LOST
;
2328 tcp_clear_all_retrans_hints(tp
);
2330 DBGUNDO(sk
, "partial loss");
2332 tcp_undo_cwr(sk
, 1);
2333 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO
);
2334 inet_csk(sk
)->icsk_retransmits
= 0;
2335 tp
->undo_marker
= 0;
2336 if (tcp_is_sack(tp
))
2337 tcp_set_ca_state(sk
, TCP_CA_Open
);
2343 static inline void tcp_complete_cwr(struct sock
*sk
)
2345 struct tcp_sock
*tp
= tcp_sk(sk
);
2346 tp
->snd_cwnd
= min(tp
->snd_cwnd
, tp
->snd_ssthresh
);
2347 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2348 tcp_ca_event(sk
, CA_EVENT_COMPLETE_CWR
);
2351 static void tcp_try_to_open(struct sock
*sk
, int flag
)
2353 struct tcp_sock
*tp
= tcp_sk(sk
);
2355 tcp_verify_left_out(tp
);
2357 if (tp
->retrans_out
== 0)
2358 tp
->retrans_stamp
= 0;
2361 tcp_enter_cwr(sk
, 1);
2363 if (inet_csk(sk
)->icsk_ca_state
!= TCP_CA_CWR
) {
2364 int state
= TCP_CA_Open
;
2366 if (tcp_left_out(tp
) || tp
->retrans_out
|| tp
->undo_marker
)
2367 state
= TCP_CA_Disorder
;
2369 if (inet_csk(sk
)->icsk_ca_state
!= state
) {
2370 tcp_set_ca_state(sk
, state
);
2371 tp
->high_seq
= tp
->snd_nxt
;
2373 tcp_moderate_cwnd(tp
);
2375 tcp_cwnd_down(sk
, flag
);
2379 static void tcp_mtup_probe_failed(struct sock
*sk
)
2381 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2383 icsk
->icsk_mtup
.search_high
= icsk
->icsk_mtup
.probe_size
- 1;
2384 icsk
->icsk_mtup
.probe_size
= 0;
2387 static void tcp_mtup_probe_success(struct sock
*sk
, struct sk_buff
*skb
)
2389 struct tcp_sock
*tp
= tcp_sk(sk
);
2390 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2392 /* FIXME: breaks with very large cwnd */
2393 tp
->prior_ssthresh
= tcp_current_ssthresh(sk
);
2394 tp
->snd_cwnd
= tp
->snd_cwnd
*
2395 tcp_mss_to_mtu(sk
, tp
->mss_cache
) /
2396 icsk
->icsk_mtup
.probe_size
;
2397 tp
->snd_cwnd_cnt
= 0;
2398 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2399 tp
->rcv_ssthresh
= tcp_current_ssthresh(sk
);
2401 icsk
->icsk_mtup
.search_low
= icsk
->icsk_mtup
.probe_size
;
2402 icsk
->icsk_mtup
.probe_size
= 0;
2403 tcp_sync_mss(sk
, icsk
->icsk_pmtu_cookie
);
2407 /* Process an event, which can update packets-in-flight not trivially.
2408 * Main goal of this function is to calculate new estimate for left_out,
2409 * taking into account both packets sitting in receiver's buffer and
2410 * packets lost by network.
2412 * Besides that it does CWND reduction, when packet loss is detected
2413 * and changes state of machine.
2415 * It does _not_ decide what to send, it is made in function
2416 * tcp_xmit_retransmit_queue().
2419 tcp_fastretrans_alert(struct sock
*sk
, int pkts_acked
, int flag
)
2421 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2422 struct tcp_sock
*tp
= tcp_sk(sk
);
2423 int is_dupack
= !(flag
&(FLAG_SND_UNA_ADVANCED
|FLAG_NOT_DUP
));
2424 int do_lost
= is_dupack
|| ((flag
&FLAG_DATA_SACKED
) &&
2425 (tcp_fackets_out(tp
) > tp
->reordering
));
2426 int fast_rexmit
= 0;
2428 /* Some technical things:
2429 * 1. Reno does not count dupacks (sacked_out) automatically. */
2430 if (!tp
->packets_out
)
2433 if (WARN_ON(!tp
->sacked_out
&& tp
->fackets_out
))
2434 tp
->fackets_out
= 0;
2436 /* Now state machine starts.
2437 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2439 tp
->prior_ssthresh
= 0;
2441 /* B. In all the states check for reneging SACKs. */
2442 if (tp
->sacked_out
&& tcp_check_sack_reneging(sk
))
2445 /* C. Process data loss notification, provided it is valid. */
2446 if (tcp_is_fack(tp
) && (flag
& FLAG_DATA_LOST
) &&
2447 before(tp
->snd_una
, tp
->high_seq
) &&
2448 icsk
->icsk_ca_state
!= TCP_CA_Open
&&
2449 tp
->fackets_out
> tp
->reordering
) {
2450 tcp_mark_head_lost(sk
, tp
->fackets_out
-tp
->reordering
, 0);
2451 NET_INC_STATS_BH(LINUX_MIB_TCPLOSS
);
2454 /* D. Check consistency of the current state. */
2455 tcp_verify_left_out(tp
);
2457 /* E. Check state exit conditions. State can be terminated
2458 * when high_seq is ACKed. */
2459 if (icsk
->icsk_ca_state
== TCP_CA_Open
) {
2460 BUG_TRAP(tp
->retrans_out
== 0);
2461 tp
->retrans_stamp
= 0;
2462 } else if (!before(tp
->snd_una
, tp
->high_seq
)) {
2463 switch (icsk
->icsk_ca_state
) {
2465 icsk
->icsk_retransmits
= 0;
2466 if (tcp_try_undo_recovery(sk
))
2471 /* CWR is to be held something *above* high_seq
2472 * is ACKed for CWR bit to reach receiver. */
2473 if (tp
->snd_una
!= tp
->high_seq
) {
2474 tcp_complete_cwr(sk
);
2475 tcp_set_ca_state(sk
, TCP_CA_Open
);
2479 case TCP_CA_Disorder
:
2480 tcp_try_undo_dsack(sk
);
2481 if (!tp
->undo_marker
||
2482 /* For SACK case do not Open to allow to undo
2483 * catching for all duplicate ACKs. */
2484 tcp_is_reno(tp
) || tp
->snd_una
!= tp
->high_seq
) {
2485 tp
->undo_marker
= 0;
2486 tcp_set_ca_state(sk
, TCP_CA_Open
);
2490 case TCP_CA_Recovery
:
2491 if (tcp_is_reno(tp
))
2492 tcp_reset_reno_sack(tp
);
2493 if (tcp_try_undo_recovery(sk
))
2495 tcp_complete_cwr(sk
);
2500 /* F. Process state. */
2501 switch (icsk
->icsk_ca_state
) {
2502 case TCP_CA_Recovery
:
2503 if (!(flag
& FLAG_SND_UNA_ADVANCED
)) {
2504 if (tcp_is_reno(tp
) && is_dupack
)
2505 tcp_add_reno_sack(sk
);
2507 do_lost
= tcp_try_undo_partial(sk
, pkts_acked
);
2510 if (flag
&FLAG_DATA_ACKED
)
2511 icsk
->icsk_retransmits
= 0;
2512 if (!tcp_try_undo_loss(sk
)) {
2513 tcp_moderate_cwnd(tp
);
2514 tcp_xmit_retransmit_queue(sk
);
2517 if (icsk
->icsk_ca_state
!= TCP_CA_Open
)
2519 /* Loss is undone; fall through to processing in Open state. */
2521 if (tcp_is_reno(tp
)) {
2522 if (flag
& FLAG_SND_UNA_ADVANCED
)
2523 tcp_reset_reno_sack(tp
);
2525 tcp_add_reno_sack(sk
);
2528 if (icsk
->icsk_ca_state
== TCP_CA_Disorder
)
2529 tcp_try_undo_dsack(sk
);
2531 if (!tcp_time_to_recover(sk
)) {
2532 tcp_try_to_open(sk
, flag
);
2536 /* MTU probe failure: don't reduce cwnd */
2537 if (icsk
->icsk_ca_state
< TCP_CA_CWR
&&
2538 icsk
->icsk_mtup
.probe_size
&&
2539 tp
->snd_una
== tp
->mtu_probe
.probe_seq_start
) {
2540 tcp_mtup_probe_failed(sk
);
2541 /* Restores the reduction we did in tcp_mtup_probe() */
2543 tcp_simple_retransmit(sk
);
2547 /* Otherwise enter Recovery state */
2549 if (tcp_is_reno(tp
))
2550 NET_INC_STATS_BH(LINUX_MIB_TCPRENORECOVERY
);
2552 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRECOVERY
);
2554 tp
->high_seq
= tp
->snd_nxt
;
2555 tp
->prior_ssthresh
= 0;
2556 tp
->undo_marker
= tp
->snd_una
;
2557 tp
->undo_retrans
= tp
->retrans_out
;
2559 if (icsk
->icsk_ca_state
< TCP_CA_CWR
) {
2560 if (!(flag
&FLAG_ECE
))
2561 tp
->prior_ssthresh
= tcp_current_ssthresh(sk
);
2562 tp
->snd_ssthresh
= icsk
->icsk_ca_ops
->ssthresh(sk
);
2563 TCP_ECN_queue_cwr(tp
);
2566 tp
->bytes_acked
= 0;
2567 tp
->snd_cwnd_cnt
= 0;
2568 tcp_set_ca_state(sk
, TCP_CA_Recovery
);
2572 if (do_lost
|| (tcp_is_fack(tp
) && tcp_head_timedout(sk
)))
2573 tcp_update_scoreboard(sk
, fast_rexmit
);
2574 tcp_cwnd_down(sk
, flag
);
2575 tcp_xmit_retransmit_queue(sk
);
2578 /* Read draft-ietf-tcplw-high-performance before mucking
2579 * with this code. (Supersedes RFC1323)
2581 static void tcp_ack_saw_tstamp(struct sock
*sk
, int flag
)
2583 /* RTTM Rule: A TSecr value received in a segment is used to
2584 * update the averaged RTT measurement only if the segment
2585 * acknowledges some new data, i.e., only if it advances the
2586 * left edge of the send window.
2588 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2589 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
2591 * Changed: reset backoff as soon as we see the first valid sample.
2592 * If we do not, we get strongly overestimated rto. With timestamps
2593 * samples are accepted even from very old segments: f.e., when rtt=1
2594 * increases to 8, we retransmit 5 times and after 8 seconds delayed
2595 * answer arrives rto becomes 120 seconds! If at least one of segments
2596 * in window is lost... Voila. --ANK (010210)
2598 struct tcp_sock
*tp
= tcp_sk(sk
);
2599 const __u32 seq_rtt
= tcp_time_stamp
- tp
->rx_opt
.rcv_tsecr
;
2600 tcp_rtt_estimator(sk
, seq_rtt
);
2602 inet_csk(sk
)->icsk_backoff
= 0;
2606 static void tcp_ack_no_tstamp(struct sock
*sk
, u32 seq_rtt
, int flag
)
2608 /* We don't have a timestamp. Can only use
2609 * packets that are not retransmitted to determine
2610 * rtt estimates. Also, we must not reset the
2611 * backoff for rto until we get a non-retransmitted
2612 * packet. This allows us to deal with a situation
2613 * where the network delay has increased suddenly.
2614 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
2617 if (flag
& FLAG_RETRANS_DATA_ACKED
)
2620 tcp_rtt_estimator(sk
, seq_rtt
);
2622 inet_csk(sk
)->icsk_backoff
= 0;
2626 static inline void tcp_ack_update_rtt(struct sock
*sk
, const int flag
,
2629 const struct tcp_sock
*tp
= tcp_sk(sk
);
2630 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
2631 if (tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
)
2632 tcp_ack_saw_tstamp(sk
, flag
);
2633 else if (seq_rtt
>= 0)
2634 tcp_ack_no_tstamp(sk
, seq_rtt
, flag
);
2637 static void tcp_cong_avoid(struct sock
*sk
, u32 ack
,
2638 u32 in_flight
, int good
)
2640 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2641 icsk
->icsk_ca_ops
->cong_avoid(sk
, ack
, in_flight
, good
);
2642 tcp_sk(sk
)->snd_cwnd_stamp
= tcp_time_stamp
;
2645 /* Restart timer after forward progress on connection.
2646 * RFC2988 recommends to restart timer to now+rto.
