2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/suspend.h>
28 #include <linux/pagevec.h>
29 #include <linux/blkdev.h>
30 #include <linux/slab.h>
31 #include <linux/oom.h>
32 #include <linux/notifier.h>
33 #include <linux/topology.h>
34 #include <linux/sysctl.h>
35 #include <linux/cpu.h>
36 #include <linux/cpuset.h>
37 #include <linux/memory_hotplug.h>
38 #include <linux/nodemask.h>
39 #include <linux/vmalloc.h>
40 #include <linux/mempolicy.h>
41 #include <linux/stop_machine.h>
42 #include <linux/sort.h>
43 #include <linux/pfn.h>
44 #include <linux/backing-dev.h>
45 #include <linux/fault-inject.h>
46 #include <linux/page-isolation.h>
47 #include <linux/memcontrol.h>
48 #include <linux/debugobjects.h>
50 #include <asm/tlbflush.h>
51 #include <asm/div64.h>
55 * Array of node states.
57 nodemask_t node_states
[NR_NODE_STATES
] __read_mostly
= {
58 [N_POSSIBLE
] = NODE_MASK_ALL
,
59 [N_ONLINE
] = { { [0] = 1UL } },
61 [N_NORMAL_MEMORY
] = { { [0] = 1UL } },
63 [N_HIGH_MEMORY
] = { { [0] = 1UL } },
65 [N_CPU
] = { { [0] = 1UL } },
68 EXPORT_SYMBOL(node_states
);
70 unsigned long totalram_pages __read_mostly
;
71 unsigned long totalreserve_pages __read_mostly
;
73 int percpu_pagelist_fraction
;
75 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
76 int pageblock_order __read_mostly
;
79 static void __free_pages_ok(struct page
*page
, unsigned int order
);
82 * results with 256, 32 in the lowmem_reserve sysctl:
83 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
84 * 1G machine -> (16M dma, 784M normal, 224M high)
85 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
86 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
87 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
89 * TBD: should special case ZONE_DMA32 machines here - in those we normally
90 * don't need any ZONE_NORMAL reservation
92 int sysctl_lowmem_reserve_ratio
[MAX_NR_ZONES
-1] = {
93 #ifdef CONFIG_ZONE_DMA
96 #ifdef CONFIG_ZONE_DMA32
105 EXPORT_SYMBOL(totalram_pages
);
107 static char * const zone_names
[MAX_NR_ZONES
] = {
108 #ifdef CONFIG_ZONE_DMA
111 #ifdef CONFIG_ZONE_DMA32
115 #ifdef CONFIG_HIGHMEM
121 int min_free_kbytes
= 1024;
123 unsigned long __meminitdata nr_kernel_pages
;
124 unsigned long __meminitdata nr_all_pages
;
125 static unsigned long __meminitdata dma_reserve
;
127 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
129 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
130 * ranges of memory (RAM) that may be registered with add_active_range().
131 * Ranges passed to add_active_range() will be merged if possible
132 * so the number of times add_active_range() can be called is
133 * related to the number of nodes and the number of holes
135 #ifdef CONFIG_MAX_ACTIVE_REGIONS
136 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
137 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
139 #if MAX_NUMNODES >= 32
140 /* If there can be many nodes, allow up to 50 holes per node */
141 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
143 /* By default, allow up to 256 distinct regions */
144 #define MAX_ACTIVE_REGIONS 256
148 static struct node_active_region __meminitdata early_node_map
[MAX_ACTIVE_REGIONS
];
149 static int __meminitdata nr_nodemap_entries
;
150 static unsigned long __meminitdata arch_zone_lowest_possible_pfn
[MAX_NR_ZONES
];
151 static unsigned long __meminitdata arch_zone_highest_possible_pfn
[MAX_NR_ZONES
];
152 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
153 static unsigned long __meminitdata node_boundary_start_pfn
[MAX_NUMNODES
];
154 static unsigned long __meminitdata node_boundary_end_pfn
[MAX_NUMNODES
];
155 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
156 unsigned long __initdata required_kernelcore
;
157 static unsigned long __initdata required_movablecore
;
158 unsigned long __meminitdata zone_movable_pfn
[MAX_NUMNODES
];
160 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
162 EXPORT_SYMBOL(movable_zone
);
163 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
166 int nr_node_ids __read_mostly
= MAX_NUMNODES
;
167 EXPORT_SYMBOL(nr_node_ids
);
170 int page_group_by_mobility_disabled __read_mostly
;
172 static void set_pageblock_migratetype(struct page
*page
, int migratetype
)
174 set_pageblock_flags_group(page
, (unsigned long)migratetype
,
175 PB_migrate
, PB_migrate_end
);
178 #ifdef CONFIG_DEBUG_VM
179 static int page_outside_zone_boundaries(struct zone
*zone
, struct page
*page
)
183 unsigned long pfn
= page_to_pfn(page
);
186 seq
= zone_span_seqbegin(zone
);
187 if (pfn
>= zone
->zone_start_pfn
+ zone
->spanned_pages
)
189 else if (pfn
< zone
->zone_start_pfn
)
191 } while (zone_span_seqretry(zone
, seq
));
196 static int page_is_consistent(struct zone
*zone
, struct page
*page
)
198 if (!pfn_valid_within(page_to_pfn(page
)))
200 if (zone
!= page_zone(page
))
206 * Temporary debugging check for pages not lying within a given zone.
208 static int bad_range(struct zone
*zone
, struct page
*page
)
210 if (page_outside_zone_boundaries(zone
, page
))
212 if (!page_is_consistent(zone
, page
))
218 static inline int bad_range(struct zone
*zone
, struct page
*page
)
224 static void bad_page(struct page
*page
)
226 void *pc
= page_get_page_cgroup(page
);
228 printk(KERN_EMERG
"Bad page state in process '%s'\n" KERN_EMERG
229 "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n",
230 current
->comm
, page
, (int)(2*sizeof(unsigned long)),
231 (unsigned long)page
->flags
, page
->mapping
,
232 page_mapcount(page
), page_count(page
));
234 printk(KERN_EMERG
"cgroup:%p\n", pc
);
235 page_reset_bad_cgroup(page
);
237 printk(KERN_EMERG
"Trying to fix it up, but a reboot is needed\n"
238 KERN_EMERG
"Backtrace:\n");
240 page
->flags
&= ~(1 << PG_lru
|
250 set_page_count(page
, 0);
251 reset_page_mapcount(page
);
252 page
->mapping
= NULL
;
253 add_taint(TAINT_BAD_PAGE
);
257 * Higher-order pages are called "compound pages". They are structured thusly:
259 * The first PAGE_SIZE page is called the "head page".
261 * The remaining PAGE_SIZE pages are called "tail pages".
263 * All pages have PG_compound set. All pages have their ->private pointing at
264 * the head page (even the head page has this).
266 * The first tail page's ->lru.next holds the address of the compound page's
267 * put_page() function. Its ->lru.prev holds the order of allocation.
268 * This usage means that zero-order pages may not be compound.
271 static void free_compound_page(struct page
*page
)
273 __free_pages_ok(page
, compound_order(page
));
276 static void prep_compound_page(struct page
*page
, unsigned long order
)
279 int nr_pages
= 1 << order
;
281 set_compound_page_dtor(page
, free_compound_page
);
282 set_compound_order(page
, order
);
284 for (i
= 1; i
< nr_pages
; i
++) {
285 struct page
*p
= page
+ i
;
288 p
->first_page
= page
;
292 static void destroy_compound_page(struct page
*page
, unsigned long order
)
295 int nr_pages
= 1 << order
;
297 if (unlikely(compound_order(page
) != order
))
300 if (unlikely(!PageHead(page
)))
302 __ClearPageHead(page
);
303 for (i
= 1; i
< nr_pages
; i
++) {
304 struct page
*p
= page
+ i
;
306 if (unlikely(!PageTail(p
) |
307 (p
->first_page
!= page
)))
313 static inline void prep_zero_page(struct page
*page
, int order
, gfp_t gfp_flags
)
318 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
319 * and __GFP_HIGHMEM from hard or soft interrupt context.
321 VM_BUG_ON((gfp_flags
& __GFP_HIGHMEM
) && in_interrupt());
322 for (i
= 0; i
< (1 << order
); i
++)
323 clear_highpage(page
+ i
);
326 static inline void set_page_order(struct page
*page
, int order
)
328 set_page_private(page
, order
);
329 __SetPageBuddy(page
);
332 static inline void rmv_page_order(struct page
*page
)
334 __ClearPageBuddy(page
);
335 set_page_private(page
, 0);
339 * Locate the struct page for both the matching buddy in our
340 * pair (buddy1) and the combined O(n+1) page they form (page).
342 * 1) Any buddy B1 will have an order O twin B2 which satisfies
343 * the following equation:
345 * For example, if the starting buddy (buddy2) is #8 its order
347 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
349 * 2) Any buddy B will have an order O+1 parent P which
350 * satisfies the following equation:
353 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
355 static inline struct page
*
356 __page_find_buddy(struct page
*page
, unsigned long page_idx
, unsigned int order
)
358 unsigned long buddy_idx
= page_idx
^ (1 << order
);
360 return page
+ (buddy_idx
- page_idx
);
363 static inline unsigned long
364 __find_combined_index(unsigned long page_idx
, unsigned int order
)
366 return (page_idx
& ~(1 << order
));
370 * This function checks whether a page is free && is the buddy
371 * we can do coalesce a page and its buddy if
372 * (a) the buddy is not in a hole &&
373 * (b) the buddy is in the buddy system &&
374 * (c) a page and its buddy have the same order &&
375 * (d) a page and its buddy are in the same zone.
377 * For recording whether a page is in the buddy system, we use PG_buddy.
378 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
380 * For recording page's order, we use page_private(page).
382 static inline int page_is_buddy(struct page
*page
, struct page
*buddy
,
385 if (!pfn_valid_within(page_to_pfn(buddy
)))
388 if (page_zone_id(page
) != page_zone_id(buddy
))
391 if (PageBuddy(buddy
) && page_order(buddy
) == order
) {
392 BUG_ON(page_count(buddy
) != 0);
399 * Freeing function for a buddy system allocator.
401 * The concept of a buddy system is to maintain direct-mapped table
402 * (containing bit values) for memory blocks of various "orders".
403 * The bottom level table contains the map for the smallest allocatable
404 * units of memory (here, pages), and each level above it describes
405 * pairs of units from the levels below, hence, "buddies".
406 * At a high level, all that happens here is marking the table entry
407 * at the bottom level available, and propagating the changes upward
408 * as necessary, plus some accounting needed to play nicely with other
409 * parts of the VM system.
410 * At each level, we keep a list of pages, which are heads of continuous
411 * free pages of length of (1 << order) and marked with PG_buddy. Page's
412 * order is recorded in page_private(page) field.
413 * So when we are allocating or freeing one, we can derive the state of the
414 * other. That is, if we allocate a small block, and both were
415 * free, the remainder of the region must be split into blocks.
416 * If a block is freed, and its buddy is also free, then this
417 * triggers coalescing into a block of larger size.
422 static inline void __free_one_page(struct page
*page
,
423 struct zone
*zone
, unsigned int order
)
425 unsigned long page_idx
;
426 int order_size
= 1 << order
;
427 int migratetype
= get_pageblock_migratetype(page
);
429 if (unlikely(PageCompound(page
)))
430 destroy_compound_page(page
, order
);
432 page_idx
= page_to_pfn(page
) & ((1 << MAX_ORDER
) - 1);
434 VM_BUG_ON(page_idx
& (order_size
- 1));
435 VM_BUG_ON(bad_range(zone
, page
));
437 __mod_zone_page_state(zone
, NR_FREE_PAGES
, order_size
);
438 while (order
< MAX_ORDER
-1) {
439 unsigned long combined_idx
;
442 buddy
= __page_find_buddy(page
, page_idx
, order
);
443 if (!page_is_buddy(page
, buddy
, order
))
444 break; /* Move the buddy up one level. */
446 list_del(&buddy
->lru
);
447 zone
->free_area
[order
].nr_free
--;
448 rmv_page_order(buddy
);
449 combined_idx
= __find_combined_index(page_idx
, order
);
450 page
= page
+ (combined_idx
- page_idx
);
451 page_idx
= combined_idx
;
454 set_page_order(page
, order
);
456 &zone
->free_area
[order
].free_list
[migratetype
]);
457 zone
->free_area
[order
].nr_free
++;
460 static inline int free_pages_check(struct page
*page
)
462 if (unlikely(page_mapcount(page
) |
463 (page
->mapping
!= NULL
) |
464 (page_get_page_cgroup(page
) != NULL
) |
465 (page_count(page
) != 0) |
478 __ClearPageDirty(page
);
480 * For now, we report if PG_reserved was found set, but do not
481 * clear it, and do not free the page. But we shall soon need
482 * to do more, for when the ZERO_PAGE count wraps negative.
484 return PageReserved(page
);
488 * Frees a list of pages.
489 * Assumes all pages on list are in same zone, and of same order.
490 * count is the number of pages to free.
492 * If the zone was previously in an "all pages pinned" state then look to
493 * see if this freeing clears that state.
495 * And clear the zone's pages_scanned counter, to hold off the "all pages are
496 * pinned" detection logic.
498 static void free_pages_bulk(struct zone
*zone
, int count
,
499 struct list_head
*list
, int order
)
501 spin_lock(&zone
->lock
);
502 zone_clear_flag(zone
, ZONE_ALL_UNRECLAIMABLE
);
503 zone
->pages_scanned
= 0;
507 VM_BUG_ON(list_empty(list
));
508 page
= list_entry(list
->prev
, struct page
, lru
);
509 /* have to delete it as __free_one_page list manipulates */
510 list_del(&page
->lru
);
511 __free_one_page(page
, zone
, order
);
513 spin_unlock(&zone
->lock
);
516 static void free_one_page(struct zone
*zone
, struct page
*page
, int order
)
518 spin_lock(&zone
->lock
);
519 zone_clear_flag(zone
, ZONE_ALL_UNRECLAIMABLE
);
520 zone
->pages_scanned
= 0;
521 __free_one_page(page
, zone
, order
);
522 spin_unlock(&zone
->lock
);
525 static void __free_pages_ok(struct page
*page
, unsigned int order
)
531 for (i
= 0 ; i
< (1 << order
) ; ++i
)
532 reserved
+= free_pages_check(page
+ i
);
536 if (!PageHighMem(page
)) {
537 debug_check_no_locks_freed(page_address(page
),PAGE_SIZE
<<order
);
538 debug_check_no_obj_freed(page_address(page
),
541 arch_free_page(page
, order
);
542 kernel_map_pages(page
, 1 << order
, 0);
544 local_irq_save(flags
);
545 __count_vm_events(PGFREE
, 1 << order
);
546 free_one_page(page_zone(page
), page
, order
);
547 local_irq_restore(flags
);
551 * permit the bootmem allocator to evade page validation on high-order frees
553 void __free_pages_bootmem(struct page
*page
, unsigned int order
)
556 __ClearPageReserved(page
);
557 set_page_count(page
, 0);
558 set_page_refcounted(page
);
564 for (loop
= 0; loop
< BITS_PER_LONG
; loop
++) {
565 struct page
*p
= &page
[loop
];
567 if (loop
+ 1 < BITS_PER_LONG
)
569 __ClearPageReserved(p
);
570 set_page_count(p
, 0);
573 set_page_refcounted(page
);
574 __free_pages(page
, order
);
580 * The order of subdivision here is critical for the IO subsystem.
581 * Please do not alter this order without good reasons and regression
582 * testing. Specifically, as large blocks of memory are subdivided,
583 * the order in which smaller blocks are delivered depends on the order
584 * they're subdivided in this function. This is the primary factor
585 * influencing the order in which pages are delivered to the IO
586 * subsystem according to empirical testing, and this is also justified
587 * by considering the behavior of a buddy system containing a single
588 * large block of memory acted on by a series of small allocations.
589 * This behavior is a critical factor in sglist merging's success.
593 static inline void expand(struct zone
*zone
, struct page
*page
,
594 int low
, int high
, struct free_area
*area
,
597 unsigned long size
= 1 << high
;
603 VM_BUG_ON(bad_range(zone
, &page
[size
]));
604 list_add(&page
[size
].lru
, &area
->free_list
[migratetype
]);
606 set_page_order(&page
[size
], high
);
611 * This page is about to be returned from the page allocator
613 static int prep_new_page(struct page
*page
, int order
, gfp_t gfp_flags
)
615 if (unlikely(page_mapcount(page
) |
616 (page
->mapping
!= NULL
) |
617 (page_get_page_cgroup(page
) != NULL
) |
618 (page_count(page
) != 0) |
633 * For now, we report if PG_reserved was found set, but do not
634 * clear it, and do not allocate the page: as a safety net.
