e1000: ROUND_UP macro cleanup in drivers/net/e1000
[linux-2.6/sactl.git] / drivers / net / natsemi.c
bloba8d7ff2c96ac8381c7a79f737956d992cfda0f1a
1 /* natsemi.c: A Linux PCI Ethernet driver for the NatSemi DP8381x series. */
2 /*
3 Written/copyright 1999-2001 by Donald Becker.
4 Portions copyright (c) 2001,2002 Sun Microsystems (thockin@sun.com)
5 Portions copyright 2001,2002 Manfred Spraul (manfred@colorfullife.com)
6 Portions copyright 2004 Harald Welte <laforge@gnumonks.org>
8 This software may be used and distributed according to the terms of
9 the GNU General Public License (GPL), incorporated herein by reference.
10 Drivers based on or derived from this code fall under the GPL and must
11 retain the authorship, copyright and license notice. This file is not
12 a complete program and may only be used when the entire operating
13 system is licensed under the GPL. License for under other terms may be
14 available. Contact the original author for details.
16 The original author may be reached as becker@scyld.com, or at
17 Scyld Computing Corporation
18 410 Severn Ave., Suite 210
19 Annapolis MD 21403
21 Support information and updates available at
22 http://www.scyld.com/network/netsemi.html
23 [link no longer provides useful info -jgarzik]
26 TODO:
27 * big endian support with CFG:BEM instead of cpu_to_le32
30 #include <linux/module.h>
31 #include <linux/kernel.h>
32 #include <linux/string.h>
33 #include <linux/timer.h>
34 #include <linux/errno.h>
35 #include <linux/ioport.h>
36 #include <linux/slab.h>
37 #include <linux/interrupt.h>
38 #include <linux/pci.h>
39 #include <linux/netdevice.h>
40 #include <linux/etherdevice.h>
41 #include <linux/skbuff.h>
42 #include <linux/init.h>
43 #include <linux/spinlock.h>
44 #include <linux/ethtool.h>
45 #include <linux/delay.h>
46 #include <linux/rtnetlink.h>
47 #include <linux/mii.h>
48 #include <linux/crc32.h>
49 #include <linux/bitops.h>
50 #include <linux/prefetch.h>
51 #include <asm/processor.h> /* Processor type for cache alignment. */
52 #include <asm/io.h>
53 #include <asm/irq.h>
54 #include <asm/uaccess.h>
56 #define DRV_NAME "natsemi"
57 #define DRV_VERSION "2.1"
58 #define DRV_RELDATE "Sept 11, 2006"
60 #define RX_OFFSET 2
62 /* Updated to recommendations in pci-skeleton v2.03. */
64 /* The user-configurable values.
65 These may be modified when a driver module is loaded.*/
67 #define NATSEMI_DEF_MSG (NETIF_MSG_DRV | \
68 NETIF_MSG_LINK | \
69 NETIF_MSG_WOL | \
70 NETIF_MSG_RX_ERR | \
71 NETIF_MSG_TX_ERR)
72 static int debug = -1;
74 static int mtu;
76 /* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
77 This chip uses a 512 element hash table based on the Ethernet CRC. */
78 static const int multicast_filter_limit = 100;
80 /* Set the copy breakpoint for the copy-only-tiny-frames scheme.
81 Setting to > 1518 effectively disables this feature. */
82 static int rx_copybreak;
84 /* Used to pass the media type, etc.
85 Both 'options[]' and 'full_duplex[]' should exist for driver
86 interoperability.
87 The media type is usually passed in 'options[]'.
89 #define MAX_UNITS 8 /* More are supported, limit only on options */
90 static int options[MAX_UNITS];
91 static int full_duplex[MAX_UNITS];
93 /* Operational parameters that are set at compile time. */
95 /* Keep the ring sizes a power of two for compile efficiency.
96 The compiler will convert <unsigned>'%'<2^N> into a bit mask.
97 Making the Tx ring too large decreases the effectiveness of channel
98 bonding and packet priority.
99 There are no ill effects from too-large receive rings. */
100 #define TX_RING_SIZE 16
101 #define TX_QUEUE_LEN 10 /* Limit ring entries actually used, min 4. */
102 #define RX_RING_SIZE 32
104 /* Operational parameters that usually are not changed. */
105 /* Time in jiffies before concluding the transmitter is hung. */
106 #define TX_TIMEOUT (2*HZ)
108 #define NATSEMI_HW_TIMEOUT 400
109 #define NATSEMI_TIMER_FREQ 3*HZ
110 #define NATSEMI_PG0_NREGS 64
111 #define NATSEMI_RFDR_NREGS 8
112 #define NATSEMI_PG1_NREGS 4
113 #define NATSEMI_NREGS (NATSEMI_PG0_NREGS + NATSEMI_RFDR_NREGS + \
114 NATSEMI_PG1_NREGS)
115 #define NATSEMI_REGS_VER 1 /* v1 added RFDR registers */
116 #define NATSEMI_REGS_SIZE (NATSEMI_NREGS * sizeof(u32))
118 /* Buffer sizes:
119 * The nic writes 32-bit values, even if the upper bytes of
120 * a 32-bit value are beyond the end of the buffer.
122 #define NATSEMI_HEADERS 22 /* 2*mac,type,vlan,crc */
123 #define NATSEMI_PADDING 16 /* 2 bytes should be sufficient */
124 #define NATSEMI_LONGPKT 1518 /* limit for normal packets */
125 #define NATSEMI_RX_LIMIT 2046 /* maximum supported by hardware */
127 /* These identify the driver base version and may not be removed. */
128 static const char version[] __devinitdata =
129 KERN_INFO DRV_NAME " dp8381x driver, version "
130 DRV_VERSION ", " DRV_RELDATE "\n"
131 KERN_INFO " originally by Donald Becker <becker@scyld.com>\n"
132 KERN_INFO " http://www.scyld.com/network/natsemi.html\n"
133 KERN_INFO " 2.4.x kernel port by Jeff Garzik, Tjeerd Mulder\n";
135 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
136 MODULE_DESCRIPTION("National Semiconductor DP8381x series PCI Ethernet driver");
137 MODULE_LICENSE("GPL");
139 module_param(mtu, int, 0);
140 module_param(debug, int, 0);
141 module_param(rx_copybreak, int, 0);
142 module_param_array(options, int, NULL, 0);
143 module_param_array(full_duplex, int, NULL, 0);
144 MODULE_PARM_DESC(mtu, "DP8381x MTU (all boards)");
145 MODULE_PARM_DESC(debug, "DP8381x default debug level");
146 MODULE_PARM_DESC(rx_copybreak,
147 "DP8381x copy breakpoint for copy-only-tiny-frames");
148 MODULE_PARM_DESC(options,
149 "DP8381x: Bits 0-3: media type, bit 17: full duplex");
150 MODULE_PARM_DESC(full_duplex, "DP8381x full duplex setting(s) (1)");
153 Theory of Operation
155 I. Board Compatibility
157 This driver is designed for National Semiconductor DP83815 PCI Ethernet NIC.
158 It also works with other chips in in the DP83810 series.
160 II. Board-specific settings
162 This driver requires the PCI interrupt line to be valid.
163 It honors the EEPROM-set values.
165 III. Driver operation
167 IIIa. Ring buffers
169 This driver uses two statically allocated fixed-size descriptor lists
170 formed into rings by a branch from the final descriptor to the beginning of
171 the list. The ring sizes are set at compile time by RX/TX_RING_SIZE.
172 The NatSemi design uses a 'next descriptor' pointer that the driver forms
173 into a list.
175 IIIb/c. Transmit/Receive Structure
177 This driver uses a zero-copy receive and transmit scheme.
178 The driver allocates full frame size skbuffs for the Rx ring buffers at
179 open() time and passes the skb->data field to the chip as receive data
180 buffers. When an incoming frame is less than RX_COPYBREAK bytes long,
181 a fresh skbuff is allocated and the frame is copied to the new skbuff.
182 When the incoming frame is larger, the skbuff is passed directly up the
183 protocol stack. Buffers consumed this way are replaced by newly allocated
184 skbuffs in a later phase of receives.
186 The RX_COPYBREAK value is chosen to trade-off the memory wasted by
187 using a full-sized skbuff for small frames vs. the copying costs of larger
188 frames. New boards are typically used in generously configured machines
189 and the underfilled buffers have negligible impact compared to the benefit of
190 a single allocation size, so the default value of zero results in never
191 copying packets. When copying is done, the cost is usually mitigated by using
192 a combined copy/checksum routine. Copying also preloads the cache, which is
193 most useful with small frames.
195 A subtle aspect of the operation is that unaligned buffers are not permitted
196 by the hardware. Thus the IP header at offset 14 in an ethernet frame isn't
197 longword aligned for further processing. On copies frames are put into the
198 skbuff at an offset of "+2", 16-byte aligning the IP header.
200 IIId. Synchronization
202 Most operations are synchronized on the np->lock irq spinlock, except the
203 performance critical codepaths:
205 The rx process only runs in the interrupt handler. Access from outside
206 the interrupt handler is only permitted after disable_irq().
208 The rx process usually runs under the netif_tx_lock. If np->intr_tx_reap
209 is set, then access is permitted under spin_lock_irq(&np->lock).
211 Thus configuration functions that want to access everything must call
212 disable_irq(dev->irq);
213 netif_tx_lock_bh(dev);
214 spin_lock_irq(&np->lock);
216 IV. Notes
218 NatSemi PCI network controllers are very uncommon.
220 IVb. References
222 http://www.scyld.com/expert/100mbps.html
223 http://www.scyld.com/expert/NWay.html
224 Datasheet is available from:
225 http://www.national.com/pf/DP/DP83815.html
227 IVc. Errata
229 None characterised.
235 * Support for fibre connections on Am79C874:
236 * This phy needs a special setup when connected to a fibre cable.
237 * http://www.amd.com/files/connectivitysolutions/networking/archivednetworking/22235.pdf
239 #define PHYID_AM79C874 0x0022561b
241 enum {
242 MII_MCTRL = 0x15, /* mode control register */
243 MII_FX_SEL = 0x0001, /* 100BASE-FX (fiber) */
244 MII_EN_SCRM = 0x0004, /* enable scrambler (tp) */
247 enum {
248 NATSEMI_FLAG_IGNORE_PHY = 0x1,
251 /* array of board data directly indexed by pci_tbl[x].driver_data */
252 static const struct {
253 const char *name;
254 unsigned long flags;
255 unsigned int eeprom_size;
256 } natsemi_pci_info[] __devinitdata = {
257 { "Aculab E1/T1 PMXc cPCI carrier card", NATSEMI_FLAG_IGNORE_PHY, 128 },
258 { "NatSemi DP8381[56]", 0, 24 },
261 static const struct pci_device_id natsemi_pci_tbl[] __devinitdata = {
262 { PCI_VENDOR_ID_NS, 0x0020, 0x12d9, 0x000c, 0, 0, 0 },
263 { PCI_VENDOR_ID_NS, 0x0020, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 1 },
264 { } /* terminate list */
266 MODULE_DEVICE_TABLE(pci, natsemi_pci_tbl);
268 /* Offsets to the device registers.
269 Unlike software-only systems, device drivers interact with complex hardware.
270 It's not useful to define symbolic names for every register bit in the
271 device.
273 enum register_offsets {
274 ChipCmd = 0x00,
275 ChipConfig = 0x04,
276 EECtrl = 0x08,
277 PCIBusCfg = 0x0C,
278 IntrStatus = 0x10,
279 IntrMask = 0x14,
280 IntrEnable = 0x18,
281 IntrHoldoff = 0x1C, /* DP83816 only */
282 TxRingPtr = 0x20,
283 TxConfig = 0x24,
284 RxRingPtr = 0x30,
285 RxConfig = 0x34,
286 ClkRun = 0x3C,
287 WOLCmd = 0x40,
288 PauseCmd = 0x44,
289 RxFilterAddr = 0x48,
290 RxFilterData = 0x4C,
291 BootRomAddr = 0x50,
292 BootRomData = 0x54,
293 SiliconRev = 0x58,
294 StatsCtrl = 0x5C,
295 StatsData = 0x60,
296 RxPktErrs = 0x60,
297 RxMissed = 0x68,
298 RxCRCErrs = 0x64,
299 BasicControl = 0x80,
300 BasicStatus = 0x84,
301 AnegAdv = 0x90,
302 AnegPeer = 0x94,
303 PhyStatus = 0xC0,
304 MIntrCtrl = 0xC4,
305 MIntrStatus = 0xC8,
306 PhyCtrl = 0xE4,
308 /* These are from the spec, around page 78... on a separate table.
309 * The meaning of these registers depend on the value of PGSEL. */
310 PGSEL = 0xCC,
311 PMDCSR = 0xE4,
312 TSTDAT = 0xFC,
313 DSPCFG = 0xF4,
314 SDCFG = 0xF8
316 /* the values for the 'magic' registers above (PGSEL=1) */
317 #define PMDCSR_VAL 0x189c /* enable preferred adaptation circuitry */
318 #define TSTDAT_VAL 0x0
319 #define DSPCFG_VAL 0x5040
320 #define SDCFG_VAL 0x008c /* set voltage thresholds for Signal Detect */
321 #define DSPCFG_LOCK 0x20 /* coefficient lock bit in DSPCFG */
322 #define DSPCFG_COEF 0x1000 /* see coefficient (in TSTDAT) bit in DSPCFG */
323 #define TSTDAT_FIXED 0xe8 /* magic number for bad coefficients */
325 /* misc PCI space registers */
326 enum pci_register_offsets {
327 PCIPM = 0x44,
330 enum ChipCmd_bits {
331 ChipReset = 0x100,
332 RxReset = 0x20,
333 TxReset = 0x10,
334 RxOff = 0x08,
335 RxOn = 0x04,
336 TxOff = 0x02,
337 TxOn = 0x01,
340 enum ChipConfig_bits {
341 CfgPhyDis = 0x200,
342 CfgPhyRst = 0x400,
343 CfgExtPhy = 0x1000,
344 CfgAnegEnable = 0x2000,
345 CfgAneg100 = 0x4000,
346 CfgAnegFull = 0x8000,
347 CfgAnegDone = 0x8000000,
348 CfgFullDuplex = 0x20000000,
349 CfgSpeed100 = 0x40000000,
350 CfgLink = 0x80000000,
353 enum EECtrl_bits {
354 EE_ShiftClk = 0x04,
355 EE_DataIn = 0x01,
356 EE_ChipSelect = 0x08,
357 EE_DataOut = 0x02,
358 MII_Data = 0x10,
359 MII_Write = 0x20,
360 MII_ShiftClk = 0x40,
363 enum PCIBusCfg_bits {
364 EepromReload = 0x4,
367 /* Bits in the interrupt status/mask registers. */
368 enum IntrStatus_bits {
369 IntrRxDone = 0x0001,
370 IntrRxIntr = 0x0002,
371 IntrRxErr = 0x0004,
372 IntrRxEarly = 0x0008,
373 IntrRxIdle = 0x0010,
374 IntrRxOverrun = 0x0020,
375 IntrTxDone = 0x0040,
376 IntrTxIntr = 0x0080,
377 IntrTxErr = 0x0100,
378 IntrTxIdle = 0x0200,
379 IntrTxUnderrun = 0x0400,
380 StatsMax = 0x0800,
381 SWInt = 0x1000,
382 WOLPkt = 0x2000,
383 LinkChange = 0x4000,
384 IntrHighBits = 0x8000,
385 RxStatusFIFOOver = 0x10000,
386 IntrPCIErr = 0xf00000,
387 RxResetDone = 0x1000000,
388 TxResetDone = 0x2000000,
389 IntrAbnormalSummary = 0xCD20,
393 * Default Interrupts:
394 * Rx OK, Rx Packet Error, Rx Overrun,
395 * Tx OK, Tx Packet Error, Tx Underrun,
396 * MIB Service, Phy Interrupt, High Bits,
397 * Rx Status FIFO overrun,
398 * Received Target Abort, Received Master Abort,
399 * Signalled System Error, Received Parity Error
401 #define DEFAULT_INTR 0x00f1cd65
403 enum TxConfig_bits {
404 TxDrthMask = 0x3f,
405 TxFlthMask = 0x3f00,
406 TxMxdmaMask = 0x700000,
407 TxMxdma_512 = 0x0,
408 TxMxdma_4 = 0x100000,
409 TxMxdma_8 = 0x200000,
410 TxMxdma_16 = 0x300000,
411 TxMxdma_32 = 0x400000,
412 TxMxdma_64 = 0x500000,
413 TxMxdma_128 = 0x600000,
414 TxMxdma_256 = 0x700000,
415 TxCollRetry = 0x800000,
416 TxAutoPad = 0x10000000,
417 TxMacLoop = 0x20000000,
418 TxHeartIgn = 0x40000000,
419 TxCarrierIgn = 0x80000000
423 * Tx Configuration:
424 * - 256 byte DMA burst length
425 * - fill threshold 512 bytes (i.e. restart DMA when 512 bytes are free)
426 * - 64 bytes initial drain threshold (i.e. begin actual transmission
427 * when 64 byte are in the fifo)
428 * - on tx underruns, increase drain threshold by 64.