2648 static void tcp_rearm_rto(struct sock
*sk
)
2650 struct tcp_sock
*tp
= tcp_sk(sk
);
2652 if (!tp
->packets_out
) {
2653 inet_csk_clear_xmit_timer(sk
, ICSK_TIME_RETRANS
);
2655 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_RETRANS
, inet_csk(sk
)->icsk_rto
, TCP_RTO_MAX
);
2659 /* If we get here, the whole TSO packet has not been acked. */
2660 static u32
tcp_tso_acked(struct sock
*sk
, struct sk_buff
*skb
)
2662 struct tcp_sock
*tp
= tcp_sk(sk
);
2665 BUG_ON(!after(TCP_SKB_CB(skb
)->end_seq
, tp
->snd_una
));
2667 packets_acked
= tcp_skb_pcount(skb
);
2668 if (tcp_trim_head(sk
, skb
, tp
->snd_una
- TCP_SKB_CB(skb
)->seq
))
2670 packets_acked
-= tcp_skb_pcount(skb
);
2672 if (packets_acked
) {
2673 BUG_ON(tcp_skb_pcount(skb
) == 0);
2674 BUG_ON(!before(TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
));
2677 return packets_acked
;
2680 /* Remove acknowledged frames from the retransmission queue. If our packet
2681 * is before the ack sequence we can discard it as it's confirmed to have
2682 * arrived at the other end.
2684 static int tcp_clean_rtx_queue(struct sock
*sk
, s32
*seq_rtt_p
,
2687 struct tcp_sock
*tp
= tcp_sk(sk
);
2688 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2689 struct sk_buff
*skb
;
2690 u32 now
= tcp_time_stamp
;
2691 int fully_acked
= 1;
2693 int prior_packets
= tp
->packets_out
;
2695 u32 reord
= tp
->packets_out
;
2697 s32 ca_seq_rtt
= -1;
2698 ktime_t last_ackt
= net_invalid_timestamp();
2700 while ((skb
= tcp_write_queue_head(sk
)) && skb
!= tcp_send_head(sk
)) {
2701 struct tcp_skb_cb
*scb
= TCP_SKB_CB(skb
);
2704 u8 sacked
= scb
->sacked
;
2706 /* Determine how many packets and what bytes were acked, tso and else */
2707 if (after(scb
->end_seq
, tp
->snd_una
)) {
2708 if (tcp_skb_pcount(skb
) == 1 ||
2709 !after(tp
->snd_una
, scb
->seq
))
2712 packets_acked
= tcp_tso_acked(sk
, skb
);
2717 end_seq
= tp
->snd_una
;
2719 packets_acked
= tcp_skb_pcount(skb
);
2720 end_seq
= scb
->end_seq
;
2723 /* MTU probing checks */
2724 if (fully_acked
&& icsk
->icsk_mtup
.probe_size
&&
2725 !after(tp
->mtu_probe
.probe_seq_end
, scb
->end_seq
)) {
2726 tcp_mtup_probe_success(sk
, skb
);
2730 if (sacked
& TCPCB_RETRANS
) {
2731 if (sacked
& TCPCB_SACKED_RETRANS
)
2732 tp
->retrans_out
-= packets_acked
;
2733 flag
|= FLAG_RETRANS_DATA_ACKED
;
2736 if ((flag
& FLAG_DATA_ACKED
) ||
2737 (packets_acked
> 1))
2738 flag
|= FLAG_NONHEAD_RETRANS_ACKED
;
2740 ca_seq_rtt
= now
- scb
->when
;
2741 last_ackt
= skb
->tstamp
;
2743 seq_rtt
= ca_seq_rtt
;
2745 if (!(sacked
& TCPCB_SACKED_ACKED
))
2746 reord
= min(cnt
, reord
);
2749 if (sacked
& TCPCB_SACKED_ACKED
)
2750 tp
->sacked_out
-= packets_acked
;
2751 if (sacked
& TCPCB_LOST
)
2752 tp
->lost_out
-= packets_acked
;
2754 if ((sacked
& TCPCB_URG
) && tp
->urg_mode
&&
2755 !before(end_seq
, tp
->snd_up
))
2758 ca_seq_rtt
= now
- scb
->when
;
2759 last_ackt
= skb
->tstamp
;
2761 seq_rtt
= ca_seq_rtt
;
2763 reord
= min(cnt
, reord
);
2765 tp
->packets_out
-= packets_acked
;
2766 cnt
+= packets_acked
;
2768 /* Initial outgoing SYN's get put onto the write_queue
2769 * just like anything else we transmit. It is not
2770 * true data, and if we misinform our callers that
2771 * this ACK acks real data, we will erroneously exit
2772 * connection startup slow start one packet too
2773 * quickly. This is severely frowned upon behavior.
2775 if (!(scb
->flags
& TCPCB_FLAG_SYN
)) {
2776 flag
|= FLAG_DATA_ACKED
;
2778 flag
|= FLAG_SYN_ACKED
;
2779 tp
->retrans_stamp
= 0;
2785 tcp_unlink_write_queue(skb
, sk
);
2786 sk_stream_free_skb(sk
, skb
);
2787 tcp_clear_all_retrans_hints(tp
);
2790 if (flag
& FLAG_ACKED
) {
2791 u32 pkts_acked
= prior_packets
- tp
->packets_out
;
2792 const struct tcp_congestion_ops
*ca_ops
2793 = inet_csk(sk
)->icsk_ca_ops
;
2795 tcp_ack_update_rtt(sk
, flag
, seq_rtt
);
2798 if (tcp_is_reno(tp
)) {
2799 tcp_remove_reno_sacks(sk
, pkts_acked
);
2801 /* Non-retransmitted hole got filled? That's reordering */
2802 if (reord
< prior_fackets
)
2803 tcp_update_reordering(sk
, tp
->fackets_out
- reord
, 0);
2806 tp
->fackets_out
-= min(pkts_acked
, tp
->fackets_out
);
2807 /* hint's skb might be NULL but we don't need to care */
2808 tp
->fastpath_cnt_hint
-= min_t(u32
, pkts_acked
,
2809 tp
->fastpath_cnt_hint
);
2810 if (ca_ops
->pkts_acked
) {
2813 /* Is the ACK triggering packet unambiguous? */
2814 if (!(flag
& FLAG_RETRANS_DATA_ACKED
)) {
2815 /* High resolution needed and available? */
2816 if (ca_ops
->flags
& TCP_CONG_RTT_STAMP
&&
2817 !ktime_equal(last_ackt
,
2818 net_invalid_timestamp()))
2819 rtt_us
= ktime_us_delta(ktime_get_real(),
2821 else if (ca_seq_rtt
> 0)
2822 rtt_us
= jiffies_to_usecs(ca_seq_rtt
);
2825 ca_ops
->pkts_acked(sk
, pkts_acked
, rtt_us
);
2829 #if FASTRETRANS_DEBUG > 0
2830 BUG_TRAP((int)tp
->sacked_out
>= 0);
2831 BUG_TRAP((int)tp
->lost_out
>= 0);
2832 BUG_TRAP((int)tp
->retrans_out
>= 0);
2833 if (!tp
->packets_out
&& tcp_is_sack(tp
)) {
2834 icsk
= inet_csk(sk
);
2836 printk(KERN_DEBUG
"Leak l=%u %d\n",
2837 tp
->lost_out
, icsk
->icsk_ca_state
);
2840 if (tp
->sacked_out
) {
2841 printk(KERN_DEBUG
"Leak s=%u %d\n",
2842 tp
->sacked_out
, icsk
->icsk_ca_state
);
2845 if (tp
->retrans_out
) {
2846 printk(KERN_DEBUG
"Leak r=%u %d\n",
2847 tp
->retrans_out
, icsk
->icsk_ca_state
);
2848 tp
->retrans_out
= 0;
2852 *seq_rtt_p
= seq_rtt
;
2856 static void tcp_ack_probe(struct sock
*sk
)
2858 const struct tcp_sock
*tp
= tcp_sk(sk
);
2859 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2861 /* Was it a usable window open? */
2863 if (!after(TCP_SKB_CB(tcp_send_head(sk
))->end_seq
,
2864 tp
->snd_una
+ tp
->snd_wnd
)) {
2865 icsk
->icsk_backoff
= 0;
2866 inet_csk_clear_xmit_timer(sk
, ICSK_TIME_PROBE0
);
2867 /* Socket must be waked up by subsequent tcp_data_snd_check().
2868 * This function is not for random using!
2871 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_PROBE0
,
2872 min(icsk
->icsk_rto
<< icsk
->icsk_backoff
, TCP_RTO_MAX
),
2877 static inline int tcp_ack_is_dubious(const struct sock
*sk
, const int flag
)
2879 return (!(flag
& FLAG_NOT_DUP
) || (flag
& FLAG_CA_ALERT
) ||
2880 inet_csk(sk
)->icsk_ca_state
!= TCP_CA_Open
);
2883 static inline int tcp_may_raise_cwnd(const struct sock
*sk
, const int flag
)
2885 const struct tcp_sock
*tp
= tcp_sk(sk
);
2886 return (!(flag
& FLAG_ECE
) || tp
->snd_cwnd
< tp
->snd_ssthresh
) &&
2887 !((1 << inet_csk(sk
)->icsk_ca_state
) & (TCPF_CA_Recovery
| TCPF_CA_CWR
));
2890 /* Check that window update is acceptable.
2891 * The function assumes that snd_una<=ack<=snd_next.
2893 static inline int tcp_may_update_window(const struct tcp_sock
*tp
, const u32 ack
,
2894 const u32 ack_seq
, const u32 nwin
)
2896 return (after(ack
, tp
->snd_una
) ||
2897 after(ack_seq
, tp
->snd_wl1
) ||
2898 (ack_seq
== tp
->snd_wl1
&& nwin
> tp
->snd_wnd
));
2901 /* Update our send window.
2903 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
2904 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
2906 static int tcp_ack_update_window(struct sock
*sk
, struct sk_buff
*skb
, u32 ack
,
2909 struct tcp_sock
*tp
= tcp_sk(sk
);
2911 u32 nwin
= ntohs(tcp_hdr(skb
)->window
);
2913 if (likely(!tcp_hdr(skb
)->syn
))
2914 nwin
<<= tp
->rx_opt
.snd_wscale
;
2916 if (tcp_may_update_window(tp
, ack
, ack_seq
, nwin
)) {
2917 flag
|= FLAG_WIN_UPDATE
;
2918 tcp_update_wl(tp
, ack
, ack_seq
);
2920 if (tp
->snd_wnd
!= nwin
) {
2923 /* Note, it is the only place, where
2924 * fast path is recovered for sending TCP.
2927 tcp_fast_path_check(sk
);
2929 if (nwin
> tp
->max_window
) {
2930 tp
->max_window
= nwin
;
2931 tcp_sync_mss(sk
, inet_csk(sk
)->icsk_pmtu_cookie
);
2941 /* A very conservative spurious RTO response algorithm: reduce cwnd and
2942 * continue in congestion avoidance.
2944 static void tcp_conservative_spur_to_response(struct tcp_sock
*tp
)
2946 tp
->snd_cwnd
= min(tp
->snd_cwnd
, tp
->snd_ssthresh
);
2947 tp
->snd_cwnd_cnt
= 0;
2948 tp
->bytes_acked
= 0;
2949 TCP_ECN_queue_cwr(tp
);
2950 tcp_moderate_cwnd(tp
);
2953 /* A conservative spurious RTO response algorithm: reduce cwnd using
2954 * rate halving and continue in congestion avoidance.
2956 static void tcp_ratehalving_spur_to_response(struct sock
*sk
)
2958 tcp_enter_cwr(sk
, 0);
2961 static void tcp_undo_spur_to_response(struct sock
*sk
, int flag
)
2964 tcp_ratehalving_spur_to_response(sk
);
2966 tcp_undo_cwr(sk
, 1);
2969 /* F-RTO spurious RTO detection algorithm (RFC4138)
2971 * F-RTO affects during two new ACKs following RTO (well, almost, see inline
2972 * comments). State (ACK number) is kept in frto_counter. When ACK advances
2973 * window (but not to or beyond highest sequence sent before RTO):
2974 * On First ACK, send two new segments out.
2975 * On Second ACK, RTO was likely spurious. Do spurious response (response
2976 * algorithm is not part of the F-RTO detection algorithm
2977 * given in RFC4138 but can be selected separately).
2978 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
2979 * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
2980 * of Nagle, this is done using frto_counter states 2 and 3, when a new data
2981 * segment of any size sent during F-RTO, state 2 is upgraded to 3.
2983 * Rationale: if the RTO was spurious, new ACKs should arrive from the
2984 * original window even after we transmit two new data segments.
2987 * on first step, wait until first cumulative ACK arrives, then move to
2988 * the second step. In second step, the next ACK decides.