636 if (PageReserved(page
))
639 page
->flags
&= ~(1 << PG_uptodate
| 1 << PG_error
| 1 << PG_reclaim
|
640 1 << PG_referenced
| 1 << PG_arch_1
|
641 1 << PG_owner_priv_1
| 1 << PG_mappedtodisk
);
642 set_page_private(page
, 0);
643 set_page_refcounted(page
);
645 arch_alloc_page(page
, order
);
646 kernel_map_pages(page
, 1 << order
, 1);
648 if (gfp_flags
& __GFP_ZERO
)
649 prep_zero_page(page
, order
, gfp_flags
);
651 if (order
&& (gfp_flags
& __GFP_COMP
))
652 prep_compound_page(page
, order
);
658 * Go through the free lists for the given migratetype and remove
659 * the smallest available page from the freelists
661 static struct page
*__rmqueue_smallest(struct zone
*zone
, unsigned int order
,
664 unsigned int current_order
;
665 struct free_area
* area
;
668 /* Find a page of the appropriate size in the preferred list */
669 for (current_order
= order
; current_order
< MAX_ORDER
; ++current_order
) {
670 area
= &(zone
->free_area
[current_order
]);
671 if (list_empty(&area
->free_list
[migratetype
]))
674 page
= list_entry(area
->free_list
[migratetype
].next
,
676 list_del(&page
->lru
);
677 rmv_page_order(page
);
679 __mod_zone_page_state(zone
, NR_FREE_PAGES
, - (1UL << order
));
680 expand(zone
, page
, order
, current_order
, area
, migratetype
);
689 * This array describes the order lists are fallen back to when
690 * the free lists for the desirable migrate type are depleted
692 static int fallbacks
[MIGRATE_TYPES
][MIGRATE_TYPES
-1] = {
693 [MIGRATE_UNMOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_MOVABLE
, MIGRATE_RESERVE
},
694 [MIGRATE_RECLAIMABLE
] = { MIGRATE_UNMOVABLE
, MIGRATE_MOVABLE
, MIGRATE_RESERVE
},
695 [MIGRATE_MOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_UNMOVABLE
, MIGRATE_RESERVE
},
696 [MIGRATE_RESERVE
] = { MIGRATE_RESERVE
, MIGRATE_RESERVE
, MIGRATE_RESERVE
}, /* Never used */
700 * Move the free pages in a range to the free lists of the requested type.
701 * Note that start_page and end_pages are not aligned on a pageblock
702 * boundary. If alignment is required, use move_freepages_block()
704 int move_freepages(struct zone
*zone
,
705 struct page
*start_page
, struct page
*end_page
,
712 #ifndef CONFIG_HOLES_IN_ZONE
714 * page_zone is not safe to call in this context when
715 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
716 * anyway as we check zone boundaries in move_freepages_block().
717 * Remove at a later date when no bug reports exist related to
718 * grouping pages by mobility
720 BUG_ON(page_zone(start_page
) != page_zone(end_page
));
723 for (page
= start_page
; page
<= end_page
;) {
724 if (!pfn_valid_within(page_to_pfn(page
))) {
729 if (!PageBuddy(page
)) {
734 order
= page_order(page
);
735 list_del(&page
->lru
);
737 &zone
->free_area
[order
].free_list
[migratetype
]);
739 pages_moved
+= 1 << order
;
745 int move_freepages_block(struct zone
*zone
, struct page
*page
, int migratetype
)
747 unsigned long start_pfn
, end_pfn
;
748 struct page
*start_page
, *end_page
;
750 start_pfn
= page_to_pfn(page
);
751 start_pfn
= start_pfn
& ~(pageblock_nr_pages
-1);
752 start_page
= pfn_to_page(start_pfn
);
753 end_page
= start_page
+ pageblock_nr_pages
- 1;
754 end_pfn
= start_pfn
+ pageblock_nr_pages
- 1;
756 /* Do not cross zone boundaries */
757 if (start_pfn
< zone
->zone_start_pfn
)
759 if (end_pfn
>= zone
->zone_start_pfn
+ zone
->spanned_pages
)
762 return move_freepages(zone
, start_page
, end_page
, migratetype
);
765 /* Remove an element from the buddy allocator from the fallback list */
766 static struct page
*__rmqueue_fallback(struct zone
*zone
, int order
,
767 int start_migratetype
)
769 struct free_area
* area
;
774 /* Find the largest possible block of pages in the other list */
775 for (current_order
= MAX_ORDER
-1; current_order
>= order
;
777 for (i
= 0; i
< MIGRATE_TYPES
- 1; i
++) {
778 migratetype
= fallbacks
[start_migratetype
][i
];
780 /* MIGRATE_RESERVE handled later if necessary */
781 if (migratetype
== MIGRATE_RESERVE
)
784 area
= &(zone
->free_area
[current_order
]);
785 if (list_empty(&area
->free_list
[migratetype
]))
788 page
= list_entry(area
->free_list
[migratetype
].next
,
793 * If breaking a large block of pages, move all free
794 * pages to the preferred allocation list. If falling
795 * back for a reclaimable kernel allocation, be more
796 * agressive about taking ownership of free pages
798 if (unlikely(current_order
>= (pageblock_order
>> 1)) ||
799 start_migratetype
== MIGRATE_RECLAIMABLE
) {
801 pages
= move_freepages_block(zone
, page
,
804 /* Claim the whole block if over half of it is free */
805 if (pages
>= (1 << (pageblock_order
-1)))
806 set_pageblock_migratetype(page
,
809 migratetype
= start_migratetype
;
812 /* Remove the page from the freelists */
813 list_del(&page
->lru
);
814 rmv_page_order(page
);
815 __mod_zone_page_state(zone
, NR_FREE_PAGES
,
818 if (current_order
== pageblock_order
)
819 set_pageblock_migratetype(page
,
822 expand(zone
, page
, order
, current_order
, area
, migratetype
);
827 /* Use MIGRATE_RESERVE rather than fail an allocation */
828 return __rmqueue_smallest(zone
, order
, MIGRATE_RESERVE
);
832 * Do the hard work of removing an element from the buddy allocator.
833 * Call me with the zone->lock already held.
835 static struct page
*__rmqueue(struct zone
*zone
, unsigned int order
,
840 page
= __rmqueue_smallest(zone
, order
, migratetype
);
843 page
= __rmqueue_fallback(zone
, order
, migratetype
);
849 * Obtain a specified number of elements from the buddy allocator, all under
850 * a single hold of the lock, for efficiency. Add them to the supplied list.
851 * Returns the number of new pages which were placed at *list.
853 static int rmqueue_bulk(struct zone
*zone
, unsigned int order
,
854 unsigned long count
, struct list_head
*list
,
859 spin_lock(&zone
->lock
);
860 for (i
= 0; i
< count
; ++i
) {
861 struct page
*page
= __rmqueue(zone
, order
, migratetype
);
862 if (unlikely(page
== NULL
))
866 * Split buddy pages returned by expand() are received here
867 * in physical page order. The page is added to the callers and
868 * list and the list head then moves forward. From the callers
869 * perspective, the linked list is ordered by page number in
870 * some conditions. This is useful for IO devices that can
871 * merge IO requests if the physical pages are ordered
874 list_add(&page
->lru
, list
);
875 set_page_private(page
, migratetype
);
878 spin_unlock(&zone
->lock
);
884 * Called from the vmstat counter updater to drain pagesets of this
885 * currently executing processor on remote nodes after they have
888 * Note that this function must be called with the thread pinned to
889 * a single processor.
891 void drain_zone_pages(struct zone
*zone
, struct per_cpu_pages
*pcp
)
896 local_irq_save(flags
);
897 if (pcp
->count
>= pcp
->batch
)
898 to_drain
= pcp
->batch
;
900 to_drain
= pcp
->count
;
901 free_pages_bulk(zone
, to_drain
, &pcp
->list
, 0);
902 pcp
->count
-= to_drain
;
903 local_irq_restore(flags
);
908 * Drain pages of the indicated processor.
910 * The processor must either be the current processor and the
911 * thread pinned to the current processor or a processor that
914 static void drain_pages(unsigned int cpu
)
919 for_each_zone(zone
) {
920 struct per_cpu_pageset
*pset
;
921 struct per_cpu_pages
*pcp
;
923 if (!populated_zone(zone
))
926 pset
= zone_pcp(zone
, cpu
);
929 local_irq_save(flags
);
930 free_pages_bulk(zone
, pcp
->count
, &pcp
->list
, 0);
932 local_irq_restore(flags
);
937 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
939 void drain_local_pages(void *arg
)
941 drain_pages(smp_processor_id());
945 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
947 void drain_all_pages(void)
949 on_each_cpu(drain_local_pages
, NULL
, 0, 1);
952 #ifdef CONFIG_HIBERNATION
954 void mark_free_pages(struct zone
*zone
)
956 unsigned long pfn
, max_zone_pfn
;
959 struct list_head
*curr
;
961 if (!zone
->spanned_pages
)
964 spin_lock_irqsave(&zone
->lock
, flags
);
966 max_zone_pfn
= zone
->zone_start_pfn
+ zone
->spanned_pages
;
967 for (pfn
= zone
->zone_start_pfn
; pfn
< max_zone_pfn
; pfn
++)
968 if (pfn_valid(pfn
)) {
969 struct page
*page
= pfn_to_page(pfn
);
971 if (!swsusp_page_is_forbidden(page
))
972 swsusp_unset_page_free(page
);
975 for_each_migratetype_order(order
, t
) {
976 list_for_each(curr
, &zone
->free_area
[order
].free_list
[t
]) {
979 pfn
= page_to_pfn(list_entry(curr
, struct page
, lru
));
980 for (i
= 0; i
< (1UL << order
); i
++)
981 swsusp_set_page_free(pfn_to_page(pfn
+ i
));
984 spin_unlock_irqrestore(&zone
->lock
, flags
);
986 #endif /* CONFIG_PM */
989 * Free a 0-order page
991 static void free_hot_cold_page(struct page
*page
, int cold
)
993 struct zone
*zone
= page_zone(page
);
994 struct per_cpu_pages
*pcp
;
998 page
->mapping
= NULL
;
999 if (free_pages_check(page
))
1002 if (!PageHighMem(page
)) {
1003 debug_check_no_locks_freed(page_address(page
), PAGE_SIZE
);
1004 debug_check_no_obj_freed(page_address(page
), PAGE_SIZE
);
1006 arch_free_page(page
, 0);
1007 kernel_map_pages(page
, 1, 0);
1009 pcp
= &zone_pcp(zone
, get_cpu())->pcp
;
1010 local_irq_save(flags
);
1011 __count_vm_event(PGFREE
);
1013 list_add_tail(&page
->lru
, &pcp
->list
);
1015 list_add(&page
->lru
, &pcp
->list
);
1016 set_page_private(page
, get_pageblock_migratetype(page
));
1018 if (pcp
->count
>= pcp
->high
) {
1019 free_pages_bulk(zone
, pcp
->batch
, &pcp
->list
, 0);
1020 pcp
->count
-= pcp
->batch
;
1022 local_irq_restore(flags
);
1026 void free_hot_page(struct page
*page
)
1028 free_hot_cold_page(page
, 0);
1031 void free_cold_page(struct page
*page
)
1033 free_hot_cold_page(page
, 1);
1037 * split_page takes a non-compound higher-order page, and splits it into
1038 * n (1<<order) sub-pages: page[0..n]
1039 * Each sub-page must be freed individually.
1041 * Note: this is probably too low level an operation for use in drivers.
1042 * Please consult with lkml before using this in your driver.
1044 void split_page(struct page
*page
, unsigned int order
)
1048 VM_BUG_ON(PageCompound(page
));
1049 VM_BUG_ON(!page_count(page
));
1050 for (i
= 1; i
< (1 << order
); i
++)
1051 set_page_refcounted(page
+ i
);
1055 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1056 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1059 static struct page
*buffered_rmqueue(struct zone
*preferred_zone
,
1060 struct zone
*zone
, int order
, gfp_t gfp_flags
)
1062 unsigned long flags
;
1064 int cold
= !!(gfp_flags
& __GFP_COLD
);
1066 int migratetype
= allocflags_to_migratetype(gfp_flags
);
1070 if (likely(order
== 0)) {
1071 struct per_cpu_pages
*pcp
;
1073 pcp
= &zone_pcp(zone
, cpu
)->pcp
;
1074 local_irq_save(flags
);
1076 pcp
->count
= rmqueue_bulk(zone
, 0,
1077 pcp
->batch
, &pcp
->list
, migratetype
);
1078 if (unlikely(!pcp
->count
))
1082 /* Find a page of the appropriate migrate type */
1084 list_for_each_entry_reverse(page
, &pcp
->list
, lru
)
1085 if (page_private(page
) == migratetype
)
1088 list_for_each_entry(page
, &pcp
->list
, lru
)
1089 if (page_private(page
) == migratetype
)
1093 /* Allocate more to the pcp list if necessary */
1094 if (unlikely(&page
->lru
== &pcp
->list
)) {
1095 pcp
->count
+= rmqueue_bulk(zone
, 0,
1096 pcp
->batch
, &pcp
->list
, migratetype
);
1097 page
= list_entry(pcp
->list
.next
, struct page
, lru
);
1100 list_del(&page
->lru
);
1103 spin_lock_irqsave(&zone
->lock
, flags
);
1104 page
= __rmqueue(zone
, order
, migratetype
);
1105 spin_unlock(&zone
->lock
);
1110 __count_zone_vm_events(PGALLOC
, zone
, 1 << order
);
1111 zone_statistics(preferred_zone
, zone
);
1112 local_irq_restore(flags
);
1115 VM_BUG_ON(bad_range(zone
, page
));
1116 if (prep_new_page(page
, order
, gfp_flags
))
1121 local_irq_restore(flags
);
1126 #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
1127 #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
1128 #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
1129 #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
1130 #define ALLOC_HARDER 0x10 /* try to alloc harder */
1131 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1132 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1134 #ifdef CONFIG_FAIL_PAGE_ALLOC
1136 static struct fail_page_alloc_attr
{
1137 struct fault_attr attr
;
1139 u32 ignore_gfp_highmem
;
1140 u32 ignore_gfp_wait
;
1143 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1145 struct dentry
*ignore_gfp_highmem_file
;
1146 struct dentry
*ignore_gfp_wait_file
;
1147 struct dentry
*min_order_file
;
1149 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1151 } fail_page_alloc
= {
1152 .attr
= FAULT_ATTR_INITIALIZER
,
1153 .ignore_gfp_wait
= 1,
1154 .ignore_gfp_highmem
= 1,
1158 static int __init
setup_fail_page_alloc(char *str
)
1160 return setup_fault_attr(&fail_page_alloc
.attr
, str
);
1162 __setup("fail_page_alloc=", setup_fail_page_alloc
);
1164 static int should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
1166 if (order
< fail_page_alloc
.min_order
)
1168 if (gfp_mask
& __GFP_NOFAIL
)
1170 if (fail_page_alloc
.ignore_gfp_highmem
&& (gfp_mask
& __GFP_HIGHMEM
))
1172 if (fail_page_alloc
.ignore_gfp_wait
&& (gfp_mask
& __GFP_WAIT
))
1175 return should_fail(&fail_page_alloc
.attr
, 1 << order
);
1178 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1180 static int __init
fail_page_alloc_debugfs(void)
1182 mode_t mode
= S_IFREG
| S_IRUSR
| S_IWUSR
;
1186 err
= init_fault_attr_dentries(&fail_page_alloc
.attr
,
1190 dir
= fail_page_alloc
.attr
.dentries
.dir
;
1192 fail_page_alloc
.ignore_gfp_wait_file
=
1193 debugfs_create_bool("ignore-gfp-wait", mode
, dir
,
1194 &fail_page_alloc
.ignore_gfp_wait
);
1196 fail_page_alloc
.ignore_gfp_highmem_file
=
1197 debugfs_create_bool("ignore-gfp-highmem", mode
, dir
,
1198 &fail_page_alloc
.ignore_gfp_highmem
);
1199 fail_page_alloc
.min_order_file
=
1200 debugfs_create_u32("min-order", mode
, dir
,
1201 &fail_page_alloc
.min_order
);
1203 if (!fail_page_alloc
.ignore_gfp_wait_file
||
1204 !fail_page_alloc
.ignore_gfp_highmem_file
||
1205 !fail_page_alloc
.min_order_file
) {
1207 debugfs_remove(fail_page_alloc
.ignore_gfp_wait_file
);
1208 debugfs_remove(fail_page_alloc
.ignore_gfp_highmem_file
);
1209 debugfs_remove(fail_page_alloc
.min_order_file
);
1210 cleanup_fault_attr_dentries(&fail_page_alloc
.attr
);
1216 late_initcall(fail_page_alloc_debugfs
);
1218 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1220 #else /* CONFIG_FAIL_PAGE_ALLOC */
1222 static inline int should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
1227 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1230 * Return 1 if free pages are above 'mark'. This takes into account the order
1231 * of the allocation.
1233 int zone_watermark_ok(struct zone
*z
, int order
, unsigned long mark
,
1234 int classzone_idx
, int alloc_flags
)
1236 /* free_pages my go negative - that's OK */
1238 long free_pages
= zone_page_state(z
, NR_FREE_PAGES
) - (1 << order
) + 1;
1241 if (alloc_flags
& ALLOC_HIGH
)
1243 if (alloc_flags
& ALLOC_HARDER
)
1246 if (free_pages
<= min
+ z
->lowmem_reserve
[classzone_idx
])
1248 for (o
= 0; o
< order
; o
++) {
1249 /* At the next order, this order's pages become unavailable */
1250 free_pages
-= z
->free_area
[o
].nr_free
<< o
;
1252 /* Require fewer higher order pages to be free */
1255 if (free_pages
<= min
)
1263 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1264 * skip over zones that are not allowed by the cpuset, or that have
1265 * been recently (in last second) found to be nearly full. See further
1266 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1267 * that have to skip over a lot of full or unallowed zones.