429 * - at most use a drain threshold of 1472 bytes: The sum of the fill
430 * threshold and the drain threshold must be less than 2016 bytes.
433 #define TX_FLTH_VAL ((512/32) << 8)
434 #define TX_DRTH_VAL_START (64/32)
435 #define TX_DRTH_VAL_INC 2
436 #define TX_DRTH_VAL_LIMIT (1472/32)
438 enum RxConfig_bits {
439 RxDrthMask = 0x3e,
440 RxMxdmaMask = 0x700000,
441 RxMxdma_512 = 0x0,
442 RxMxdma_4 = 0x100000,
443 RxMxdma_8 = 0x200000,
444 RxMxdma_16 = 0x300000,
445 RxMxdma_32 = 0x400000,
446 RxMxdma_64 = 0x500000,
447 RxMxdma_128 = 0x600000,
448 RxMxdma_256 = 0x700000,
449 RxAcceptLong = 0x8000000,
450 RxAcceptTx = 0x10000000,
451 RxAcceptRunt = 0x40000000,
452 RxAcceptErr = 0x80000000
454 #define RX_DRTH_VAL (128/8)
456 enum ClkRun_bits {
457 PMEEnable = 0x100,
458 PMEStatus = 0x8000,
461 enum WolCmd_bits {
462 WakePhy = 0x1,
463 WakeUnicast = 0x2,
464 WakeMulticast = 0x4,
465 WakeBroadcast = 0x8,
466 WakeArp = 0x10,
467 WakePMatch0 = 0x20,
468 WakePMatch1 = 0x40,
469 WakePMatch2 = 0x80,
470 WakePMatch3 = 0x100,
471 WakeMagic = 0x200,
472 WakeMagicSecure = 0x400,
473 SecureHack = 0x100000,
474 WokePhy = 0x400000,
475 WokeUnicast = 0x800000,
476 WokeMulticast = 0x1000000,
477 WokeBroadcast = 0x2000000,
478 WokeArp = 0x4000000,
479 WokePMatch0 = 0x8000000,
480 WokePMatch1 = 0x10000000,
481 WokePMatch2 = 0x20000000,
482 WokePMatch3 = 0x40000000,
483 WokeMagic = 0x80000000,
484 WakeOptsSummary = 0x7ff
487 enum RxFilterAddr_bits {
488 RFCRAddressMask = 0x3ff,
489 AcceptMulticast = 0x00200000,
490 AcceptMyPhys = 0x08000000,
491 AcceptAllPhys = 0x10000000,
492 AcceptAllMulticast = 0x20000000,
493 AcceptBroadcast = 0x40000000,
494 RxFilterEnable = 0x80000000
497 enum StatsCtrl_bits {
498 StatsWarn = 0x1,
499 StatsFreeze = 0x2,
500 StatsClear = 0x4,
501 StatsStrobe = 0x8,
504 enum MIntrCtrl_bits {
505 MICRIntEn = 0x2,
508 enum PhyCtrl_bits {
509 PhyAddrMask = 0x1f,
512 #define PHY_ADDR_NONE 32
513 #define PHY_ADDR_INTERNAL 1
515 /* values we might find in the silicon revision register */
516 #define SRR_DP83815_C 0x0302
517 #define SRR_DP83815_D 0x0403
518 #define SRR_DP83816_A4 0x0504
519 #define SRR_DP83816_A5 0x0505
521 /* The Rx and Tx buffer descriptors. */
522 /* Note that using only 32 bit fields simplifies conversion to big-endian
523 architectures. */
524 struct netdev_desc {
525 u32 next_desc;
526 s32 cmd_status;
527 u32 addr;
528 u32 software_use;
531 /* Bits in network_desc.status */
532 enum desc_status_bits {
533 DescOwn=0x80000000, DescMore=0x40000000, DescIntr=0x20000000,
534 DescNoCRC=0x10000000, DescPktOK=0x08000000,
535 DescSizeMask=0xfff,
537 DescTxAbort=0x04000000, DescTxFIFO=0x02000000,
538 DescTxCarrier=0x01000000, DescTxDefer=0x00800000,
539 DescTxExcDefer=0x00400000, DescTxOOWCol=0x00200000,
540 DescTxExcColl=0x00100000, DescTxCollCount=0x000f0000,
542 DescRxAbort=0x04000000, DescRxOver=0x02000000,
543 DescRxDest=0x01800000, DescRxLong=0x00400000,
544 DescRxRunt=0x00200000, DescRxInvalid=0x00100000,
545 DescRxCRC=0x00080000, DescRxAlign=0x00040000,
546 DescRxLoop=0x00020000, DesRxColl=0x00010000,
549 struct netdev_private {
550 /* Descriptor rings first for alignment */
551 dma_addr_t ring_dma;
552 struct netdev_desc *rx_ring;
553 struct netdev_desc *tx_ring;
554 /* The addresses of receive-in-place skbuffs */
555 struct sk_buff *rx_skbuff[RX_RING_SIZE];
556 dma_addr_t rx_dma[RX_RING_SIZE];
557 /* address of a sent-in-place packet/buffer, for later free() */
558 struct sk_buff *tx_skbuff[TX_RING_SIZE];
559 dma_addr_t tx_dma[TX_RING_SIZE];
560 struct net_device_stats stats;
561 /* Media monitoring timer */
562 struct timer_list timer;
563 /* Frequently used values: keep some adjacent for cache effect */
564 struct pci_dev *pci_dev;
565 struct netdev_desc *rx_head_desc;
566 /* Producer/consumer ring indices */
567 unsigned int cur_rx, dirty_rx;
568 unsigned int cur_tx, dirty_tx;
569 /* Based on MTU+slack. */
570 unsigned int rx_buf_sz;
571 int oom;
572 /* Interrupt status */
573 u32 intr_status;
574 /* Do not touch the nic registers */
575 int hands_off;
576 /* Don't pay attention to the reported link state. */
577 int ignore_phy;
578 /* external phy that is used: only valid if dev->if_port != PORT_TP */
579 int mii;
580 int phy_addr_external;
581 unsigned int full_duplex;
582 /* Rx filter */
583 u32 cur_rx_mode;
584 u32 rx_filter[16];
585 /* FIFO and PCI burst thresholds */
586 u32 tx_config, rx_config;
587 /* original contents of ClkRun register */
588 u32 SavedClkRun;
589 /* silicon revision */
590 u32 srr;
591 /* expected DSPCFG value */
592 u16 dspcfg;
593 /* parms saved in ethtool format */
594 u16 speed; /* The forced speed, 10Mb, 100Mb, gigabit */
595 u8 duplex; /* Duplex, half or full */
596 u8 autoneg; /* Autonegotiation enabled */
597 /* MII transceiver section */
598 u16 advertising;
599 unsigned int iosize;
600 spinlock_t lock;
601 u32 msg_enable;
602 /* EEPROM data */
603 int eeprom_size;
606 static void move_int_phy(struct net_device *dev, int addr);
607 static int eeprom_read(void __iomem *ioaddr, int location);
608 static int mdio_read(struct net_device *dev, int reg);
609 static void mdio_write(struct net_device *dev, int reg, u16 data);
610 static void init_phy_fixup(struct net_device *dev);
611 static int miiport_read(struct net_device *dev, int phy_id, int reg);
612 static void miiport_write(struct net_device *dev, int phy_id, int reg, u16 data);
613 static int find_mii(struct net_device *dev);
614 static void natsemi_reset(struct net_device *dev);
615 static void natsemi_reload_eeprom(struct net_device *dev);
616 static void natsemi_stop_rxtx(struct net_device *dev);
617 static int netdev_open(struct net_device *dev);
618 static void do_cable_magic(struct net_device *dev);
619 static void undo_cable_magic(struct net_device *dev);
620 static void check_link(struct net_device *dev);
621 static void netdev_timer(unsigned long data);
622 static void dump_ring(struct net_device *dev);
623 static void tx_timeout(struct net_device *dev);
624 static int alloc_ring(struct net_device *dev);
625 static void refill_rx(struct net_device *dev);
626 static void init_ring(struct net_device *dev);
627 static void drain_tx(struct net_device *dev);
628 static void drain_ring(struct net_device *dev);
629 static void free_ring(struct net_device *dev);
630 static void reinit_ring(struct net_device *dev);
631 static void init_registers(struct net_device *dev);
632 static int start_tx(struct sk_buff *skb, struct net_device *dev);
633 static irqreturn_t intr_handler(int irq, void *dev_instance);
634 static void netdev_error(struct net_device *dev, int intr_status);
635 static int natsemi_poll(struct net_device *dev, int *budget);
636 static void netdev_rx(struct net_device *dev, int *work_done, int work_to_do);
637 static void netdev_tx_done(struct net_device *dev);
638 static int natsemi_change_mtu(struct net_device *dev, int new_mtu);
639 #ifdef CONFIG_NET_POLL_CONTROLLER
640 static void natsemi_poll_controller(struct net_device *dev);
641 #endif
642 static void __set_rx_mode(struct net_device *dev);
643 static void set_rx_mode(struct net_device *dev);
644 static void __get_stats(struct net_device *dev);
645 static struct net_device_stats *get_stats(struct net_device *dev);
646 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
647 static int netdev_set_wol(struct net_device *dev, u32 newval);
648 static int netdev_get_wol(struct net_device *dev, u32 *supported, u32 *cur);
649 static int netdev_set_sopass(struct net_device *dev, u8 *newval);
650 static int netdev_get_sopass(struct net_device *dev, u8 *data);
651 static int netdev_get_ecmd(struct net_device *dev, struct ethtool_cmd *ecmd);
652 static int netdev_set_ecmd(struct net_device *dev, struct ethtool_cmd *ecmd);
653 static void enable_wol_mode(struct net_device *dev, int enable_intr);
654 static int netdev_close(struct net_device *dev);
655 static int netdev_get_regs(struct net_device *dev, u8 *buf);
656 static int netdev_get_eeprom(struct net_device *dev, u8 *buf);
657 static const struct ethtool_ops ethtool_ops;
659 static inline void __iomem *ns_ioaddr(struct net_device *dev)
661 return (void __iomem *) dev->base_addr;
664 static inline void natsemi_irq_enable(struct net_device *dev)
666 writel(1, ns_ioaddr(dev) + IntrEnable);
667 readl(ns_ioaddr(dev) + IntrEnable);
670 static inline void natsemi_irq_disable(struct net_device *dev)
672 writel(0, ns_ioaddr(dev) + IntrEnable);
673 readl(ns_ioaddr(dev) + IntrEnable);
676 static void move_int_phy(struct net_device *dev, int addr)
678 struct netdev_private *np = netdev_priv(dev);
679 void __iomem *ioaddr = ns_ioaddr(dev);
680 int target = 31;
683 * The internal phy is visible on the external mii bus. Therefore we must
684 * move it away before we can send commands to an external phy.
685 * There are two addresses we must avoid:
686 * - the address on the external phy that is used for transmission.
687 * - the address that we want to access. User space can access phys
688 * on the mii bus with SIOCGMIIREG/SIOCSMIIREG, independant from the
689 * phy that is used for transmission.
692 if (target == addr)
693 target--;
694 if (target == np->phy_addr_external)
695 target--;
696 writew(target, ioaddr + PhyCtrl);
697 readw(ioaddr + PhyCtrl);
698 udelay(1);
701 static void __devinit natsemi_init_media (struct net_device *dev)
703 struct netdev_private *np = netdev_priv(dev);
704 u32 tmp;
706 if (np->ignore_phy)
707 netif_carrier_on(dev);
708 else
709 netif_carrier_off(dev);
711 /* get the initial settings from hardware */
712 tmp = mdio_read(dev, MII_BMCR);
713 np->speed = (tmp & BMCR_SPEED100)? SPEED_100 : SPEED_10;
714 np->duplex = (tmp & BMCR_FULLDPLX)? DUPLEX_FULL : DUPLEX_HALF;
715 np->autoneg = (tmp & BMCR_ANENABLE)? AUTONEG_ENABLE: AUTONEG_DISABLE;
716 np->advertising= mdio_read(dev, MII_ADVERTISE);
718 if ((np->advertising & ADVERTISE_ALL) != ADVERTISE_ALL
719 && netif_msg_probe(np)) {
720 printk(KERN_INFO "natsemi %s: Transceiver default autonegotiation %s "
721 "10%s %s duplex.\n",
722 pci_name(np->pci_dev),
723 (mdio_read(dev, MII_BMCR) & BMCR_ANENABLE)?
724 "enabled, advertise" : "disabled, force",
725 (np->advertising &
726 (ADVERTISE_100FULL|ADVERTISE_100HALF))?
727 "0" : "",
728 (np->advertising &
729 (ADVERTISE_100FULL|ADVERTISE_10FULL))?
730 "full" : "half");
732 if (netif_msg_probe(np))
733 printk(KERN_INFO
734 "natsemi %s: Transceiver status %#04x advertising %#04x.\n",
735 pci_name(np->pci_dev), mdio_read(dev, MII_BMSR),
736 np->advertising);
740 static int __devinit natsemi_probe1 (struct pci_dev *pdev,
741 const struct pci_device_id *ent)
743 struct net_device *dev;
744 struct netdev_private *np;
745 int i, option, irq, chip_idx = ent->driver_data;
746 static int find_cnt = -1;
747 unsigned long iostart, iosize;
748 void __iomem *ioaddr;
749 const int pcibar = 1; /* PCI base address register */
750 int prev_eedata;
751 u32 tmp;
753 /* when built into the kernel, we only print version if device is found */
754 #ifndef MODULE
755 static int printed_version;
756 if (!printed_version++)
757 printk(version);
758 #endif
760 i = pci_enable_device(pdev);
761 if (i) return i;
763 /* natsemi has a non-standard PM control register
764 * in PCI config space. Some boards apparently need
765 * to be brought to D0 in this manner.