2990 * F-RTO is implemented (mainly) in four functions:
2991 * - tcp_use_frto() is used to determine if TCP is can use F-RTO
2992 * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
2993 * called when tcp_use_frto() showed green light
2994 * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
2995 * - tcp_enter_frto_loss() is called if there is not enough evidence
2996 * to prove that the RTO is indeed spurious. It transfers the control
2997 * from F-RTO to the conventional RTO recovery
2999 static int tcp_process_frto(struct sock
*sk
, int flag
)
3001 struct tcp_sock
*tp
= tcp_sk(sk
);
3003 tcp_verify_left_out(tp
);
3005 /* Duplicate the behavior from Loss state (fastretrans_alert) */
3006 if (flag
&FLAG_DATA_ACKED
)
3007 inet_csk(sk
)->icsk_retransmits
= 0;
3009 if ((flag
& FLAG_NONHEAD_RETRANS_ACKED
) ||
3010 ((tp
->frto_counter
>= 2) && (flag
& FLAG_RETRANS_DATA_ACKED
)))
3011 tp
->undo_marker
= 0;
3013 if (!before(tp
->snd_una
, tp
->frto_highmark
)) {
3014 tcp_enter_frto_loss(sk
, (tp
->frto_counter
== 1 ? 2 : 3), flag
);
3018 if (!IsSackFrto() || tcp_is_reno(tp
)) {
3019 /* RFC4138 shortcoming in step 2; should also have case c):
3020 * ACK isn't duplicate nor advances window, e.g., opposite dir
3023 if (!(flag
&FLAG_ANY_PROGRESS
) && (flag
&FLAG_NOT_DUP
))
3026 if (!(flag
&FLAG_DATA_ACKED
)) {
3027 tcp_enter_frto_loss(sk
, (tp
->frto_counter
== 1 ? 0 : 3),
3032 if (!(flag
&FLAG_DATA_ACKED
) && (tp
->frto_counter
== 1)) {
3033 /* Prevent sending of new data. */
3034 tp
->snd_cwnd
= min(tp
->snd_cwnd
,
3035 tcp_packets_in_flight(tp
));
3039 if ((tp
->frto_counter
>= 2) &&
3040 (!(flag
&FLAG_FORWARD_PROGRESS
) ||
3041 ((flag
&FLAG_DATA_SACKED
) && !(flag
&FLAG_ONLY_ORIG_SACKED
)))) {
3042 /* RFC4138 shortcoming (see comment above) */
3043 if (!(flag
&FLAG_FORWARD_PROGRESS
) && (flag
&FLAG_NOT_DUP
))
3046 tcp_enter_frto_loss(sk
, 3, flag
);
3051 if (tp
->frto_counter
== 1) {
3052 /* tcp_may_send_now needs to see updated state */
3053 tp
->snd_cwnd
= tcp_packets_in_flight(tp
) + 2;
3054 tp
->frto_counter
= 2;
3056 if (!tcp_may_send_now(sk
))
3057 tcp_enter_frto_loss(sk
, 2, flag
);
3061 switch (sysctl_tcp_frto_response
) {
3063 tcp_undo_spur_to_response(sk
, flag
);
3066 tcp_conservative_spur_to_response(tp
);
3069 tcp_ratehalving_spur_to_response(sk
);
3072 tp
->frto_counter
= 0;
3073 tp
->undo_marker
= 0;
3074 NET_INC_STATS_BH(LINUX_MIB_TCPSPURIOUSRTOS
);
3079 /* This routine deals with incoming acks, but not outgoing ones. */
3080 static int tcp_ack(struct sock
*sk
, struct sk_buff
*skb
, int flag
)
3082 struct inet_connection_sock
*icsk
= inet_csk(sk
);
3083 struct tcp_sock
*tp
= tcp_sk(sk
);
3084 u32 prior_snd_una
= tp
->snd_una
;
3085 u32 ack_seq
= TCP_SKB_CB(skb
)->seq
;
3086 u32 ack
= TCP_SKB_CB(skb
)->ack_seq
;
3087 u32 prior_in_flight
;
3093 /* If the ack is newer than sent or older than previous acks
3094 * then we can probably ignore it.
3096 if (after(ack
, tp
->snd_nxt
))
3097 goto uninteresting_ack
;
3099 if (before(ack
, prior_snd_una
))
3102 if (after(ack
, prior_snd_una
))
3103 flag
|= FLAG_SND_UNA_ADVANCED
;
3105 if (sysctl_tcp_abc
) {
3106 if (icsk
->icsk_ca_state
< TCP_CA_CWR
)
3107 tp
->bytes_acked
+= ack
- prior_snd_una
;
3108 else if (icsk
->icsk_ca_state
== TCP_CA_Loss
)
3109 /* we assume just one segment left network */
3110 tp
->bytes_acked
+= min(ack
- prior_snd_una
, tp
->mss_cache
);
3113 prior_fackets
= tp
->fackets_out
;
3114 prior_in_flight
= tcp_packets_in_flight(tp
);
3116 if (!(flag
&FLAG_SLOWPATH
) && after(ack
, prior_snd_una
)) {
3117 /* Window is constant, pure forward advance.
3118 * No more checks are required.
3119 * Note, we use the fact that SND.UNA>=SND.WL2.
3121 tcp_update_wl(tp
, ack
, ack_seq
);
3123 flag
|= FLAG_WIN_UPDATE
;
3125 tcp_ca_event(sk
, CA_EVENT_FAST_ACK
);
3127 NET_INC_STATS_BH(LINUX_MIB_TCPHPACKS
);
3129 if (ack_seq
!= TCP_SKB_CB(skb
)->end_seq
)
3132 NET_INC_STATS_BH(LINUX_MIB_TCPPUREACKS
);
3134 flag
|= tcp_ack_update_window(sk
, skb
, ack
, ack_seq
);
3136 if (TCP_SKB_CB(skb
)->sacked
)
3137 flag
|= tcp_sacktag_write_queue(sk
, skb
, prior_snd_una
);
3139 if (TCP_ECN_rcv_ecn_echo(tp
, tcp_hdr(skb
)))
3142 tcp_ca_event(sk
, CA_EVENT_SLOW_ACK
);
3145 /* We passed data and got it acked, remove any soft error
3146 * log. Something worked...
3148 sk
->sk_err_soft
= 0;
3149 tp
->rcv_tstamp
= tcp_time_stamp
;
3150 prior_packets
= tp
->packets_out
;
3154 /* See if we can take anything off of the retransmit queue. */
3155 flag
|= tcp_clean_rtx_queue(sk
, &seq_rtt
, prior_fackets
);
3157 if (tp
->frto_counter
)
3158 frto_cwnd
= tcp_process_frto(sk
, flag
);
3159 /* Guarantee sacktag reordering detection against wrap-arounds */
3160 if (before(tp
->frto_highmark
, tp
->snd_una
))
3161 tp
->frto_highmark
= 0;
3163 if (tcp_ack_is_dubious(sk
, flag
)) {
3164 /* Advance CWND, if state allows this. */
3165 if ((flag
& FLAG_DATA_ACKED
) && !frto_cwnd
&&
3166 tcp_may_raise_cwnd(sk
, flag
))
3167 tcp_cong_avoid(sk
, ack
, prior_in_flight
, 0);
3168 tcp_fastretrans_alert(sk
, prior_packets
- tp
->packets_out
, flag
);
3170 if ((flag
& FLAG_DATA_ACKED
) && !frto_cwnd
)
3171 tcp_cong_avoid(sk
, ack
, prior_in_flight
, 1);
3174 if ((flag
& FLAG_FORWARD_PROGRESS
) || !(flag
&FLAG_NOT_DUP
))
3175 dst_confirm(sk
->sk_dst_cache
);
3180 icsk
->icsk_probes_out
= 0;
3182 /* If this ack opens up a zero window, clear backoff. It was
3183 * being used to time the probes, and is probably far higher than
3184 * it needs to be for normal retransmission.
3186 if (tcp_send_head(sk
))
3191 if (TCP_SKB_CB(skb
)->sacked
)
3192 tcp_sacktag_write_queue(sk
, skb
, prior_snd_una
);
3195 SOCK_DEBUG(sk
, "Ack %u out of %u:%u\n", ack
, tp
->snd_una
, tp
->snd_nxt
);
3200 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3201 * But, this can also be called on packets in the established flow when
3202 * the fast version below fails.
3204 void tcp_parse_options(struct sk_buff
*skb
, struct tcp_options_received
*opt_rx
, int estab
)
3207 struct tcphdr
*th
= tcp_hdr(skb
);
3208 int length
=(th
->doff
*4)-sizeof(struct tcphdr
);
3210 ptr
= (unsigned char *)(th
+ 1);
3211 opt_rx
->saw_tstamp
= 0;
3213 while (length
> 0) {
3220 case TCPOPT_NOP
: /* Ref: RFC 793 section 3.1 */
3225 if (opsize
< 2) /* "silly options" */
3227 if (opsize
> length
)
3228 return; /* don't parse partial options */
3231 if (opsize
==TCPOLEN_MSS
&& th
->syn
&& !estab
) {
3232 u16 in_mss
= ntohs(get_unaligned((__be16
*)ptr
));
3234 if (opt_rx
->user_mss
&& opt_rx
->user_mss
< in_mss
)
3235 in_mss
= opt_rx
->user_mss
;
3236 opt_rx
->mss_clamp
= in_mss
;
3241 if (opsize
==TCPOLEN_WINDOW
&& th
->syn
&& !estab
)
3242 if (sysctl_tcp_window_scaling
) {
3243 __u8 snd_wscale
= *(__u8
*) ptr
;
3244 opt_rx
->wscale_ok
= 1;
3245 if (snd_wscale
> 14) {
3246 if (net_ratelimit())
3247 printk(KERN_INFO
"tcp_parse_options: Illegal window "
3248 "scaling value %d >14 received.\n",
3252 opt_rx
->snd_wscale
= snd_wscale
;
3255 case TCPOPT_TIMESTAMP
:
3256 if (opsize
==TCPOLEN_TIMESTAMP
) {
3257 if ((estab
&& opt_rx
->tstamp_ok
) ||
3258 (!estab
&& sysctl_tcp_timestamps
)) {
3259 opt_rx
->saw_tstamp
= 1;
3260 opt_rx
->rcv_tsval
= ntohl(get_unaligned((__be32
*)ptr
));
3261 opt_rx
->rcv_tsecr
= ntohl(get_unaligned((__be32
*)(ptr
+4)));
3265 case TCPOPT_SACK_PERM
:
3266 if (opsize
==TCPOLEN_SACK_PERM
&& th
->syn
&& !estab
) {
3267 if (sysctl_tcp_sack
) {
3268 opt_rx
->sack_ok
= 1;
3269 tcp_sack_reset(opt_rx
);
3275 if ((opsize
>= (TCPOLEN_SACK_BASE
+ TCPOLEN_SACK_PERBLOCK
)) &&
3276 !((opsize
- TCPOLEN_SACK_BASE
) % TCPOLEN_SACK_PERBLOCK
) &&
3278 TCP_SKB_CB(skb
)->sacked
= (ptr
- 2) - (unsigned char *)th
;
3281 #ifdef CONFIG_TCP_MD5SIG
3284 * The MD5 Hash has already been
3285 * checked (see tcp_v{4,6}_do_rcv()).
3297 /* Fast parse options. This hopes to only see timestamps.
3298 * If it is wrong it falls back on tcp_parse_options().
3300 static int tcp_fast_parse_options(struct sk_buff
*skb
, struct tcphdr
*th
,
3301 struct tcp_sock
*tp
)
3303 if (th
->doff
== sizeof(struct tcphdr
)>>2) {
3304 tp
->rx_opt
.saw_tstamp
= 0;
3306 } else if (tp
->rx_opt
.tstamp_ok
&&
3307 th
->doff
== (sizeof(struct tcphdr
)>>2)+(TCPOLEN_TSTAMP_ALIGNED
>>2)) {
3308 __be32
*ptr
= (__be32
*)(th
+ 1);
3309 if (*ptr
== htonl((TCPOPT_NOP
<< 24) | (TCPOPT_NOP
<< 16)
3310 | (TCPOPT_TIMESTAMP
<< 8) | TCPOLEN_TIMESTAMP
)) {
3311 tp
->rx_opt
.saw_tstamp
= 1;
3313 tp
->rx_opt
.rcv_tsval
= ntohl(*ptr
);
3315 tp
->rx_opt
.rcv_tsecr
= ntohl(*ptr
);
3319 tcp_parse_options(skb
, &tp
->rx_opt
, 1);
3323 static inline void tcp_store_ts_recent(struct tcp_sock
*tp
)
3325 tp
->rx_opt
.ts_recent
= tp
->rx_opt
.rcv_tsval
;
3326 tp
->rx_opt
.ts_recent_stamp
= get_seconds();
3329 static inline void tcp_replace_ts_recent(struct tcp_sock
*tp
, u32 seq
)
3331 if (tp
->rx_opt
.saw_tstamp
&& !after(seq
, tp
->rcv_wup
)) {
3332 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3333 * extra check below makes sure this can only happen
3334 * for pure ACK frames. -DaveM
3336 * Not only, also it occurs for expired timestamps.
3339 if ((s32
)(tp
->rx_opt
.rcv_tsval
- tp
->rx_opt
.ts_recent
) >= 0 ||
3340 get_seconds() >= tp
->rx_opt
.ts_recent_stamp
+ TCP_PAWS_24DAYS
)
3341 tcp_store_ts_recent(tp
);
3345 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3347 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3348 * it can pass through stack. So, the following predicate verifies that
3349 * this segment is not used for anything but congestion avoidance or
3350 * fast retransmit. Moreover, we even are able to eliminate most of such
3351 * second order effects, if we apply some small "replay" window (~RTO)
3352 * to timestamp space.