1269 * If the zonelist cache is present in the passed in zonelist, then
1270 * returns a pointer to the allowed node mask (either the current
1271 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1273 * If the zonelist cache is not available for this zonelist, does
1274 * nothing and returns NULL.
1276 * If the fullzones BITMAP in the zonelist cache is stale (more than
1277 * a second since last zap'd) then we zap it out (clear its bits.)
1279 * We hold off even calling zlc_setup, until after we've checked the
1280 * first zone in the zonelist, on the theory that most allocations will
1281 * be satisfied from that first zone, so best to examine that zone as
1282 * quickly as we can.
1284 static nodemask_t
*zlc_setup(struct zonelist
*zonelist
, int alloc_flags
)
1286 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1287 nodemask_t
*allowednodes
; /* zonelist_cache approximation */
1289 zlc
= zonelist
->zlcache_ptr
;
1293 if (time_after(jiffies
, zlc
->last_full_zap
+ HZ
)) {
1294 bitmap_zero(zlc
->fullzones
, MAX_ZONES_PER_ZONELIST
);
1295 zlc
->last_full_zap
= jiffies
;
1298 allowednodes
= !in_interrupt() && (alloc_flags
& ALLOC_CPUSET
) ?
1299 &cpuset_current_mems_allowed
:
1300 &node_states
[N_HIGH_MEMORY
];
1301 return allowednodes
;
1305 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1306 * if it is worth looking at further for free memory:
1307 * 1) Check that the zone isn't thought to be full (doesn't have its
1308 * bit set in the zonelist_cache fullzones BITMAP).
1309 * 2) Check that the zones node (obtained from the zonelist_cache
1310 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1311 * Return true (non-zero) if zone is worth looking at further, or
1312 * else return false (zero) if it is not.
1314 * This check -ignores- the distinction between various watermarks,
1315 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1316 * found to be full for any variation of these watermarks, it will
1317 * be considered full for up to one second by all requests, unless
1318 * we are so low on memory on all allowed nodes that we are forced
1319 * into the second scan of the zonelist.
1321 * In the second scan we ignore this zonelist cache and exactly
1322 * apply the watermarks to all zones, even it is slower to do so.
1323 * We are low on memory in the second scan, and should leave no stone
1324 * unturned looking for a free page.
1326 static int zlc_zone_worth_trying(struct zonelist
*zonelist
, struct zoneref
*z
,
1327 nodemask_t
*allowednodes
)
1329 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1330 int i
; /* index of *z in zonelist zones */
1331 int n
; /* node that zone *z is on */
1333 zlc
= zonelist
->zlcache_ptr
;
1337 i
= z
- zonelist
->_zonerefs
;
1340 /* This zone is worth trying if it is allowed but not full */
1341 return node_isset(n
, *allowednodes
) && !test_bit(i
, zlc
->fullzones
);
1345 * Given 'z' scanning a zonelist, set the corresponding bit in
1346 * zlc->fullzones, so that subsequent attempts to allocate a page
1347 * from that zone don't waste time re-examining it.
1349 static void zlc_mark_zone_full(struct zonelist
*zonelist
, struct zoneref
*z
)
1351 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1352 int i
; /* index of *z in zonelist zones */
1354 zlc
= zonelist
->zlcache_ptr
;
1358 i
= z
- zonelist
->_zonerefs
;
1360 set_bit(i
, zlc
->fullzones
);
1363 #else /* CONFIG_NUMA */
1365 static nodemask_t
*zlc_setup(struct zonelist
*zonelist
, int alloc_flags
)
1370 static int zlc_zone_worth_trying(struct zonelist
*zonelist
, struct zoneref
*z
,
1371 nodemask_t
*allowednodes
)
1376 static void zlc_mark_zone_full(struct zonelist
*zonelist
, struct zoneref
*z
)
1379 #endif /* CONFIG_NUMA */
1382 * get_page_from_freelist goes through the zonelist trying to allocate
1385 static struct page
*
1386 get_page_from_freelist(gfp_t gfp_mask
, nodemask_t
*nodemask
, unsigned int order
,
1387 struct zonelist
*zonelist
, int high_zoneidx
, int alloc_flags
)
1390 struct page
*page
= NULL
;
1392 struct zone
*zone
, *preferred_zone
;
1393 nodemask_t
*allowednodes
= NULL
;/* zonelist_cache approximation */
1394 int zlc_active
= 0; /* set if using zonelist_cache */
1395 int did_zlc_setup
= 0; /* just call zlc_setup() one time */
1397 (void)first_zones_zonelist(zonelist
, high_zoneidx
, nodemask
,
1399 if (!preferred_zone
)
1402 classzone_idx
= zone_idx(preferred_zone
);
1406 * Scan zonelist, looking for a zone with enough free.
1407 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1409 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
1410 high_zoneidx
, nodemask
) {
1411 if (NUMA_BUILD
&& zlc_active
&&
1412 !zlc_zone_worth_trying(zonelist
, z
, allowednodes
))
1414 if ((alloc_flags
& ALLOC_CPUSET
) &&
1415 !cpuset_zone_allowed_softwall(zone
, gfp_mask
))
1418 if (!(alloc_flags
& ALLOC_NO_WATERMARKS
)) {
1420 if (alloc_flags
& ALLOC_WMARK_MIN
)
1421 mark
= zone
->pages_min
;
1422 else if (alloc_flags
& ALLOC_WMARK_LOW
)
1423 mark
= zone
->pages_low
;
1425 mark
= zone
->pages_high
;
1426 if (!zone_watermark_ok(zone
, order
, mark
,
1427 classzone_idx
, alloc_flags
)) {
1428 if (!zone_reclaim_mode
||
1429 !zone_reclaim(zone
, gfp_mask
, order
))
1430 goto this_zone_full
;
1434 page
= buffered_rmqueue(preferred_zone
, zone
, order
, gfp_mask
);
1439 zlc_mark_zone_full(zonelist
, z
);
1441 if (NUMA_BUILD
&& !did_zlc_setup
) {
1442 /* we do zlc_setup after the first zone is tried */
1443 allowednodes
= zlc_setup(zonelist
, alloc_flags
);
1449 if (unlikely(NUMA_BUILD
&& page
== NULL
&& zlc_active
)) {
1450 /* Disable zlc cache for second zonelist scan */
1458 * This is the 'heart' of the zoned buddy allocator.
1460 static struct page
*
1461 __alloc_pages_internal(gfp_t gfp_mask
, unsigned int order
,
1462 struct zonelist
*zonelist
, nodemask_t
*nodemask
)
1464 const gfp_t wait
= gfp_mask
& __GFP_WAIT
;
1465 enum zone_type high_zoneidx
= gfp_zone(gfp_mask
);
1469 struct reclaim_state reclaim_state
;
1470 struct task_struct
*p
= current
;
1473 unsigned long did_some_progress
;
1474 unsigned long pages_reclaimed
= 0;
1476 might_sleep_if(wait
);
1478 if (should_fail_alloc_page(gfp_mask
, order
))
1482 z
= zonelist
->_zonerefs
; /* the list of zones suitable for gfp_mask */
1484 if (unlikely(!z
->zone
)) {
1486 * Happens if we have an empty zonelist as a result of
1487 * GFP_THISNODE being used on a memoryless node
1492 page
= get_page_from_freelist(gfp_mask
|__GFP_HARDWALL
, nodemask
, order
,
1493 zonelist
, high_zoneidx
, ALLOC_WMARK_LOW
|ALLOC_CPUSET
);
1498 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1499 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1500 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1501 * using a larger set of nodes after it has established that the
1502 * allowed per node queues are empty and that nodes are
1505 if (NUMA_BUILD
&& (gfp_mask
& GFP_THISNODE
) == GFP_THISNODE
)
1508 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
)
1509 wakeup_kswapd(zone
, order
);
1512 * OK, we're below the kswapd watermark and have kicked background
1513 * reclaim. Now things get more complex, so set up alloc_flags according
1514 * to how we want to proceed.
1516 * The caller may dip into page reserves a bit more if the caller
1517 * cannot run direct reclaim, or if the caller has realtime scheduling
1518 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1519 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1521 alloc_flags
= ALLOC_WMARK_MIN
;
1522 if ((unlikely(rt_task(p
)) && !in_interrupt()) || !wait
)
1523 alloc_flags
|= ALLOC_HARDER
;
1524 if (gfp_mask
& __GFP_HIGH
)
1525 alloc_flags
|= ALLOC_HIGH
;
1527 alloc_flags
|= ALLOC_CPUSET
;
1530 * Go through the zonelist again. Let __GFP_HIGH and allocations
1531 * coming from realtime tasks go deeper into reserves.
1533 * This is the last chance, in general, before the goto nopage.
1534 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1535 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1537 page
= get_page_from_freelist(gfp_mask
, nodemask
, order
, zonelist
,
1538 high_zoneidx
, alloc_flags
);
1542 /* This allocation should allow future memory freeing. */
1545 if (((p
->flags
& PF_MEMALLOC
) || unlikely(test_thread_flag(TIF_MEMDIE
)))
1546 && !in_interrupt()) {
1547 if (!(gfp_mask
& __GFP_NOMEMALLOC
)) {
1549 /* go through the zonelist yet again, ignoring mins */
1550 page
= get_page_from_freelist(gfp_mask
, nodemask
, order
,
1551 zonelist
, high_zoneidx
, ALLOC_NO_WATERMARKS
);
1554 if (gfp_mask
& __GFP_NOFAIL
) {
1555 congestion_wait(WRITE
, HZ
/50);
1562 /* Atomic allocations - we can't balance anything */
1568 /* We now go into synchronous reclaim */
1569 cpuset_memory_pressure_bump();
1570 p
->flags
|= PF_MEMALLOC
;
1571 reclaim_state
.reclaimed_slab
= 0;
1572 p
->reclaim_state
= &reclaim_state
;
1574 did_some_progress
= try_to_free_pages(zonelist
, order
, gfp_mask
);
1576 p
->reclaim_state
= NULL
;
1577 p
->flags
&= ~PF_MEMALLOC
;
1584 if (likely(did_some_progress
)) {
1585 page
= get_page_from_freelist(gfp_mask
, nodemask
, order
,
1586 zonelist
, high_zoneidx
, alloc_flags
);
1589 } else if ((gfp_mask
& __GFP_FS
) && !(gfp_mask
& __GFP_NORETRY
)) {
1590 if (!try_set_zone_oom(zonelist
, gfp_mask
)) {
1591 schedule_timeout_uninterruptible(1);
1596 * Go through the zonelist yet one more time, keep
1597 * very high watermark here, this is only to catch
1598 * a parallel oom killing, we must fail if we're still
1599 * under heavy pressure.
1601 page
= get_page_from_freelist(gfp_mask
|__GFP_HARDWALL
, nodemask
,
1602 order
, zonelist
, high_zoneidx
,
1603 ALLOC_WMARK_HIGH
|ALLOC_CPUSET
);
1605 clear_zonelist_oom(zonelist
, gfp_mask
);
1609 /* The OOM killer will not help higher order allocs so fail */
1610 if (order
> PAGE_ALLOC_COSTLY_ORDER
) {
1611 clear_zonelist_oom(zonelist
, gfp_mask
);
1615 out_of_memory(zonelist
, gfp_mask
, order
);
1616 clear_zonelist_oom(zonelist
, gfp_mask
);
1621 * Don't let big-order allocations loop unless the caller explicitly
1622 * requests that. Wait for some write requests to complete then retry.
1624 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1625 * means __GFP_NOFAIL, but that may not be true in other
1628 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1629 * specified, then we retry until we no longer reclaim any pages
1630 * (above), or we've reclaimed an order of pages at least as
1631 * large as the allocation's order. In both cases, if the
1632 * allocation still fails, we stop retrying.
1634 pages_reclaimed
+= did_some_progress
;
1636 if (!(gfp_mask
& __GFP_NORETRY
)) {
1637 if (order
<= PAGE_ALLOC_COSTLY_ORDER
) {
1640 if (gfp_mask
& __GFP_REPEAT
&&
1641 pages_reclaimed
< (1 << order
))
1644 if (gfp_mask
& __GFP_NOFAIL
)
1648 congestion_wait(WRITE
, HZ
/50);
1653 if (!(gfp_mask
& __GFP_NOWARN
) && printk_ratelimit()) {
1654 printk(KERN_WARNING
"%s: page allocation failure."
1655 " order:%d, mode:0x%x\n",
1656 p
->comm
, order
, gfp_mask
);
1665 __alloc_pages(gfp_t gfp_mask
, unsigned int order
,
1666 struct zonelist
*zonelist
)
1668 return __alloc_pages_internal(gfp_mask
, order
, zonelist
, NULL
);
1672 __alloc_pages_nodemask(gfp_t gfp_mask
, unsigned int order
,
1673 struct zonelist
*zonelist
, nodemask_t
*nodemask
)
1675 return __alloc_pages_internal(gfp_mask
, order
, zonelist
, nodemask
);
1678 EXPORT_SYMBOL(__alloc_pages
);
1681 * Common helper functions.
1683 unsigned long __get_free_pages(gfp_t gfp_mask
, unsigned int order
)
1686 page
= alloc_pages(gfp_mask
, order
);
1689 return (unsigned long) page_address(page
);
1692 EXPORT_SYMBOL(__get_free_pages
);
1694 unsigned long get_zeroed_page(gfp_t gfp_mask
)
1699 * get_zeroed_page() returns a 32-bit address, which cannot represent
1702 VM_BUG_ON((gfp_mask
& __GFP_HIGHMEM
) != 0);
1704 page
= alloc_pages(gfp_mask
| __GFP_ZERO
, 0);
1706 return (unsigned long) page_address(page
);
1710 EXPORT_SYMBOL(get_zeroed_page
);
1712 void __pagevec_free(struct pagevec
*pvec
)
1714 int i
= pagevec_count(pvec
);
1717 free_hot_cold_page(pvec
->pages
[i
], pvec
->cold
);
1720 void __free_pages(struct page
*page
, unsigned int order
)
1722 if (put_page_testzero(page
)) {
1724 free_hot_page(page
);
1726 __free_pages_ok(page
, order
);
1730 EXPORT_SYMBOL(__free_pages
);
1732 void free_pages(unsigned long addr
, unsigned int order
)
1735 VM_BUG_ON(!virt_addr_valid((void *)addr
));
1736 __free_pages(virt_to_page((void *)addr
), order
);
1740 EXPORT_SYMBOL(free_pages
);
1742 static unsigned int nr_free_zone_pages(int offset
)
1747 /* Just pick one node, since fallback list is circular */
1748 unsigned int sum
= 0;
1750 struct zonelist
*zonelist
= node_zonelist(numa_node_id(), GFP_KERNEL
);
1752 for_each_zone_zonelist(zone
, z
, zonelist
, offset
) {
1753 unsigned long size
= zone
->present_pages
;
1754 unsigned long high
= zone
->pages_high
;
1763 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1765 unsigned int nr_free_buffer_pages(void)
1767 return nr_free_zone_pages(gfp_zone(GFP_USER
));
1769 EXPORT_SYMBOL_GPL(nr_free_buffer_pages
);
1772 * Amount of free RAM allocatable within all zones
1774 unsigned int nr_free_pagecache_pages(void)
1776 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE
));
1779 static inline void show_node(struct zone
*zone
)
1782 printk("Node %d ", zone_to_nid(zone
));
1785 void si_meminfo(struct sysinfo
*val
)
1787 val
->totalram
= totalram_pages
;
1789 val
->freeram
= global_page_state(NR_FREE_PAGES
);
1790 val
->bufferram
= nr_blockdev_pages();
1791 val
->totalhigh
= totalhigh_pages
;
1792 val
->freehigh
= nr_free_highpages();
1793 val
->mem_unit
= PAGE_SIZE
;
1796 EXPORT_SYMBOL(si_meminfo
);
1799 void si_meminfo_node(struct sysinfo
*val
, int nid
)
1801 pg_data_t
*pgdat
= NODE_DATA(nid
);
1803 val
->totalram
= pgdat
->node_present_pages
;
1804 val
->freeram
= node_page_state(nid
, NR_FREE_PAGES
);
1805 #ifdef CONFIG_HIGHMEM
1806 val
->totalhigh
= pgdat
->node_zones
[ZONE_HIGHMEM
].present_pages
;
1807 val
->freehigh
= zone_page_state(&pgdat
->node_zones
[ZONE_HIGHMEM
],
1813 val
->mem_unit
= PAGE_SIZE
;
1817 #define K(x) ((x) << (PAGE_SHIFT-10))
1820 * Show free area list (used inside shift_scroll-lock stuff)
1821 * We also calculate the percentage fragmentation. We do this by counting the
1822 * memory on each free list with the exception of the first item on the list.