767 pci_read_config_dword(pdev, PCIPM, &tmp);
768 if (tmp & PCI_PM_CTRL_STATE_MASK) {
769 /* D0 state, disable PME assertion */
770 u32 newtmp = tmp & ~PCI_PM_CTRL_STATE_MASK;
771 pci_write_config_dword(pdev, PCIPM, newtmp);
774 find_cnt++;
775 iostart = pci_resource_start(pdev, pcibar);
776 iosize = pci_resource_len(pdev, pcibar);
777 irq = pdev->irq;
779 pci_set_master(pdev);
781 dev = alloc_etherdev(sizeof (struct netdev_private));
782 if (!dev)
783 return -ENOMEM;
784 SET_MODULE_OWNER(dev);
785 SET_NETDEV_DEV(dev, &pdev->dev);
787 i = pci_request_regions(pdev, DRV_NAME);
788 if (i)
789 goto err_pci_request_regions;
791 ioaddr = ioremap(iostart, iosize);
792 if (!ioaddr) {
793 i = -ENOMEM;
794 goto err_ioremap;
797 /* Work around the dropped serial bit. */
798 prev_eedata = eeprom_read(ioaddr, 6);
799 for (i = 0; i < 3; i++) {
800 int eedata = eeprom_read(ioaddr, i + 7);
801 dev->dev_addr[i*2] = (eedata << 1) + (prev_eedata >> 15);
802 dev->dev_addr[i*2+1] = eedata >> 7;
803 prev_eedata = eedata;
806 dev->base_addr = (unsigned long __force) ioaddr;
807 dev->irq = irq;
809 np = netdev_priv(dev);
811 np->pci_dev = pdev;
812 pci_set_drvdata(pdev, dev);
813 np->iosize = iosize;
814 spin_lock_init(&np->lock);
815 np->msg_enable = (debug >= 0) ? (1<<debug)-1 : NATSEMI_DEF_MSG;
816 np->hands_off = 0;
817 np->intr_status = 0;
818 np->eeprom_size = natsemi_pci_info[chip_idx].eeprom_size;
819 if (natsemi_pci_info[chip_idx].flags & NATSEMI_FLAG_IGNORE_PHY)
820 np->ignore_phy = 1;
821 else
822 np->ignore_phy = 0;
824 /* Initial port:
825 * - If configured to ignore the PHY set up for external.
826 * - If the nic was configured to use an external phy and if find_mii
827 * finds a phy: use external port, first phy that replies.
828 * - Otherwise: internal port.
829 * Note that the phy address for the internal phy doesn't matter:
830 * The address would be used to access a phy over the mii bus, but
831 * the internal phy is accessed through mapped registers.
833 if (np->ignore_phy || readl(ioaddr + ChipConfig) & CfgExtPhy)
834 dev->if_port = PORT_MII;
835 else
836 dev->if_port = PORT_TP;
837 /* Reset the chip to erase previous misconfiguration. */
838 natsemi_reload_eeprom(dev);
839 natsemi_reset(dev);
841 if (dev->if_port != PORT_TP) {
842 np->phy_addr_external = find_mii(dev);
843 /* If we're ignoring the PHY it doesn't matter if we can't
844 * find one. */
845 if (!np->ignore_phy && np->phy_addr_external == PHY_ADDR_NONE) {
846 dev->if_port = PORT_TP;
847 np->phy_addr_external = PHY_ADDR_INTERNAL;
849 } else {
850 np->phy_addr_external = PHY_ADDR_INTERNAL;
853 option = find_cnt < MAX_UNITS ? options[find_cnt] : 0;
854 if (dev->mem_start)
855 option = dev->mem_start;
857 /* The lower four bits are the media type. */
858 if (option) {
859 if (option & 0x200)
860 np->full_duplex = 1;
861 if (option & 15)
862 printk(KERN_INFO
863 "natsemi %s: ignoring user supplied media type %d",
864 pci_name(np->pci_dev), option & 15);
866 if (find_cnt < MAX_UNITS && full_duplex[find_cnt])
867 np->full_duplex = 1;
869 /* The chip-specific entries in the device structure. */
870 dev->open = &netdev_open;
871 dev->hard_start_xmit = &start_tx;
872 dev->stop = &netdev_close;
873 dev->get_stats = &get_stats;
874 dev->set_multicast_list = &set_rx_mode;
875 dev->change_mtu = &natsemi_change_mtu;
876 dev->do_ioctl = &netdev_ioctl;
877 dev->tx_timeout = &tx_timeout;
878 dev->watchdog_timeo = TX_TIMEOUT;
879 dev->poll = natsemi_poll;
880 dev->weight = 64;
882 #ifdef CONFIG_NET_POLL_CONTROLLER
883 dev->poll_controller = &natsemi_poll_controller;
884 #endif
885 SET_ETHTOOL_OPS(dev, &ethtool_ops);
887 if (mtu)
888 dev->mtu = mtu;
890 natsemi_init_media(dev);
892 /* save the silicon revision for later querying */
893 np->srr = readl(ioaddr + SiliconRev);
894 if (netif_msg_hw(np))
895 printk(KERN_INFO "natsemi %s: silicon revision %#04x.\n",
896 pci_name(np->pci_dev), np->srr);
898 i = register_netdev(dev);
899 if (i)
900 goto err_register_netdev;
902 if (netif_msg_drv(np)) {
903 printk(KERN_INFO "natsemi %s: %s at %#08lx (%s), ",
904 dev->name, natsemi_pci_info[chip_idx].name, iostart,
905 pci_name(np->pci_dev));
906 for (i = 0; i < ETH_ALEN-1; i++)
907 printk("%02x:", dev->dev_addr[i]);
908 printk("%02x, IRQ %d", dev->dev_addr[i], irq);
909 if (dev->if_port == PORT_TP)
910 printk(", port TP.\n");
911 else if (np->ignore_phy)
912 printk(", port MII, ignoring PHY\n");
913 else
914 printk(", port MII, phy ad %d.\n", np->phy_addr_external);
916 return 0;
918 err_register_netdev:
919 iounmap(ioaddr);
921 err_ioremap:
922 pci_release_regions(pdev);
923 pci_set_drvdata(pdev, NULL);
925 err_pci_request_regions:
926 free_netdev(dev);
927 return i;
931 /* Read the EEPROM and MII Management Data I/O (MDIO) interfaces.
932 The EEPROM code is for the common 93c06/46 EEPROMs with 6 bit addresses. */
934 /* Delay between EEPROM clock transitions.
935 No extra delay is needed with 33Mhz PCI, but future 66Mhz access may need
936 a delay. Note that pre-2.0.34 kernels had a cache-alignment bug that
937 made udelay() unreliable.
938 The old method of using an ISA access as a delay, __SLOW_DOWN_IO__, is
939 depricated.
941 #define eeprom_delay(ee_addr) readl(ee_addr)
943 #define EE_Write0 (EE_ChipSelect)
944 #define EE_Write1 (EE_ChipSelect | EE_DataIn)
946 /* The EEPROM commands include the alway-set leading bit. */
947 enum EEPROM_Cmds {
948 EE_WriteCmd=(5 << 6), EE_ReadCmd=(6 << 6), EE_EraseCmd=(7 << 6),
951 static int eeprom_read(void __iomem *addr, int location)
953 int i;
954 int retval = 0;
955 void __iomem *ee_addr = addr + EECtrl;
956 int read_cmd = location | EE_ReadCmd;
958 writel(EE_Write0, ee_addr);
960 /* Shift the read command bits out. */
961 for (i = 10; i >= 0; i--) {
962 short dataval = (read_cmd & (1 << i)) ? EE_Write1 : EE_Write0;
963 writel(dataval, ee_addr);
964 eeprom_delay(ee_addr);
965 writel(dataval | EE_ShiftClk, ee_addr);
966 eeprom_delay(ee_addr);
968 writel(EE_ChipSelect, ee_addr);
969 eeprom_delay(ee_addr);
971 for (i = 0; i < 16; i++) {
972 writel(EE_ChipSelect | EE_ShiftClk, ee_addr);
973 eeprom_delay(ee_addr);
974 retval |= (readl(ee_addr) & EE_DataOut) ? 1 << i : 0;
975 writel(EE_ChipSelect, ee_addr);
976 eeprom_delay(ee_addr);
979 /* Terminate the EEPROM access. */
980 writel(EE_Write0, ee_addr);
981 writel(0, ee_addr);
982 return retval;
985 /* MII transceiver control section.
986 * The 83815 series has an internal transceiver, and we present the
987 * internal management registers as if they were MII connected.
988 * External Phy registers are referenced through the MII interface.
991 /* clock transitions >= 20ns (25MHz)
992 * One readl should be good to PCI @ 100MHz
994 #define mii_delay(ioaddr) readl(ioaddr + EECtrl)
996 static int mii_getbit (struct net_device *dev)
998 int data;
999 void __iomem *ioaddr = ns_ioaddr(dev);
1001 writel(MII_ShiftClk, ioaddr + EECtrl);
1002 data = readl(ioaddr + EECtrl);
1003 writel(0, ioaddr + EECtrl);
1004 mii_delay(ioaddr);
1005 return (data & MII_Data)? 1 : 0;
1008 static void mii_send_bits (struct net_device *dev, u32 data, int len)
1010 u32 i;
1011 void __iomem *ioaddr = ns_ioaddr(dev);
1013 for (i = (1 << (len-1)); i; i >>= 1)
1015 u32 mdio_val = MII_Write | ((data & i)? MII_Data : 0);
1016 writel(mdio_val, ioaddr + EECtrl);
1017 mii_delay(ioaddr);
1018 writel(mdio_val | MII_ShiftClk, ioaddr + EECtrl);
1019 mii_delay(ioaddr);
1021 writel(0, ioaddr + EECtrl);
1022 mii_delay(ioaddr);
1025 static int miiport_read(struct net_device *dev, int phy_id, int reg)
1027 u32 cmd;
1028 int i;
1029 u32 retval = 0;
1031 /* Ensure sync */
1032 mii_send_bits (dev, 0xffffffff, 32);
1033 /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1034 /* ST,OP = 0110'b for read operation */
1035 cmd = (0x06 << 10) | (phy_id << 5) | reg;
1036 mii_send_bits (dev, cmd, 14);
1037 /* Turnaround */
1038 if (mii_getbit (dev))
1039 return 0;
1040 /* Read data */
1041 for (i = 0; i < 16; i++) {
1042 retval <<= 1;
1043 retval |= mii_getbit (dev);
1045 /* End cycle */
1046 mii_getbit (dev);
1047 return retval;
1050 static void miiport_write(struct net_device *dev, int phy_id, int reg, u16 data)
1052 u32 cmd;
1054 /* Ensure sync */
1055 mii_send_bits (dev, 0xffffffff, 32);
1056 /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1057 /* ST,OP,AAAAA,RRRRR,TA = 0101xxxxxxxxxx10'b = 0x5002 for write */
1058 cmd = (0x5002 << 16) | (phy_id << 23) | (reg << 18) | data;
1059 mii_send_bits (dev, cmd, 32);
1060 /* End cycle */
1061 mii_getbit (dev);
1064 static int mdio_read(struct net_device *dev, int reg)
1066 struct netdev_private *np = netdev_priv(dev);
1067 void __iomem *ioaddr = ns_ioaddr(dev);
1069 /* The 83815 series has two ports:
1070 * - an internal transceiver
1071 * - an external mii bus
1073 if (dev->if_port == PORT_TP)
1074 return readw(ioaddr+BasicControl+(reg<<2));
1075 else
1076 return miiport_read(dev, np->phy_addr_external, reg);
1079 static void mdio_write(struct net_device *dev, int reg, u16 data)
1081 struct netdev_private *np = netdev_priv(dev);
1082 void __iomem *ioaddr = ns_ioaddr(dev);
1084 /* The 83815 series has an internal transceiver; handle separately */
1085 if (dev->if_port == PORT_TP)
1086 writew(data, ioaddr+BasicControl+(reg<<2));
1087 else
1088 miiport_write(dev, np->phy_addr_external, reg, data);
1091 static void init_phy_fixup(struct net_device *dev)
1093 struct netdev_private *np = netdev_priv(dev);
1094 void __iomem *ioaddr = ns_ioaddr(dev);
1095 int i;
1096 u32 cfg;
1097 u16 tmp;
1099 /* restore stuff lost when power was out */
1100 tmp = mdio_read(dev, MII_BMCR);
1101 if (np->autoneg == AUTONEG_ENABLE) {
1102 /* renegotiate if something changed */
1103 if ((tmp & BMCR_ANENABLE) == 0
1104 || np->advertising != mdio_read(dev, MII_ADVERTISE))
1106 /* turn on autonegotiation and force negotiation */
1107 tmp |= (BMCR_ANENABLE | BMCR_ANRESTART);
1108 mdio_write(dev, MII_ADVERTISE, np->advertising);
1110 } else {
1111 /* turn off auto negotiation, set speed and duplexity */
1112 tmp &= ~(BMCR_ANENABLE | BMCR_SPEED100 | BMCR_FULLDPLX);
1113 if (np->speed == SPEED_100)
1114 tmp |= BMCR_SPEED100;
1115 if (np->duplex == DUPLEX_FULL)
1116 tmp |= BMCR_FULLDPLX;
1118 * Note: there is no good way to inform the link partner
1119 * that our capabilities changed. The user has to unplug
1120 * and replug the network cable after some changes, e.g.
1121 * after switching from 10HD, autoneg off to 100 HD,
1122 * autoneg off.
1125 mdio_write(dev, MII_BMCR, tmp);
1126 readl(ioaddr + ChipConfig);
1127 udelay(1);
1129 /* find out what phy this is */
1130 np->mii = (mdio_read(dev, MII_PHYSID1) << 16)
1131 + mdio_read(dev, MII_PHYSID2);
1133 /* handle external phys here */
1134 switch (np->mii) {
1135 case PHYID_AM79C874:
1136 /* phy specific configuration for fibre/tp operation */
1137 tmp = mdio_read(dev, MII_MCTRL);
1138 tmp &= ~(MII_FX_SEL | MII_EN_SCRM);
1139 if (dev->if_port == PORT_FIBRE)
1140 tmp |= MII_FX_SEL;
1141 else
1142 tmp |= MII_EN_SCRM;
1143 mdio_write(dev, MII_MCTRL, tmp);
1144 break;
1145 default:
1146 break;
1148 cfg = readl(ioaddr + ChipConfig);
1149 if (cfg & CfgExtPhy)
1150 return;
1152 /* On page 78 of the spec, they recommend some settings for "optimum
1153 performance" to be done in sequence. These settings optimize some
1154 of the 100Mbit autodetection circuitry. They say we only want to
1155 do this for rev C of the chip, but engineers at NSC (Bradley
1156 Kennedy) recommends always setting them. If you don't, you get
1157 errors on some autonegotiations that make the device unusable.
1159 It seems that the DSP needs a few usec to reinitialize after
1160 the start of the phy. Just retry writing these values until they
1161 stick.
1163 for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1165 int dspcfg;
1166 writew(1, ioaddr + PGSEL);
1167 writew(PMDCSR_VAL, ioaddr + PMDCSR);
1168 writew(TSTDAT_VAL, ioaddr + TSTDAT);
1169 np->dspcfg = (np->srr <= SRR_DP83815_C)?
1170 DSPCFG_VAL : (DSPCFG_COEF | readw(ioaddr + DSPCFG));
1171 writew(np->dspcfg, ioaddr + DSPCFG);
1172 writew(SDCFG_VAL, ioaddr + SDCFG);
1173 writew(0, ioaddr + PGSEL);
1174 readl(ioaddr + ChipConfig);
1175 udelay(10);
1177 writew(1, ioaddr + PGSEL);
1178 dspcfg = readw(ioaddr + DSPCFG);
1179 writew(0, ioaddr + PGSEL);
1180 if (np->dspcfg == dspcfg)
1181 break;
1184 if (netif_msg_link(np)) {
1185 if (i==NATSEMI_HW_TIMEOUT) {
1186 printk(KERN_INFO
1187 "%s: DSPCFG mismatch after retrying for %d usec.\n",
1188 dev->name, i*10);
1189 } else {
1190 printk(KERN_INFO
1191 "%s: DSPCFG accepted after %d usec.\n",
1192 dev->name, i*10);
1196 * Enable PHY Specific event based interrupts. Link state change
1197 * and Auto-Negotiation Completion are among the affected.
1198 * Read the intr status to clear it (needed for wake events).