3354 * All these measures still do not guarantee that we reject wrapped ACKs
3355 * on networks with high bandwidth, when sequence space is recycled fastly,
3356 * but it guarantees that such events will be very rare and do not affect
3357 * connection seriously. This doesn't look nice, but alas, PAWS is really
3360 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3361 * states that events when retransmit arrives after original data are rare.
3362 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3363 * the biggest problem on large power networks even with minor reordering.
3364 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3365 * up to bandwidth of 18Gigabit/sec. 8) ]
3368 static int tcp_disordered_ack(const struct sock
*sk
, const struct sk_buff
*skb
)
3370 struct tcp_sock
*tp
= tcp_sk(sk
);
3371 struct tcphdr
*th
= tcp_hdr(skb
);
3372 u32 seq
= TCP_SKB_CB(skb
)->seq
;
3373 u32 ack
= TCP_SKB_CB(skb
)->ack_seq
;
3375 return (/* 1. Pure ACK with correct sequence number. */
3376 (th
->ack
&& seq
== TCP_SKB_CB(skb
)->end_seq
&& seq
== tp
->rcv_nxt
) &&
3378 /* 2. ... and duplicate ACK. */
3379 ack
== tp
->snd_una
&&
3381 /* 3. ... and does not update window. */
3382 !tcp_may_update_window(tp
, ack
, seq
, ntohs(th
->window
) << tp
->rx_opt
.snd_wscale
) &&
3384 /* 4. ... and sits in replay window. */
3385 (s32
)(tp
->rx_opt
.ts_recent
- tp
->rx_opt
.rcv_tsval
) <= (inet_csk(sk
)->icsk_rto
* 1024) / HZ
);
3388 static inline int tcp_paws_discard(const struct sock
*sk
, const struct sk_buff
*skb
)
3390 const struct tcp_sock
*tp
= tcp_sk(sk
);
3391 return ((s32
)(tp
->rx_opt
.ts_recent
- tp
->rx_opt
.rcv_tsval
) > TCP_PAWS_WINDOW
&&
3392 get_seconds() < tp
->rx_opt
.ts_recent_stamp
+ TCP_PAWS_24DAYS
&&
3393 !tcp_disordered_ack(sk
, skb
));
3396 /* Check segment sequence number for validity.
3398 * Segment controls are considered valid, if the segment
3399 * fits to the window after truncation to the window. Acceptability
3400 * of data (and SYN, FIN, of course) is checked separately.
3401 * See tcp_data_queue(), for example.
3403 * Also, controls (RST is main one) are accepted using RCV.WUP instead
3404 * of RCV.NXT. Peer still did not advance his SND.UNA when we
3405 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3406 * (borrowed from freebsd)
3409 static inline int tcp_sequence(struct tcp_sock
*tp
, u32 seq
, u32 end_seq
)
3411 return !before(end_seq
, tp
->rcv_wup
) &&
3412 !after(seq
, tp
->rcv_nxt
+ tcp_receive_window(tp
));
3415 /* When we get a reset we do this. */
3416 static void tcp_reset(struct sock
*sk
)
3418 /* We want the right error as BSD sees it (and indeed as we do). */
3419 switch (sk
->sk_state
) {
3421 sk
->sk_err
= ECONNREFUSED
;
3423 case TCP_CLOSE_WAIT
:
3429 sk
->sk_err
= ECONNRESET
;
3432 if (!sock_flag(sk
, SOCK_DEAD
))
3433 sk
->sk_error_report(sk
);
3439 * Process the FIN bit. This now behaves as it is supposed to work
3440 * and the FIN takes effect when it is validly part of sequence
3441 * space. Not before when we get holes.
3443 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3444 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
3447 * If we are in FINWAIT-1, a received FIN indicates simultaneous
3448 * close and we go into CLOSING (and later onto TIME-WAIT)
3450 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3452 static void tcp_fin(struct sk_buff
*skb
, struct sock
*sk
, struct tcphdr
*th
)
3454 struct tcp_sock
*tp
= tcp_sk(sk
);
3456 inet_csk_schedule_ack(sk
);
3458 sk
->sk_shutdown
|= RCV_SHUTDOWN
;
3459 sock_set_flag(sk
, SOCK_DONE
);
3461 switch (sk
->sk_state
) {
3463 case TCP_ESTABLISHED
:
3464 /* Move to CLOSE_WAIT */
3465 tcp_set_state(sk
, TCP_CLOSE_WAIT
);
3466 inet_csk(sk
)->icsk_ack
.pingpong
= 1;
3469 case TCP_CLOSE_WAIT
:
3471 /* Received a retransmission of the FIN, do
3476 /* RFC793: Remain in the LAST-ACK state. */
3480 /* This case occurs when a simultaneous close
3481 * happens, we must ack the received FIN and
3482 * enter the CLOSING state.
3485 tcp_set_state(sk
, TCP_CLOSING
);
3488 /* Received a FIN -- send ACK and enter TIME_WAIT. */
3490 tcp_time_wait(sk
, TCP_TIME_WAIT
, 0);
3493 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
3494 * cases we should never reach this piece of code.
3496 printk(KERN_ERR
"%s: Impossible, sk->sk_state=%d\n",
3497 __FUNCTION__
, sk
->sk_state
);
3501 /* It _is_ possible, that we have something out-of-order _after_ FIN.
3502 * Probably, we should reset in this case. For now drop them.
3504 __skb_queue_purge(&tp
->out_of_order_queue
);
3505 if (tcp_is_sack(tp
))
3506 tcp_sack_reset(&tp
->rx_opt
);
3507 sk_stream_mem_reclaim(sk
);
3509 if (!sock_flag(sk
, SOCK_DEAD
)) {
3510 sk
->sk_state_change(sk
);
3512 /* Do not send POLL_HUP for half duplex close. */
3513 if (sk
->sk_shutdown
== SHUTDOWN_MASK
||
3514 sk
->sk_state
== TCP_CLOSE
)
3515 sk_wake_async(sk
, 1, POLL_HUP
);
3517 sk_wake_async(sk
, 1, POLL_IN
);
3521 static inline int tcp_sack_extend(struct tcp_sack_block
*sp
, u32 seq
, u32 end_seq
)
3523 if (!after(seq
, sp
->end_seq
) && !after(sp
->start_seq
, end_seq
)) {
3524 if (before(seq
, sp
->start_seq
))
3525 sp
->start_seq
= seq
;
3526 if (after(end_seq
, sp
->end_seq
))
3527 sp
->end_seq
= end_seq
;
3533 static void tcp_dsack_set(struct tcp_sock
*tp
, u32 seq
, u32 end_seq
)
3535 if (tcp_is_sack(tp
) && sysctl_tcp_dsack
) {
3536 if (before(seq
, tp
->rcv_nxt
))
3537 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOLDSENT
);
3539 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFOSENT
);
3541 tp
->rx_opt
.dsack
= 1;
3542 tp
->duplicate_sack
[0].start_seq
= seq
;
3543 tp
->duplicate_sack
[0].end_seq
= end_seq
;
3544 tp
->rx_opt
.eff_sacks
= min(tp
->rx_opt
.num_sacks
+ 1, 4 - tp
->rx_opt
.tstamp_ok
);
3548 static void tcp_dsack_extend(struct tcp_sock
*tp
, u32 seq
, u32 end_seq
)
3550 if (!tp
->rx_opt
.dsack
)
3551 tcp_dsack_set(tp
, seq
, end_seq
);
3553 tcp_sack_extend(tp
->duplicate_sack
, seq
, end_seq
);
3556 static void tcp_send_dupack(struct sock
*sk
, struct sk_buff
*skb
)
3558 struct tcp_sock
*tp
= tcp_sk(sk
);
3560 if (TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(skb
)->seq
&&
3561 before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
)) {
3562 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST
);
3563 tcp_enter_quickack_mode(sk
);
3565 if (tcp_is_sack(tp
) && sysctl_tcp_dsack
) {
3566 u32 end_seq
= TCP_SKB_CB(skb
)->end_seq
;
3568 if (after(TCP_SKB_CB(skb
)->end_seq
, tp
->rcv_nxt
))
3569 end_seq
= tp
->rcv_nxt
;
3570 tcp_dsack_set(tp
, TCP_SKB_CB(skb
)->seq
, end_seq
);
3577 /* These routines update the SACK block as out-of-order packets arrive or
3578 * in-order packets close up the sequence space.
3580 static void tcp_sack_maybe_coalesce(struct tcp_sock
*tp
)
3583 struct tcp_sack_block
*sp
= &tp
->selective_acks
[0];
3584 struct tcp_sack_block
*swalk
= sp
+1;
3586 /* See if the recent change to the first SACK eats into
3587 * or hits the sequence space of other SACK blocks, if so coalesce.
3589 for (this_sack
= 1; this_sack
< tp
->rx_opt
.num_sacks
; ) {
3590 if (tcp_sack_extend(sp
, swalk
->start_seq
, swalk
->end_seq
)) {
3593 /* Zap SWALK, by moving every further SACK up by one slot.
3594 * Decrease num_sacks.
3596 tp
->rx_opt
.num_sacks
--;
3597 tp
->rx_opt
.eff_sacks
= min(tp
->rx_opt
.num_sacks
+ tp
->rx_opt
.dsack
, 4 - tp
->rx_opt
.tstamp_ok
);
3598 for (i
=this_sack
; i
< tp
->rx_opt
.num_sacks
; i
++)
3602 this_sack
++, swalk
++;
3606 static inline void tcp_sack_swap(struct tcp_sack_block
*sack1
, struct tcp_sack_block
*sack2
)
3610 tmp
= sack1
->start_seq
;
3611 sack1
->start_seq
= sack2
->start_seq
;
3612 sack2
->start_seq
= tmp
;
3614 tmp
= sack1
->end_seq
;
3615 sack1
->end_seq
= sack2
->end_seq
;
3616 sack2
->end_seq
= tmp
;
3619 static void tcp_sack_new_ofo_skb(struct sock
*sk
, u32 seq
, u32 end_seq
)
3621 struct tcp_sock
*tp
= tcp_sk(sk
);
3622 struct tcp_sack_block
*sp
= &tp
->selective_acks
[0];
3623 int cur_sacks
= tp
->rx_opt
.num_sacks
;
3629 for (this_sack
=0; this_sack
<cur_sacks
; this_sack
++, sp
++) {
3630 if (tcp_sack_extend(sp
, seq
, end_seq
)) {
3631 /* Rotate this_sack to the first one. */
3632 for (; this_sack
>0; this_sack
--, sp
--)
3633 tcp_sack_swap(sp
, sp
-1);
3635 tcp_sack_maybe_coalesce(tp
);
3640 /* Could not find an adjacent existing SACK, build a new one,
3641 * put it at the front, and shift everyone else down. We
3642 * always know there is at least one SACK present already here.
3644 * If the sack array is full, forget about the last one.
3646 if (this_sack
>= 4) {
3648 tp
->rx_opt
.num_sacks
--;
3651 for (; this_sack
> 0; this_sack
--, sp
--)
3655 /* Build the new head SACK, and we're done. */
3656 sp
->start_seq
= seq
;
3657 sp
->end_seq
= end_seq
;
3658 tp
->rx_opt
.num_sacks
++;
3659 tp
->rx_opt
.eff_sacks
= min(tp
->rx_opt
.num_sacks
+ tp
->rx_opt
.dsack
, 4 - tp
->rx_opt
.tstamp_ok
);
3662 /* RCV.NXT advances, some SACKs should be eaten. */
3664 static void tcp_sack_remove(struct tcp_sock
*tp
)
3666 struct tcp_sack_block
*sp
= &tp
->selective_acks
[0];
3667 int num_sacks
= tp
->rx_opt
.num_sacks
;
3670 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
3671 if (skb_queue_empty(&tp
->out_of_order_queue
)) {
3672 tp
->rx_opt
.num_sacks
= 0;
3673 tp
->rx_opt
.eff_sacks
= tp
->rx_opt
.dsack
;
3677 for (this_sack
= 0; this_sack
< num_sacks
; ) {
3678 /* Check if the start of the sack is covered by RCV.NXT. */
3679 if (!before(tp
->rcv_nxt
, sp
->start_seq
)) {
3682 /* RCV.NXT must cover all the block! */
3683 BUG_TRAP(!before(tp
->rcv_nxt
, sp
->end_seq
));
3685 /* Zap this SACK, by moving forward any other SACKS. */
3686 for (i
=this_sack
+1; i
< num_sacks
; i
++)
3687 tp
->selective_acks
[i
-1] = tp
->selective_acks
[i
];
3694 if (num_sacks
!= tp
->rx_opt
.num_sacks
) {
3695 tp
->rx_opt
.num_sacks
= num_sacks
;
3696 tp
->rx_opt
.eff_sacks
= min(tp
->rx_opt
.num_sacks
+ tp
->rx_opt
.dsack
, 4 - tp
->rx_opt
.tstamp_ok
);
3700 /* This one checks to see if we can put data from the
3701 * out_of_order queue into the receive_queue.