1824 void show_free_areas(void)
1829 for_each_zone(zone
) {
1830 if (!populated_zone(zone
))
1834 printk("%s per-cpu:\n", zone
->name
);
1836 for_each_online_cpu(cpu
) {
1837 struct per_cpu_pageset
*pageset
;
1839 pageset
= zone_pcp(zone
, cpu
);
1841 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
1842 cpu
, pageset
->pcp
.high
,
1843 pageset
->pcp
.batch
, pageset
->pcp
.count
);
1847 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu unstable:%lu\n"
1848 " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
1849 global_page_state(NR_ACTIVE
),
1850 global_page_state(NR_INACTIVE
),
1851 global_page_state(NR_FILE_DIRTY
),
1852 global_page_state(NR_WRITEBACK
),
1853 global_page_state(NR_UNSTABLE_NFS
),
1854 global_page_state(NR_FREE_PAGES
),
1855 global_page_state(NR_SLAB_RECLAIMABLE
) +
1856 global_page_state(NR_SLAB_UNRECLAIMABLE
),
1857 global_page_state(NR_FILE_MAPPED
),
1858 global_page_state(NR_PAGETABLE
),
1859 global_page_state(NR_BOUNCE
));
1861 for_each_zone(zone
) {
1864 if (!populated_zone(zone
))
1876 " pages_scanned:%lu"
1877 " all_unreclaimable? %s"
1880 K(zone_page_state(zone
, NR_FREE_PAGES
)),
1883 K(zone
->pages_high
),
1884 K(zone_page_state(zone
, NR_ACTIVE
)),
1885 K(zone_page_state(zone
, NR_INACTIVE
)),
1886 K(zone
->present_pages
),
1887 zone
->pages_scanned
,
1888 (zone_is_all_unreclaimable(zone
) ? "yes" : "no")
1890 printk("lowmem_reserve[]:");
1891 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
1892 printk(" %lu", zone
->lowmem_reserve
[i
]);
1896 for_each_zone(zone
) {
1897 unsigned long nr
[MAX_ORDER
], flags
, order
, total
= 0;
1899 if (!populated_zone(zone
))
1903 printk("%s: ", zone
->name
);
1905 spin_lock_irqsave(&zone
->lock
, flags
);
1906 for (order
= 0; order
< MAX_ORDER
; order
++) {
1907 nr
[order
] = zone
->free_area
[order
].nr_free
;
1908 total
+= nr
[order
] << order
;
1910 spin_unlock_irqrestore(&zone
->lock
, flags
);
1911 for (order
= 0; order
< MAX_ORDER
; order
++)
1912 printk("%lu*%lukB ", nr
[order
], K(1UL) << order
);
1913 printk("= %lukB\n", K(total
));
1916 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES
));
1918 show_swap_cache_info();
1921 static void zoneref_set_zone(struct zone
*zone
, struct zoneref
*zoneref
)
1923 zoneref
->zone
= zone
;
1924 zoneref
->zone_idx
= zone_idx(zone
);
1928 * Builds allocation fallback zone lists.
1930 * Add all populated zones of a node to the zonelist.
1932 static int build_zonelists_node(pg_data_t
*pgdat
, struct zonelist
*zonelist
,
1933 int nr_zones
, enum zone_type zone_type
)
1937 BUG_ON(zone_type
>= MAX_NR_ZONES
);
1942 zone
= pgdat
->node_zones
+ zone_type
;
1943 if (populated_zone(zone
)) {
1944 zoneref_set_zone(zone
,
1945 &zonelist
->_zonerefs
[nr_zones
++]);
1946 check_highest_zone(zone_type
);
1949 } while (zone_type
);
1956 * 0 = automatic detection of better ordering.
1957 * 1 = order by ([node] distance, -zonetype)
1958 * 2 = order by (-zonetype, [node] distance)
1960 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
1961 * the same zonelist. So only NUMA can configure this param.
1963 #define ZONELIST_ORDER_DEFAULT 0
1964 #define ZONELIST_ORDER_NODE 1
1965 #define ZONELIST_ORDER_ZONE 2
1967 /* zonelist order in the kernel.
1968 * set_zonelist_order() will set this to NODE or ZONE.
1970 static int current_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
1971 static char zonelist_order_name
[3][8] = {"Default", "Node", "Zone"};
1975 /* The value user specified ....changed by config */
1976 static int user_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
1977 /* string for sysctl */
1978 #define NUMA_ZONELIST_ORDER_LEN 16
1979 char numa_zonelist_order
[16] = "default";
1982 * interface for configure zonelist ordering.
1983 * command line option "numa_zonelist_order"
1984 * = "[dD]efault - default, automatic configuration.
1985 * = "[nN]ode - order by node locality, then by zone within node
1986 * = "[zZ]one - order by zone, then by locality within zone
1989 static int __parse_numa_zonelist_order(char *s
)
1991 if (*s
== 'd' || *s
== 'D') {
1992 user_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
1993 } else if (*s
== 'n' || *s
== 'N') {
1994 user_zonelist_order
= ZONELIST_ORDER_NODE
;
1995 } else if (*s
== 'z' || *s
== 'Z') {
1996 user_zonelist_order
= ZONELIST_ORDER_ZONE
;
1999 "Ignoring invalid numa_zonelist_order value: "
2006 static __init
int setup_numa_zonelist_order(char *s
)
2009 return __parse_numa_zonelist_order(s
);
2012 early_param("numa_zonelist_order", setup_numa_zonelist_order
);
2015 * sysctl handler for numa_zonelist_order
2017 int numa_zonelist_order_handler(ctl_table
*table
, int write
,
2018 struct file
*file
, void __user
*buffer
, size_t *length
,
2021 char saved_string
[NUMA_ZONELIST_ORDER_LEN
];
2025 strncpy(saved_string
, (char*)table
->data
,
2026 NUMA_ZONELIST_ORDER_LEN
);
2027 ret
= proc_dostring(table
, write
, file
, buffer
, length
, ppos
);
2031 int oldval
= user_zonelist_order
;
2032 if (__parse_numa_zonelist_order((char*)table
->data
)) {
2034 * bogus value. restore saved string
2036 strncpy((char*)table
->data
, saved_string
,
2037 NUMA_ZONELIST_ORDER_LEN
);
2038 user_zonelist_order
= oldval
;
2039 } else if (oldval
!= user_zonelist_order
)
2040 build_all_zonelists();
2046 #define MAX_NODE_LOAD (num_online_nodes())
2047 static int node_load
[MAX_NUMNODES
];
2050 * find_next_best_node - find the next node that should appear in a given node's fallback list
2051 * @node: node whose fallback list we're appending
2052 * @used_node_mask: nodemask_t of already used nodes
2054 * We use a number of factors to determine which is the next node that should
2055 * appear on a given node's fallback list. The node should not have appeared
2056 * already in @node's fallback list, and it should be the next closest node
2057 * according to the distance array (which contains arbitrary distance values
2058 * from each node to each node in the system), and should also prefer nodes
2059 * with no CPUs, since presumably they'll have very little allocation pressure
2060 * on them otherwise.
2061 * It returns -1 if no node is found.
2063 static int find_next_best_node(int node
, nodemask_t
*used_node_mask
)
2066 int min_val
= INT_MAX
;
2068 node_to_cpumask_ptr(tmp
, 0);
2070 /* Use the local node if we haven't already */
2071 if (!node_isset(node
, *used_node_mask
)) {
2072 node_set(node
, *used_node_mask
);
2076 for_each_node_state(n
, N_HIGH_MEMORY
) {
2078 /* Don't want a node to appear more than once */
2079 if (node_isset(n
, *used_node_mask
))
2082 /* Use the distance array to find the distance */
2083 val
= node_distance(node
, n
);
2085 /* Penalize nodes under us ("prefer the next node") */
2088 /* Give preference to headless and unused nodes */
2089 node_to_cpumask_ptr_next(tmp
, n
);
2090 if (!cpus_empty(*tmp
))
2091 val
+= PENALTY_FOR_NODE_WITH_CPUS
;
2093 /* Slight preference for less loaded node */
2094 val
*= (MAX_NODE_LOAD
*MAX_NUMNODES
);
2095 val
+= node_load
[n
];
2097 if (val
< min_val
) {
2104 node_set(best_node
, *used_node_mask
);
2111 * Build zonelists ordered by node and zones within node.
2112 * This results in maximum locality--normal zone overflows into local
2113 * DMA zone, if any--but risks exhausting DMA zone.
2115 static void build_zonelists_in_node_order(pg_data_t
*pgdat
, int node
)
2118 struct zonelist
*zonelist
;
2120 zonelist
= &pgdat
->node_zonelists
[0];
2121 for (j
= 0; zonelist
->_zonerefs
[j
].zone
!= NULL
; j
++)
2123 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
,
2125 zonelist
->_zonerefs
[j
].zone
= NULL
;
2126 zonelist
->_zonerefs
[j
].zone_idx
= 0;
2130 * Build gfp_thisnode zonelists
2132 static void build_thisnode_zonelists(pg_data_t
*pgdat
)
2135 struct zonelist
*zonelist
;
2137 zonelist
= &pgdat
->node_zonelists
[1];
2138 j
= build_zonelists_node(pgdat
, zonelist
, 0, MAX_NR_ZONES
- 1);
2139 zonelist
->_zonerefs
[j
].zone
= NULL
;
2140 zonelist
->_zonerefs
[j
].zone_idx
= 0;
2144 * Build zonelists ordered by zone and nodes within zones.
2145 * This results in conserving DMA zone[s] until all Normal memory is
2146 * exhausted, but results in overflowing to remote node while memory
2147 * may still exist in local DMA zone.
2149 static int node_order
[MAX_NUMNODES
];
2151 static void build_zonelists_in_zone_order(pg_data_t
*pgdat
, int nr_nodes
)
2154 int zone_type
; /* needs to be signed */
2156 struct zonelist
*zonelist
;
2158 zonelist
= &pgdat
->node_zonelists
[0];
2160 for (zone_type
= MAX_NR_ZONES
- 1; zone_type
>= 0; zone_type
--) {
2161 for (j
= 0; j
< nr_nodes
; j
++) {
2162 node
= node_order
[j
];
2163 z
= &NODE_DATA(node
)->node_zones
[zone_type
];
2164 if (populated_zone(z
)) {
2166 &zonelist
->_zonerefs
[pos
++]);
2167 check_highest_zone(zone_type
);
2171 zonelist
->_zonerefs
[pos
].zone
= NULL
;
2172 zonelist
->_zonerefs
[pos
].zone_idx
= 0;
2175 static int default_zonelist_order(void)
2178 unsigned long low_kmem_size
,total_size
;
2182 * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2183 * If they are really small and used heavily, the system can fall
2184 * into OOM very easily.
2185 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2187 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2190 for_each_online_node(nid
) {
2191 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++) {
2192 z
= &NODE_DATA(nid
)->node_zones
[zone_type
];
2193 if (populated_zone(z
)) {
2194 if (zone_type
< ZONE_NORMAL
)
2195 low_kmem_size
+= z
->present_pages
;
2196 total_size
+= z
->present_pages
;
2200 if (!low_kmem_size
|| /* there are no DMA area. */
2201 low_kmem_size
> total_size
/2) /* DMA/DMA32 is big. */
2202 return ZONELIST_ORDER_NODE
;
2204 * look into each node's config.
2205 * If there is a node whose DMA/DMA32 memory is very big area on
2206 * local memory, NODE_ORDER may be suitable.
2208 average_size
= total_size
/
2209 (nodes_weight(node_states
[N_HIGH_MEMORY
]) + 1);
2210 for_each_online_node(nid
) {
2213 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++) {
2214 z
= &NODE_DATA(nid
)->node_zones
[zone_type
];
2215 if (populated_zone(z
)) {
2216 if (zone_type
< ZONE_NORMAL
)
2217 low_kmem_size
+= z
->present_pages
;
2218 total_size
+= z
->present_pages
;
2221 if (low_kmem_size
&&
2222 total_size
> average_size
&& /* ignore small node */
2223 low_kmem_size
> total_size
* 70/100)
2224 return ZONELIST_ORDER_NODE
;
2226 return ZONELIST_ORDER_ZONE
;
2229 static void set_zonelist_order(void)
2231 if (user_zonelist_order
== ZONELIST_ORDER_DEFAULT
)
2232 current_zonelist_order
= default_zonelist_order();
2234 current_zonelist_order
= user_zonelist_order
;
2237 static void build_zonelists(pg_data_t
*pgdat
)
2241 nodemask_t used_mask
;
2242 int local_node
, prev_node
;
2243 struct zonelist
*zonelist
;
2244 int order
= current_zonelist_order
;
2246 /* initialize zonelists */
2247 for (i
= 0; i
< MAX_ZONELISTS
; i
++) {
2248 zonelist
= pgdat
->node_zonelists
+ i
;
2249 zonelist
->_zonerefs
[0].zone
= NULL
;
2250 zonelist
->_zonerefs
[0].zone_idx
= 0;
2253 /* NUMA-aware ordering of nodes */
2254 local_node
= pgdat
->node_id
;
2255 load
= num_online_nodes();
2256 prev_node
= local_node
;
2257 nodes_clear(used_mask
);
2259 memset(node_load
, 0, sizeof(node_load
));
2260 memset(node_order
, 0, sizeof(node_order
));
2263 while ((node
= find_next_best_node(local_node
, &used_mask
)) >= 0) {
2264 int distance
= node_distance(local_node
, node
);
2267 * If another node is sufficiently far away then it is better
2268 * to reclaim pages in a zone before going off node.
2270 if (distance
> RECLAIM_DISTANCE
)
2271 zone_reclaim_mode
= 1;
2274 * We don't want to pressure a particular node.
2275 * So adding penalty to the first node in same
2276 * distance group to make it round-robin.
2278 if (distance
!= node_distance(local_node
, prev_node
))
2279 node_load
[node
] = load
;
2283 if (order
== ZONELIST_ORDER_NODE
)
2284 build_zonelists_in_node_order(pgdat
, node
);
2286 node_order
[j
++] = node
; /* remember order */
2289 if (order
== ZONELIST_ORDER_ZONE
) {
2290 /* calculate node order -- i.e., DMA last! */
2291 build_zonelists_in_zone_order(pgdat
, j
);
2294 build_thisnode_zonelists(pgdat
);
2297 /* Construct the zonelist performance cache - see further mmzone.h */
2298 static void build_zonelist_cache(pg_data_t
*pgdat
)
2300 struct zonelist
*zonelist
;
2301 struct zonelist_cache
*zlc
;
2304 zonelist
= &pgdat
->node_zonelists
[0];
2305 zonelist
->zlcache_ptr
= zlc
= &zonelist
->zlcache
;
2306 bitmap_zero(zlc
->fullzones
, MAX_ZONES_PER_ZONELIST
);
2307 for (z
= zonelist
->_zonerefs
; z
->zone
; z
++)
2308 zlc
->z_to_n
[z
- zonelist
->_zonerefs
] = zonelist_node_idx(z
);
2312 #else /* CONFIG_NUMA */
2314 static void set_zonelist_order(void)
2316 current_zonelist_order
= ZONELIST_ORDER_ZONE
;
2319 static void build_zonelists(pg_data_t
*pgdat
)
2321 int node
, local_node
;
2323 struct zonelist
*zonelist
;
2325 local_node
= pgdat
->node_id
;
2327 zonelist
= &pgdat
->node_zonelists
[0];
2328 j
= build_zonelists_node(pgdat
, zonelist
, 0, MAX_NR_ZONES
- 1);
2331 * Now we build the zonelist so that it contains the zones
2332 * of all the other nodes.
2333 * We don't want to pressure a particular node, so when
2334 * building the zones for node N, we make sure that the
2335 * zones coming right after the local ones are those from
2336 * node N+1 (modulo N)
2338 for (node
= local_node
+ 1; node
< MAX_NUMNODES
; node
++) {
2339 if (!node_online(node
))
2341 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
,
2344 for (node
= 0; node
< local_node
; node
++) {
2345 if (!node_online(node
))
2347 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
,
2351 zonelist
->_zonerefs
[j
].zone
= NULL
;
2352 zonelist
->_zonerefs
[j
].zone_idx
= 0;
2355 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2356 static void build_zonelist_cache(pg_data_t
*pgdat
)
2358 pgdat
->node_zonelists
[0].zlcache_ptr
= NULL
;
2359 pgdat
->node_zonelists
[1].zlcache_ptr
= NULL
;
2362 #endif /* CONFIG_NUMA */
2364 /* return values int ....just for stop_machine_run() */
2365 static int __build_all_zonelists(void *dummy
)
2369 for_each_online_node(nid
) {
2370 pg_data_t
*pgdat
= NODE_DATA(nid
);
2372 build_zonelists(pgdat
);
2373 build_zonelist_cache(pgdat
);
2378 void build_all_zonelists(void)
2380 set_zonelist_order();
2382 if (system_state
== SYSTEM_BOOTING
) {
2383 __build_all_zonelists(NULL
);
2384 cpuset_init_current_mems_allowed();
2386 /* we have to stop all cpus to guarantee there is no user
2388 stop_machine_run(__build_all_zonelists
, NULL
, NR_CPUS
);
2389 /* cpuset refresh routine should be here */
2391 vm_total_pages
= nr_free_pagecache_pages();
2393 * Disable grouping by mobility if the number of pages in the
2394 * system is too low to allow the mechanism to work. It would be
2395 * more accurate, but expensive to check per-zone. This check is
2396 * made on memory-hotadd so a system can start with mobility
2397 * disabled and enable it later
2399 if (vm_total_pages
< (pageblock_nr_pages
* MIGRATE_TYPES
))
2400 page_group_by_mobility_disabled
= 1;
2402 page_group_by_mobility_disabled
= 0;
2404 printk("Built %i zonelists in %s order, mobility grouping %s. "
2405 "Total pages: %ld\n",
2407 zonelist_order_name
[current_zonelist_order
],
2408 page_group_by_mobility_disabled
? "off" : "on",
2411 printk("Policy zone: %s\n", zone_names
[policy_zone
]);
2416 * Helper functions to size the waitqueue hash table.