1200 readw(ioaddr + MIntrStatus);
1201 writew(MICRIntEn, ioaddr + MIntrCtrl);
1204 static int switch_port_external(struct net_device *dev)
1206 struct netdev_private *np = netdev_priv(dev);
1207 void __iomem *ioaddr = ns_ioaddr(dev);
1208 u32 cfg;
1210 cfg = readl(ioaddr + ChipConfig);
1211 if (cfg & CfgExtPhy)
1212 return 0;
1214 if (netif_msg_link(np)) {
1215 printk(KERN_INFO "%s: switching to external transceiver.\n",
1216 dev->name);
1219 /* 1) switch back to external phy */
1220 writel(cfg | (CfgExtPhy | CfgPhyDis), ioaddr + ChipConfig);
1221 readl(ioaddr + ChipConfig);
1222 udelay(1);
1224 /* 2) reset the external phy: */
1225 /* resetting the external PHY has been known to cause a hub supplying
1226 * power over Ethernet to kill the power. We don't want to kill
1227 * power to this computer, so we avoid resetting the phy.
1230 /* 3) reinit the phy fixup, it got lost during power down. */
1231 move_int_phy(dev, np->phy_addr_external);
1232 init_phy_fixup(dev);
1234 return 1;
1237 static int switch_port_internal(struct net_device *dev)
1239 struct netdev_private *np = netdev_priv(dev);
1240 void __iomem *ioaddr = ns_ioaddr(dev);
1241 int i;
1242 u32 cfg;
1243 u16 bmcr;
1245 cfg = readl(ioaddr + ChipConfig);
1246 if (!(cfg &CfgExtPhy))
1247 return 0;
1249 if (netif_msg_link(np)) {
1250 printk(KERN_INFO "%s: switching to internal transceiver.\n",
1251 dev->name);
1253 /* 1) switch back to internal phy: */
1254 cfg = cfg & ~(CfgExtPhy | CfgPhyDis);
1255 writel(cfg, ioaddr + ChipConfig);
1256 readl(ioaddr + ChipConfig);
1257 udelay(1);
1259 /* 2) reset the internal phy: */
1260 bmcr = readw(ioaddr+BasicControl+(MII_BMCR<<2));
1261 writel(bmcr | BMCR_RESET, ioaddr+BasicControl+(MII_BMCR<<2));
1262 readl(ioaddr + ChipConfig);
1263 udelay(10);
1264 for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1265 bmcr = readw(ioaddr+BasicControl+(MII_BMCR<<2));
1266 if (!(bmcr & BMCR_RESET))
1267 break;
1268 udelay(10);
1270 if (i==NATSEMI_HW_TIMEOUT && netif_msg_link(np)) {
1271 printk(KERN_INFO
1272 "%s: phy reset did not complete in %d usec.\n",
1273 dev->name, i*10);
1275 /* 3) reinit the phy fixup, it got lost during power down. */
1276 init_phy_fixup(dev);
1278 return 1;
1281 /* Scan for a PHY on the external mii bus.
1282 * There are two tricky points:
1283 * - Do not scan while the internal phy is enabled. The internal phy will
1284 * crash: e.g. reads from the DSPCFG register will return odd values and
1285 * the nasty random phy reset code will reset the nic every few seconds.
1286 * - The internal phy must be moved around, an external phy could
1287 * have the same address as the internal phy.
1289 static int find_mii(struct net_device *dev)
1291 struct netdev_private *np = netdev_priv(dev);
1292 int tmp;
1293 int i;
1294 int did_switch;
1296 /* Switch to external phy */
1297 did_switch = switch_port_external(dev);
1299 /* Scan the possible phy addresses:
1301 * PHY address 0 means that the phy is in isolate mode. Not yet
1302 * supported due to lack of test hardware. User space should
1303 * handle it through ethtool.
1305 for (i = 1; i <= 31; i++) {
1306 move_int_phy(dev, i);
1307 tmp = miiport_read(dev, i, MII_BMSR);
1308 if (tmp != 0xffff && tmp != 0x0000) {
1309 /* found something! */
1310 np->mii = (mdio_read(dev, MII_PHYSID1) << 16)
1311 + mdio_read(dev, MII_PHYSID2);
1312 if (netif_msg_probe(np)) {
1313 printk(KERN_INFO "natsemi %s: found external phy %08x at address %d.\n",
1314 pci_name(np->pci_dev), np->mii, i);
1316 break;
1319 /* And switch back to internal phy: */
1320 if (did_switch)
1321 switch_port_internal(dev);
1322 return i;
1325 /* CFG bits [13:16] [18:23] */
1326 #define CFG_RESET_SAVE 0xfde000
1327 /* WCSR bits [0:4] [9:10] */
1328 #define WCSR_RESET_SAVE 0x61f
1329 /* RFCR bits [20] [22] [27:31] */
1330 #define RFCR_RESET_SAVE 0xf8500000;
1332 static void natsemi_reset(struct net_device *dev)
1334 int i;
1335 u32 cfg;
1336 u32 wcsr;
1337 u32 rfcr;
1338 u16 pmatch[3];
1339 u16 sopass[3];
1340 struct netdev_private *np = netdev_priv(dev);
1341 void __iomem *ioaddr = ns_ioaddr(dev);
1344 * Resetting the chip causes some registers to be lost.
1345 * Natsemi suggests NOT reloading the EEPROM while live, so instead
1346 * we save the state that would have been loaded from EEPROM
1347 * on a normal power-up (see the spec EEPROM map). This assumes
1348 * whoever calls this will follow up with init_registers() eventually.
1351 /* CFG */
1352 cfg = readl(ioaddr + ChipConfig) & CFG_RESET_SAVE;
1353 /* WCSR */
1354 wcsr = readl(ioaddr + WOLCmd) & WCSR_RESET_SAVE;
1355 /* RFCR */
1356 rfcr = readl(ioaddr + RxFilterAddr) & RFCR_RESET_SAVE;
1357 /* PMATCH */
1358 for (i = 0; i < 3; i++) {
1359 writel(i*2, ioaddr + RxFilterAddr);
1360 pmatch[i] = readw(ioaddr + RxFilterData);
1362 /* SOPAS */
1363 for (i = 0; i < 3; i++) {
1364 writel(0xa+(i*2), ioaddr + RxFilterAddr);
1365 sopass[i] = readw(ioaddr + RxFilterData);
1368 /* now whack the chip */
1369 writel(ChipReset, ioaddr + ChipCmd);
1370 for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1371 if (!(readl(ioaddr + ChipCmd) & ChipReset))
1372 break;
1373 udelay(5);
1375 if (i==NATSEMI_HW_TIMEOUT) {
1376 printk(KERN_WARNING "%s: reset did not complete in %d usec.\n",
1377 dev->name, i*5);
1378 } else if (netif_msg_hw(np)) {
1379 printk(KERN_DEBUG "%s: reset completed in %d usec.\n",
1380 dev->name, i*5);
1383 /* restore CFG */
1384 cfg |= readl(ioaddr + ChipConfig) & ~CFG_RESET_SAVE;
1385 /* turn on external phy if it was selected */
1386 if (dev->if_port == PORT_TP)
1387 cfg &= ~(CfgExtPhy | CfgPhyDis);
1388 else
1389 cfg |= (CfgExtPhy | CfgPhyDis);
1390 writel(cfg, ioaddr + ChipConfig);
1391 /* restore WCSR */
1392 wcsr |= readl(ioaddr + WOLCmd) & ~WCSR_RESET_SAVE;
1393 writel(wcsr, ioaddr + WOLCmd);
1394 /* read RFCR */
1395 rfcr |= readl(ioaddr + RxFilterAddr) & ~RFCR_RESET_SAVE;
1396 /* restore PMATCH */
1397 for (i = 0; i < 3; i++) {
1398 writel(i*2, ioaddr + RxFilterAddr);
1399 writew(pmatch[i], ioaddr + RxFilterData);
1401 for (i = 0; i < 3; i++) {
1402 writel(0xa+(i*2), ioaddr + RxFilterAddr);
1403 writew(sopass[i], ioaddr + RxFilterData);
1405 /* restore RFCR */
1406 writel(rfcr, ioaddr + RxFilterAddr);
1409 static void reset_rx(struct net_device *dev)
1411 int i;
1412 struct netdev_private *np = netdev_priv(dev);
1413 void __iomem *ioaddr = ns_ioaddr(dev);
1415 np->intr_status &= ~RxResetDone;
1417 writel(RxReset, ioaddr + ChipCmd);
1419 for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1420 np->intr_status |= readl(ioaddr + IntrStatus);
1421 if (np->intr_status & RxResetDone)
1422 break;
1423 udelay(15);
1425 if (i==NATSEMI_HW_TIMEOUT) {
1426 printk(KERN_WARNING "%s: RX reset did not complete in %d usec.\n",
1427 dev->name, i*15);
1428 } else if (netif_msg_hw(np)) {
1429 printk(KERN_WARNING "%s: RX reset took %d usec.\n",
1430 dev->name, i*15);
1434 static void natsemi_reload_eeprom(struct net_device *dev)
1436 struct netdev_private *np = netdev_priv(dev);
1437 void __iomem *ioaddr = ns_ioaddr(dev);
1438 int i;
1440 writel(EepromReload, ioaddr + PCIBusCfg);
1441 for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1442 udelay(50);
1443 if (!(readl(ioaddr + PCIBusCfg) & EepromReload))
1444 break;
1446 if (i==NATSEMI_HW_TIMEOUT) {
1447 printk(KERN_WARNING "natsemi %s: EEPROM did not reload in %d usec.\n",
1448 pci_name(np->pci_dev), i*50);
1449 } else if (netif_msg_hw(np)) {
1450 printk(KERN_DEBUG "natsemi %s: EEPROM reloaded in %d usec.\n",
1451 pci_name(np->pci_dev), i*50);
1455 static void natsemi_stop_rxtx(struct net_device *dev)
1457 void __iomem * ioaddr = ns_ioaddr(dev);
1458 struct netdev_private *np = netdev_priv(dev);
1459 int i;
1461 writel(RxOff | TxOff, ioaddr + ChipCmd);
1462 for(i=0;i< NATSEMI_HW_TIMEOUT;i++) {
1463 if ((readl(ioaddr + ChipCmd) & (TxOn|RxOn)) == 0)
1464 break;
1465 udelay(5);
1467 if (i==NATSEMI_HW_TIMEOUT) {
1468 printk(KERN_WARNING "%s: Tx/Rx process did not stop in %d usec.\n",
1469 dev->name, i*5);
1470 } else if (netif_msg_hw(np)) {
1471 printk(KERN_DEBUG "%s: Tx/Rx process stopped in %d usec.\n",
1472 dev->name, i*5);
1476 static int netdev_open(struct net_device *dev)
1478 struct netdev_private *np = netdev_priv(dev);
1479 void __iomem * ioaddr = ns_ioaddr(dev);
1480 int i;
1482 /* Reset the chip, just in case. */
1483 natsemi_reset(dev);
1485 i = request_irq(dev->irq, &intr_handler, IRQF_SHARED, dev->name, dev);
1486 if (i) return i;
1488 if (netif_msg_ifup(np))
1489 printk(KERN_DEBUG "%s: netdev_open() irq %d.\n",
1490 dev->name, dev->irq);
1491 i = alloc_ring(dev);
1492 if (i < 0) {
1493 free_irq(dev->irq, dev);
1494 return i;
1496 init_ring(dev);
1497 spin_lock_irq(&np->lock);
1498 init_registers(dev);
1499 /* now set the MAC address according to dev->dev_addr */
1500 for (i = 0; i < 3; i++) {
1501 u16 mac = (dev->dev_addr[2*i+1]<<8) + dev->dev_addr[2*i];
1503 writel(i*2, ioaddr + RxFilterAddr);
1504 writew(mac, ioaddr + RxFilterData);
1506 writel(np->cur_rx_mode, ioaddr + RxFilterAddr);
1507 spin_unlock_irq(&np->lock);
1509 netif_start_queue(dev);
1511 if (netif_msg_ifup(np))
1512 printk(KERN_DEBUG "%s: Done netdev_open(), status: %#08x.\n",
1513 dev->name, (int)readl(ioaddr + ChipCmd));
1515 /* Set the timer to check for link beat. */
1516 init_timer(&np->timer);
1517 np->timer.expires = jiffies + NATSEMI_TIMER_FREQ;
1518 np->timer.data = (unsigned long)dev;
1519 np->timer.function = &netdev_timer; /* timer handler */
1520 add_timer(&np->timer);
1522 return 0;
1525 static void do_cable_magic(struct net_device *dev)
1527 struct netdev_private *np = netdev_priv(dev);
1528 void __iomem *ioaddr = ns_ioaddr(dev);
1530 if (dev->if_port != PORT_TP)
1531 return;
1533 if (np->srr >= SRR_DP83816_A5)
1534 return;
1537 * 100 MBit links with short cables can trip an issue with the chip.
1538 * The problem manifests as lots of CRC errors and/or flickering
1539 * activity LED while idle. This process is based on instructions
1540 * from engineers at National.
1542 if (readl(ioaddr + ChipConfig) & CfgSpeed100) {
1543 u16 data;
1545 writew(1, ioaddr + PGSEL);
1547 * coefficient visibility should already be enabled via
1548 * DSPCFG | 0x1000
1550 data = readw(ioaddr + TSTDAT) & 0xff;
1552 * the value must be negative, and within certain values
1553 * (these values all come from National)
1555 if (!(data & 0x80) || ((data >= 0xd8) && (data <= 0xff))) {
1556 struct netdev_private *np = netdev_priv(dev);
1558 /* the bug has been triggered - fix the coefficient */
1559 writew(TSTDAT_FIXED, ioaddr + TSTDAT);
1560 /* lock the value */
1561 data = readw(ioaddr + DSPCFG);
1562 np->dspcfg = data | DSPCFG_LOCK;
1563 writew(np->dspcfg, ioaddr + DSPCFG);
1565 writew(0, ioaddr + PGSEL);
1569 static void undo_cable_magic(struct net_device *dev)
1571 u16 data;
1572 struct netdev_private *np = netdev_priv(dev);
1573 void __iomem * ioaddr = ns_ioaddr(dev);
1575 if (dev->if_port != PORT_TP)
1576 return;
1578 if (np->srr >= SRR_DP83816_A5)
1579 return;
1581 writew(1, ioaddr + PGSEL);
1582 /* make sure the lock bit is clear */
1583 data = readw(ioaddr + DSPCFG);
1584 np->dspcfg = data & ~DSPCFG_LOCK;
1585 writew(np->dspcfg, ioaddr + DSPCFG);
1586 writew(0, ioaddr + PGSEL);
1589 static void check_link(struct net_device *dev)
1591 struct netdev_private *np = netdev_priv(dev);
1592 void __iomem * ioaddr = ns_ioaddr(dev);
1593 int duplex = np->duplex;
1594 u16 bmsr;
1596 /* If we are ignoring the PHY then don't try reading it. */
1597 if (np->ignore_phy)
1598 goto propagate_state;
1600 /* The link status field is latched: it remains low after a temporary
1601 * link failure until it's read. We need the current link status,
1602 * thus read twice.