3703 static void tcp_ofo_queue(struct sock
*sk
)
3705 struct tcp_sock
*tp
= tcp_sk(sk
);
3706 __u32 dsack_high
= tp
->rcv_nxt
;
3707 struct sk_buff
*skb
;
3709 while ((skb
= skb_peek(&tp
->out_of_order_queue
)) != NULL
) {
3710 if (after(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
))
3713 if (before(TCP_SKB_CB(skb
)->seq
, dsack_high
)) {
3714 __u32 dsack
= dsack_high
;
3715 if (before(TCP_SKB_CB(skb
)->end_seq
, dsack_high
))
3716 dsack_high
= TCP_SKB_CB(skb
)->end_seq
;
3717 tcp_dsack_extend(tp
, TCP_SKB_CB(skb
)->seq
, dsack
);
3720 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->rcv_nxt
)) {
3721 SOCK_DEBUG(sk
, "ofo packet was already received \n");
3722 __skb_unlink(skb
, &tp
->out_of_order_queue
);
3726 SOCK_DEBUG(sk
, "ofo requeuing : rcv_next %X seq %X - %X\n",
3727 tp
->rcv_nxt
, TCP_SKB_CB(skb
)->seq
,
3728 TCP_SKB_CB(skb
)->end_seq
);
3730 __skb_unlink(skb
, &tp
->out_of_order_queue
);
3731 __skb_queue_tail(&sk
->sk_receive_queue
, skb
);
3732 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->end_seq
;
3733 if (tcp_hdr(skb
)->fin
)
3734 tcp_fin(skb
, sk
, tcp_hdr(skb
));
3738 static int tcp_prune_queue(struct sock
*sk
);
3740 static void tcp_data_queue(struct sock
*sk
, struct sk_buff
*skb
)
3742 struct tcphdr
*th
= tcp_hdr(skb
);
3743 struct tcp_sock
*tp
= tcp_sk(sk
);
3746 if (TCP_SKB_CB(skb
)->seq
== TCP_SKB_CB(skb
)->end_seq
)
3749 __skb_pull(skb
, th
->doff
*4);
3751 TCP_ECN_accept_cwr(tp
, skb
);
3753 if (tp
->rx_opt
.dsack
) {
3754 tp
->rx_opt
.dsack
= 0;
3755 tp
->rx_opt
.eff_sacks
= min_t(unsigned int, tp
->rx_opt
.num_sacks
,
3756 4 - tp
->rx_opt
.tstamp_ok
);
3759 /* Queue data for delivery to the user.
3760 * Packets in sequence go to the receive queue.
3761 * Out of sequence packets to the out_of_order_queue.
3763 if (TCP_SKB_CB(skb
)->seq
== tp
->rcv_nxt
) {
3764 if (tcp_receive_window(tp
) == 0)
3767 /* Ok. In sequence. In window. */
3768 if (tp
->ucopy
.task
== current
&&
3769 tp
->copied_seq
== tp
->rcv_nxt
&& tp
->ucopy
.len
&&
3770 sock_owned_by_user(sk
) && !tp
->urg_data
) {
3771 int chunk
= min_t(unsigned int, skb
->len
,
3774 __set_current_state(TASK_RUNNING
);
3777 if (!skb_copy_datagram_iovec(skb
, 0, tp
->ucopy
.iov
, chunk
)) {
3778 tp
->ucopy
.len
-= chunk
;
3779 tp
->copied_seq
+= chunk
;
3780 eaten
= (chunk
== skb
->len
&& !th
->fin
);
3781 tcp_rcv_space_adjust(sk
);
3789 (atomic_read(&sk
->sk_rmem_alloc
) > sk
->sk_rcvbuf
||
3790 !sk_stream_rmem_schedule(sk
, skb
))) {
3791 if (tcp_prune_queue(sk
) < 0 ||
3792 !sk_stream_rmem_schedule(sk
, skb
))
3795 sk_stream_set_owner_r(skb
, sk
);
3796 __skb_queue_tail(&sk
->sk_receive_queue
, skb
);
3798 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->end_seq
;
3800 tcp_event_data_recv(sk
, skb
);
3802 tcp_fin(skb
, sk
, th
);
3804 if (!skb_queue_empty(&tp
->out_of_order_queue
)) {
3807 /* RFC2581. 4.2. SHOULD send immediate ACK, when
3808 * gap in queue is filled.
3810 if (skb_queue_empty(&tp
->out_of_order_queue
))
3811 inet_csk(sk
)->icsk_ack
.pingpong
= 0;
3814 if (tp
->rx_opt
.num_sacks
)
3815 tcp_sack_remove(tp
);
3817 tcp_fast_path_check(sk
);
3821 else if (!sock_flag(sk
, SOCK_DEAD
))
3822 sk
->sk_data_ready(sk
, 0);
3826 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->rcv_nxt
)) {
3827 /* A retransmit, 2nd most common case. Force an immediate ack. */
3828 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST
);
3829 tcp_dsack_set(tp
, TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
);
3832 tcp_enter_quickack_mode(sk
);
3833 inet_csk_schedule_ack(sk
);
3839 /* Out of window. F.e. zero window probe. */
3840 if (!before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
+ tcp_receive_window(tp
)))
3843 tcp_enter_quickack_mode(sk
);
3845 if (before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
)) {
3846 /* Partial packet, seq < rcv_next < end_seq */
3847 SOCK_DEBUG(sk
, "partial packet: rcv_next %X seq %X - %X\n",
3848 tp
->rcv_nxt
, TCP_SKB_CB(skb
)->seq
,
3849 TCP_SKB_CB(skb
)->end_seq
);
3851 tcp_dsack_set(tp
, TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
);
3853 /* If window is closed, drop tail of packet. But after
3854 * remembering D-SACK for its head made in previous line.
3856 if (!tcp_receive_window(tp
))
3861 TCP_ECN_check_ce(tp
, skb
);
3863 if (atomic_read(&sk
->sk_rmem_alloc
) > sk
->sk_rcvbuf
||
3864 !sk_stream_rmem_schedule(sk
, skb
)) {
3865 if (tcp_prune_queue(sk
) < 0 ||
3866 !sk_stream_rmem_schedule(sk
, skb
))
3870 /* Disable header prediction. */
3872 inet_csk_schedule_ack(sk
);
3874 SOCK_DEBUG(sk
, "out of order segment: rcv_next %X seq %X - %X\n",
3875 tp
->rcv_nxt
, TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
);
3877 sk_stream_set_owner_r(skb
, sk
);
3879 if (!skb_peek(&tp
->out_of_order_queue
)) {
3880 /* Initial out of order segment, build 1 SACK. */
3881 if (tcp_is_sack(tp
)) {
3882 tp
->rx_opt
.num_sacks
= 1;
3883 tp
->rx_opt
.dsack
= 0;
3884 tp
->rx_opt
.eff_sacks
= 1;
3885 tp
->selective_acks
[0].start_seq
= TCP_SKB_CB(skb
)->seq
;
3886 tp
->selective_acks
[0].end_seq
=
3887 TCP_SKB_CB(skb
)->end_seq
;
3889 __skb_queue_head(&tp
->out_of_order_queue
,skb
);
3891 struct sk_buff
*skb1
= tp
->out_of_order_queue
.prev
;
3892 u32 seq
= TCP_SKB_CB(skb
)->seq
;
3893 u32 end_seq
= TCP_SKB_CB(skb
)->end_seq
;
3895 if (seq
== TCP_SKB_CB(skb1
)->end_seq
) {
3896 __skb_append(skb1
, skb
, &tp
->out_of_order_queue
);
3898 if (!tp
->rx_opt
.num_sacks
||
3899 tp
->selective_acks
[0].end_seq
!= seq
)
3902 /* Common case: data arrive in order after hole. */
3903 tp
->selective_acks
[0].end_seq
= end_seq
;
3907 /* Find place to insert this segment. */
3909 if (!after(TCP_SKB_CB(skb1
)->seq
, seq
))
3911 } while ((skb1
= skb1
->prev
) !=
3912 (struct sk_buff
*)&tp
->out_of_order_queue
);
3914 /* Do skb overlap to previous one? */
3915 if (skb1
!= (struct sk_buff
*)&tp
->out_of_order_queue
&&
3916 before(seq
, TCP_SKB_CB(skb1
)->end_seq
)) {
3917 if (!after(end_seq
, TCP_SKB_CB(skb1
)->end_seq
)) {
3918 /* All the bits are present. Drop. */
3920 tcp_dsack_set(tp
, seq
, end_seq
);
3923 if (after(seq
, TCP_SKB_CB(skb1
)->seq
)) {
3924 /* Partial overlap. */
3925 tcp_dsack_set(tp
, seq
, TCP_SKB_CB(skb1
)->end_seq
);
3930 __skb_insert(skb
, skb1
, skb1
->next
, &tp
->out_of_order_queue
);
3932 /* And clean segments covered by new one as whole. */
3933 while ((skb1
= skb
->next
) !=
3934 (struct sk_buff
*)&tp
->out_of_order_queue
&&
3935 after(end_seq
, TCP_SKB_CB(skb1
)->seq
)) {
3936 if (before(end_seq
, TCP_SKB_CB(skb1
)->end_seq
)) {
3937 tcp_dsack_extend(tp
, TCP_SKB_CB(skb1
)->seq
, end_seq
);
3940 __skb_unlink(skb1
, &tp
->out_of_order_queue
);
3941 tcp_dsack_extend(tp
, TCP_SKB_CB(skb1
)->seq
, TCP_SKB_CB(skb1
)->end_seq
);
3946 if (tcp_is_sack(tp
))
3947 tcp_sack_new_ofo_skb(sk
, seq
, end_seq
);
3951 /* Collapse contiguous sequence of skbs head..tail with
3952 * sequence numbers start..end.
3953 * Segments with FIN/SYN are not collapsed (only because this
3957 tcp_collapse(struct sock
*sk
, struct sk_buff_head
*list
,
3958 struct sk_buff
*head
, struct sk_buff
*tail
,
3961 struct sk_buff
*skb
;
3963 /* First, check that queue is collapsible and find
3964 * the point where collapsing can be useful. */
3965 for (skb
= head
; skb
!= tail
; ) {
3966 /* No new bits? It is possible on ofo queue. */
3967 if (!before(start
, TCP_SKB_CB(skb
)->end_seq
)) {
3968 struct sk_buff
*next
= skb
->next
;
3969 __skb_unlink(skb
, list
);
3971 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED
);
3976 /* The first skb to collapse is:
3978 * - bloated or contains data before "start" or
3979 * overlaps to the next one.
3981 if (!tcp_hdr(skb
)->syn
&& !tcp_hdr(skb
)->fin
&&
3982 (tcp_win_from_space(skb
->truesize
) > skb
->len
||
3983 before(TCP_SKB_CB(skb
)->seq
, start
) ||
3984 (skb
->next
!= tail
&&
3985 TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(skb
->next
)->seq
)))
3988 /* Decided to skip this, advance start seq. */
3989 start
= TCP_SKB_CB(skb
)->end_seq
;
3992 if (skb
== tail
|| tcp_hdr(skb
)->syn
|| tcp_hdr(skb
)->fin
)
3995 while (before(start
, end
)) {
3996 struct sk_buff
*nskb
;
3997 unsigned int header
= skb_headroom(skb
);
3998 int copy
= SKB_MAX_ORDER(header
, 0);
4000 /* Too big header? This can happen with IPv6. */
4003 if (end
-start
< copy
)
4005 nskb
= alloc_skb(copy
+header
, GFP_ATOMIC
);
4009 skb_set_mac_header(nskb
, skb_mac_header(skb
) - skb
->head
);
4010 skb_set_network_header(nskb
, (skb_network_header(skb
) -
4012 skb_set_transport_header(nskb
, (skb_transport_header(skb
) -
4014 skb_reserve(nskb
, header
);
4015 memcpy(nskb
->head
, skb
->head
, header
);
4016 memcpy(nskb
->cb
, skb
->cb
, sizeof(skb
->cb
));
4017 TCP_SKB_CB(nskb
)->seq
= TCP_SKB_CB(nskb
)->end_seq
= start
;
4018 __skb_insert(nskb
, skb
->prev
, skb
, list
);
4019 sk_stream_set_owner_r(nskb
, sk
);
4021 /* Copy data, releasing collapsed skbs. */
4023 int offset
= start
- TCP_SKB_CB(skb
)->seq
;
4024 int size
= TCP_SKB_CB(skb
)->end_seq
- start
;
4028 size
= min(copy
, size
);
4029 if (skb_copy_bits(skb
, offset
, skb_put(nskb
, size
), size
))
4031 TCP_SKB_CB(nskb
)->end_seq
+= size
;
4035 if (!before(start
, TCP_SKB_CB(skb
)->end_seq
)) {
4036 struct sk_buff
*next
= skb
->next
;
4037 __skb_unlink(skb
, list
);
4039 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED
);
4042 tcp_hdr(skb
)->syn
||
4050 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4051 * and tcp_collapse() them until all the queue is collapsed.