2417 * Essentially these want to choose hash table sizes sufficiently
2418 * large so that collisions trying to wait on pages are rare.
2419 * But in fact, the number of active page waitqueues on typical
2420 * systems is ridiculously low, less than 200. So this is even
2421 * conservative, even though it seems large.
2423 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2424 * waitqueues, i.e. the size of the waitq table given the number of pages.
2426 #define PAGES_PER_WAITQUEUE 256
2428 #ifndef CONFIG_MEMORY_HOTPLUG
2429 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages
)
2431 unsigned long size
= 1;
2433 pages
/= PAGES_PER_WAITQUEUE
;
2435 while (size
< pages
)
2439 * Once we have dozens or even hundreds of threads sleeping
2440 * on IO we've got bigger problems than wait queue collision.
2441 * Limit the size of the wait table to a reasonable size.
2443 size
= min(size
, 4096UL);
2445 return max(size
, 4UL);
2449 * A zone's size might be changed by hot-add, so it is not possible to determine
2450 * a suitable size for its wait_table. So we use the maximum size now.
2452 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
2454 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
2455 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2456 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
2458 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2459 * or more by the traditional way. (See above). It equals:
2461 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
2462 * ia64(16K page size) : = ( 8G + 4M)byte.
2463 * powerpc (64K page size) : = (32G +16M)byte.
2465 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages
)
2472 * This is an integer logarithm so that shifts can be used later
2473 * to extract the more random high bits from the multiplicative
2474 * hash function before the remainder is taken.
2476 static inline unsigned long wait_table_bits(unsigned long size
)
2481 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2484 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
2485 * of blocks reserved is based on zone->pages_min. The memory within the
2486 * reserve will tend to store contiguous free pages. Setting min_free_kbytes
2487 * higher will lead to a bigger reserve which will get freed as contiguous
2488 * blocks as reclaim kicks in
2490 static void setup_zone_migrate_reserve(struct zone
*zone
)
2492 unsigned long start_pfn
, pfn
, end_pfn
;
2494 unsigned long reserve
, block_migratetype
;
2496 /* Get the start pfn, end pfn and the number of blocks to reserve */
2497 start_pfn
= zone
->zone_start_pfn
;
2498 end_pfn
= start_pfn
+ zone
->spanned_pages
;
2499 reserve
= roundup(zone
->pages_min
, pageblock_nr_pages
) >>
2502 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
+= pageblock_nr_pages
) {
2503 if (!pfn_valid(pfn
))
2505 page
= pfn_to_page(pfn
);
2507 /* Blocks with reserved pages will never free, skip them. */
2508 if (PageReserved(page
))
2511 block_migratetype
= get_pageblock_migratetype(page
);
2513 /* If this block is reserved, account for it */
2514 if (reserve
> 0 && block_migratetype
== MIGRATE_RESERVE
) {
2519 /* Suitable for reserving if this block is movable */
2520 if (reserve
> 0 && block_migratetype
== MIGRATE_MOVABLE
) {
2521 set_pageblock_migratetype(page
, MIGRATE_RESERVE
);
2522 move_freepages_block(zone
, page
, MIGRATE_RESERVE
);
2528 * If the reserve is met and this is a previous reserved block,
2531 if (block_migratetype
== MIGRATE_RESERVE
) {
2532 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
2533 move_freepages_block(zone
, page
, MIGRATE_MOVABLE
);
2539 * Initially all pages are reserved - free ones are freed
2540 * up by free_all_bootmem() once the early boot process is
2541 * done. Non-atomic initialization, single-pass.
2543 void __meminit
memmap_init_zone(unsigned long size
, int nid
, unsigned long zone
,
2544 unsigned long start_pfn
, enum memmap_context context
)
2547 unsigned long end_pfn
= start_pfn
+ size
;
2551 z
= &NODE_DATA(nid
)->node_zones
[zone
];
2552 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++) {
2554 * There can be holes in boot-time mem_map[]s
2555 * handed to this function. They do not
2556 * exist on hotplugged memory.
2558 if (context
== MEMMAP_EARLY
) {
2559 if (!early_pfn_valid(pfn
))
2561 if (!early_pfn_in_nid(pfn
, nid
))
2564 page
= pfn_to_page(pfn
);
2565 set_page_links(page
, zone
, nid
, pfn
);
2566 init_page_count(page
);
2567 reset_page_mapcount(page
);
2568 SetPageReserved(page
);
2570 * Mark the block movable so that blocks are reserved for
2571 * movable at startup. This will force kernel allocations
2572 * to reserve their blocks rather than leaking throughout
2573 * the address space during boot when many long-lived
2574 * kernel allocations are made. Later some blocks near
2575 * the start are marked MIGRATE_RESERVE by
2576 * setup_zone_migrate_reserve()
2578 * bitmap is created for zone's valid pfn range. but memmap
2579 * can be created for invalid pages (for alignment)
2580 * check here not to call set_pageblock_migratetype() against
2583 if ((z
->zone_start_pfn
<= pfn
)
2584 && (pfn
< z
->zone_start_pfn
+ z
->spanned_pages
)
2585 && !(pfn
& (pageblock_nr_pages
- 1)))
2586 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
2588 INIT_LIST_HEAD(&page
->lru
);
2589 #ifdef WANT_PAGE_VIRTUAL
2590 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
2591 if (!is_highmem_idx(zone
))
2592 set_page_address(page
, __va(pfn
<< PAGE_SHIFT
));
2597 static void __meminit
zone_init_free_lists(struct zone
*zone
)
2600 for_each_migratetype_order(order
, t
) {
2601 INIT_LIST_HEAD(&zone
->free_area
[order
].free_list
[t
]);
2602 zone
->free_area
[order
].nr_free
= 0;
2606 #ifndef __HAVE_ARCH_MEMMAP_INIT
2607 #define memmap_init(size, nid, zone, start_pfn) \
2608 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
2611 static int zone_batchsize(struct zone
*zone
)
2616 * The per-cpu-pages pools are set to around 1000th of the
2617 * size of the zone. But no more than 1/2 of a meg.
2619 * OK, so we don't know how big the cache is. So guess.
2621 batch
= zone
->present_pages
/ 1024;
2622 if (batch
* PAGE_SIZE
> 512 * 1024)
2623 batch
= (512 * 1024) / PAGE_SIZE
;
2624 batch
/= 4; /* We effectively *= 4 below */
2629 * Clamp the batch to a 2^n - 1 value. Having a power
2630 * of 2 value was found to be more likely to have
2631 * suboptimal cache aliasing properties in some cases.
2633 * For example if 2 tasks are alternately allocating
2634 * batches of pages, one task can end up with a lot
2635 * of pages of one half of the possible page colors
2636 * and the other with pages of the other colors.
2638 batch
= (1 << (fls(batch
+ batch
/2)-1)) - 1;
2643 inline void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
)
2645 struct per_cpu_pages
*pcp
;
2647 memset(p
, 0, sizeof(*p
));
2651 pcp
->high
= 6 * batch
;
2652 pcp
->batch
= max(1UL, 1 * batch
);
2653 INIT_LIST_HEAD(&pcp
->list
);
2657 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2658 * to the value high for the pageset p.
2661 static void setup_pagelist_highmark(struct per_cpu_pageset
*p
,
2664 struct per_cpu_pages
*pcp
;
2668 pcp
->batch
= max(1UL, high
/4);
2669 if ((high
/4) > (PAGE_SHIFT
* 8))
2670 pcp
->batch
= PAGE_SHIFT
* 8;
2676 * Boot pageset table. One per cpu which is going to be used for all
2677 * zones and all nodes. The parameters will be set in such a way
2678 * that an item put on a list will immediately be handed over to
2679 * the buddy list. This is safe since pageset manipulation is done
2680 * with interrupts disabled.
2682 * Some NUMA counter updates may also be caught by the boot pagesets.
2684 * The boot_pagesets must be kept even after bootup is complete for
2685 * unused processors and/or zones. They do play a role for bootstrapping
2686 * hotplugged processors.
2688 * zoneinfo_show() and maybe other functions do
2689 * not check if the processor is online before following the pageset pointer.
2690 * Other parts of the kernel may not check if the zone is available.
2692 static struct per_cpu_pageset boot_pageset
[NR_CPUS
];
2695 * Dynamically allocate memory for the
2696 * per cpu pageset array in struct zone.
2698 static int __cpuinit
process_zones(int cpu
)
2700 struct zone
*zone
, *dzone
;
2701 int node
= cpu_to_node(cpu
);
2703 node_set_state(node
, N_CPU
); /* this node has a cpu */
2705 for_each_zone(zone
) {
2707 if (!populated_zone(zone
))
2710 zone_pcp(zone
, cpu
) = kmalloc_node(sizeof(struct per_cpu_pageset
),
2712 if (!zone_pcp(zone
, cpu
))
2715 setup_pageset(zone_pcp(zone
, cpu
), zone_batchsize(zone
));
2717 if (percpu_pagelist_fraction
)
2718 setup_pagelist_highmark(zone_pcp(zone
, cpu
),
2719 (zone
->present_pages
/ percpu_pagelist_fraction
));
2724 for_each_zone(dzone
) {
2725 if (!populated_zone(dzone
))
2729 kfree(zone_pcp(dzone
, cpu
));
2730 zone_pcp(dzone
, cpu
) = NULL
;
2735 static inline void free_zone_pagesets(int cpu
)
2739 for_each_zone(zone
) {
2740 struct per_cpu_pageset
*pset
= zone_pcp(zone
, cpu
);
2742 /* Free per_cpu_pageset if it is slab allocated */
2743 if (pset
!= &boot_pageset
[cpu
])
2745 zone_pcp(zone
, cpu
) = NULL
;
2749 static int __cpuinit
pageset_cpuup_callback(struct notifier_block
*nfb
,
2750 unsigned long action
,
2753 int cpu
= (long)hcpu
;
2754 int ret
= NOTIFY_OK
;
2757 case CPU_UP_PREPARE
:
2758 case CPU_UP_PREPARE_FROZEN
:
2759 if (process_zones(cpu
))
2762 case CPU_UP_CANCELED
:
2763 case CPU_UP_CANCELED_FROZEN
:
2765 case CPU_DEAD_FROZEN
:
2766 free_zone_pagesets(cpu
);
2774 static struct notifier_block __cpuinitdata pageset_notifier
=
2775 { &pageset_cpuup_callback
, NULL
, 0 };
2777 void __init
setup_per_cpu_pageset(void)
2781 /* Initialize per_cpu_pageset for cpu 0.
2782 * A cpuup callback will do this for every cpu
2783 * as it comes online
2785 err
= process_zones(smp_processor_id());
2787 register_cpu_notifier(&pageset_notifier
);
2792 static noinline __init_refok
2793 int zone_wait_table_init(struct zone
*zone
, unsigned long zone_size_pages
)
2796 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
2800 * The per-page waitqueue mechanism uses hashed waitqueues
2803 zone
->wait_table_hash_nr_entries
=
2804 wait_table_hash_nr_entries(zone_size_pages
);
2805 zone
->wait_table_bits
=
2806 wait_table_bits(zone
->wait_table_hash_nr_entries
);
2807 alloc_size
= zone
->wait_table_hash_nr_entries
2808 * sizeof(wait_queue_head_t
);
2810 if (!slab_is_available()) {
2811 zone
->wait_table
= (wait_queue_head_t
*)
2812 alloc_bootmem_node(pgdat
, alloc_size
);
2815 * This case means that a zone whose size was 0 gets new memory
2816 * via memory hot-add.
2817 * But it may be the case that a new node was hot-added. In
2818 * this case vmalloc() will not be able to use this new node's
2819 * memory - this wait_table must be initialized to use this new
2820 * node itself as well.
2821 * To use this new node's memory, further consideration will be
2824 zone
->wait_table
= vmalloc(alloc_size
);
2826 if (!zone
->wait_table
)
2829 for(i
= 0; i
< zone
->wait_table_hash_nr_entries
; ++i
)
2830 init_waitqueue_head(zone
->wait_table
+ i
);
2835 static __meminit
void zone_pcp_init(struct zone
*zone
)
2838 unsigned long batch
= zone_batchsize(zone
);
2840 for (cpu
= 0; cpu
< NR_CPUS
; cpu
++) {
2842 /* Early boot. Slab allocator not functional yet */
2843 zone_pcp(zone
, cpu
) = &boot_pageset
[cpu
];
2844 setup_pageset(&boot_pageset
[cpu
],0);
2846 setup_pageset(zone_pcp(zone
,cpu
), batch
);
2849 if (zone
->present_pages
)
2850 printk(KERN_DEBUG
" %s zone: %lu pages, LIFO batch:%lu\n",
2851 zone
->name
, zone
->present_pages
, batch
);
2854 __meminit
int init_currently_empty_zone(struct zone
*zone
,
2855 unsigned long zone_start_pfn
,
2857 enum memmap_context context
)
2859 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
2861 ret
= zone_wait_table_init(zone
, size
);
2864 pgdat
->nr_zones
= zone_idx(zone
) + 1;
2866 zone
->zone_start_pfn
= zone_start_pfn
;
2868 zone_init_free_lists(zone
);
2873 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2875 * Basic iterator support. Return the first range of PFNs for a node
2876 * Note: nid == MAX_NUMNODES returns first region regardless of node
2878 static int __meminit
first_active_region_index_in_nid(int nid
)
2882 for (i
= 0; i
< nr_nodemap_entries
; i
++)
2883 if (nid
== MAX_NUMNODES
|| early_node_map
[i
].nid
== nid
)
2890 * Basic iterator support. Return the next active range of PFNs for a node
2891 * Note: nid == MAX_NUMNODES returns next region regardless of node
2893 static int __meminit
next_active_region_index_in_nid(int index
, int nid
)
2895 for (index
= index
+ 1; index
< nr_nodemap_entries
; index
++)
2896 if (nid
== MAX_NUMNODES
|| early_node_map
[index
].nid
== nid
)
2902 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
2904 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
2905 * Architectures may implement their own version but if add_active_range()
2906 * was used and there are no special requirements, this is a convenient
2909 int __meminit
early_pfn_to_nid(unsigned long pfn
)
2913 for (i
= 0; i
< nr_nodemap_entries
; i
++) {
2914 unsigned long start_pfn
= early_node_map
[i
].start_pfn
;
2915 unsigned long end_pfn
= early_node_map
[i
].end_pfn
;
2917 if (start_pfn
<= pfn
&& pfn
< end_pfn
)
2918 return early_node_map
[i
].nid
;
2923 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
2925 /* Basic iterator support to walk early_node_map[] */
2926 #define for_each_active_range_index_in_nid(i, nid) \
2927 for (i = first_active_region_index_in_nid(nid); i != -1; \
2928 i = next_active_region_index_in_nid(i, nid))
2931 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
2932 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
2933 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
2935 * If an architecture guarantees that all ranges registered with
2936 * add_active_ranges() contain no holes and may be freed, this
2937 * this function may be used instead of calling free_bootmem() manually.
2939 void __init
free_bootmem_with_active_regions(int nid
,
2940 unsigned long max_low_pfn
)
2944 for_each_active_range_index_in_nid(i
, nid
) {
2945 unsigned long size_pages
= 0;
2946 unsigned long end_pfn
= early_node_map
[i
].end_pfn
;
2948 if (early_node_map
[i
].start_pfn
>= max_low_pfn
)
2951 if (end_pfn
> max_low_pfn
)
2952 end_pfn
= max_low_pfn
;
2954 size_pages
= end_pfn
- early_node_map
[i
].start_pfn
;
2955 free_bootmem_node(NODE_DATA(early_node_map
[i
].nid
),
2956 PFN_PHYS(early_node_map
[i
].start_pfn
),
2957 size_pages
<< PAGE_SHIFT
);
2962 * sparse_memory_present_with_active_regions - Call memory_present for each active range
2963 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
2965 * If an architecture guarantees that all ranges registered with
2966 * add_active_ranges() contain no holes and may be freed, this
2967 * function may be used instead of calling memory_present() manually.