1604 mdio_read(dev, MII_BMSR);
1605 bmsr = mdio_read(dev, MII_BMSR);
1607 if (!(bmsr & BMSR_LSTATUS)) {
1608 if (netif_carrier_ok(dev)) {
1609 if (netif_msg_link(np))
1610 printk(KERN_NOTICE "%s: link down.\n",
1611 dev->name);
1612 netif_carrier_off(dev);
1613 undo_cable_magic(dev);
1615 return;
1617 if (!netif_carrier_ok(dev)) {
1618 if (netif_msg_link(np))
1619 printk(KERN_NOTICE "%s: link up.\n", dev->name);
1620 netif_carrier_on(dev);
1621 do_cable_magic(dev);
1624 duplex = np->full_duplex;
1625 if (!duplex) {
1626 if (bmsr & BMSR_ANEGCOMPLETE) {
1627 int tmp = mii_nway_result(
1628 np->advertising & mdio_read(dev, MII_LPA));
1629 if (tmp == LPA_100FULL || tmp == LPA_10FULL)
1630 duplex = 1;
1631 } else if (mdio_read(dev, MII_BMCR) & BMCR_FULLDPLX)
1632 duplex = 1;
1635 propagate_state:
1636 /* if duplex is set then bit 28 must be set, too */
1637 if (duplex ^ !!(np->rx_config & RxAcceptTx)) {
1638 if (netif_msg_link(np))
1639 printk(KERN_INFO
1640 "%s: Setting %s-duplex based on negotiated "
1641 "link capability.\n", dev->name,
1642 duplex ? "full" : "half");
1643 if (duplex) {
1644 np->rx_config |= RxAcceptTx;
1645 np->tx_config |= TxCarrierIgn | TxHeartIgn;
1646 } else {
1647 np->rx_config &= ~RxAcceptTx;
1648 np->tx_config &= ~(TxCarrierIgn | TxHeartIgn);
1650 writel(np->tx_config, ioaddr + TxConfig);
1651 writel(np->rx_config, ioaddr + RxConfig);
1655 static void init_registers(struct net_device *dev)
1657 struct netdev_private *np = netdev_priv(dev);
1658 void __iomem * ioaddr = ns_ioaddr(dev);
1660 init_phy_fixup(dev);
1662 /* clear any interrupts that are pending, such as wake events */
1663 readl(ioaddr + IntrStatus);
1665 writel(np->ring_dma, ioaddr + RxRingPtr);
1666 writel(np->ring_dma + RX_RING_SIZE * sizeof(struct netdev_desc),
1667 ioaddr + TxRingPtr);
1669 /* Initialize other registers.
1670 * Configure the PCI bus bursts and FIFO thresholds.
1671 * Configure for standard, in-spec Ethernet.
1672 * Start with half-duplex. check_link will update
1673 * to the correct settings.
1676 /* DRTH: 2: start tx if 64 bytes are in the fifo
1677 * FLTH: 0x10: refill with next packet if 512 bytes are free
1678 * MXDMA: 0: up to 256 byte bursts.
1679 * MXDMA must be <= FLTH
1680 * ECRETRY=1
1681 * ATP=1
1683 np->tx_config = TxAutoPad | TxCollRetry | TxMxdma_256 |
1684 TX_FLTH_VAL | TX_DRTH_VAL_START;
1685 writel(np->tx_config, ioaddr + TxConfig);
1687 /* DRTH 0x10: start copying to memory if 128 bytes are in the fifo
1688 * MXDMA 0: up to 256 byte bursts
1690 np->rx_config = RxMxdma_256 | RX_DRTH_VAL;
1691 /* if receive ring now has bigger buffers than normal, enable jumbo */
1692 if (np->rx_buf_sz > NATSEMI_LONGPKT)
1693 np->rx_config |= RxAcceptLong;
1695 writel(np->rx_config, ioaddr + RxConfig);
1697 /* Disable PME:
1698 * The PME bit is initialized from the EEPROM contents.
1699 * PCI cards probably have PME disabled, but motherboard
1700 * implementations may have PME set to enable WakeOnLan.
1701 * With PME set the chip will scan incoming packets but
1702 * nothing will be written to memory. */
1703 np->SavedClkRun = readl(ioaddr + ClkRun);
1704 writel(np->SavedClkRun & ~PMEEnable, ioaddr + ClkRun);
1705 if (np->SavedClkRun & PMEStatus && netif_msg_wol(np)) {
1706 printk(KERN_NOTICE "%s: Wake-up event %#08x\n",
1707 dev->name, readl(ioaddr + WOLCmd));
1710 check_link(dev);
1711 __set_rx_mode(dev);
1713 /* Enable interrupts by setting the interrupt mask. */
1714 writel(DEFAULT_INTR, ioaddr + IntrMask);
1715 natsemi_irq_enable(dev);
1717 writel(RxOn | TxOn, ioaddr + ChipCmd);
1718 writel(StatsClear, ioaddr + StatsCtrl); /* Clear Stats */
1722 * netdev_timer:
1723 * Purpose:
1724 * 1) check for link changes. Usually they are handled by the MII interrupt
1725 * but it doesn't hurt to check twice.
1726 * 2) check for sudden death of the NIC:
1727 * It seems that a reference set for this chip went out with incorrect info,
1728 * and there exist boards that aren't quite right. An unexpected voltage
1729 * drop can cause the PHY to get itself in a weird state (basically reset).
1730 * NOTE: this only seems to affect revC chips.
1731 * 3) check of death of the RX path due to OOM
1733 static void netdev_timer(unsigned long data)
1735 struct net_device *dev = (struct net_device *)data;
1736 struct netdev_private *np = netdev_priv(dev);
1737 void __iomem * ioaddr = ns_ioaddr(dev);
1738 int next_tick = 5*HZ;
1740 if (netif_msg_timer(np)) {
1741 /* DO NOT read the IntrStatus register,
1742 * a read clears any pending interrupts.
1744 printk(KERN_DEBUG "%s: Media selection timer tick.\n",
1745 dev->name);
1748 if (dev->if_port == PORT_TP) {
1749 u16 dspcfg;
1751 spin_lock_irq(&np->lock);
1752 /* check for a nasty random phy-reset - use dspcfg as a flag */
1753 writew(1, ioaddr+PGSEL);
1754 dspcfg = readw(ioaddr+DSPCFG);
1755 writew(0, ioaddr+PGSEL);
1756 if (dspcfg != np->dspcfg) {
1757 if (!netif_queue_stopped(dev)) {
1758 spin_unlock_irq(&np->lock);
1759 if (netif_msg_hw(np))
1760 printk(KERN_NOTICE "%s: possible phy reset: "
1761 "re-initializing\n", dev->name);
1762 disable_irq(dev->irq);
1763 spin_lock_irq(&np->lock);
1764 natsemi_stop_rxtx(dev);
1765 dump_ring(dev);
1766 reinit_ring(dev);
1767 init_registers(dev);
1768 spin_unlock_irq(&np->lock);
1769 enable_irq(dev->irq);
1770 } else {
1771 /* hurry back */
1772 next_tick = HZ;
1773 spin_unlock_irq(&np->lock);
1775 } else {
1776 /* init_registers() calls check_link() for the above case */
1777 check_link(dev);
1778 spin_unlock_irq(&np->lock);
1780 } else {
1781 spin_lock_irq(&np->lock);
1782 check_link(dev);
1783 spin_unlock_irq(&np->lock);
1785 if (np->oom) {
1786 disable_irq(dev->irq);
1787 np->oom = 0;
1788 refill_rx(dev);
1789 enable_irq(dev->irq);
1790 if (!np->oom) {
1791 writel(RxOn, ioaddr + ChipCmd);
1792 } else {
1793 next_tick = 1;
1796 mod_timer(&np->timer, jiffies + next_tick);
1799 static void dump_ring(struct net_device *dev)
1801 struct netdev_private *np = netdev_priv(dev);
1803 if (netif_msg_pktdata(np)) {
1804 int i;
1805 printk(KERN_DEBUG " Tx ring at %p:\n", np->tx_ring);
1806 for (i = 0; i < TX_RING_SIZE; i++) {
1807 printk(KERN_DEBUG " #%d desc. %#08x %#08x %#08x.\n",
1808 i, np->tx_ring[i].next_desc,
1809 np->tx_ring[i].cmd_status,
1810 np->tx_ring[i].addr);
1812 printk(KERN_DEBUG " Rx ring %p:\n", np->rx_ring);
1813 for (i = 0; i < RX_RING_SIZE; i++) {
1814 printk(KERN_DEBUG " #%d desc. %#08x %#08x %#08x.\n",
1815 i, np->rx_ring[i].next_desc,
1816 np->rx_ring[i].cmd_status,
1817 np->rx_ring[i].addr);
1822 static void tx_timeout(struct net_device *dev)
1824 struct netdev_private *np = netdev_priv(dev);
1825 void __iomem * ioaddr = ns_ioaddr(dev);
1827 disable_irq(dev->irq);
1828 spin_lock_irq(&np->lock);
1829 if (!np->hands_off) {
1830 if (netif_msg_tx_err(np))
1831 printk(KERN_WARNING
1832 "%s: Transmit timed out, status %#08x,"
1833 " resetting...\n",
1834 dev->name, readl(ioaddr + IntrStatus));
1835 dump_ring(dev);
1837 natsemi_reset(dev);
1838 reinit_ring(dev);
1839 init_registers(dev);
1840 } else {
1841 printk(KERN_WARNING
1842 "%s: tx_timeout while in hands_off state?\n",
1843 dev->name);
1845 spin_unlock_irq(&np->lock);
1846 enable_irq(dev->irq);
1848 dev->trans_start = jiffies;
1849 np->stats.tx_errors++;
1850 netif_wake_queue(dev);
1853 static int alloc_ring(struct net_device *dev)
1855 struct netdev_private *np = netdev_priv(dev);
1856 np->rx_ring = pci_alloc_consistent(np->pci_dev,
1857 sizeof(struct netdev_desc) * (RX_RING_SIZE+TX_RING_SIZE),
1858 &np->ring_dma);
1859 if (!np->rx_ring)
1860 return -ENOMEM;
1861 np->tx_ring = &np->rx_ring[RX_RING_SIZE];
1862 return 0;
1865 static void refill_rx(struct net_device *dev)
1867 struct netdev_private *np = netdev_priv(dev);
1869 /* Refill the Rx ring buffers. */
1870 for (; np->cur_rx - np->dirty_rx > 0; np->dirty_rx++) {
1871 struct sk_buff *skb;
1872 int entry = np->dirty_rx % RX_RING_SIZE;
1873 if (np->rx_skbuff[entry] == NULL) {
1874 unsigned int buflen = np->rx_buf_sz+NATSEMI_PADDING;
1875 skb = dev_alloc_skb(buflen);
1876 np->rx_skbuff[entry] = skb;
1877 if (skb == NULL)
1878 break; /* Better luck next round. */
1879 skb->dev = dev; /* Mark as being used by this device. */
1880 np->rx_dma[entry] = pci_map_single(np->pci_dev,
1881 skb->data, buflen, PCI_DMA_FROMDEVICE);
1882 np->rx_ring[entry].addr = cpu_to_le32(np->rx_dma[entry]);
1884 np->rx_ring[entry].cmd_status = cpu_to_le32(np->rx_buf_sz);
1886 if (np->cur_rx - np->dirty_rx == RX_RING_SIZE) {
1887 if (netif_msg_rx_err(np))
1888 printk(KERN_WARNING "%s: going OOM.\n", dev->name);
1889 np->oom = 1;
1893 static void set_bufsize(struct net_device *dev)
1895 struct netdev_private *np = netdev_priv(dev);
1896 if (dev->mtu <= ETH_DATA_LEN)
1897 np->rx_buf_sz = ETH_DATA_LEN + NATSEMI_HEADERS;
1898 else
1899 np->rx_buf_sz = dev->mtu + NATSEMI_HEADERS;
1902 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */
1903 static void init_ring(struct net_device *dev)
1905 struct netdev_private *np = netdev_priv(dev);
1906 int i;
1908 /* 1) TX ring */
1909 np->dirty_tx = np->cur_tx = 0;
1910 for (i = 0; i < TX_RING_SIZE; i++) {
1911 np->tx_skbuff[i] = NULL;
1912 np->tx_ring[i].next_desc = cpu_to_le32(np->ring_dma
1913 +sizeof(struct netdev_desc)
1914 *((i+1)%TX_RING_SIZE+RX_RING_SIZE));
1915 np->tx_ring[i].cmd_status = 0;
1918 /* 2) RX ring */
1919 np->dirty_rx = 0;
1920 np->cur_rx = RX_RING_SIZE;
1921 np->oom = 0;
1922 set_bufsize(dev);
1924 np->rx_head_desc = &np->rx_ring[0];
1926 /* Please be carefull before changing this loop - at least gcc-2.95.1
1927 * miscompiles it otherwise.