4053 static void tcp_collapse_ofo_queue(struct sock
*sk
)
4055 struct tcp_sock
*tp
= tcp_sk(sk
);
4056 struct sk_buff
*skb
= skb_peek(&tp
->out_of_order_queue
);
4057 struct sk_buff
*head
;
4063 start
= TCP_SKB_CB(skb
)->seq
;
4064 end
= TCP_SKB_CB(skb
)->end_seq
;
4070 /* Segment is terminated when we see gap or when
4071 * we are at the end of all the queue. */
4072 if (skb
== (struct sk_buff
*)&tp
->out_of_order_queue
||
4073 after(TCP_SKB_CB(skb
)->seq
, end
) ||
4074 before(TCP_SKB_CB(skb
)->end_seq
, start
)) {
4075 tcp_collapse(sk
, &tp
->out_of_order_queue
,
4076 head
, skb
, start
, end
);
4078 if (skb
== (struct sk_buff
*)&tp
->out_of_order_queue
)
4080 /* Start new segment */
4081 start
= TCP_SKB_CB(skb
)->seq
;
4082 end
= TCP_SKB_CB(skb
)->end_seq
;
4084 if (before(TCP_SKB_CB(skb
)->seq
, start
))
4085 start
= TCP_SKB_CB(skb
)->seq
;
4086 if (after(TCP_SKB_CB(skb
)->end_seq
, end
))
4087 end
= TCP_SKB_CB(skb
)->end_seq
;
4092 /* Reduce allocated memory if we can, trying to get
4093 * the socket within its memory limits again.
4095 * Return less than zero if we should start dropping frames
4096 * until the socket owning process reads some of the data
4097 * to stabilize the situation.
4099 static int tcp_prune_queue(struct sock
*sk
)
4101 struct tcp_sock
*tp
= tcp_sk(sk
);
4103 SOCK_DEBUG(sk
, "prune_queue: c=%x\n", tp
->copied_seq
);
4105 NET_INC_STATS_BH(LINUX_MIB_PRUNECALLED
);
4107 if (atomic_read(&sk
->sk_rmem_alloc
) >= sk
->sk_rcvbuf
)
4108 tcp_clamp_window(sk
);
4109 else if (tcp_memory_pressure
)
4110 tp
->rcv_ssthresh
= min(tp
->rcv_ssthresh
, 4U * tp
->advmss
);
4112 tcp_collapse_ofo_queue(sk
);
4113 tcp_collapse(sk
, &sk
->sk_receive_queue
,
4114 sk
->sk_receive_queue
.next
,
4115 (struct sk_buff
*)&sk
->sk_receive_queue
,
4116 tp
->copied_seq
, tp
->rcv_nxt
);
4117 sk_stream_mem_reclaim(sk
);
4119 if (atomic_read(&sk
->sk_rmem_alloc
) <= sk
->sk_rcvbuf
)
4122 /* Collapsing did not help, destructive actions follow.
4123 * This must not ever occur. */
4125 /* First, purge the out_of_order queue. */
4126 if (!skb_queue_empty(&tp
->out_of_order_queue
)) {
4127 NET_INC_STATS_BH(LINUX_MIB_OFOPRUNED
);
4128 __skb_queue_purge(&tp
->out_of_order_queue
);
4130 /* Reset SACK state. A conforming SACK implementation will
4131 * do the same at a timeout based retransmit. When a connection
4132 * is in a sad state like this, we care only about integrity
4133 * of the connection not performance.
4135 if (tcp_is_sack(tp
))
4136 tcp_sack_reset(&tp
->rx_opt
);
4137 sk_stream_mem_reclaim(sk
);
4140 if (atomic_read(&sk
->sk_rmem_alloc
) <= sk
->sk_rcvbuf
)
4143 /* If we are really being abused, tell the caller to silently
4144 * drop receive data on the floor. It will get retransmitted
4145 * and hopefully then we'll have sufficient space.
4147 NET_INC_STATS_BH(LINUX_MIB_RCVPRUNED
);
4149 /* Massive buffer overcommit. */
4155 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4156 * As additional protections, we do not touch cwnd in retransmission phases,
4157 * and if application hit its sndbuf limit recently.
4159 void tcp_cwnd_application_limited(struct sock
*sk
)
4161 struct tcp_sock
*tp
= tcp_sk(sk
);
4163 if (inet_csk(sk
)->icsk_ca_state
== TCP_CA_Open
&&
4164 sk
->sk_socket
&& !test_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
)) {
4165 /* Limited by application or receiver window. */
4166 u32 init_win
= tcp_init_cwnd(tp
, __sk_dst_get(sk
));
4167 u32 win_used
= max(tp
->snd_cwnd_used
, init_win
);
4168 if (win_used
< tp
->snd_cwnd
) {
4169 tp
->snd_ssthresh
= tcp_current_ssthresh(sk
);
4170 tp
->snd_cwnd
= (tp
->snd_cwnd
+ win_used
) >> 1;
4172 tp
->snd_cwnd_used
= 0;
4174 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
4177 static int tcp_should_expand_sndbuf(struct sock
*sk
)
4179 struct tcp_sock
*tp
= tcp_sk(sk
);
4181 /* If the user specified a specific send buffer setting, do
4184 if (sk
->sk_userlocks
& SOCK_SNDBUF_LOCK
)
4187 /* If we are under global TCP memory pressure, do not expand. */
4188 if (tcp_memory_pressure
)
4191 /* If we are under soft global TCP memory pressure, do not expand. */
4192 if (atomic_read(&tcp_memory_allocated
) >= sysctl_tcp_mem
[0])
4195 /* If we filled the congestion window, do not expand. */
4196 if (tp
->packets_out
>= tp
->snd_cwnd
)
4202 /* When incoming ACK allowed to free some skb from write_queue,
4203 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4204 * on the exit from tcp input handler.
4206 * PROBLEM: sndbuf expansion does not work well with largesend.
4208 static void tcp_new_space(struct sock
*sk
)
4210 struct tcp_sock
*tp
= tcp_sk(sk
);
4212 if (tcp_should_expand_sndbuf(sk
)) {
4213 int sndmem
= max_t(u32
, tp
->rx_opt
.mss_clamp
, tp
->mss_cache
) +
4214 MAX_TCP_HEADER
+ 16 + sizeof(struct sk_buff
),
4215 demanded
= max_t(unsigned int, tp
->snd_cwnd
,
4216 tp
->reordering
+ 1);
4217 sndmem
*= 2*demanded
;
4218 if (sndmem
> sk
->sk_sndbuf
)
4219 sk
->sk_sndbuf
= min(sndmem
, sysctl_tcp_wmem
[2]);
4220 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
4223 sk
->sk_write_space(sk
);
4226 static void tcp_check_space(struct sock
*sk
)
4228 if (sock_flag(sk
, SOCK_QUEUE_SHRUNK
)) {
4229 sock_reset_flag(sk
, SOCK_QUEUE_SHRUNK
);
4230 if (sk
->sk_socket
&&
4231 test_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
))
4236 static inline void tcp_data_snd_check(struct sock
*sk
)
4238 tcp_push_pending_frames(sk
);
4239 tcp_check_space(sk
);
4243 * Check if sending an ack is needed.
4245 static void __tcp_ack_snd_check(struct sock
*sk
, int ofo_possible
)
4247 struct tcp_sock
*tp
= tcp_sk(sk
);
4249 /* More than one full frame received... */
4250 if (((tp
->rcv_nxt
- tp
->rcv_wup
) > inet_csk(sk
)->icsk_ack
.rcv_mss
4251 /* ... and right edge of window advances far enough.
4252 * (tcp_recvmsg() will send ACK otherwise). Or...
4254 && __tcp_select_window(sk
) >= tp
->rcv_wnd
) ||
4255 /* We ACK each frame or... */
4256 tcp_in_quickack_mode(sk
) ||
4257 /* We have out of order data. */
4259 skb_peek(&tp
->out_of_order_queue
))) {
4260 /* Then ack it now */
4263 /* Else, send delayed ack. */
4264 tcp_send_delayed_ack(sk
);
4268 static inline void tcp_ack_snd_check(struct sock
*sk
)
4270 if (!inet_csk_ack_scheduled(sk
)) {
4271 /* We sent a data segment already. */
4274 __tcp_ack_snd_check(sk
, 1);
4278 * This routine is only called when we have urgent data
4279 * signaled. Its the 'slow' part of tcp_urg. It could be
4280 * moved inline now as tcp_urg is only called from one
4281 * place. We handle URGent data wrong. We have to - as
4282 * BSD still doesn't use the correction from RFC961.
4283 * For 1003.1g we should support a new option TCP_STDURG to permit
4284 * either form (or just set the sysctl tcp_stdurg).
4287 static void tcp_check_urg(struct sock
* sk
, struct tcphdr
* th
)
4289 struct tcp_sock
*tp
= tcp_sk(sk
);
4290 u32 ptr
= ntohs(th
->urg_ptr
);
4292 if (ptr
&& !sysctl_tcp_stdurg
)
4294 ptr
+= ntohl(th
->seq
);
4296 /* Ignore urgent data that we've already seen and read. */
4297 if (after(tp
->copied_seq
, ptr
))
4300 /* Do not replay urg ptr.
4302 * NOTE: interesting situation not covered by specs.
4303 * Misbehaving sender may send urg ptr, pointing to segment,
4304 * which we already have in ofo queue. We are not able to fetch
4305 * such data and will stay in TCP_URG_NOTYET until will be eaten
4306 * by recvmsg(). Seems, we are not obliged to handle such wicked
4307 * situations. But it is worth to think about possibility of some
4308 * DoSes using some hypothetical application level deadlock.
4310 if (before(ptr
, tp
->rcv_nxt
))
4313 /* Do we already have a newer (or duplicate) urgent pointer? */
4314 if (tp
->urg_data
&& !after(ptr
, tp
->urg_seq
))
4317 /* Tell the world about our new urgent pointer. */
4320 /* We may be adding urgent data when the last byte read was
4321 * urgent. To do this requires some care. We cannot just ignore
4322 * tp->copied_seq since we would read the last urgent byte again
4323 * as data, nor can we alter copied_seq until this data arrives
4324 * or we break the semantics of SIOCATMARK (and thus sockatmark())
4326 * NOTE. Double Dutch. Rendering to plain English: author of comment
4327 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
4328 * and expect that both A and B disappear from stream. This is _wrong_.
4329 * Though this happens in BSD with high probability, this is occasional.
4330 * Any application relying on this is buggy. Note also, that fix "works"
4331 * only in this artificial test. Insert some normal data between A and B and we will
4332 * decline of BSD again. Verdict: it is better to remove to trap
4335 if (tp
->urg_seq
== tp
->copied_seq
&& tp
->urg_data
&&
4336 !sock_flag(sk
, SOCK_URGINLINE
) &&
4337 tp
->copied_seq
!= tp
->rcv_nxt
) {
4338 struct sk_buff
*skb
= skb_peek(&sk
->sk_receive_queue
);
4340 if (skb
&& !before(tp
->copied_seq
, TCP_SKB_CB(skb
)->end_seq
)) {
4341 __skb_unlink(skb
, &sk
->sk_receive_queue
);
4346 tp
->urg_data
= TCP_URG_NOTYET
;
4349 /* Disable header prediction. */
4353 /* This is the 'fast' part of urgent handling. */
4354 static void tcp_urg(struct sock
*sk
, struct sk_buff
*skb
, struct tcphdr
*th
)
4356 struct tcp_sock
*tp
= tcp_sk(sk
);
4358 /* Check if we get a new urgent pointer - normally not. */
4360 tcp_check_urg(sk
,th
);
4362 /* Do we wait for any urgent data? - normally not... */
4363 if (tp
->urg_data
== TCP_URG_NOTYET
) {
4364 u32 ptr
= tp
->urg_seq
- ntohl(th
->seq
) + (th
->doff
* 4) -
4367 /* Is the urgent pointer pointing into this packet? */
4368 if (ptr
< skb
->len
) {
4370 if (skb_copy_bits(skb
, ptr
, &tmp
, 1))
4372 tp
->urg_data
= TCP_URG_VALID
| tmp
;
4373 if (!sock_flag(sk
, SOCK_DEAD
))
4374 sk
->sk_data_ready(sk
, 0);
4379 static int tcp_copy_to_iovec(struct sock
*sk
, struct sk_buff
*skb
, int hlen
)
4381 struct tcp_sock
*tp
= tcp_sk(sk
);
4382 int chunk
= skb
->len
- hlen
;
4386 if (skb_csum_unnecessary(skb
))
4387 err
= skb_copy_datagram_iovec(skb
, hlen
, tp
->ucopy
.iov
, chunk
);
4389 err
= skb_copy_and_csum_datagram_iovec(skb
, hlen
,
4393 tp
->ucopy
.len
-= chunk
;
4394 tp
->copied_seq
+= chunk
;
4395 tcp_rcv_space_adjust(sk
);
4402 static __sum16
__tcp_checksum_complete_user(struct sock
*sk
, struct sk_buff
*skb
)
4406 if (sock_owned_by_user(sk
)) {
4408 result
= __tcp_checksum_complete(skb
);
4411 result
= __tcp_checksum_complete(skb
);
4416 static inline int tcp_checksum_complete_user(struct sock
*sk
, struct sk_buff
*skb
)
4418 return !skb_csum_unnecessary(skb
) &&
4419 __tcp_checksum_complete_user(sk
, skb
);
4422 #ifdef CONFIG_NET_DMA
4423 static int tcp_dma_try_early_copy(struct sock
*sk
, struct sk_buff
*skb
, int hlen
)
4425 struct tcp_sock
*tp
= tcp_sk(sk
);
4426 int chunk
= skb
->len
- hlen
;
4428 int copied_early
= 0;
4430 if (tp
->ucopy
.wakeup
)
4433 if (!tp
->ucopy
.dma_chan
&& tp
->ucopy
.pinned_list
)
4434 tp
->ucopy
.dma_chan
= get_softnet_dma();
4436 if (tp
->ucopy
.dma_chan
&& skb_csum_unnecessary(skb
)) {
4438 dma_cookie
= dma_skb_copy_datagram_iovec(tp
->ucopy
.dma_chan
,
4439 skb
, hlen
, tp
->ucopy
.iov
, chunk
, tp
->ucopy
.pinned_list
);
4444 tp
->ucopy
.dma_cookie
= dma_cookie
;
4447 tp
->ucopy
.len
-= chunk
;
4448 tp
->copied_seq
+= chunk
;
4449 tcp_rcv_space_adjust(sk
);
4451 if ((tp
->ucopy
.len
== 0) ||
4452 (tcp_flag_word(tcp_hdr(skb
)) & TCP_FLAG_PSH
) ||
4453 (atomic_read(&sk
->sk_rmem_alloc
) > (sk
->sk_rcvbuf
>> 1))) {
4454 tp
->ucopy
.wakeup
= 1;
4455 sk
->sk_data_ready(sk
, 0);
4457 } else if (chunk
> 0) {
4458 tp
->ucopy
.wakeup
= 1;
4459 sk
->sk_data_ready(sk
, 0);
4462 return copied_early
;
4464 #endif /* CONFIG_NET_DMA */
4467 * TCP receive function for the ESTABLISHED state.