2969 void __init
sparse_memory_present_with_active_regions(int nid
)
2973 for_each_active_range_index_in_nid(i
, nid
)
2974 memory_present(early_node_map
[i
].nid
,
2975 early_node_map
[i
].start_pfn
,
2976 early_node_map
[i
].end_pfn
);
2980 * push_node_boundaries - Push node boundaries to at least the requested boundary
2981 * @nid: The nid of the node to push the boundary for
2982 * @start_pfn: The start pfn of the node
2983 * @end_pfn: The end pfn of the node
2985 * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
2986 * time. Specifically, on x86_64, SRAT will report ranges that can potentially
2987 * be hotplugged even though no physical memory exists. This function allows
2988 * an arch to push out the node boundaries so mem_map is allocated that can
2991 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
2992 void __init
push_node_boundaries(unsigned int nid
,
2993 unsigned long start_pfn
, unsigned long end_pfn
)
2995 printk(KERN_DEBUG
"Entering push_node_boundaries(%u, %lu, %lu)\n",
2996 nid
, start_pfn
, end_pfn
);
2998 /* Initialise the boundary for this node if necessary */
2999 if (node_boundary_end_pfn
[nid
] == 0)
3000 node_boundary_start_pfn
[nid
] = -1UL;
3002 /* Update the boundaries */
3003 if (node_boundary_start_pfn
[nid
] > start_pfn
)
3004 node_boundary_start_pfn
[nid
] = start_pfn
;
3005 if (node_boundary_end_pfn
[nid
] < end_pfn
)
3006 node_boundary_end_pfn
[nid
] = end_pfn
;
3009 /* If necessary, push the node boundary out for reserve hotadd */
3010 static void __meminit
account_node_boundary(unsigned int nid
,
3011 unsigned long *start_pfn
, unsigned long *end_pfn
)
3013 printk(KERN_DEBUG
"Entering account_node_boundary(%u, %lu, %lu)\n",
3014 nid
, *start_pfn
, *end_pfn
);
3016 /* Return if boundary information has not been provided */
3017 if (node_boundary_end_pfn
[nid
] == 0)
3020 /* Check the boundaries and update if necessary */
3021 if (node_boundary_start_pfn
[nid
] < *start_pfn
)
3022 *start_pfn
= node_boundary_start_pfn
[nid
];
3023 if (node_boundary_end_pfn
[nid
] > *end_pfn
)
3024 *end_pfn
= node_boundary_end_pfn
[nid
];
3027 void __init
push_node_boundaries(unsigned int nid
,
3028 unsigned long start_pfn
, unsigned long end_pfn
) {}
3030 static void __meminit
account_node_boundary(unsigned int nid
,
3031 unsigned long *start_pfn
, unsigned long *end_pfn
) {}
3036 * get_pfn_range_for_nid - Return the start and end page frames for a node
3037 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3038 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3039 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3041 * It returns the start and end page frame of a node based on information
3042 * provided by an arch calling add_active_range(). If called for a node
3043 * with no available memory, a warning is printed and the start and end
3046 void __meminit
get_pfn_range_for_nid(unsigned int nid
,
3047 unsigned long *start_pfn
, unsigned long *end_pfn
)
3053 for_each_active_range_index_in_nid(i
, nid
) {
3054 *start_pfn
= min(*start_pfn
, early_node_map
[i
].start_pfn
);
3055 *end_pfn
= max(*end_pfn
, early_node_map
[i
].end_pfn
);
3058 if (*start_pfn
== -1UL)
3061 /* Push the node boundaries out if requested */
3062 account_node_boundary(nid
, start_pfn
, end_pfn
);
3066 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3067 * assumption is made that zones within a node are ordered in monotonic
3068 * increasing memory addresses so that the "highest" populated zone is used
3070 void __init
find_usable_zone_for_movable(void)
3073 for (zone_index
= MAX_NR_ZONES
- 1; zone_index
>= 0; zone_index
--) {
3074 if (zone_index
== ZONE_MOVABLE
)
3077 if (arch_zone_highest_possible_pfn
[zone_index
] >
3078 arch_zone_lowest_possible_pfn
[zone_index
])
3082 VM_BUG_ON(zone_index
== -1);
3083 movable_zone
= zone_index
;
3087 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3088 * because it is sized independant of architecture. Unlike the other zones,
3089 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3090 * in each node depending on the size of each node and how evenly kernelcore
3091 * is distributed. This helper function adjusts the zone ranges
3092 * provided by the architecture for a given node by using the end of the
3093 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3094 * zones within a node are in order of monotonic increases memory addresses
3096 void __meminit
adjust_zone_range_for_zone_movable(int nid
,
3097 unsigned long zone_type
,
3098 unsigned long node_start_pfn
,
3099 unsigned long node_end_pfn
,
3100 unsigned long *zone_start_pfn
,
3101 unsigned long *zone_end_pfn
)
3103 /* Only adjust if ZONE_MOVABLE is on this node */
3104 if (zone_movable_pfn
[nid
]) {
3105 /* Size ZONE_MOVABLE */
3106 if (zone_type
== ZONE_MOVABLE
) {
3107 *zone_start_pfn
= zone_movable_pfn
[nid
];
3108 *zone_end_pfn
= min(node_end_pfn
,
3109 arch_zone_highest_possible_pfn
[movable_zone
]);
3111 /* Adjust for ZONE_MOVABLE starting within this range */
3112 } else if (*zone_start_pfn
< zone_movable_pfn
[nid
] &&
3113 *zone_end_pfn
> zone_movable_pfn
[nid
]) {
3114 *zone_end_pfn
= zone_movable_pfn
[nid
];
3116 /* Check if this whole range is within ZONE_MOVABLE */
3117 } else if (*zone_start_pfn
>= zone_movable_pfn
[nid
])
3118 *zone_start_pfn
= *zone_end_pfn
;
3123 * Return the number of pages a zone spans in a node, including holes
3124 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3126 static unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
3127 unsigned long zone_type
,
3128 unsigned long *ignored
)
3130 unsigned long node_start_pfn
, node_end_pfn
;
3131 unsigned long zone_start_pfn
, zone_end_pfn
;
3133 /* Get the start and end of the node and zone */
3134 get_pfn_range_for_nid(nid
, &node_start_pfn
, &node_end_pfn
);
3135 zone_start_pfn
= arch_zone_lowest_possible_pfn
[zone_type
];
3136 zone_end_pfn
= arch_zone_highest_possible_pfn
[zone_type
];
3137 adjust_zone_range_for_zone_movable(nid
, zone_type
,
3138 node_start_pfn
, node_end_pfn
,
3139 &zone_start_pfn
, &zone_end_pfn
);
3141 /* Check that this node has pages within the zone's required range */
3142 if (zone_end_pfn
< node_start_pfn
|| zone_start_pfn
> node_end_pfn
)
3145 /* Move the zone boundaries inside the node if necessary */
3146 zone_end_pfn
= min(zone_end_pfn
, node_end_pfn
);
3147 zone_start_pfn
= max(zone_start_pfn
, node_start_pfn
);
3149 /* Return the spanned pages */
3150 return zone_end_pfn
- zone_start_pfn
;
3154 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3155 * then all holes in the requested range will be accounted for.
3157 unsigned long __meminit
__absent_pages_in_range(int nid
,
3158 unsigned long range_start_pfn
,
3159 unsigned long range_end_pfn
)
3162 unsigned long prev_end_pfn
= 0, hole_pages
= 0;
3163 unsigned long start_pfn
;
3165 /* Find the end_pfn of the first active range of pfns in the node */
3166 i
= first_active_region_index_in_nid(nid
);
3170 prev_end_pfn
= min(early_node_map
[i
].start_pfn
, range_end_pfn
);
3172 /* Account for ranges before physical memory on this node */
3173 if (early_node_map
[i
].start_pfn
> range_start_pfn
)
3174 hole_pages
= prev_end_pfn
- range_start_pfn
;
3176 /* Find all holes for the zone within the node */
3177 for (; i
!= -1; i
= next_active_region_index_in_nid(i
, nid
)) {
3179 /* No need to continue if prev_end_pfn is outside the zone */
3180 if (prev_end_pfn
>= range_end_pfn
)
3183 /* Make sure the end of the zone is not within the hole */
3184 start_pfn
= min(early_node_map
[i
].start_pfn
, range_end_pfn
);
3185 prev_end_pfn
= max(prev_end_pfn
, range_start_pfn
);
3187 /* Update the hole size cound and move on */
3188 if (start_pfn
> range_start_pfn
) {
3189 BUG_ON(prev_end_pfn
> start_pfn
);
3190 hole_pages
+= start_pfn
- prev_end_pfn
;
3192 prev_end_pfn
= early_node_map
[i
].end_pfn
;
3195 /* Account for ranges past physical memory on this node */
3196 if (range_end_pfn
> prev_end_pfn
)
3197 hole_pages
+= range_end_pfn
-
3198 max(range_start_pfn
, prev_end_pfn
);
3204 * absent_pages_in_range - Return number of page frames in holes within a range
3205 * @start_pfn: The start PFN to start searching for holes
3206 * @end_pfn: The end PFN to stop searching for holes
3208 * It returns the number of pages frames in memory holes within a range.
3210 unsigned long __init
absent_pages_in_range(unsigned long start_pfn
,
3211 unsigned long end_pfn
)
3213 return __absent_pages_in_range(MAX_NUMNODES
, start_pfn
, end_pfn
);
3216 /* Return the number of page frames in holes in a zone on a node */
3217 static unsigned long __meminit
zone_absent_pages_in_node(int nid
,
3218 unsigned long zone_type
,
3219 unsigned long *ignored
)
3221 unsigned long node_start_pfn
, node_end_pfn
;
3222 unsigned long zone_start_pfn
, zone_end_pfn
;
3224 get_pfn_range_for_nid(nid
, &node_start_pfn
, &node_end_pfn
);
3225 zone_start_pfn
= max(arch_zone_lowest_possible_pfn
[zone_type
],
3227 zone_end_pfn
= min(arch_zone_highest_possible_pfn
[zone_type
],
3230 adjust_zone_range_for_zone_movable(nid
, zone_type
,
3231 node_start_pfn
, node_end_pfn
,
3232 &zone_start_pfn
, &zone_end_pfn
);
3233 return __absent_pages_in_range(nid
, zone_start_pfn
, zone_end_pfn
);
3237 static inline unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
3238 unsigned long zone_type
,
3239 unsigned long *zones_size
)
3241 return zones_size
[zone_type
];
3244 static inline unsigned long __meminit
zone_absent_pages_in_node(int nid
,
3245 unsigned long zone_type
,
3246 unsigned long *zholes_size
)
3251 return zholes_size
[zone_type
];
3256 static void __meminit
calculate_node_totalpages(struct pglist_data
*pgdat
,
3257 unsigned long *zones_size
, unsigned long *zholes_size
)
3259 unsigned long realtotalpages
, totalpages
= 0;
3262 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
3263 totalpages
+= zone_spanned_pages_in_node(pgdat
->node_id
, i
,
3265 pgdat
->node_spanned_pages
= totalpages
;
3267 realtotalpages
= totalpages
;
3268 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
3270 zone_absent_pages_in_node(pgdat
->node_id
, i
,
3272 pgdat
->node_present_pages
= realtotalpages
;
3273 printk(KERN_DEBUG
"On node %d totalpages: %lu\n", pgdat
->node_id
,
3277 #ifndef CONFIG_SPARSEMEM
3279 * Calculate the size of the zone->blockflags rounded to an unsigned long
3280 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3281 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
3282 * round what is now in bits to nearest long in bits, then return it in
3285 static unsigned long __init
usemap_size(unsigned long zonesize
)
3287 unsigned long usemapsize
;
3289 usemapsize
= roundup(zonesize
, pageblock_nr_pages
);
3290 usemapsize
= usemapsize
>> pageblock_order
;
3291 usemapsize
*= NR_PAGEBLOCK_BITS
;
3292 usemapsize
= roundup(usemapsize
, 8 * sizeof(unsigned long));
3294 return usemapsize
/ 8;
3297 static void __init
setup_usemap(struct pglist_data
*pgdat
,
3298 struct zone
*zone
, unsigned long zonesize
)
3300 unsigned long usemapsize
= usemap_size(zonesize
);
3301 zone
->pageblock_flags
= NULL
;
3303 zone
->pageblock_flags
= alloc_bootmem_node(pgdat
, usemapsize
);
3304 memset(zone
->pageblock_flags
, 0, usemapsize
);
3308 static void inline setup_usemap(struct pglist_data
*pgdat
,
3309 struct zone
*zone
, unsigned long zonesize
) {}
3310 #endif /* CONFIG_SPARSEMEM */
3312 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
3314 /* Return a sensible default order for the pageblock size. */
3315 static inline int pageblock_default_order(void)
3317 if (HPAGE_SHIFT
> PAGE_SHIFT
)
3318 return HUGETLB_PAGE_ORDER
;
3323 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3324 static inline void __init
set_pageblock_order(unsigned int order
)
3326 /* Check that pageblock_nr_pages has not already been setup */
3327 if (pageblock_order
)
3331 * Assume the largest contiguous order of interest is a huge page.
3332 * This value may be variable depending on boot parameters on IA64
3334 pageblock_order
= order
;
3336 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3339 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
3340 * and pageblock_default_order() are unused as pageblock_order is set
3341 * at compile-time. See include/linux/pageblock-flags.h for the values of
3342 * pageblock_order based on the kernel config
3344 static inline int pageblock_default_order(unsigned int order
)
3348 #define set_pageblock_order(x) do {} while (0)
3350 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3353 * Set up the zone data structures:
3354 * - mark all pages reserved
3355 * - mark all memory queues empty
3356 * - clear the memory bitmaps
3358 static void __paginginit
free_area_init_core(struct pglist_data
*pgdat
,
3359 unsigned long *zones_size
, unsigned long *zholes_size
)
3362 int nid
= pgdat
->node_id
;
3363 unsigned long zone_start_pfn
= pgdat
->node_start_pfn
;
3366 pgdat_resize_init(pgdat
);
3367 pgdat
->nr_zones
= 0;
3368 init_waitqueue_head(&pgdat
->kswapd_wait
);
3369 pgdat
->kswapd_max_order
= 0;
3371 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
3372 struct zone
*zone
= pgdat
->node_zones
+ j
;
3373 unsigned long size
, realsize
, memmap_pages
;
3375 size
= zone_spanned_pages_in_node(nid
, j
, zones_size
);
3376 realsize
= size
- zone_absent_pages_in_node(nid
, j
,
3380 * Adjust realsize so that it accounts for how much memory
3381 * is used by this zone for memmap. This affects the watermark
3382 * and per-cpu initialisations
3385 PAGE_ALIGN(size
* sizeof(struct page
)) >> PAGE_SHIFT
;
3386 if (realsize
>= memmap_pages
) {
3387 realsize
-= memmap_pages
;
3389 " %s zone: %lu pages used for memmap\n",
3390 zone_names
[j
], memmap_pages
);
3393 " %s zone: %lu pages exceeds realsize %lu\n",
3394 zone_names
[j
], memmap_pages
, realsize
);
3396 /* Account for reserved pages */
3397 if (j
== 0 && realsize
> dma_reserve
) {
3398 realsize
-= dma_reserve
;
3399 printk(KERN_DEBUG
" %s zone: %lu pages reserved\n",
3400 zone_names
[0], dma_reserve
);
3403 if (!is_highmem_idx(j
))
3404 nr_kernel_pages
+= realsize
;
3405 nr_all_pages
+= realsize
;
3407 zone
->spanned_pages
= size
;
3408 zone
->present_pages
= realsize
;
3411 zone
->min_unmapped_pages
= (realsize
*sysctl_min_unmapped_ratio
)
3413 zone
->min_slab_pages
= (realsize
* sysctl_min_slab_ratio
) / 100;
3415 zone
->name
= zone_names
[j
];
3416 spin_lock_init(&zone
->lock
);
3417 spin_lock_init(&zone
->lru_lock
);
3418 zone_seqlock_init(zone
);
3419 zone
->zone_pgdat
= pgdat
;
3421 zone
->prev_priority
= DEF_PRIORITY
;
3423 zone_pcp_init(zone
);
3424 INIT_LIST_HEAD(&zone
->active_list
);
3425 INIT_LIST_HEAD(&zone
->inactive_list
);
3426 zone
->nr_scan_active
= 0;
3427 zone
->nr_scan_inactive
= 0;
3428 zap_zone_vm_stats(zone
);
3433 set_pageblock_order(pageblock_default_order());
3434 setup_usemap(pgdat
, zone
, size
);
3435 ret
= init_currently_empty_zone(zone
, zone_start_pfn
,
3436 size
, MEMMAP_EARLY
);
3438 memmap_init(size
, nid
, j
, zone_start_pfn
);
3439 zone_start_pfn
+= size
;
3443 static void __init_refok
alloc_node_mem_map(struct pglist_data
*pgdat
)
3445 /* Skip empty nodes */
3446 if (!pgdat
->node_spanned_pages
)
3449 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3450 /* ia64 gets its own node_mem_map, before this, without bootmem */
3451 if (!pgdat
->node_mem_map
) {
3452 unsigned long size
, start
, end
;
3456 * The zone's endpoints aren't required to be MAX_ORDER
3457 * aligned but the node_mem_map endpoints must be in order
3458 * for the buddy allocator to function correctly.
