4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/kthread.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/reciprocal_div.h>
66 #include <linux/unistd.h>
67 #include <linux/pagemap.h>
68 #include <linux/hrtimer.h>
69 #include <linux/tick.h>
70 #include <linux/bootmem.h>
71 #include <linux/debugfs.h>
72 #include <linux/ctype.h>
75 #include <asm/irq_regs.h>
78 * Convert user-nice values [ -20 ... 0 ... 19 ]
79 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
82 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
83 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
84 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
87 * 'User priority' is the nice value converted to something we
88 * can work with better when scaling various scheduler parameters,
89 * it's a [ 0 ... 39 ] range.
91 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
92 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
93 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
96 * Helpers for converting nanosecond timing to jiffy resolution
98 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
100 #define NICE_0_LOAD SCHED_LOAD_SCALE
101 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
104 * These are the 'tuning knobs' of the scheduler:
106 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
107 * Timeslices get refilled after they expire.
109 #define DEF_TIMESLICE (100 * HZ / 1000)
112 * single value that denotes runtime == period, ie unlimited time.
114 #define RUNTIME_INF ((u64)~0ULL)
118 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
119 * Since cpu_power is a 'constant', we can use a reciprocal divide.
121 static inline u32
sg_div_cpu_power(const struct sched_group
*sg
, u32 load
)
123 return reciprocal_divide(load
, sg
->reciprocal_cpu_power
);
127 * Each time a sched group cpu_power is changed,
128 * we must compute its reciprocal value
130 static inline void sg_inc_cpu_power(struct sched_group
*sg
, u32 val
)
132 sg
->__cpu_power
+= val
;
133 sg
->reciprocal_cpu_power
= reciprocal_value(sg
->__cpu_power
);
137 static inline int rt_policy(int policy
)
139 if (unlikely(policy
== SCHED_FIFO
|| policy
== SCHED_RR
))
144 static inline int task_has_rt_policy(struct task_struct
*p
)
146 return rt_policy(p
->policy
);
150 * This is the priority-queue data structure of the RT scheduling class:
152 struct rt_prio_array
{
153 DECLARE_BITMAP(bitmap
, MAX_RT_PRIO
+1); /* include 1 bit for delimiter */
154 struct list_head queue
[MAX_RT_PRIO
];
157 struct rt_bandwidth
{
158 /* nests inside the rq lock: */
159 spinlock_t rt_runtime_lock
;
162 struct hrtimer rt_period_timer
;
165 static struct rt_bandwidth def_rt_bandwidth
;
167 static int do_sched_rt_period_timer(struct rt_bandwidth
*rt_b
, int overrun
);
169 static enum hrtimer_restart
sched_rt_period_timer(struct hrtimer
*timer
)
171 struct rt_bandwidth
*rt_b
=
172 container_of(timer
, struct rt_bandwidth
, rt_period_timer
);
178 now
= hrtimer_cb_get_time(timer
);
179 overrun
= hrtimer_forward(timer
, now
, rt_b
->rt_period
);
184 idle
= do_sched_rt_period_timer(rt_b
, overrun
);
187 return idle
? HRTIMER_NORESTART
: HRTIMER_RESTART
;
191 void init_rt_bandwidth(struct rt_bandwidth
*rt_b
, u64 period
, u64 runtime
)
193 rt_b
->rt_period
= ns_to_ktime(period
);
194 rt_b
->rt_runtime
= runtime
;
196 spin_lock_init(&rt_b
->rt_runtime_lock
);
198 hrtimer_init(&rt_b
->rt_period_timer
,
199 CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
200 rt_b
->rt_period_timer
.function
= sched_rt_period_timer
;
201 rt_b
->rt_period_timer
.cb_mode
= HRTIMER_CB_IRQSAFE_NO_SOFTIRQ
;
204 static void start_rt_bandwidth(struct rt_bandwidth
*rt_b
)
208 if (rt_b
->rt_runtime
== RUNTIME_INF
)
211 if (hrtimer_active(&rt_b
->rt_period_timer
))
214 spin_lock(&rt_b
->rt_runtime_lock
);
216 if (hrtimer_active(&rt_b
->rt_period_timer
))
219 now
= hrtimer_cb_get_time(&rt_b
->rt_period_timer
);
220 hrtimer_forward(&rt_b
->rt_period_timer
, now
, rt_b
->rt_period
);
221 hrtimer_start(&rt_b
->rt_period_timer
,
222 rt_b
->rt_period_timer
.expires
,
225 spin_unlock(&rt_b
->rt_runtime_lock
);
228 #ifdef CONFIG_RT_GROUP_SCHED
229 static void destroy_rt_bandwidth(struct rt_bandwidth
*rt_b
)
231 hrtimer_cancel(&rt_b
->rt_period_timer
);
236 * sched_domains_mutex serializes calls to arch_init_sched_domains,
237 * detach_destroy_domains and partition_sched_domains.