1929 /* Initialize all Rx descriptors. */
1930 for (i = 0; i < RX_RING_SIZE; i++) {
1931 np->rx_ring[i].next_desc = cpu_to_le32(np->ring_dma
1932 +sizeof(struct netdev_desc)
1933 *((i+1)%RX_RING_SIZE));
1934 np->rx_ring[i].cmd_status = cpu_to_le32(DescOwn);
1935 np->rx_skbuff[i] = NULL;
1937 refill_rx(dev);
1938 dump_ring(dev);
1941 static void drain_tx(struct net_device *dev)
1943 struct netdev_private *np = netdev_priv(dev);
1944 int i;
1946 for (i = 0; i < TX_RING_SIZE; i++) {
1947 if (np->tx_skbuff[i]) {
1948 pci_unmap_single(np->pci_dev,
1949 np->tx_dma[i], np->tx_skbuff[i]->len,
1950 PCI_DMA_TODEVICE);
1951 dev_kfree_skb(np->tx_skbuff[i]);
1952 np->stats.tx_dropped++;
1954 np->tx_skbuff[i] = NULL;
1958 static void drain_rx(struct net_device *dev)
1960 struct netdev_private *np = netdev_priv(dev);
1961 unsigned int buflen = np->rx_buf_sz;
1962 int i;
1964 /* Free all the skbuffs in the Rx queue. */
1965 for (i = 0; i < RX_RING_SIZE; i++) {
1966 np->rx_ring[i].cmd_status = 0;
1967 np->rx_ring[i].addr = 0xBADF00D0; /* An invalid address. */
1968 if (np->rx_skbuff[i]) {
1969 pci_unmap_single(np->pci_dev,
1970 np->rx_dma[i], buflen,
1971 PCI_DMA_FROMDEVICE);
1972 dev_kfree_skb(np->rx_skbuff[i]);
1974 np->rx_skbuff[i] = NULL;
1978 static void drain_ring(struct net_device *dev)
1980 drain_rx(dev);
1981 drain_tx(dev);
1984 static void free_ring(struct net_device *dev)
1986 struct netdev_private *np = netdev_priv(dev);
1987 pci_free_consistent(np->pci_dev,
1988 sizeof(struct netdev_desc) * (RX_RING_SIZE+TX_RING_SIZE),
1989 np->rx_ring, np->ring_dma);
1992 static void reinit_rx(struct net_device *dev)
1994 struct netdev_private *np = netdev_priv(dev);
1995 int i;
1997 /* RX Ring */
1998 np->dirty_rx = 0;
1999 np->cur_rx = RX_RING_SIZE;
2000 np->rx_head_desc = &np->rx_ring[0];
2001 /* Initialize all Rx descriptors. */
2002 for (i = 0; i < RX_RING_SIZE; i++)
2003 np->rx_ring[i].cmd_status = cpu_to_le32(DescOwn);
2005 refill_rx(dev);
2008 static void reinit_ring(struct net_device *dev)
2010 struct netdev_private *np = netdev_priv(dev);
2011 int i;
2013 /* drain TX ring */
2014 drain_tx(dev);
2015 np->dirty_tx = np->cur_tx = 0;
2016 for (i=0;i<TX_RING_SIZE;i++)
2017 np->tx_ring[i].cmd_status = 0;
2019 reinit_rx(dev);
2022 static int start_tx(struct sk_buff *skb, struct net_device *dev)
2024 struct netdev_private *np = netdev_priv(dev);
2025 void __iomem * ioaddr = ns_ioaddr(dev);
2026 unsigned entry;
2027 unsigned long flags;
2029 /* Note: Ordering is important here, set the field with the
2030 "ownership" bit last, and only then increment cur_tx. */
2032 /* Calculate the next Tx descriptor entry. */
2033 entry = np->cur_tx % TX_RING_SIZE;
2035 np->tx_skbuff[entry] = skb;
2036 np->tx_dma[entry] = pci_map_single(np->pci_dev,
2037 skb->data,skb->len, PCI_DMA_TODEVICE);
2039 np->tx_ring[entry].addr = cpu_to_le32(np->tx_dma[entry]);
2041 spin_lock_irqsave(&np->lock, flags);
2043 if (!np->hands_off) {
2044 np->tx_ring[entry].cmd_status = cpu_to_le32(DescOwn | skb->len);
2045 /* StrongARM: Explicitly cache flush np->tx_ring and
2046 * skb->data,skb->len. */
2047 wmb();
2048 np->cur_tx++;
2049 if (np->cur_tx - np->dirty_tx >= TX_QUEUE_LEN - 1) {
2050 netdev_tx_done(dev);
2051 if (np->cur_tx - np->dirty_tx >= TX_QUEUE_LEN - 1)
2052 netif_stop_queue(dev);
2054 /* Wake the potentially-idle transmit channel. */
2055 writel(TxOn, ioaddr + ChipCmd);
2056 } else {
2057 dev_kfree_skb_irq(skb);
2058 np->stats.tx_dropped++;
2060 spin_unlock_irqrestore(&np->lock, flags);
2062 dev->trans_start = jiffies;
2064 if (netif_msg_tx_queued(np)) {
2065 printk(KERN_DEBUG "%s: Transmit frame #%d queued in slot %d.\n",
2066 dev->name, np->cur_tx, entry);
2068 return 0;
2071 static void netdev_tx_done(struct net_device *dev)
2073 struct netdev_private *np = netdev_priv(dev);
2075 for (; np->cur_tx - np->dirty_tx > 0; np->dirty_tx++) {
2076 int entry = np->dirty_tx % TX_RING_SIZE;
2077 if (np->tx_ring[entry].cmd_status & cpu_to_le32(DescOwn))
2078 break;
2079 if (netif_msg_tx_done(np))
2080 printk(KERN_DEBUG
2081 "%s: tx frame #%d finished, status %#08x.\n",
2082 dev->name, np->dirty_tx,
2083 le32_to_cpu(np->tx_ring[entry].cmd_status));
2084 if (np->tx_ring[entry].cmd_status & cpu_to_le32(DescPktOK)) {
2085 np->stats.tx_packets++;
2086 np->stats.tx_bytes += np->tx_skbuff[entry]->len;
2087 } else { /* Various Tx errors */
2088 int tx_status =
2089 le32_to_cpu(np->tx_ring[entry].cmd_status);
2090 if (tx_status & (DescTxAbort|DescTxExcColl))
2091 np->stats.tx_aborted_errors++;
2092 if (tx_status & DescTxFIFO)
2093 np->stats.tx_fifo_errors++;
2094 if (tx_status & DescTxCarrier)
2095 np->stats.tx_carrier_errors++;
2096 if (tx_status & DescTxOOWCol)
2097 np->stats.tx_window_errors++;
2098 np->stats.tx_errors++;
2100 pci_unmap_single(np->pci_dev,np->tx_dma[entry],
2101 np->tx_skbuff[entry]->len,
2102 PCI_DMA_TODEVICE);
2103 /* Free the original skb. */
2104 dev_kfree_skb_irq(np->tx_skbuff[entry]);
2105 np->tx_skbuff[entry] = NULL;
2107 if (netif_queue_stopped(dev)
2108 && np->cur_tx - np->dirty_tx < TX_QUEUE_LEN - 4) {
2109 /* The ring is no longer full, wake queue. */
2110 netif_wake_queue(dev);
2114 /* The interrupt handler doesn't actually handle interrupts itself, it
2115 * schedules a NAPI poll if there is anything to do. */
2116 static irqreturn_t intr_handler(int irq, void *dev_instance)
2118 struct net_device *dev = dev_instance;
2119 struct netdev_private *np = netdev_priv(dev);
2120 void __iomem * ioaddr = ns_ioaddr(dev);
2122 /* Reading IntrStatus automatically acknowledges so don't do
2123 * that while interrupts are disabled, (for example, while a
2124 * poll is scheduled). */
2125 if (np->hands_off || !readl(ioaddr + IntrEnable))
2126 return IRQ_NONE;
2128 np->intr_status = readl(ioaddr + IntrStatus);
2130 if (!np->intr_status)
2131 return IRQ_NONE;
2133 if (netif_msg_intr(np))
2134 printk(KERN_DEBUG
2135 "%s: Interrupt, status %#08x, mask %#08x.\n",
2136 dev->name, np->intr_status,
2137 readl(ioaddr + IntrMask));
2139 prefetch(&np->rx_skbuff[np->cur_rx % RX_RING_SIZE]);
2141 if (netif_rx_schedule_prep(dev)) {
2142 /* Disable interrupts and register for poll */
2143 natsemi_irq_disable(dev);
2144 __netif_rx_schedule(dev);
2145 } else
2146 printk(KERN_WARNING
2147 "%s: Ignoring interrupt, status %#08x, mask %#08x.\n",
2148 dev->name, np->intr_status,
2149 readl(ioaddr + IntrMask));
2151 return IRQ_HANDLED;
2154 /* This is the NAPI poll routine. As well as the standard RX handling
2155 * it also handles all other interrupts that the chip might raise.
2157 static int natsemi_poll(struct net_device *dev, int *budget)
2159 struct netdev_private *np = netdev_priv(dev);
2160 void __iomem * ioaddr = ns_ioaddr(dev);
2162 int work_to_do = min(*budget, dev->quota);
2163 int work_done = 0;
2165 do {
2166 if (netif_msg_intr(np))
2167 printk(KERN_DEBUG
2168 "%s: Poll, status %#08x, mask %#08x.\n",
2169 dev->name, np->intr_status,
2170 readl(ioaddr + IntrMask));
2172 /* netdev_rx() may read IntrStatus again if the RX state
2173 * machine falls over so do it first. */
2174 if (np->intr_status &
2175 (IntrRxDone | IntrRxIntr | RxStatusFIFOOver |
2176 IntrRxErr | IntrRxOverrun)) {
2177 netdev_rx(dev, &work_done, work_to_do);
2180 if (np->intr_status &
2181 (IntrTxDone | IntrTxIntr | IntrTxIdle | IntrTxErr)) {
2182 spin_lock(&np->lock);
2183 netdev_tx_done(dev);
2184 spin_unlock(&np->lock);
2187 /* Abnormal error summary/uncommon events handlers. */
2188 if (np->intr_status & IntrAbnormalSummary)
2189 netdev_error(dev, np->intr_status);
2191 *budget -= work_done;
2192 dev->quota -= work_done;
2194 if (work_done >= work_to_do)
2195 return 1;
2197 np->intr_status = readl(ioaddr + IntrStatus);
2198 } while (np->intr_status);
2200 netif_rx_complete(dev);
2202 /* Reenable interrupts providing nothing is trying to shut
2203 * the chip down. */
2204 spin_lock(&np->lock);
2205 if (!np->hands_off && netif_running(dev))
2206 natsemi_irq_enable(dev);
2207 spin_unlock(&np->lock);
2209 return 0;
2212 /* This routine is logically part of the interrupt handler, but separated
2213 for clarity and better register allocation. */
2214 static void netdev_rx(struct net_device *dev, int *work_done, int work_to_do)
2216 struct netdev_private *np = netdev_priv(dev);
2217 int entry = np->cur_rx % RX_RING_SIZE;
2218 int boguscnt = np->dirty_rx + RX_RING_SIZE - np->cur_rx;
2219 s32 desc_status = le32_to_cpu(np->rx_head_desc->cmd_status);
2220 unsigned int buflen = np->rx_buf_sz;
2221 void __iomem * ioaddr = ns_ioaddr(dev);
2223 /* If the driver owns the next entry it's a new packet. Send it up. */
2224 while (desc_status < 0) { /* e.g. & DescOwn */
2225 int pkt_len;
2226 if (netif_msg_rx_status(np))
2227 printk(KERN_DEBUG
2228 " netdev_rx() entry %d status was %#08x.\n",
2229 entry, desc_status);
2230 if (--boguscnt < 0)
2231 break;
2233 if (*work_done >= work_to_do)
2234 break;
2236 (*work_done)++;
2238 pkt_len = (desc_status & DescSizeMask) - 4;
2239 if ((desc_status&(DescMore|DescPktOK|DescRxLong)) != DescPktOK){
2240 if (desc_status & DescMore) {
2241 unsigned long flags;
2243 if (netif_msg_rx_err(np))
2244 printk(KERN_WARNING
2245 "%s: Oversized(?) Ethernet "
2246 "frame spanned multiple "
2247 "buffers, entry %#08x "
2248 "status %#08x.\n", dev->name,
2249 np->cur_rx, desc_status);
2250 np->stats.rx_length_errors++;
2252 /* The RX state machine has probably
2253 * locked up beneath us. Follow the
2254 * reset procedure documented in
2255 * AN-1287. */
2257 spin_lock_irqsave(&np->lock, flags);
2258 reset_rx(dev);
2259 reinit_rx(dev);
2260 writel(np->ring_dma, ioaddr + RxRingPtr);
2261 check_link(dev);
2262 spin_unlock_irqrestore(&np->lock, flags);
2264 /* We'll enable RX on exit from this
2265 * function. */
2266 break;
2268 } else {
2269 /* There was an error. */
2270 np->stats.rx_errors++;
2271 if (desc_status & (DescRxAbort|DescRxOver))
2272 np->stats.rx_over_errors++;
2273 if (desc_status & (DescRxLong|DescRxRunt))
2274 np->stats.rx_length_errors++;
2275 if (desc_status & (DescRxInvalid|DescRxAlign))
2276 np->stats.rx_frame_errors++;
2277 if (desc_status & DescRxCRC)
2278 np->stats.rx_crc_errors++;
2280 } else if (pkt_len > np->rx_buf_sz) {
2281 /* if this is the tail of a double buffer
2282 * packet, we've already counted the error
2283 * on the first part. Ignore the second half.
2285 } else {
2286 struct sk_buff *skb;
2287 /* Omit CRC size. */
2288 /* Check if the packet is long enough to accept
2289 * without copying to a minimally-sized skbuff. */
2290 if (pkt_len < rx_copybreak
2291 && (skb = dev_alloc_skb(pkt_len + RX_OFFSET)) != NULL) {
2292 /* 16 byte align the IP header */
2293 skb_reserve(skb, RX_OFFSET);
2294 pci_dma_sync_single_for_cpu(np->pci_dev,
2295 np->rx_dma[entry],
2296 buflen,
2297 PCI_DMA_FROMDEVICE);
2298 eth_copy_and_sum(skb,
2299 np->rx_skbuff[entry]->data, pkt_len, 0);
2300 skb_put(skb, pkt_len);
2301 pci_dma_sync_single_for_device(np->pci_dev,
2302 np->rx_dma[entry],
2303 buflen,
2304 PCI_DMA_FROMDEVICE);
2305 } else {
2306 pci_unmap_single(np->pci_dev, np->rx_dma[entry],
2307 buflen, PCI_DMA_FROMDEVICE);
2308 skb_put(skb = np->rx_skbuff[entry], pkt_len);
2309 np->rx_skbuff[entry] = NULL;
2311 skb->protocol = eth_type_trans(skb, dev);
2312 netif_receive_skb(skb);
2313 dev->last_rx = jiffies;
2314 np->stats.rx_packets++;
2315 np->stats.rx_bytes += pkt_len;
2317 entry = (++np->cur_rx) % RX_RING_SIZE;
2318 np->rx_head_desc = &np->rx_ring[entry];
2319 desc_status = le32_to_cpu(np->rx_head_desc->cmd_status);
2321 refill_rx(dev);
2323 /* Restart Rx engine if stopped. */
2324 if (np->oom)
2325 mod_timer(&np->timer, jiffies + 1);
2326 else
2327 writel(RxOn, ioaddr + ChipCmd);
2330 static void netdev_error(struct net_device *dev, int intr_status)
2332 struct netdev_private *np = netdev_priv(dev);
2333 void __iomem * ioaddr = ns_ioaddr(dev);
2335 spin_lock(&np->lock);
2336 if (intr_status & LinkChange) {
2337 u16 lpa = mdio_read(dev, MII_LPA);
2338 if (mdio_read(dev, MII_BMCR) & BMCR_ANENABLE
2339 && netif_msg_link(np)) {
2340 printk(KERN_INFO
2341 "%s: Autonegotiation advertising"
2342 " %#04x partner %#04x.\n", dev->name,
2343 np->advertising, lpa);
2346 /* read MII int status to clear the flag */
2347 readw(ioaddr + MIntrStatus);
2348 check_link(dev);
2350 if (intr_status & StatsMax) {
2351 __get_stats(dev);
2353 if (intr_status & IntrTxUnderrun) {
2354 if ((np->tx_config & TxDrthMask) < TX_DRTH_VAL_LIMIT) {
2355 np->tx_config += TX_DRTH_VAL_INC;
2356 if (netif_msg_tx_err(np))
2357 printk(KERN_NOTICE
2358 "%s: increased tx threshold, txcfg %#08x.\n",
2359 dev->name, np->tx_config);
2360 } else {
2361 if (netif_msg_tx_err(np))
2362 printk(KERN_NOTICE
2363 "%s: tx underrun with maximum tx threshold, txcfg %#08x.\n",
2364 dev->name, np->tx_config);
2366 writel(np->tx_config, ioaddr + TxConfig);
2368 if (intr_status & WOLPkt && netif_msg_wol(np)) {
2369 int wol_status = readl(ioaddr + WOLCmd);
2370 printk(KERN_NOTICE "%s: Link wake-up event %#08x\n",
2371 dev->name, wol_status);
2373 if (intr_status & RxStatusFIFOOver) {
2374 if (netif_msg_rx_err(np) && netif_msg_intr(np)) {
2375 printk(KERN_NOTICE "%s: Rx status FIFO overrun\n",
2376 dev->name);
2378 np->stats.rx_fifo_errors++;
2380 /* Hmmmmm, it's not clear how to recover from PCI faults. */
2381 if (intr_status & IntrPCIErr) {
2382 printk(KERN_NOTICE "%s: PCI error %#08x\n", dev->name,
2383 intr_status & IntrPCIErr);
2384 np->stats.tx_fifo_errors++;
2385 np->stats.rx_fifo_errors++;
2387 spin_unlock(&np->lock);
2390 static void __get_stats(struct net_device *dev)
2392 void __iomem * ioaddr = ns_ioaddr(dev);
2393 struct netdev_private *np = netdev_priv(dev);
2395 /* The chip only need report frame silently dropped. */
2396 np->stats.rx_crc_errors += readl(ioaddr + RxCRCErrs);