3460 start
= pgdat
->node_start_pfn
& ~(MAX_ORDER_NR_PAGES
- 1);
3461 end
= pgdat
->node_start_pfn
+ pgdat
->node_spanned_pages
;
3462 end
= ALIGN(end
, MAX_ORDER_NR_PAGES
);
3463 size
= (end
- start
) * sizeof(struct page
);
3464 map
= alloc_remap(pgdat
->node_id
, size
);
3466 map
= alloc_bootmem_node(pgdat
, size
);
3467 pgdat
->node_mem_map
= map
+ (pgdat
->node_start_pfn
- start
);
3469 #ifndef CONFIG_NEED_MULTIPLE_NODES
3471 * With no DISCONTIG, the global mem_map is just set as node 0's
3473 if (pgdat
== NODE_DATA(0)) {
3474 mem_map
= NODE_DATA(0)->node_mem_map
;
3475 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3476 if (page_to_pfn(mem_map
) != pgdat
->node_start_pfn
)
3477 mem_map
-= (pgdat
->node_start_pfn
- ARCH_PFN_OFFSET
);
3478 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3481 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
3484 void __paginginit
free_area_init_node(int nid
, struct pglist_data
*pgdat
,
3485 unsigned long *zones_size
, unsigned long node_start_pfn
,
3486 unsigned long *zholes_size
)
3488 pgdat
->node_id
= nid
;
3489 pgdat
->node_start_pfn
= node_start_pfn
;
3490 calculate_node_totalpages(pgdat
, zones_size
, zholes_size
);
3492 alloc_node_mem_map(pgdat
);
3494 free_area_init_core(pgdat
, zones_size
, zholes_size
);
3497 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3499 #if MAX_NUMNODES > 1
3501 * Figure out the number of possible node ids.
3503 static void __init
setup_nr_node_ids(void)
3506 unsigned int highest
= 0;
3508 for_each_node_mask(node
, node_possible_map
)
3510 nr_node_ids
= highest
+ 1;
3513 static inline void setup_nr_node_ids(void)
3519 * add_active_range - Register a range of PFNs backed by physical memory
3520 * @nid: The node ID the range resides on
3521 * @start_pfn: The start PFN of the available physical memory
3522 * @end_pfn: The end PFN of the available physical memory
3524 * These ranges are stored in an early_node_map[] and later used by
3525 * free_area_init_nodes() to calculate zone sizes and holes. If the
3526 * range spans a memory hole, it is up to the architecture to ensure
3527 * the memory is not freed by the bootmem allocator. If possible
3528 * the range being registered will be merged with existing ranges.
3530 void __init
add_active_range(unsigned int nid
, unsigned long start_pfn
,
3531 unsigned long end_pfn
)
3535 printk(KERN_DEBUG
"Entering add_active_range(%d, %lu, %lu) "
3536 "%d entries of %d used\n",
3537 nid
, start_pfn
, end_pfn
,
3538 nr_nodemap_entries
, MAX_ACTIVE_REGIONS
);
3540 /* Merge with existing active regions if possible */
3541 for (i
= 0; i
< nr_nodemap_entries
; i
++) {
3542 if (early_node_map
[i
].nid
!= nid
)
3545 /* Skip if an existing region covers this new one */
3546 if (start_pfn
>= early_node_map
[i
].start_pfn
&&
3547 end_pfn
<= early_node_map
[i
].end_pfn
)
3550 /* Merge forward if suitable */
3551 if (start_pfn
<= early_node_map
[i
].end_pfn
&&
3552 end_pfn
> early_node_map
[i
].end_pfn
) {
3553 early_node_map
[i
].end_pfn
= end_pfn
;
3557 /* Merge backward if suitable */
3558 if (start_pfn
< early_node_map
[i
].end_pfn
&&
3559 end_pfn
>= early_node_map
[i
].start_pfn
) {
3560 early_node_map
[i
].start_pfn
= start_pfn
;
3565 /* Check that early_node_map is large enough */
3566 if (i
>= MAX_ACTIVE_REGIONS
) {
3567 printk(KERN_CRIT
"More than %d memory regions, truncating\n",
3568 MAX_ACTIVE_REGIONS
);
3572 early_node_map
[i
].nid
= nid
;
3573 early_node_map
[i
].start_pfn
= start_pfn
;
3574 early_node_map
[i
].end_pfn
= end_pfn
;
3575 nr_nodemap_entries
= i
+ 1;
3579 * shrink_active_range - Shrink an existing registered range of PFNs
3580 * @nid: The node id the range is on that should be shrunk
3581 * @old_end_pfn: The old end PFN of the range
3582 * @new_end_pfn: The new PFN of the range
3584 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
3585 * The map is kept at the end physical page range that has already been
3586 * registered with add_active_range(). This function allows an arch to shrink
3587 * an existing registered range.
3589 void __init
shrink_active_range(unsigned int nid
, unsigned long old_end_pfn
,
3590 unsigned long new_end_pfn
)
3594 /* Find the old active region end and shrink */
3595 for_each_active_range_index_in_nid(i
, nid
)
3596 if (early_node_map
[i
].end_pfn
== old_end_pfn
) {
3597 early_node_map
[i
].end_pfn
= new_end_pfn
;
3603 * remove_all_active_ranges - Remove all currently registered regions
3605 * During discovery, it may be found that a table like SRAT is invalid
3606 * and an alternative discovery method must be used. This function removes
3607 * all currently registered regions.
3609 void __init
remove_all_active_ranges(void)
3611 memset(early_node_map
, 0, sizeof(early_node_map
));
3612 nr_nodemap_entries
= 0;
3613 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
3614 memset(node_boundary_start_pfn
, 0, sizeof(node_boundary_start_pfn
));
3615 memset(node_boundary_end_pfn
, 0, sizeof(node_boundary_end_pfn
));
3616 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
3619 /* Compare two active node_active_regions */
3620 static int __init
cmp_node_active_region(const void *a
, const void *b
)
3622 struct node_active_region
*arange
= (struct node_active_region
*)a
;
3623 struct node_active_region
*brange
= (struct node_active_region
*)b
;
3625 /* Done this way to avoid overflows */
3626 if (arange
->start_pfn
> brange
->start_pfn
)
3628 if (arange
->start_pfn
< brange
->start_pfn
)
3634 /* sort the node_map by start_pfn */
3635 static void __init
sort_node_map(void)
3637 sort(early_node_map
, (size_t)nr_nodemap_entries
,
3638 sizeof(struct node_active_region
),
3639 cmp_node_active_region
, NULL
);
3642 /* Find the lowest pfn for a node */
3643 unsigned long __init
find_min_pfn_for_node(unsigned long nid
)
3646 unsigned long min_pfn
= ULONG_MAX
;
3648 /* Assuming a sorted map, the first range found has the starting pfn */
3649 for_each_active_range_index_in_nid(i
, nid
)
3650 min_pfn
= min(min_pfn
, early_node_map
[i
].start_pfn
);
3652 if (min_pfn
== ULONG_MAX
) {
3654 "Could not find start_pfn for node %lu\n", nid
);
3662 * find_min_pfn_with_active_regions - Find the minimum PFN registered
3664 * It returns the minimum PFN based on information provided via
3665 * add_active_range().
3667 unsigned long __init
find_min_pfn_with_active_regions(void)
3669 return find_min_pfn_for_node(MAX_NUMNODES
);
3673 * find_max_pfn_with_active_regions - Find the maximum PFN registered
3675 * It returns the maximum PFN based on information provided via
3676 * add_active_range().
3678 unsigned long __init
find_max_pfn_with_active_regions(void)
3681 unsigned long max_pfn
= 0;
3683 for (i
= 0; i
< nr_nodemap_entries
; i
++)
3684 max_pfn
= max(max_pfn
, early_node_map
[i
].end_pfn
);
3690 * early_calculate_totalpages()
3691 * Sum pages in active regions for movable zone.
3692 * Populate N_HIGH_MEMORY for calculating usable_nodes.
3694 static unsigned long __init
early_calculate_totalpages(void)
3697 unsigned long totalpages
= 0;
3699 for (i
= 0; i
< nr_nodemap_entries
; i
++) {
3700 unsigned long pages
= early_node_map
[i
].end_pfn
-
3701 early_node_map
[i
].start_pfn
;
3702 totalpages
+= pages
;
3704 node_set_state(early_node_map
[i
].nid
, N_HIGH_MEMORY
);
3710 * Find the PFN the Movable zone begins in each node. Kernel memory
3711 * is spread evenly between nodes as long as the nodes have enough
3712 * memory. When they don't, some nodes will have more kernelcore than
3715 void __init
find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn
)
3718 unsigned long usable_startpfn
;
3719 unsigned long kernelcore_node
, kernelcore_remaining
;
3720 unsigned long totalpages
= early_calculate_totalpages();
3721 int usable_nodes
= nodes_weight(node_states
[N_HIGH_MEMORY
]);
3724 * If movablecore was specified, calculate what size of
3725 * kernelcore that corresponds so that memory usable for
3726 * any allocation type is evenly spread. If both kernelcore
3727 * and movablecore are specified, then the value of kernelcore
3728 * will be used for required_kernelcore if it's greater than
3729 * what movablecore would have allowed.
3731 if (required_movablecore
) {
3732 unsigned long corepages
;
3735 * Round-up so that ZONE_MOVABLE is at least as large as what
3736 * was requested by the user
3738 required_movablecore
=
3739 roundup(required_movablecore
, MAX_ORDER_NR_PAGES
);
3740 corepages
= totalpages
- required_movablecore
;
3742 required_kernelcore
= max(required_kernelcore
, corepages
);
3745 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
3746 if (!required_kernelcore
)
3749 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
3750 find_usable_zone_for_movable();
3751 usable_startpfn
= arch_zone_lowest_possible_pfn
[movable_zone
];
3754 /* Spread kernelcore memory as evenly as possible throughout nodes */
3755 kernelcore_node
= required_kernelcore
/ usable_nodes
;
3756 for_each_node_state(nid
, N_HIGH_MEMORY
) {
3758 * Recalculate kernelcore_node if the division per node
3759 * now exceeds what is necessary to satisfy the requested
3760 * amount of memory for the kernel
3762 if (required_kernelcore
< kernelcore_node
)
3763 kernelcore_node
= required_kernelcore
/ usable_nodes
;
3766 * As the map is walked, we track how much memory is usable
3767 * by the kernel using kernelcore_remaining. When it is
3768 * 0, the rest of the node is usable by ZONE_MOVABLE
3770 kernelcore_remaining
= kernelcore_node
;
3772 /* Go through each range of PFNs within this node */
3773 for_each_active_range_index_in_nid(i
, nid
) {
3774 unsigned long start_pfn
, end_pfn
;
3775 unsigned long size_pages
;
3777 start_pfn
= max(early_node_map
[i
].start_pfn
,
3778 zone_movable_pfn
[nid
]);
3779 end_pfn
= early_node_map
[i
].end_pfn
;
3780 if (start_pfn
>= end_pfn
)
3783 /* Account for what is only usable for kernelcore */
3784 if (start_pfn
< usable_startpfn
) {
3785 unsigned long kernel_pages
;
3786 kernel_pages
= min(end_pfn
, usable_startpfn
)
3789 kernelcore_remaining
-= min(kernel_pages
,
3790 kernelcore_remaining
);
3791 required_kernelcore
-= min(kernel_pages
,
3792 required_kernelcore
);
3794 /* Continue if range is now fully accounted */
3795 if (end_pfn
<= usable_startpfn
) {
3798 * Push zone_movable_pfn to the end so
3799 * that if we have to rebalance
3800 * kernelcore across nodes, we will
3801 * not double account here
3803 zone_movable_pfn
[nid
] = end_pfn
;
3806 start_pfn
= usable_startpfn
;
3810 * The usable PFN range for ZONE_MOVABLE is from
3811 * start_pfn->end_pfn. Calculate size_pages as the
3812 * number of pages used as kernelcore
3814 size_pages
= end_pfn
- start_pfn
;
3815 if (size_pages
> kernelcore_remaining
)
3816 size_pages
= kernelcore_remaining
;
3817 zone_movable_pfn
[nid
] = start_pfn
+ size_pages
;
3820 * Some kernelcore has been met, update counts and
3821 * break if the kernelcore for this node has been
3824 required_kernelcore
-= min(required_kernelcore
,
3826 kernelcore_remaining
-= size_pages
;
3827 if (!kernelcore_remaining
)
3833 * If there is still required_kernelcore, we do another pass with one
3834 * less node in the count. This will push zone_movable_pfn[nid] further
3835 * along on the nodes that still have memory until kernelcore is
3839 if (usable_nodes
&& required_kernelcore
> usable_nodes
)
3842 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
3843 for (nid
= 0; nid
< MAX_NUMNODES
; nid
++)
3844 zone_movable_pfn
[nid
] =
3845 roundup(zone_movable_pfn
[nid
], MAX_ORDER_NR_PAGES
);
3848 /* Any regular memory on that node ? */
3849 static void check_for_regular_memory(pg_data_t
*pgdat
)
3851 #ifdef CONFIG_HIGHMEM
3852 enum zone_type zone_type
;
3854 for (zone_type
= 0; zone_type
<= ZONE_NORMAL
; zone_type
++) {
3855 struct zone
*zone
= &pgdat
->node_zones
[zone_type
];
3856 if (zone
->present_pages
)
3857 node_set_state(zone_to_nid(zone
), N_NORMAL_MEMORY
);
3863 * free_area_init_nodes - Initialise all pg_data_t and zone data
3864 * @max_zone_pfn: an array of max PFNs for each zone
3866 * This will call free_area_init_node() for each active node in the system.
3867 * Using the page ranges provided by add_active_range(), the size of each
3868 * zone in each node and their holes is calculated. If the maximum PFN
3869 * between two adjacent zones match, it is assumed that the zone is empty.
3870 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
3871 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
3872 * starts where the previous one ended. For example, ZONE_DMA32 starts
3873 * at arch_max_dma_pfn.
3875 void __init
free_area_init_nodes(unsigned long *max_zone_pfn
)
3880 /* Sort early_node_map as initialisation assumes it is sorted */
3883 /* Record where the zone boundaries are */
3884 memset(arch_zone_lowest_possible_pfn
, 0,
3885 sizeof(arch_zone_lowest_possible_pfn
));
3886 memset(arch_zone_highest_possible_pfn
, 0,
3887 sizeof(arch_zone_highest_possible_pfn
));
3888 arch_zone_lowest_possible_pfn
[0] = find_min_pfn_with_active_regions();
3889 arch_zone_highest_possible_pfn
[0] = max_zone_pfn
[0];
3890 for (i
= 1; i
< MAX_NR_ZONES
; i
++) {
3891 if (i
== ZONE_MOVABLE
)
3893 arch_zone_lowest_possible_pfn
[i
] =
3894 arch_zone_highest_possible_pfn
[i
-1];
3895 arch_zone_highest_possible_pfn
[i
] =
3896 max(max_zone_pfn
[i
], arch_zone_lowest_possible_pfn
[i
]);
3898 arch_zone_lowest_possible_pfn
[ZONE_MOVABLE
] = 0;
3899 arch_zone_highest_possible_pfn
[ZONE_MOVABLE
] = 0;
3901 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
3902 memset(zone_movable_pfn
, 0, sizeof(zone_movable_pfn
));
3903 find_zone_movable_pfns_for_nodes(zone_movable_pfn
);
3905 /* Print out the zone ranges */
3906 printk("Zone PFN ranges:\n");
3907 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
3908 if (i
== ZONE_MOVABLE
)
3910 printk(" %-8s %8lu -> %8lu\n",
3912 arch_zone_lowest_possible_pfn
[i
],
3913 arch_zone_highest_possible_pfn
[i
]);
3916 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
3917 printk("Movable zone start PFN for each node\n");
3918 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
3919 if (zone_movable_pfn
[i
])
3920 printk(" Node %d: %lu\n", i
, zone_movable_pfn
[i
]);
3923 /* Print out the early_node_map[] */
3924 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries
);
3925 for (i
= 0; i
< nr_nodemap_entries
; i
++)
3926 printk(" %3d: %8lu -> %8lu\n", early_node_map
[i
].nid
,
3927 early_node_map
[i
].start_pfn
,
3928 early_node_map
[i
].end_pfn
);
3930 /* Initialise every node */
3931 setup_nr_node_ids();
3932 for_each_online_node(nid
) {
3933 pg_data_t
*pgdat
= NODE_DATA(nid
);
3934 free_area_init_node(nid
, pgdat
, NULL
,
3935 find_min_pfn_for_node(nid
), NULL
);
3937 /* Any memory on that node */
3938 if (pgdat
->node_present_pages
)
3939 node_set_state(nid
, N_HIGH_MEMORY
);
3940 check_for_regular_memory(pgdat
);
3944 static int __init
cmdline_parse_core(char *p
, unsigned long *core
)
3946 unsigned long long coremem
;
3950 coremem
= memparse(p
, &p
);
3951 *core
= coremem
>> PAGE_SHIFT
;
3953 /* Paranoid check that UL is enough for the coremem value */
3954 WARN_ON((coremem
>> PAGE_SHIFT
) > ULONG_MAX
);
3960 * kernelcore=size sets the amount of memory for use for allocations that
3961 * cannot be reclaimed or migrated.
3963 static int __init
cmdline_parse_kernelcore(char *p
)
3965 return cmdline_parse_core(p
, &required_kernelcore
);
3969 * movablecore=size sets the amount of memory for use for allocations that
3970 * can be reclaimed or migrated.
3972 static int __init
cmdline_parse_movablecore(char *p
)
3974 return cmdline_parse_core(p
, &required_movablecore
);
3977 early_param("kernelcore", cmdline_parse_kernelcore
);
3978 early_param("movablecore", cmdline_parse_movablecore
);
3980 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3983 * set_dma_reserve - set the specified number of pages reserved in the first zone
3984 * @new_dma_reserve: The number of pages to mark reserved
3986 * The per-cpu batchsize and zone watermarks are determined by present_pages.