4469 * It is split into a fast path and a slow path. The fast path is
4471 * - A zero window was announced from us - zero window probing
4472 * is only handled properly in the slow path.
4473 * - Out of order segments arrived.
4474 * - Urgent data is expected.
4475 * - There is no buffer space left
4476 * - Unexpected TCP flags/window values/header lengths are received
4477 * (detected by checking the TCP header against pred_flags)
4478 * - Data is sent in both directions. Fast path only supports pure senders
4479 * or pure receivers (this means either the sequence number or the ack
4480 * value must stay constant)
4481 * - Unexpected TCP option.
4483 * When these conditions are not satisfied it drops into a standard
4484 * receive procedure patterned after RFC793 to handle all cases.
4485 * The first three cases are guaranteed by proper pred_flags setting,
4486 * the rest is checked inline. Fast processing is turned on in
4487 * tcp_data_queue when everything is OK.
4489 int tcp_rcv_established(struct sock
*sk
, struct sk_buff
*skb
,
4490 struct tcphdr
*th
, unsigned len
)
4492 struct tcp_sock
*tp
= tcp_sk(sk
);
4495 * Header prediction.
4496 * The code loosely follows the one in the famous
4497 * "30 instruction TCP receive" Van Jacobson mail.
4499 * Van's trick is to deposit buffers into socket queue
4500 * on a device interrupt, to call tcp_recv function
4501 * on the receive process context and checksum and copy
4502 * the buffer to user space. smart...
4504 * Our current scheme is not silly either but we take the
4505 * extra cost of the net_bh soft interrupt processing...
4506 * We do checksum and copy also but from device to kernel.
4509 tp
->rx_opt
.saw_tstamp
= 0;
4511 /* pred_flags is 0xS?10 << 16 + snd_wnd
4512 * if header_prediction is to be made
4513 * 'S' will always be tp->tcp_header_len >> 2
4514 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
4515 * turn it off (when there are holes in the receive
4516 * space for instance)
4517 * PSH flag is ignored.
4520 if ((tcp_flag_word(th
) & TCP_HP_BITS
) == tp
->pred_flags
&&
4521 TCP_SKB_CB(skb
)->seq
== tp
->rcv_nxt
) {
4522 int tcp_header_len
= tp
->tcp_header_len
;
4524 /* Timestamp header prediction: tcp_header_len
4525 * is automatically equal to th->doff*4 due to pred_flags
4529 /* Check timestamp */
4530 if (tcp_header_len
== sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
) {
4531 __be32
*ptr
= (__be32
*)(th
+ 1);
4533 /* No? Slow path! */
4534 if (*ptr
!= htonl((TCPOPT_NOP
<< 24) | (TCPOPT_NOP
<< 16)
4535 | (TCPOPT_TIMESTAMP
<< 8) | TCPOLEN_TIMESTAMP
))
4538 tp
->rx_opt
.saw_tstamp
= 1;
4540 tp
->rx_opt
.rcv_tsval
= ntohl(*ptr
);
4542 tp
->rx_opt
.rcv_tsecr
= ntohl(*ptr
);
4544 /* If PAWS failed, check it more carefully in slow path */
4545 if ((s32
)(tp
->rx_opt
.rcv_tsval
- tp
->rx_opt
.ts_recent
) < 0)
4548 /* DO NOT update ts_recent here, if checksum fails
4549 * and timestamp was corrupted part, it will result
4550 * in a hung connection since we will drop all
4551 * future packets due to the PAWS test.
4555 if (len
<= tcp_header_len
) {
4556 /* Bulk data transfer: sender */
4557 if (len
== tcp_header_len
) {
4558 /* Predicted packet is in window by definition.
4559 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4560 * Hence, check seq<=rcv_wup reduces to:
4562 if (tcp_header_len
==
4563 (sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
) &&
4564 tp
->rcv_nxt
== tp
->rcv_wup
)
4565 tcp_store_ts_recent(tp
);
4567 /* We know that such packets are checksummed
4570 tcp_ack(sk
, skb
, 0);
4572 tcp_data_snd_check(sk
);
4574 } else { /* Header too small */
4575 TCP_INC_STATS_BH(TCP_MIB_INERRS
);
4580 int copied_early
= 0;
4582 if (tp
->copied_seq
== tp
->rcv_nxt
&&
4583 len
- tcp_header_len
<= tp
->ucopy
.len
) {
4584 #ifdef CONFIG_NET_DMA
4585 if (tcp_dma_try_early_copy(sk
, skb
, tcp_header_len
)) {
4590 if (tp
->ucopy
.task
== current
&& sock_owned_by_user(sk
) && !copied_early
) {
4591 __set_current_state(TASK_RUNNING
);
4593 if (!tcp_copy_to_iovec(sk
, skb
, tcp_header_len
))
4597 /* Predicted packet is in window by definition.
4598 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4599 * Hence, check seq<=rcv_wup reduces to:
4601 if (tcp_header_len
==
4602 (sizeof(struct tcphdr
) +
4603 TCPOLEN_TSTAMP_ALIGNED
) &&
4604 tp
->rcv_nxt
== tp
->rcv_wup
)
4605 tcp_store_ts_recent(tp
);
4607 tcp_rcv_rtt_measure_ts(sk
, skb
);
4609 __skb_pull(skb
, tcp_header_len
);
4610 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->end_seq
;
4611 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITSTOUSER
);
4614 tcp_cleanup_rbuf(sk
, skb
->len
);
4617 if (tcp_checksum_complete_user(sk
, skb
))
4620 /* Predicted packet is in window by definition.
4621 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4622 * Hence, check seq<=rcv_wup reduces to:
4624 if (tcp_header_len
==
4625 (sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
) &&
4626 tp
->rcv_nxt
== tp
->rcv_wup
)
4627 tcp_store_ts_recent(tp
);
4629 tcp_rcv_rtt_measure_ts(sk
, skb
);
4631 if ((int)skb
->truesize
> sk
->sk_forward_alloc
)
4634 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITS
);
4636 /* Bulk data transfer: receiver */
4637 __skb_pull(skb
,tcp_header_len
);
4638 __skb_queue_tail(&sk
->sk_receive_queue
, skb
);
4639 sk_stream_set_owner_r(skb
, sk
);
4640 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->end_seq
;
4643 tcp_event_data_recv(sk
, skb
);
4645 if (TCP_SKB_CB(skb
)->ack_seq
!= tp
->snd_una
) {
4646 /* Well, only one small jumplet in fast path... */
4647 tcp_ack(sk
, skb
, FLAG_DATA
);
4648 tcp_data_snd_check(sk
);
4649 if (!inet_csk_ack_scheduled(sk
))
4653 __tcp_ack_snd_check(sk
, 0);
4655 #ifdef CONFIG_NET_DMA
4657 __skb_queue_tail(&sk
->sk_async_wait_queue
, skb
);
4663 sk
->sk_data_ready(sk
, 0);
4669 if (len
< (th
->doff
<<2) || tcp_checksum_complete_user(sk
, skb
))
4673 * RFC1323: H1. Apply PAWS check first.
4675 if (tcp_fast_parse_options(skb
, th
, tp
) && tp
->rx_opt
.saw_tstamp
&&
4676 tcp_paws_discard(sk
, skb
)) {
4678 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED
);
4679 tcp_send_dupack(sk
, skb
);
4682 /* Resets are accepted even if PAWS failed.
4684 ts_recent update must be made after we are sure
4685 that the packet is in window.
4690 * Standard slow path.
4693 if (!tcp_sequence(tp
, TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
)) {
4694 /* RFC793, page 37: "In all states except SYN-SENT, all reset
4695 * (RST) segments are validated by checking their SEQ-fields."
4696 * And page 69: "If an incoming segment is not acceptable,
4697 * an acknowledgment should be sent in reply (unless the RST bit
4698 * is set, if so drop the segment and return)".
4701 tcp_send_dupack(sk
, skb
);
4710 tcp_replace_ts_recent(tp
, TCP_SKB_CB(skb
)->seq
);
4712 if (th
->syn
&& !before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
)) {
4713 TCP_INC_STATS_BH(TCP_MIB_INERRS
);
4714 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN
);
4721 tcp_ack(sk
, skb
, FLAG_SLOWPATH
);
4723 tcp_rcv_rtt_measure_ts(sk
, skb
);
4725 /* Process urgent data. */
4726 tcp_urg(sk
, skb
, th
);
4728 /* step 7: process the segment text */
4729 tcp_data_queue(sk
, skb
);
4731 tcp_data_snd_check(sk
);
4732 tcp_ack_snd_check(sk
);
4736 TCP_INC_STATS_BH(TCP_MIB_INERRS
);
4743 static int tcp_rcv_synsent_state_process(struct sock
*sk
, struct sk_buff
*skb
,
4744 struct tcphdr
*th
, unsigned len
)
4746 struct tcp_sock
*tp
= tcp_sk(sk
);
4747 struct inet_connection_sock
*icsk
= inet_csk(sk
);
4748 int saved_clamp
= tp
->rx_opt
.mss_clamp
;
4750 tcp_parse_options(skb
, &tp
->rx_opt
, 0);
4754 * "If the state is SYN-SENT then
4755 * first check the ACK bit
4756 * If the ACK bit is set
4757 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
4758 * a reset (unless the RST bit is set, if so drop
4759 * the segment and return)"
4761 * We do not send data with SYN, so that RFC-correct
4764 if (TCP_SKB_CB(skb
)->ack_seq
!= tp
->snd_nxt
)
4765 goto reset_and_undo
;
4767 if (tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
&&
4768 !between(tp
->rx_opt
.rcv_tsecr
, tp
->retrans_stamp
,
4770 NET_INC_STATS_BH(LINUX_MIB_PAWSACTIVEREJECTED
);
4771 goto reset_and_undo
;
4774 /* Now ACK is acceptable.
4776 * "If the RST bit is set
4777 * If the ACK was acceptable then signal the user "error:
4778 * connection reset", drop the segment, enter CLOSED state,
4779 * delete TCB, and return."
4788 * "fifth, if neither of the SYN or RST bits is set then
4789 * drop the segment and return."
4795 goto discard_and_undo
;
4798 * "If the SYN bit is on ...
4799 * are acceptable then ...
4800 * (our SYN has been ACKed), change the connection
4801 * state to ESTABLISHED..."
4804 TCP_ECN_rcv_synack(tp
, th
);
4806 tp
->snd_wl1
= TCP_SKB_CB(skb
)->seq
;
4807 tcp_ack(sk
, skb
, FLAG_SLOWPATH
);
4809 /* Ok.. it's good. Set up sequence numbers and
4810 * move to established.