2397 np->stats.rx_missed_errors += readl(ioaddr + RxMissed);
2400 static struct net_device_stats *get_stats(struct net_device *dev)
2402 struct netdev_private *np = netdev_priv(dev);
2404 /* The chip only need report frame silently dropped. */
2405 spin_lock_irq(&np->lock);
2406 if (netif_running(dev) && !np->hands_off)
2407 __get_stats(dev);
2408 spin_unlock_irq(&np->lock);
2410 return &np->stats;
2413 #ifdef CONFIG_NET_POLL_CONTROLLER
2414 static void natsemi_poll_controller(struct net_device *dev)
2416 disable_irq(dev->irq);
2417 intr_handler(dev->irq, dev);
2418 enable_irq(dev->irq);
2420 #endif
2422 #define HASH_TABLE 0x200
2423 static void __set_rx_mode(struct net_device *dev)
2425 void __iomem * ioaddr = ns_ioaddr(dev);
2426 struct netdev_private *np = netdev_priv(dev);
2427 u8 mc_filter[64]; /* Multicast hash filter */
2428 u32 rx_mode;
2430 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
2431 rx_mode = RxFilterEnable | AcceptBroadcast
2432 | AcceptAllMulticast | AcceptAllPhys | AcceptMyPhys;
2433 } else if ((dev->mc_count > multicast_filter_limit)
2434 || (dev->flags & IFF_ALLMULTI)) {
2435 rx_mode = RxFilterEnable | AcceptBroadcast
2436 | AcceptAllMulticast | AcceptMyPhys;
2437 } else {
2438 struct dev_mc_list *mclist;
2439 int i;
2440 memset(mc_filter, 0, sizeof(mc_filter));
2441 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
2442 i++, mclist = mclist->next) {
2443 int i = (ether_crc(ETH_ALEN, mclist->dmi_addr) >> 23) & 0x1ff;
2444 mc_filter[i/8] |= (1 << (i & 0x07));
2446 rx_mode = RxFilterEnable | AcceptBroadcast
2447 | AcceptMulticast | AcceptMyPhys;
2448 for (i = 0; i < 64; i += 2) {
2449 writel(HASH_TABLE + i, ioaddr + RxFilterAddr);
2450 writel((mc_filter[i + 1] << 8) + mc_filter[i],
2451 ioaddr + RxFilterData);
2454 writel(rx_mode, ioaddr + RxFilterAddr);
2455 np->cur_rx_mode = rx_mode;
2458 static int natsemi_change_mtu(struct net_device *dev, int new_mtu)
2460 if (new_mtu < 64 || new_mtu > NATSEMI_RX_LIMIT-NATSEMI_HEADERS)
2461 return -EINVAL;
2463 dev->mtu = new_mtu;
2465 /* synchronized against open : rtnl_lock() held by caller */
2466 if (netif_running(dev)) {
2467 struct netdev_private *np = netdev_priv(dev);
2468 void __iomem * ioaddr = ns_ioaddr(dev);
2470 disable_irq(dev->irq);
2471 spin_lock(&np->lock);
2472 /* stop engines */
2473 natsemi_stop_rxtx(dev);
2474 /* drain rx queue */
2475 drain_rx(dev);
2476 /* change buffers */
2477 set_bufsize(dev);
2478 reinit_rx(dev);
2479 writel(np->ring_dma, ioaddr + RxRingPtr);
2480 /* restart engines */
2481 writel(RxOn | TxOn, ioaddr + ChipCmd);
2482 spin_unlock(&np->lock);
2483 enable_irq(dev->irq);
2485 return 0;
2488 static void set_rx_mode(struct net_device *dev)
2490 struct netdev_private *np = netdev_priv(dev);
2491 spin_lock_irq(&np->lock);
2492 if (!np->hands_off)
2493 __set_rx_mode(dev);
2494 spin_unlock_irq(&np->lock);
2497 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2499 struct netdev_private *np = netdev_priv(dev);
2500 strncpy(info->driver, DRV_NAME, ETHTOOL_BUSINFO_LEN);
2501 strncpy(info->version, DRV_VERSION, ETHTOOL_BUSINFO_LEN);
2502 strncpy(info->bus_info, pci_name(np->pci_dev), ETHTOOL_BUSINFO_LEN);
2505 static int get_regs_len(struct net_device *dev)
2507 return NATSEMI_REGS_SIZE;
2510 static int get_eeprom_len(struct net_device *dev)
2512 struct netdev_private *np = netdev_priv(dev);
2513 return np->eeprom_size;
2516 static int get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
2518 struct netdev_private *np = netdev_priv(dev);
2519 spin_lock_irq(&np->lock);
2520 netdev_get_ecmd(dev, ecmd);
2521 spin_unlock_irq(&np->lock);
2522 return 0;
2525 static int set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
2527 struct netdev_private *np = netdev_priv(dev);
2528 int res;
2529 spin_lock_irq(&np->lock);
2530 res = netdev_set_ecmd(dev, ecmd);
2531 spin_unlock_irq(&np->lock);
2532 return res;
2535 static void get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2537 struct netdev_private *np = netdev_priv(dev);
2538 spin_lock_irq(&np->lock);
2539 netdev_get_wol(dev, &wol->supported, &wol->wolopts);
2540 netdev_get_sopass(dev, wol->sopass);
2541 spin_unlock_irq(&np->lock);
2544 static int set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2546 struct netdev_private *np = netdev_priv(dev);
2547 int res;
2548 spin_lock_irq(&np->lock);
2549 netdev_set_wol(dev, wol->wolopts);
2550 res = netdev_set_sopass(dev, wol->sopass);
2551 spin_unlock_irq(&np->lock);
2552 return res;
2555 static void get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf)
2557 struct netdev_private *np = netdev_priv(dev);
2558 regs->version = NATSEMI_REGS_VER;
2559 spin_lock_irq(&np->lock);
2560 netdev_get_regs(dev, buf);
2561 spin_unlock_irq(&np->lock);
2564 static u32 get_msglevel(struct net_device *dev)
2566 struct netdev_private *np = netdev_priv(dev);
2567 return np->msg_enable;
2570 static void set_msglevel(struct net_device *dev, u32 val)
2572 struct netdev_private *np = netdev_priv(dev);
2573 np->msg_enable = val;
2576 static int nway_reset(struct net_device *dev)
2578 int tmp;
2579 int r = -EINVAL;
2580 /* if autoneg is off, it's an error */
2581 tmp = mdio_read(dev, MII_BMCR);
2582 if (tmp & BMCR_ANENABLE) {
2583 tmp |= (BMCR_ANRESTART);
2584 mdio_write(dev, MII_BMCR, tmp);
2585 r = 0;
2587 return r;
2590 static u32 get_link(struct net_device *dev)
2592 /* LSTATUS is latched low until a read - so read twice */
2593 mdio_read(dev, MII_BMSR);
2594 return (mdio_read(dev, MII_BMSR)&BMSR_LSTATUS) ? 1:0;
2597 static int get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom, u8 *data)
2599 struct netdev_private *np = netdev_priv(dev);
2600 u8 *eebuf;
2601 int res;
2603 eebuf = kmalloc(np->eeprom_size, GFP_KERNEL);
2604 if (!eebuf)
2605 return -ENOMEM;
2607 eeprom->magic = PCI_VENDOR_ID_NS | (PCI_DEVICE_ID_NS_83815<<16);
2608 spin_lock_irq(&np->lock);
2609 res = netdev_get_eeprom(dev, eebuf);
2610 spin_unlock_irq(&np->lock);
2611 if (!res)
2612 memcpy(data, eebuf+eeprom->offset, eeprom->len);
2613 kfree(eebuf);
2614 return res;
2617 static const struct ethtool_ops ethtool_ops = {
2618 .get_drvinfo = get_drvinfo,
2619 .get_regs_len = get_regs_len,
2620 .get_eeprom_len = get_eeprom_len,
2621 .get_settings = get_settings,
2622 .set_settings = set_settings,
2623 .get_wol = get_wol,
2624 .set_wol = set_wol,
2625 .get_regs = get_regs,
2626 .get_msglevel = get_msglevel,
2627 .set_msglevel = set_msglevel,
2628 .nway_reset = nway_reset,
2629 .get_link = get_link,
2630 .get_eeprom = get_eeprom,
2633 static int netdev_set_wol(struct net_device *dev, u32 newval)
2635 struct netdev_private *np = netdev_priv(dev);
2636 void __iomem * ioaddr = ns_ioaddr(dev);
2637 u32 data = readl(ioaddr + WOLCmd) & ~WakeOptsSummary;
2639 /* translate to bitmasks this chip understands */
2640 if (newval & WAKE_PHY)
2641 data |= WakePhy;
2642 if (newval & WAKE_UCAST)
2643 data |= WakeUnicast;
2644 if (newval & WAKE_MCAST)
2645 data |= WakeMulticast;
2646 if (newval & WAKE_BCAST)
2647 data |= WakeBroadcast;
2648 if (newval & WAKE_ARP)
2649 data |= WakeArp;
2650 if (newval & WAKE_MAGIC)
2651 data |= WakeMagic;
2652 if (np->srr >= SRR_DP83815_D) {
2653 if (newval & WAKE_MAGICSECURE) {
2654 data |= WakeMagicSecure;
2658 writel(data, ioaddr + WOLCmd);
2660 return 0;
2663 static int netdev_get_wol(struct net_device *dev, u32 *supported, u32 *cur)
2665 struct netdev_private *np = netdev_priv(dev);
2666 void __iomem * ioaddr = ns_ioaddr(dev);
2667 u32 regval = readl(ioaddr + WOLCmd);
2669 *supported = (WAKE_PHY | WAKE_UCAST | WAKE_MCAST | WAKE_BCAST
2670 | WAKE_ARP | WAKE_MAGIC);
2672 if (np->srr >= SRR_DP83815_D) {
2673 /* SOPASS works on revD and higher */
2674 *supported |= WAKE_MAGICSECURE;
2676 *cur = 0;
2678 /* translate from chip bitmasks */
2679 if (regval & WakePhy)
2680 *cur |= WAKE_PHY;
2681 if (regval & WakeUnicast)
2682 *cur |= WAKE_UCAST;
2683 if (regval & WakeMulticast)
2684 *cur |= WAKE_MCAST;
2685 if (regval & WakeBroadcast)
2686 *cur |= WAKE_BCAST;
2687 if (regval & WakeArp)
2688 *cur |= WAKE_ARP;
2689 if (regval & WakeMagic)
2690 *cur |= WAKE_MAGIC;
2691 if (regval & WakeMagicSecure) {
2692 /* this can be on in revC, but it's broken */
2693 *cur |= WAKE_MAGICSECURE;
2696 return 0;
2699 static int netdev_set_sopass(struct net_device *dev, u8 *newval)
2701 struct netdev_private *np = netdev_priv(dev);
2702 void __iomem * ioaddr = ns_ioaddr(dev);
2703 u16 *sval = (u16 *)newval;
2704 u32 addr;
2706 if (np->srr < SRR_DP83815_D) {
2707 return 0;
2710 /* enable writing to these registers by disabling the RX filter */
2711 addr = readl(ioaddr + RxFilterAddr) & ~RFCRAddressMask;
2712 addr &= ~RxFilterEnable;
2713 writel(addr, ioaddr + RxFilterAddr);
2715 /* write the three words to (undocumented) RFCR vals 0xa, 0xc, 0xe */
2716 writel(addr | 0xa, ioaddr + RxFilterAddr);
2717 writew(sval[0], ioaddr + RxFilterData);
2719 writel(addr | 0xc, ioaddr + RxFilterAddr);
2720 writew(sval[1], ioaddr + RxFilterData);
2722 writel(addr | 0xe, ioaddr + RxFilterAddr);
2723 writew(sval[2], ioaddr + RxFilterData);
2725 /* re-enable the RX filter */
2726 writel(addr | RxFilterEnable, ioaddr + RxFilterAddr);
2728 return 0;
2731 static int netdev_get_sopass(struct net_device *dev, u8 *data)
2733 struct netdev_private *np = netdev_priv(dev);
2734 void __iomem * ioaddr = ns_ioaddr(dev);
2735 u16 *sval = (u16 *)data;
2736 u32 addr;
2738 if (np->srr < SRR_DP83815_D) {
2739 sval[0] = sval[1] = sval[2] = 0;
2740 return 0;
2743 /* read the three words from (undocumented) RFCR vals 0xa, 0xc, 0xe */
2744 addr = readl(ioaddr + RxFilterAddr) & ~RFCRAddressMask;
2746 writel(addr | 0xa, ioaddr + RxFilterAddr);
2747 sval[0] = readw(ioaddr + RxFilterData);
2749 writel(addr | 0xc, ioaddr + RxFilterAddr);
2750 sval[1] = readw(ioaddr + RxFilterData);
2752 writel(addr | 0xe, ioaddr + RxFilterAddr);
2753 sval[2] = readw(ioaddr + RxFilterData);
2755 writel(addr, ioaddr + RxFilterAddr);
2757 return 0;
2760 static int netdev_get_ecmd(struct net_device *dev, struct ethtool_cmd *ecmd)
2762 struct netdev_private *np = netdev_priv(dev);
2763 u32 tmp;
2765 ecmd->port = dev->if_port;
2766 ecmd->speed = np->speed;
2767 ecmd->duplex = np->duplex;
2768 ecmd->autoneg = np->autoneg;
2769 ecmd->advertising = 0;
2770 if (np->advertising & ADVERTISE_10HALF)
2771 ecmd->advertising |= ADVERTISED_10baseT_Half;
2772 if (np->advertising & ADVERTISE_10FULL)
2773 ecmd->advertising |= ADVERTISED_10baseT_Full;
2774 if (np->advertising & ADVERTISE_100HALF)
2775 ecmd->advertising |= ADVERTISED_100baseT_Half;
2776 if (np->advertising & ADVERTISE_100FULL)
2777 ecmd->advertising |= ADVERTISED_100baseT_Full;
2778 ecmd->supported = (SUPPORTED_Autoneg |
2779 SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
2780 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2781 SUPPORTED_TP | SUPPORTED_MII | SUPPORTED_FIBRE);
2782 ecmd->phy_address = np->phy_addr_external;
2784 * We intentionally report the phy address of the external
2785 * phy, even if the internal phy is used. This is necessary
2786 * to work around a deficiency of the ethtool interface:
2787 * It's only possible to query the settings of the active
2788 * port. Therefore
2789 * # ethtool -s ethX port mii
2790 * actually sends an ioctl to switch to port mii with the
2791 * settings that are used for the current active port.
2792 * If we would report a different phy address in this
2793 * command, then
2794 * # ethtool -s ethX port tp;ethtool -s ethX port mii
2795 * would unintentionally change the phy address.
2797 * Fortunately the phy address doesn't matter with the
2798 * internal phy...
2801 /* set information based on active port type */
2802 switch (ecmd->port) {
2803 default:
2804 case PORT_TP:
2805 ecmd->advertising |= ADVERTISED_TP;
2806 ecmd->transceiver = XCVR_INTERNAL;
2807 break;
2808 case PORT_MII:
2809 ecmd->advertising |= ADVERTISED_MII;
2810 ecmd->transceiver = XCVR_EXTERNAL;
2811 break;
2812 case PORT_FIBRE:
2813 ecmd->advertising |= ADVERTISED_FIBRE;
2814 ecmd->transceiver = XCVR_EXTERNAL;
2815 break;
2818 /* if autonegotiation is on, try to return the active speed/duplex */
2819 if (ecmd->autoneg == AUTONEG_ENABLE) {
2820 ecmd->advertising |= ADVERTISED_Autoneg;
2821 tmp = mii_nway_result(
2822 np->advertising & mdio_read(dev, MII_LPA));
2823 if (tmp == LPA_100FULL || tmp == LPA_100HALF)
2824 ecmd->speed = SPEED_100;
2825 else
2826 ecmd->speed = SPEED_10;
2827 if (tmp == LPA_100FULL || tmp == LPA_10FULL)
2828 ecmd->duplex = DUPLEX_FULL;
2829 else
2830 ecmd->duplex = DUPLEX_HALF;
2833 /* ignore maxtxpkt, maxrxpkt for now */
2835 return 0;
2838 static int netdev_set_ecmd(struct net_device *dev, struct ethtool_cmd *ecmd)
2840 struct netdev_private *np = netdev_priv(dev);
2842 if (ecmd->port != PORT_TP && ecmd->port != PORT_MII && ecmd->port != PORT_FIBRE)
2843 return -EINVAL;
2844 if (ecmd->transceiver != XCVR_INTERNAL && ecmd->transceiver != XCVR_EXTERNAL)
2845 return -EINVAL;
2846 if (ecmd->autoneg == AUTONEG_ENABLE) {
2847 if ((ecmd->advertising & (ADVERTISED_10baseT_Half |
2848 ADVERTISED_10baseT_Full |
2849 ADVERTISED_100baseT_Half |
2850 ADVERTISED_100baseT_Full)) == 0) {
2851 return -EINVAL;
2853 } else if (ecmd->autoneg == AUTONEG_DISABLE) {
2854 if (ecmd->speed != SPEED_10 && ecmd->speed != SPEED_100)
2855 return -EINVAL;
2856 if (ecmd->duplex != DUPLEX_HALF && ecmd->duplex != DUPLEX_FULL)
2857 return -EINVAL;
2858 } else {
2859 return -EINVAL;
2863 * If we're ignoring the PHY then autoneg and the internal
2864 * transciever are really not going to work so don't let the
2865 * user select them.
2867 if (np->ignore_phy && (ecmd->autoneg == AUTONEG_ENABLE ||
2868 ecmd->port == PORT_TP))
2869 return -EINVAL;
2872 * maxtxpkt, maxrxpkt: ignored for now.