3987 * In the DMA zone, a significant percentage may be consumed by kernel image
3988 * and other unfreeable allocations which can skew the watermarks badly. This
3989 * function may optionally be used to account for unfreeable pages in the
3990 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
3991 * smaller per-cpu batchsize.
3993 void __init
set_dma_reserve(unsigned long new_dma_reserve
)
3995 dma_reserve
= new_dma_reserve
;
3998 #ifndef CONFIG_NEED_MULTIPLE_NODES
3999 static bootmem_data_t contig_bootmem_data
;
4000 struct pglist_data contig_page_data
= { .bdata
= &contig_bootmem_data
};
4002 EXPORT_SYMBOL(contig_page_data
);
4005 void __init
free_area_init(unsigned long *zones_size
)
4007 free_area_init_node(0, NODE_DATA(0), zones_size
,
4008 __pa(PAGE_OFFSET
) >> PAGE_SHIFT
, NULL
);
4011 static int page_alloc_cpu_notify(struct notifier_block
*self
,
4012 unsigned long action
, void *hcpu
)
4014 int cpu
= (unsigned long)hcpu
;
4016 if (action
== CPU_DEAD
|| action
== CPU_DEAD_FROZEN
) {
4020 * Spill the event counters of the dead processor
4021 * into the current processors event counters.
4022 * This artificially elevates the count of the current
4025 vm_events_fold_cpu(cpu
);
4028 * Zero the differential counters of the dead processor
4029 * so that the vm statistics are consistent.
4031 * This is only okay since the processor is dead and cannot
4032 * race with what we are doing.
4034 refresh_cpu_vm_stats(cpu
);
4039 void __init
page_alloc_init(void)
4041 hotcpu_notifier(page_alloc_cpu_notify
, 0);
4045 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4046 * or min_free_kbytes changes.
4048 static void calculate_totalreserve_pages(void)
4050 struct pglist_data
*pgdat
;
4051 unsigned long reserve_pages
= 0;
4052 enum zone_type i
, j
;
4054 for_each_online_pgdat(pgdat
) {
4055 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
4056 struct zone
*zone
= pgdat
->node_zones
+ i
;
4057 unsigned long max
= 0;
4059 /* Find valid and maximum lowmem_reserve in the zone */
4060 for (j
= i
; j
< MAX_NR_ZONES
; j
++) {
4061 if (zone
->lowmem_reserve
[j
] > max
)
4062 max
= zone
->lowmem_reserve
[j
];
4065 /* we treat pages_high as reserved pages. */
4066 max
+= zone
->pages_high
;
4068 if (max
> zone
->present_pages
)
4069 max
= zone
->present_pages
;
4070 reserve_pages
+= max
;
4073 totalreserve_pages
= reserve_pages
;
4077 * setup_per_zone_lowmem_reserve - called whenever
4078 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4079 * has a correct pages reserved value, so an adequate number of
4080 * pages are left in the zone after a successful __alloc_pages().
4082 static void setup_per_zone_lowmem_reserve(void)
4084 struct pglist_data
*pgdat
;
4085 enum zone_type j
, idx
;
4087 for_each_online_pgdat(pgdat
) {
4088 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
4089 struct zone
*zone
= pgdat
->node_zones
+ j
;
4090 unsigned long present_pages
= zone
->present_pages
;
4092 zone
->lowmem_reserve
[j
] = 0;
4096 struct zone
*lower_zone
;
4100 if (sysctl_lowmem_reserve_ratio
[idx
] < 1)
4101 sysctl_lowmem_reserve_ratio
[idx
] = 1;
4103 lower_zone
= pgdat
->node_zones
+ idx
;
4104 lower_zone
->lowmem_reserve
[j
] = present_pages
/
4105 sysctl_lowmem_reserve_ratio
[idx
];
4106 present_pages
+= lower_zone
->present_pages
;
4111 /* update totalreserve_pages */
4112 calculate_totalreserve_pages();
4116 * setup_per_zone_pages_min - called when min_free_kbytes changes.
4118 * Ensures that the pages_{min,low,high} values for each zone are set correctly
4119 * with respect to min_free_kbytes.
4121 void setup_per_zone_pages_min(void)
4123 unsigned long pages_min
= min_free_kbytes
>> (PAGE_SHIFT
- 10);
4124 unsigned long lowmem_pages
= 0;
4126 unsigned long flags
;
4128 /* Calculate total number of !ZONE_HIGHMEM pages */
4129 for_each_zone(zone
) {
4130 if (!is_highmem(zone
))
4131 lowmem_pages
+= zone
->present_pages
;
4134 for_each_zone(zone
) {
4137 spin_lock_irqsave(&zone
->lru_lock
, flags
);
4138 tmp
= (u64
)pages_min
* zone
->present_pages
;
4139 do_div(tmp
, lowmem_pages
);
4140 if (is_highmem(zone
)) {
4142 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4143 * need highmem pages, so cap pages_min to a small
4146 * The (pages_high-pages_low) and (pages_low-pages_min)
4147 * deltas controls asynch page reclaim, and so should
4148 * not be capped for highmem.
4152 min_pages
= zone
->present_pages
/ 1024;
4153 if (min_pages
< SWAP_CLUSTER_MAX
)
4154 min_pages
= SWAP_CLUSTER_MAX
;
4155 if (min_pages
> 128)
4157 zone
->pages_min
= min_pages
;
4160 * If it's a lowmem zone, reserve a number of pages
4161 * proportionate to the zone's size.
4163 zone
->pages_min
= tmp
;
4166 zone
->pages_low
= zone
->pages_min
+ (tmp
>> 2);
4167 zone
->pages_high
= zone
->pages_min
+ (tmp
>> 1);
4168 setup_zone_migrate_reserve(zone
);
4169 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
4172 /* update totalreserve_pages */
4173 calculate_totalreserve_pages();
4177 * Initialise min_free_kbytes.
4179 * For small machines we want it small (128k min). For large machines
4180 * we want it large (64MB max). But it is not linear, because network
4181 * bandwidth does not increase linearly with machine size. We use
4183 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4184 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
4200 static int __init
init_per_zone_pages_min(void)
4202 unsigned long lowmem_kbytes
;
4204 lowmem_kbytes
= nr_free_buffer_pages() * (PAGE_SIZE
>> 10);
4206 min_free_kbytes
= int_sqrt(lowmem_kbytes
* 16);
4207 if (min_free_kbytes
< 128)
4208 min_free_kbytes
= 128;
4209 if (min_free_kbytes
> 65536)
4210 min_free_kbytes
= 65536;
4211 setup_per_zone_pages_min();
4212 setup_per_zone_lowmem_reserve();
4215 module_init(init_per_zone_pages_min
)
4218 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4219 * that we can call two helper functions whenever min_free_kbytes
4222 int min_free_kbytes_sysctl_handler(ctl_table
*table
, int write
,
4223 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
4225 proc_dointvec(table
, write
, file
, buffer
, length
, ppos
);
4227 setup_per_zone_pages_min();
4232 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table
*table
, int write
,
4233 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
4238 rc
= proc_dointvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
4243 zone
->min_unmapped_pages
= (zone
->present_pages
*
4244 sysctl_min_unmapped_ratio
) / 100;
4248 int sysctl_min_slab_ratio_sysctl_handler(ctl_table
*table
, int write
,
4249 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
4254 rc
= proc_dointvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
4259 zone
->min_slab_pages
= (zone
->present_pages
*
4260 sysctl_min_slab_ratio
) / 100;
4266 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4267 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4268 * whenever sysctl_lowmem_reserve_ratio changes.
4270 * The reserve ratio obviously has absolutely no relation with the
4271 * pages_min watermarks. The lowmem reserve ratio can only make sense
4272 * if in function of the boot time zone sizes.
4274 int lowmem_reserve_ratio_sysctl_handler(ctl_table
*table
, int write
,
4275 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
4277 proc_dointvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
4278 setup_per_zone_lowmem_reserve();
4283 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4284 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
4285 * can have before it gets flushed back to buddy allocator.
4288 int percpu_pagelist_fraction_sysctl_handler(ctl_table
*table
, int write
,
4289 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
4295 ret
= proc_dointvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
4296 if (!write
|| (ret
== -EINVAL
))
4298 for_each_zone(zone
) {
4299 for_each_online_cpu(cpu
) {
4301 high
= zone
->present_pages
/ percpu_pagelist_fraction
;
4302 setup_pagelist_highmark(zone_pcp(zone
, cpu
), high
);
4308 int hashdist
= HASHDIST_DEFAULT
;
4311 static int __init
set_hashdist(char *str
)
4315 hashdist
= simple_strtoul(str
, &str
, 0);
4318 __setup("hashdist=", set_hashdist
);
4322 * allocate a large system hash table from bootmem
4323 * - it is assumed that the hash table must contain an exact power-of-2
4324 * quantity of entries
4325 * - limit is the number of hash buckets, not the total allocation size
4327 void *__init
alloc_large_system_hash(const char *tablename
,
4328 unsigned long bucketsize
,
4329 unsigned long numentries
,
4332 unsigned int *_hash_shift
,
4333 unsigned int *_hash_mask
,
4334 unsigned long limit
)
4336 unsigned long long max
= limit
;
4337 unsigned long log2qty
, size
;
4340 /* allow the kernel cmdline to have a say */
4342 /* round applicable memory size up to nearest megabyte */
4343 numentries
= nr_kernel_pages
;
4344 numentries
+= (1UL << (20 - PAGE_SHIFT
)) - 1;
4345 numentries
>>= 20 - PAGE_SHIFT
;
4346 numentries
<<= 20 - PAGE_SHIFT
;
4348 /* limit to 1 bucket per 2^scale bytes of low memory */
4349 if (scale
> PAGE_SHIFT
)
4350 numentries
>>= (scale
- PAGE_SHIFT
);
4352 numentries
<<= (PAGE_SHIFT
- scale
);
4354 /* Make sure we've got at least a 0-order allocation.. */
4355 if (unlikely((numentries
* bucketsize
) < PAGE_SIZE
))
4356 numentries
= PAGE_SIZE
/ bucketsize
;
4358 numentries
= roundup_pow_of_two(numentries
);
4360 /* limit allocation size to 1/16 total memory by default */
4362 max
= ((unsigned long long)nr_all_pages
<< PAGE_SHIFT
) >> 4;
4363 do_div(max
, bucketsize
);
4366 if (numentries
> max
)
4369 log2qty
= ilog2(numentries
);
4372 size
= bucketsize
<< log2qty
;
4373 if (flags
& HASH_EARLY
)
4374 table
= alloc_bootmem(size
);
4376 table
= __vmalloc(size
, GFP_ATOMIC
, PAGE_KERNEL
);
4378 unsigned long order
= get_order(size
);
4379 table
= (void*) __get_free_pages(GFP_ATOMIC
, order
);
4381 * If bucketsize is not a power-of-two, we may free
4382 * some pages at the end of hash table.
4385 unsigned long alloc_end
= (unsigned long)table
+
4386 (PAGE_SIZE
<< order
);
4387 unsigned long used
= (unsigned long)table
+
4389 split_page(virt_to_page(table
), order
);
4390 while (used
< alloc_end
) {
4396 } while (!table
&& size
> PAGE_SIZE
&& --log2qty
);
4399 panic("Failed to allocate %s hash table\n", tablename
);
4401 printk(KERN_INFO
"%s hash table entries: %d (order: %d, %lu bytes)\n",
4404 ilog2(size
) - PAGE_SHIFT
,
4408 *_hash_shift
= log2qty
;
4410 *_hash_mask
= (1 << log2qty
) - 1;
4415 #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
4416 struct page
*pfn_to_page(unsigned long pfn
)
4418 return __pfn_to_page(pfn
);
4420 unsigned long page_to_pfn(struct page
*page
)
4422 return __page_to_pfn(page
);
4424 EXPORT_SYMBOL(pfn_to_page
);
4425 EXPORT_SYMBOL(page_to_pfn
);
4426 #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */
4428 /* Return a pointer to the bitmap storing bits affecting a block of pages */
4429 static inline unsigned long *get_pageblock_bitmap(struct zone
*zone
,
4432 #ifdef CONFIG_SPARSEMEM
4433 return __pfn_to_section(pfn
)->pageblock_flags
;
4435 return zone
->pageblock_flags
;
4436 #endif /* CONFIG_SPARSEMEM */
4439 static inline int pfn_to_bitidx(struct zone
*zone
, unsigned long pfn
)
4441 #ifdef CONFIG_SPARSEMEM
4442 pfn
&= (PAGES_PER_SECTION
-1);
4443 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
4445 pfn
= pfn
- zone
->zone_start_pfn
;
4446 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
4447 #endif /* CONFIG_SPARSEMEM */
4451 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
4452 * @page: The page within the block of interest
4453 * @start_bitidx: The first bit of interest to retrieve
4454 * @end_bitidx: The last bit of interest
4455 * returns pageblock_bits flags
4457 unsigned long get_pageblock_flags_group(struct page
*page
,
4458 int start_bitidx
, int end_bitidx
)
4461 unsigned long *bitmap
;
4462 unsigned long pfn
, bitidx
;
4463 unsigned long flags
= 0;
4464 unsigned long value
= 1;
4466 zone
= page_zone(page
);
4467 pfn
= page_to_pfn(page
);
4468 bitmap
= get_pageblock_bitmap(zone
, pfn
);
4469 bitidx
= pfn_to_bitidx(zone
, pfn
);
4471 for (; start_bitidx
<= end_bitidx
; start_bitidx
++, value
<<= 1)
4472 if (test_bit(bitidx
+ start_bitidx
, bitmap
))
4479 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
4480 * @page: The page within the block of interest
4481 * @start_bitidx: The first bit of interest
4482 * @end_bitidx: The last bit of interest
4483 * @flags: The flags to set
4485 void set_pageblock_flags_group(struct page
*page
, unsigned long flags
,
4486 int start_bitidx
, int end_bitidx
)
4489 unsigned long *bitmap
;
4490 unsigned long pfn
, bitidx
;
4491 unsigned long value
= 1;
4493 zone
= page_zone(page
);
4494 pfn
= page_to_pfn(page
);
4495 bitmap
= get_pageblock_bitmap(zone
, pfn
);
4496 bitidx
= pfn_to_bitidx(zone
, pfn
);
4497 VM_BUG_ON(pfn
< zone
->zone_start_pfn
);
4498 VM_BUG_ON(pfn
>= zone
->zone_start_pfn
+ zone
->spanned_pages
);
4500 for (; start_bitidx
<= end_bitidx
; start_bitidx
++, value
<<= 1)
4502 __set_bit(bitidx
+ start_bitidx
, bitmap
);
4504 __clear_bit(bitidx
+ start_bitidx
, bitmap
);
4508 * This is designed as sub function...plz see page_isolation.c also.
4509 * set/clear page block's type to be ISOLATE.
4510 * page allocater never alloc memory from ISOLATE block.
4513 int set_migratetype_isolate(struct page
*page
)
4516 unsigned long flags
;
4519 zone
= page_zone(page
);
4520 spin_lock_irqsave(&zone
->lock
, flags
);
4522 * In future, more migrate types will be able to be isolation target.
4524 if (get_pageblock_migratetype(page
) != MIGRATE_MOVABLE
)
4526 set_pageblock_migratetype(page
, MIGRATE_ISOLATE
);
4527 move_freepages_block(zone
, page
, MIGRATE_ISOLATE
);
4530 spin_unlock_irqrestore(&zone
->lock
, flags
);
4536 void unset_migratetype_isolate(struct page
*page
)
4539 unsigned long flags
;
4540 zone
= page_zone(page
);
4541 spin_lock_irqsave(&zone
->lock
, flags
);
4542 if (get_pageblock_migratetype(page
) != MIGRATE_ISOLATE
)
4544 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
4545 move_freepages_block(zone
, page
, MIGRATE_MOVABLE
);
4547 spin_unlock_irqrestore(&zone
->lock
, flags
);
4550 #ifdef CONFIG_MEMORY_HOTREMOVE
4552 * All pages in the range must be isolated before calling this.
4555 __offline_isolated_pages(unsigned long start_pfn
, unsigned long end_pfn
)
4561 unsigned long flags
;
4562 /* find the first valid pfn */
4563 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++)
4568 zone
= page_zone(pfn_to_page(pfn
));
4569 spin_lock_irqsave(&zone
->lock
, flags
);
4571 while (pfn
< end_pfn
) {
4572 if (!pfn_valid(pfn
)) {
4576 page
= pfn_to_page(pfn
);
4577 BUG_ON(page_count(page
));
4578 BUG_ON(!PageBuddy(page
));
4579 order
= page_order(page
);
4580 #ifdef CONFIG_DEBUG_VM
4581 printk(KERN_INFO
"remove from free list %lx %d %lx\n",
4582 pfn
, 1 << order
, end_pfn
);
4584 list_del(&page
->lru
);
4585 rmv_page_order(page
);
4586 zone
->free_area
[order
].nr_free
--;
4587 __mod_zone_page_state(zone
, NR_FREE_PAGES
,
4589 for (i
= 0; i
< (1 << order
); i
++)
4590 SetPageReserved((page
+i
));
4591 pfn
+= (1 << order
);
4593 spin_unlock_irqrestore(&zone
->lock
, flags
);