4812 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->seq
+ 1;
4813 tp
->rcv_wup
= TCP_SKB_CB(skb
)->seq
+ 1;
4815 /* RFC1323: The window in SYN & SYN/ACK segments is
4818 tp
->snd_wnd
= ntohs(th
->window
);
4819 tcp_init_wl(tp
, TCP_SKB_CB(skb
)->ack_seq
, TCP_SKB_CB(skb
)->seq
);
4821 if (!tp
->rx_opt
.wscale_ok
) {
4822 tp
->rx_opt
.snd_wscale
= tp
->rx_opt
.rcv_wscale
= 0;
4823 tp
->window_clamp
= min(tp
->window_clamp
, 65535U);
4826 if (tp
->rx_opt
.saw_tstamp
) {
4827 tp
->rx_opt
.tstamp_ok
= 1;
4828 tp
->tcp_header_len
=
4829 sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
;
4830 tp
->advmss
-= TCPOLEN_TSTAMP_ALIGNED
;
4831 tcp_store_ts_recent(tp
);
4833 tp
->tcp_header_len
= sizeof(struct tcphdr
);
4836 if (tcp_is_sack(tp
) && sysctl_tcp_fack
)
4837 tcp_enable_fack(tp
);
4840 tcp_sync_mss(sk
, icsk
->icsk_pmtu_cookie
);
4841 tcp_initialize_rcv_mss(sk
);
4843 /* Remember, tcp_poll() does not lock socket!
4844 * Change state from SYN-SENT only after copied_seq
4845 * is initialized. */
4846 tp
->copied_seq
= tp
->rcv_nxt
;
4848 tcp_set_state(sk
, TCP_ESTABLISHED
);
4850 security_inet_conn_established(sk
, skb
);
4852 /* Make sure socket is routed, for correct metrics. */
4853 icsk
->icsk_af_ops
->rebuild_header(sk
);
4855 tcp_init_metrics(sk
);
4857 tcp_init_congestion_control(sk
);
4859 /* Prevent spurious tcp_cwnd_restart() on first data
4862 tp
->lsndtime
= tcp_time_stamp
;
4864 tcp_init_buffer_space(sk
);
4866 if (sock_flag(sk
, SOCK_KEEPOPEN
))
4867 inet_csk_reset_keepalive_timer(sk
, keepalive_time_when(tp
));
4869 if (!tp
->rx_opt
.snd_wscale
)
4870 __tcp_fast_path_on(tp
, tp
->snd_wnd
);
4874 if (!sock_flag(sk
, SOCK_DEAD
)) {
4875 sk
->sk_state_change(sk
);
4876 sk_wake_async(sk
, 0, POLL_OUT
);
4879 if (sk
->sk_write_pending
||
4880 icsk
->icsk_accept_queue
.rskq_defer_accept
||
4881 icsk
->icsk_ack
.pingpong
) {
4882 /* Save one ACK. Data will be ready after
4883 * several ticks, if write_pending is set.
4885 * It may be deleted, but with this feature tcpdumps
4886 * look so _wonderfully_ clever, that I was not able
4887 * to stand against the temptation 8) --ANK
4889 inet_csk_schedule_ack(sk
);
4890 icsk
->icsk_ack
.lrcvtime
= tcp_time_stamp
;
4891 icsk
->icsk_ack
.ato
= TCP_ATO_MIN
;
4892 tcp_incr_quickack(sk
);
4893 tcp_enter_quickack_mode(sk
);
4894 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_DACK
,
4895 TCP_DELACK_MAX
, TCP_RTO_MAX
);
4906 /* No ACK in the segment */
4910 * "If the RST bit is set
4912 * Otherwise (no ACK) drop the segment and return."
4915 goto discard_and_undo
;
4919 if (tp
->rx_opt
.ts_recent_stamp
&& tp
->rx_opt
.saw_tstamp
&& tcp_paws_check(&tp
->rx_opt
, 0))
4920 goto discard_and_undo
;
4923 /* We see SYN without ACK. It is attempt of
4924 * simultaneous connect with crossed SYNs.
4925 * Particularly, it can be connect to self.
4927 tcp_set_state(sk
, TCP_SYN_RECV
);
4929 if (tp
->rx_opt
.saw_tstamp
) {
4930 tp
->rx_opt
.tstamp_ok
= 1;
4931 tcp_store_ts_recent(tp
);
4932 tp
->tcp_header_len
=
4933 sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
;
4935 tp
->tcp_header_len
= sizeof(struct tcphdr
);
4938 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->seq
+ 1;
4939 tp
->rcv_wup
= TCP_SKB_CB(skb
)->seq
+ 1;
4941 /* RFC1323: The window in SYN & SYN/ACK segments is
4944 tp
->snd_wnd
= ntohs(th
->window
);
4945 tp
->snd_wl1
= TCP_SKB_CB(skb
)->seq
;
4946 tp
->max_window
= tp
->snd_wnd
;
4948 TCP_ECN_rcv_syn(tp
, th
);
4951 tcp_sync_mss(sk
, icsk
->icsk_pmtu_cookie
);
4952 tcp_initialize_rcv_mss(sk
);
4955 tcp_send_synack(sk
);
4957 /* Note, we could accept data and URG from this segment.
4958 * There are no obstacles to make this.
4960 * However, if we ignore data in ACKless segments sometimes,
4961 * we have no reasons to accept it sometimes.
4962 * Also, seems the code doing it in step6 of tcp_rcv_state_process
4963 * is not flawless. So, discard packet for sanity.
4964 * Uncomment this return to process the data.
4971 /* "fifth, if neither of the SYN or RST bits is set then
4972 * drop the segment and return."
4976 tcp_clear_options(&tp
->rx_opt
);
4977 tp
->rx_opt
.mss_clamp
= saved_clamp
;
4981 tcp_clear_options(&tp
->rx_opt
);
4982 tp
->rx_opt
.mss_clamp
= saved_clamp
;
4988 * This function implements the receiving procedure of RFC 793 for
4989 * all states except ESTABLISHED and TIME_WAIT.
4990 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
4991 * address independent.
4994 int tcp_rcv_state_process(struct sock
*sk
, struct sk_buff
*skb
,
4995 struct tcphdr
*th
, unsigned len
)
4997 struct tcp_sock
*tp
= tcp_sk(sk
);
4998 struct inet_connection_sock
*icsk
= inet_csk(sk
);
5001 tp
->rx_opt
.saw_tstamp
= 0;
5003 switch (sk
->sk_state
) {
5015 if (icsk
->icsk_af_ops
->conn_request(sk
, skb
) < 0)
5018 /* Now we have several options: In theory there is
5019 * nothing else in the frame. KA9Q has an option to
5020 * send data with the syn, BSD accepts data with the
5021 * syn up to the [to be] advertised window and
5022 * Solaris 2.1 gives you a protocol error. For now
5023 * we just ignore it, that fits the spec precisely
5024 * and avoids incompatibilities. It would be nice in
5025 * future to drop through and process the data.
5027 * Now that TTCP is starting to be used we ought to
5029 * But, this leaves one open to an easy denial of
5030 * service attack, and SYN cookies can't defend
5031 * against this problem. So, we drop the data
5032 * in the interest of security over speed unless
5033 * it's still in use.
5041 queued
= tcp_rcv_synsent_state_process(sk
, skb
, th
, len
);
5045 /* Do step6 onward by hand. */
5046 tcp_urg(sk
, skb
, th
);
5048 tcp_data_snd_check(sk
);
5052 if (tcp_fast_parse_options(skb
, th
, tp
) && tp
->rx_opt
.saw_tstamp
&&
5053 tcp_paws_discard(sk
, skb
)) {
5055 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED
);
5056 tcp_send_dupack(sk
, skb
);
5059 /* Reset is accepted even if it did not pass PAWS. */
5062 /* step 1: check sequence number */
5063 if (!tcp_sequence(tp
, TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
)) {
5065 tcp_send_dupack(sk
, skb
);
5069 /* step 2: check RST bit */
5075 tcp_replace_ts_recent(tp
, TCP_SKB_CB(skb
)->seq
);
5077 /* step 3: check security and precedence [ignored] */
5081 * Check for a SYN in window.
5083 if (th
->syn
&& !before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
)) {
5084 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN
);
5089 /* step 5: check the ACK field */
5091 int acceptable
= tcp_ack(sk
, skb
, FLAG_SLOWPATH
);
5093 switch (sk
->sk_state
) {
5096 tp
->copied_seq
= tp
->rcv_nxt
;
5098 tcp_set_state(sk
, TCP_ESTABLISHED
);
5099 sk
->sk_state_change(sk
);
5101 /* Note, that this wakeup is only for marginal
5102 * crossed SYN case. Passively open sockets
5103 * are not waked up, because sk->sk_sleep ==
5104 * NULL and sk->sk_socket == NULL.
5106 if (sk
->sk_socket
) {
5107 sk_wake_async(sk
,0,POLL_OUT
);
5110 tp
->snd_una
= TCP_SKB_CB(skb
)->ack_seq
;
5111 tp
->snd_wnd
= ntohs(th
->window
) <<
5112 tp
->rx_opt
.snd_wscale
;
5113 tcp_init_wl(tp
, TCP_SKB_CB(skb
)->ack_seq
,
5114 TCP_SKB_CB(skb
)->seq
);
5116 /* tcp_ack considers this ACK as duplicate
5117 * and does not calculate rtt.
5118 * Fix it at least with timestamps.
5120 if (tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
&&
5122 tcp_ack_saw_tstamp(sk
, 0);
5124 if (tp
->rx_opt
.tstamp_ok
)
5125 tp
->advmss
-= TCPOLEN_TSTAMP_ALIGNED
;
5127 /* Make sure socket is routed, for
5130 icsk
->icsk_af_ops
->rebuild_header(sk
);
5132 tcp_init_metrics(sk
);
5134 tcp_init_congestion_control(sk
);
5136 /* Prevent spurious tcp_cwnd_restart() on
5137 * first data packet.
5139 tp
->lsndtime
= tcp_time_stamp
;
5142 tcp_initialize_rcv_mss(sk
);
5143 tcp_init_buffer_space(sk
);
5144 tcp_fast_path_on(tp
);
5151 if (tp
->snd_una
== tp
->write_seq
) {
5152 tcp_set_state(sk
, TCP_FIN_WAIT2
);
5153 sk
->sk_shutdown
|= SEND_SHUTDOWN
;
5154 dst_confirm(sk
->sk_dst_cache
);
5156 if (!sock_flag(sk
, SOCK_DEAD
))
5157 /* Wake up lingering close() */
5158 sk
->sk_state_change(sk
);
5162 if (tp
->linger2
< 0 ||
5163 (TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(skb
)->seq
&&
5164 after(TCP_SKB_CB(skb
)->end_seq
- th
->fin
, tp
->rcv_nxt
))) {
5166 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA
);
5170 tmo
= tcp_fin_time(sk
);
5171 if (tmo
> TCP_TIMEWAIT_LEN
) {
5172 inet_csk_reset_keepalive_timer(sk
, tmo
- TCP_TIMEWAIT_LEN
);
5173 } else if (th
->fin
|| sock_owned_by_user(sk
)) {
5174 /* Bad case. We could lose such FIN otherwise.
5175 * It is not a big problem, but it looks confusing
5176 * and not so rare event. We still can lose it now,
5177 * if it spins in bh_lock_sock(), but it is really
5180 inet_csk_reset_keepalive_timer(sk
, tmo
);
5182 tcp_time_wait(sk
, TCP_FIN_WAIT2
, tmo
);
5190 if (tp
->snd_una
== tp
->write_seq
) {
5191 tcp_time_wait(sk
, TCP_TIME_WAIT
, 0);
5197 if (tp
->snd_una
== tp
->write_seq
) {
5198 tcp_update_metrics(sk
);
5207 /* step 6: check the URG bit */
5208 tcp_urg(sk
, skb
, th
);
5210 /* step 7: process the segment text */
5211 switch (sk
->sk_state
) {
5212 case TCP_CLOSE_WAIT
:
5215 if (!before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
))
5219 /* RFC 793 says to queue data in these states,
5220 * RFC 1122 says we MUST send a reset.
5221 * BSD 4.4 also does reset.
5223 if (sk
->sk_shutdown
& RCV_SHUTDOWN
) {
5224 if (TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(skb
)->seq
&&
5225 after(TCP_SKB_CB(skb
)->end_seq
- th
->fin
, tp
->rcv_nxt
)) {
5226 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA
);
5232 case TCP_ESTABLISHED
:
5233 tcp_data_queue(sk
, skb
);
5238 /* tcp_data could move socket to TIME-WAIT */
5239 if (sk
->sk_state
!= TCP_CLOSE
) {
5240 tcp_data_snd_check(sk
);
5241 tcp_ack_snd_check(sk
);
5251 EXPORT_SYMBOL(sysctl_tcp_ecn
);
5252 EXPORT_SYMBOL(sysctl_tcp_reordering
);
5253 EXPORT_SYMBOL(tcp_parse_options
);
5254 EXPORT_SYMBOL(tcp_rcv_established
);
5255 EXPORT_SYMBOL(tcp_rcv_state_process
);
5256 EXPORT_SYMBOL(tcp_initialize_rcv_mss
);