2874 * transceiver:
2875 * PORT_TP is always XCVR_INTERNAL, PORT_MII and PORT_FIBRE are always
2876 * XCVR_EXTERNAL. The implementation thus ignores ecmd->transceiver and
2877 * selects based on ecmd->port.
2879 * Actually PORT_FIBRE is nearly identical to PORT_MII: it's for fibre
2880 * phys that are connected to the mii bus. It's used to apply fibre
2881 * specific updates.
2884 /* WHEW! now lets bang some bits */
2886 /* save the parms */
2887 dev->if_port = ecmd->port;
2888 np->autoneg = ecmd->autoneg;
2889 np->phy_addr_external = ecmd->phy_address & PhyAddrMask;
2890 if (np->autoneg == AUTONEG_ENABLE) {
2891 /* advertise only what has been requested */
2892 np->advertising &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4);
2893 if (ecmd->advertising & ADVERTISED_10baseT_Half)
2894 np->advertising |= ADVERTISE_10HALF;
2895 if (ecmd->advertising & ADVERTISED_10baseT_Full)
2896 np->advertising |= ADVERTISE_10FULL;
2897 if (ecmd->advertising & ADVERTISED_100baseT_Half)
2898 np->advertising |= ADVERTISE_100HALF;
2899 if (ecmd->advertising & ADVERTISED_100baseT_Full)
2900 np->advertising |= ADVERTISE_100FULL;
2901 } else {
2902 np->speed = ecmd->speed;
2903 np->duplex = ecmd->duplex;
2904 /* user overriding the initial full duplex parm? */
2905 if (np->duplex == DUPLEX_HALF)
2906 np->full_duplex = 0;
2909 /* get the right phy enabled */
2910 if (ecmd->port == PORT_TP)
2911 switch_port_internal(dev);
2912 else
2913 switch_port_external(dev);
2915 /* set parms and see how this affected our link status */
2916 init_phy_fixup(dev);
2917 check_link(dev);
2918 return 0;
2921 static int netdev_get_regs(struct net_device *dev, u8 *buf)
2923 int i;
2924 int j;
2925 u32 rfcr;
2926 u32 *rbuf = (u32 *)buf;
2927 void __iomem * ioaddr = ns_ioaddr(dev);
2929 /* read non-mii page 0 of registers */
2930 for (i = 0; i < NATSEMI_PG0_NREGS/2; i++) {
2931 rbuf[i] = readl(ioaddr + i*4);
2934 /* read current mii registers */
2935 for (i = NATSEMI_PG0_NREGS/2; i < NATSEMI_PG0_NREGS; i++)
2936 rbuf[i] = mdio_read(dev, i & 0x1f);
2938 /* read only the 'magic' registers from page 1 */
2939 writew(1, ioaddr + PGSEL);
2940 rbuf[i++] = readw(ioaddr + PMDCSR);
2941 rbuf[i++] = readw(ioaddr + TSTDAT);
2942 rbuf[i++] = readw(ioaddr + DSPCFG);
2943 rbuf[i++] = readw(ioaddr + SDCFG);
2944 writew(0, ioaddr + PGSEL);
2946 /* read RFCR indexed registers */
2947 rfcr = readl(ioaddr + RxFilterAddr);
2948 for (j = 0; j < NATSEMI_RFDR_NREGS; j++) {
2949 writel(j*2, ioaddr + RxFilterAddr);
2950 rbuf[i++] = readw(ioaddr + RxFilterData);
2952 writel(rfcr, ioaddr + RxFilterAddr);
2954 /* the interrupt status is clear-on-read - see if we missed any */
2955 if (rbuf[4] & rbuf[5]) {
2956 printk(KERN_WARNING
2957 "%s: shoot, we dropped an interrupt (%#08x)\n",
2958 dev->name, rbuf[4] & rbuf[5]);
2961 return 0;
2964 #define SWAP_BITS(x) ( (((x) & 0x0001) << 15) | (((x) & 0x0002) << 13) \
2965 | (((x) & 0x0004) << 11) | (((x) & 0x0008) << 9) \
2966 | (((x) & 0x0010) << 7) | (((x) & 0x0020) << 5) \
2967 | (((x) & 0x0040) << 3) | (((x) & 0x0080) << 1) \
2968 | (((x) & 0x0100) >> 1) | (((x) & 0x0200) >> 3) \
2969 | (((x) & 0x0400) >> 5) | (((x) & 0x0800) >> 7) \
2970 | (((x) & 0x1000) >> 9) | (((x) & 0x2000) >> 11) \
2971 | (((x) & 0x4000) >> 13) | (((x) & 0x8000) >> 15) )
2973 static int netdev_get_eeprom(struct net_device *dev, u8 *buf)
2975 int i;
2976 u16 *ebuf = (u16 *)buf;
2977 void __iomem * ioaddr = ns_ioaddr(dev);
2978 struct netdev_private *np = netdev_priv(dev);
2980 /* eeprom_read reads 16 bits, and indexes by 16 bits */
2981 for (i = 0; i < np->eeprom_size/2; i++) {
2982 ebuf[i] = eeprom_read(ioaddr, i);
2983 /* The EEPROM itself stores data bit-swapped, but eeprom_read
2984 * reads it back "sanely". So we swap it back here in order to
2985 * present it to userland as it is stored. */
2986 ebuf[i] = SWAP_BITS(ebuf[i]);
2988 return 0;
2991 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2993 struct mii_ioctl_data *data = if_mii(rq);
2994 struct netdev_private *np = netdev_priv(dev);
2996 switch(cmd) {
2997 case SIOCGMIIPHY: /* Get address of MII PHY in use. */
2998 case SIOCDEVPRIVATE: /* for binary compat, remove in 2.5 */
2999 data->phy_id = np->phy_addr_external;
3000 /* Fall Through */
3002 case SIOCGMIIREG: /* Read MII PHY register. */
3003 case SIOCDEVPRIVATE+1: /* for binary compat, remove in 2.5 */
3004 /* The phy_id is not enough to uniquely identify
3005 * the intended target. Therefore the command is sent to
3006 * the given mii on the current port.
3008 if (dev->if_port == PORT_TP) {
3009 if ((data->phy_id & 0x1f) == np->phy_addr_external)
3010 data->val_out = mdio_read(dev,
3011 data->reg_num & 0x1f);
3012 else
3013 data->val_out = 0;
3014 } else {
3015 move_int_phy(dev, data->phy_id & 0x1f);
3016 data->val_out = miiport_read(dev, data->phy_id & 0x1f,
3017 data->reg_num & 0x1f);
3019 return 0;
3021 case SIOCSMIIREG: /* Write MII PHY register. */
3022 case SIOCDEVPRIVATE+2: /* for binary compat, remove in 2.5 */
3023 if (!capable(CAP_NET_ADMIN))
3024 return -EPERM;
3025 if (dev->if_port == PORT_TP) {
3026 if ((data->phy_id & 0x1f) == np->phy_addr_external) {
3027 if ((data->reg_num & 0x1f) == MII_ADVERTISE)
3028 np->advertising = data->val_in;
3029 mdio_write(dev, data->reg_num & 0x1f,
3030 data->val_in);
3032 } else {
3033 if ((data->phy_id & 0x1f) == np->phy_addr_external) {
3034 if ((data->reg_num & 0x1f) == MII_ADVERTISE)
3035 np->advertising = data->val_in;
3037 move_int_phy(dev, data->phy_id & 0x1f);
3038 miiport_write(dev, data->phy_id & 0x1f,
3039 data->reg_num & 0x1f,
3040 data->val_in);
3042 return 0;
3043 default:
3044 return -EOPNOTSUPP;
3048 static void enable_wol_mode(struct net_device *dev, int enable_intr)
3050 void __iomem * ioaddr = ns_ioaddr(dev);
3051 struct netdev_private *np = netdev_priv(dev);
3053 if (netif_msg_wol(np))
3054 printk(KERN_INFO "%s: remaining active for wake-on-lan\n",
3055 dev->name);
3057 /* For WOL we must restart the rx process in silent mode.
3058 * Write NULL to the RxRingPtr. Only possible if
3059 * rx process is stopped
3061 writel(0, ioaddr + RxRingPtr);
3063 /* read WoL status to clear */
3064 readl(ioaddr + WOLCmd);
3066 /* PME on, clear status */
3067 writel(np->SavedClkRun | PMEEnable | PMEStatus, ioaddr + ClkRun);
3069 /* and restart the rx process */
3070 writel(RxOn, ioaddr + ChipCmd);
3072 if (enable_intr) {
3073 /* enable the WOL interrupt.
3074 * Could be used to send a netlink message.
3076 writel(WOLPkt | LinkChange, ioaddr + IntrMask);
3077 natsemi_irq_enable(dev);
3081 static int netdev_close(struct net_device *dev)
3083 void __iomem * ioaddr = ns_ioaddr(dev);
3084 struct netdev_private *np = netdev_priv(dev);
3086 if (netif_msg_ifdown(np))
3087 printk(KERN_DEBUG
3088 "%s: Shutting down ethercard, status was %#04x.\n",
3089 dev->name, (int)readl(ioaddr + ChipCmd));
3090 if (netif_msg_pktdata(np))
3091 printk(KERN_DEBUG
3092 "%s: Queue pointers were Tx %d / %d, Rx %d / %d.\n",
3093 dev->name, np->cur_tx, np->dirty_tx,
3094 np->cur_rx, np->dirty_rx);
3097 * FIXME: what if someone tries to close a device
3098 * that is suspended?
3099 * Should we reenable the nic to switch to
3100 * the final WOL settings?
3103 del_timer_sync(&np->timer);
3104 disable_irq(dev->irq);
3105 spin_lock_irq(&np->lock);
3106 natsemi_irq_disable(dev);
3107 np->hands_off = 1;
3108 spin_unlock_irq(&np->lock);
3109 enable_irq(dev->irq);
3111 free_irq(dev->irq, dev);
3113 /* Interrupt disabled, interrupt handler released,
3114 * queue stopped, timer deleted, rtnl_lock held
3115 * All async codepaths that access the driver are disabled.
3117 spin_lock_irq(&np->lock);
3118 np->hands_off = 0;
3119 readl(ioaddr + IntrMask);
3120 readw(ioaddr + MIntrStatus);
3122 /* Freeze Stats */
3123 writel(StatsFreeze, ioaddr + StatsCtrl);
3125 /* Stop the chip's Tx and Rx processes. */
3126 natsemi_stop_rxtx(dev);
3128 __get_stats(dev);
3129 spin_unlock_irq(&np->lock);
3131 /* clear the carrier last - an interrupt could reenable it otherwise */
3132 netif_carrier_off(dev);
3133 netif_stop_queue(dev);
3135 dump_ring(dev);
3136 drain_ring(dev);
3137 free_ring(dev);
3140 u32 wol = readl(ioaddr + WOLCmd) & WakeOptsSummary;
3141 if (wol) {
3142 /* restart the NIC in WOL mode.
3143 * The nic must be stopped for this.
3145 enable_wol_mode(dev, 0);
3146 } else {
3147 /* Restore PME enable bit unmolested */
3148 writel(np->SavedClkRun, ioaddr + ClkRun);
3151 return 0;
3155 static void __devexit natsemi_remove1 (struct pci_dev *pdev)
3157 struct net_device *dev = pci_get_drvdata(pdev);
3158 void __iomem * ioaddr = ns_ioaddr(dev);
3160 unregister_netdev (dev);
3161 pci_release_regions (pdev);
3162 iounmap(ioaddr);
3163 free_netdev (dev);
3164 pci_set_drvdata(pdev, NULL);
3167 #ifdef CONFIG_PM
3170 * The ns83815 chip doesn't have explicit RxStop bits.
3171 * Kicking the Rx or Tx process for a new packet reenables the Rx process
3172 * of the nic, thus this function must be very careful:
3174 * suspend/resume synchronization:
3175 * entry points:
3176 * netdev_open, netdev_close, netdev_ioctl, set_rx_mode, intr_handler,
3177 * start_tx, tx_timeout
3179 * No function accesses the hardware without checking np->hands_off.
3180 * the check occurs under spin_lock_irq(&np->lock);
3181 * exceptions:
3182 * * netdev_ioctl: noncritical access.
3183 * * netdev_open: cannot happen due to the device_detach
3184 * * netdev_close: doesn't hurt.
3185 * * netdev_timer: timer stopped by natsemi_suspend.
3186 * * intr_handler: doesn't acquire the spinlock. suspend calls
3187 * disable_irq() to enforce synchronization.
3188 * * natsemi_poll: checks before reenabling interrupts. suspend
3189 * sets hands_off, disables interrupts and then waits with
3190 * netif_poll_disable().
3192 * Interrupts must be disabled, otherwise hands_off can cause irq storms.
3195 static int natsemi_suspend (struct pci_dev *pdev, pm_message_t state)
3197 struct net_device *dev = pci_get_drvdata (pdev);
3198 struct netdev_private *np = netdev_priv(dev);
3199 void __iomem * ioaddr = ns_ioaddr(dev);
3201 rtnl_lock();
3202 if (netif_running (dev)) {
3203 del_timer_sync(&np->timer);
3205 disable_irq(dev->irq);
3206 spin_lock_irq(&np->lock);
3208 natsemi_irq_disable(dev);
3209 np->hands_off = 1;
3210 natsemi_stop_rxtx(dev);
3211 netif_stop_queue(dev);
3213 spin_unlock_irq(&np->lock);
3214 enable_irq(dev->irq);
3216 netif_poll_disable(dev);
3218 /* Update the error counts. */
3219 __get_stats(dev);
3221 /* pci_power_off(pdev, -1); */
3222 drain_ring(dev);
3224 u32 wol = readl(ioaddr + WOLCmd) & WakeOptsSummary;
3225 /* Restore PME enable bit */
3226 if (wol) {
3227 /* restart the NIC in WOL mode.
3228 * The nic must be stopped for this.
3229 * FIXME: use the WOL interrupt
3231 enable_wol_mode(dev, 0);
3232 } else {
3233 /* Restore PME enable bit unmolested */
3234 writel(np->SavedClkRun, ioaddr + ClkRun);
3238 netif_device_detach(dev);
3239 rtnl_unlock();
3240 return 0;
3244 static int natsemi_resume (struct pci_dev *pdev)
3246 struct net_device *dev = pci_get_drvdata (pdev);
3247 struct netdev_private *np = netdev_priv(dev);
3249 rtnl_lock();
3250 if (netif_device_present(dev))
3251 goto out;
3252 if (netif_running(dev)) {
3253 BUG_ON(!np->hands_off);
3254 pci_enable_device(pdev);
3255 /* pci_power_on(pdev); */
3257 natsemi_reset(dev);
3258 init_ring(dev);
3259 disable_irq(dev->irq);
3260 spin_lock_irq(&np->lock);
3261 np->hands_off = 0;
3262 init_registers(dev);
3263 netif_device_attach(dev);
3264 spin_unlock_irq(&np->lock);
3265 enable_irq(dev->irq);
3267 mod_timer(&np->timer, jiffies + 1*HZ);
3269 netif_device_attach(dev);
3270 netif_poll_enable(dev);
3271 out:
3272 rtnl_unlock();
3273 return 0;
3276 #endif /* CONFIG_PM */
3278 static struct pci_driver natsemi_driver = {
3279 .name = DRV_NAME,
3280 .id_table = natsemi_pci_tbl,
3281 .probe = natsemi_probe1,
3282 .remove = __devexit_p(natsemi_remove1),
3283 #ifdef CONFIG_PM
3284 .suspend = natsemi_suspend,
3285 .resume = natsemi_resume,
3286 #endif
3289 static int __init natsemi_init_mod (void)
3291 /* when a module, this is printed whether or not devices are found in probe */
3292 #ifdef MODULE
3293 printk(version);
3294 #endif
3296 return pci_register_driver(&natsemi_driver);
3299 static void __exit natsemi_exit_mod (void)
3301 pci_unregister_driver (&natsemi_driver);
3304 module_init(natsemi_init_mod);
3305 module_exit(natsemi_exit_mod);