239 static DEFINE_MUTEX(sched_domains_mutex
);
241 #ifdef CONFIG_GROUP_SCHED
243 #include <linux/cgroup.h>
247 static LIST_HEAD(task_groups
);
249 /* task group related information */
251 #ifdef CONFIG_CGROUP_SCHED
252 struct cgroup_subsys_state css
;
255 #ifdef CONFIG_FAIR_GROUP_SCHED
256 /* schedulable entities of this group on each cpu */
257 struct sched_entity
**se
;
258 /* runqueue "owned" by this group on each cpu */
259 struct cfs_rq
**cfs_rq
;
260 unsigned long shares
;
263 #ifdef CONFIG_RT_GROUP_SCHED
264 struct sched_rt_entity
**rt_se
;
265 struct rt_rq
**rt_rq
;
267 struct rt_bandwidth rt_bandwidth
;
271 struct list_head list
;
273 struct task_group
*parent
;
274 struct list_head siblings
;
275 struct list_head children
;
278 #ifdef CONFIG_USER_SCHED
282 * Every UID task group (including init_task_group aka UID-0) will
283 * be a child to this group.
285 struct task_group root_task_group
;
287 #ifdef CONFIG_FAIR_GROUP_SCHED
288 /* Default task group's sched entity on each cpu */
289 static DEFINE_PER_CPU(struct sched_entity
, init_sched_entity
);
290 /* Default task group's cfs_rq on each cpu */
291 static DEFINE_PER_CPU(struct cfs_rq
, init_cfs_rq
) ____cacheline_aligned_in_smp
;
294 #ifdef CONFIG_RT_GROUP_SCHED
295 static DEFINE_PER_CPU(struct sched_rt_entity
, init_sched_rt_entity
);
296 static DEFINE_PER_CPU(struct rt_rq
, init_rt_rq
) ____cacheline_aligned_in_smp
;
299 #define root_task_group init_task_group
302 /* task_group_lock serializes add/remove of task groups and also changes to
303 * a task group's cpu shares.
305 static DEFINE_SPINLOCK(task_group_lock
);
307 #ifdef CONFIG_FAIR_GROUP_SCHED
308 #ifdef CONFIG_USER_SCHED
309 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
311 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
315 * A weight of 0, 1 or ULONG_MAX can cause arithmetics problems.
316 * (The default weight is 1024 - so there's no practical
317 * limitation from this.)
320 #define MAX_SHARES (ULONG_MAX - 1)
322 static int init_task_group_load
= INIT_TASK_GROUP_LOAD
;
325 /* Default task group.
326 * Every task in system belong to this group at bootup.
328 struct task_group init_task_group
;
330 /* return group to which a task belongs */
331 static inline struct task_group
*task_group(struct task_struct
*p
)
333 struct task_group
*tg
;
335 #ifdef CONFIG_USER_SCHED
337 #elif defined(CONFIG_CGROUP_SCHED)
338 tg
= container_of(task_subsys_state(p
, cpu_cgroup_subsys_id
),
339 struct task_group
, css
);
341 tg
= &init_task_group
;
346 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
347 static inline void set_task_rq(struct task_struct
*p
, unsigned int cpu
)
349 #ifdef CONFIG_FAIR_GROUP_SCHED
350 p
->se
.cfs_rq
= task_group(p
)->cfs_rq
[cpu
];
351 p
->se
.parent
= task_group(p
)->se
[cpu
];
354 #ifdef CONFIG_RT_GROUP_SCHED
355 p
->rt
.rt_rq
= task_group(p
)->rt_rq
[cpu
];
356 p
->rt
.parent
= task_group(p
)->rt_se
[cpu
];
362 static inline void set_task_rq(struct task_struct
*p
, unsigned int cpu
) { }
364 #endif /* CONFIG_GROUP_SCHED */
366 /* CFS-related fields in a runqueue */
368 struct load_weight load
;
369 unsigned long nr_running
;
374 struct rb_root tasks_timeline
;
375 struct rb_node
*rb_leftmost
;
377 struct list_head tasks
;
378 struct list_head
*balance_iterator
;
381 * 'curr' points to currently running entity on this cfs_rq.
382 * It is set to NULL otherwise (i.e when none are currently running).
384 struct sched_entity
*curr
, *next
;
386 unsigned long nr_spread_over
;
388 #ifdef CONFIG_FAIR_GROUP_SCHED
389 struct rq
*rq
; /* cpu runqueue to which this cfs_rq is attached */
392 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
393 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
394 * (like users, containers etc.)
396 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
397 * list is used during load balance.
399 struct list_head leaf_cfs_rq_list
;
400 struct task_group
*tg
; /* group that "owns" this runqueue */
404 /* Real-Time classes' related field in a runqueue: */
406 struct rt_prio_array active
;
407 unsigned long rt_nr_running
;
408 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
409 int highest_prio
; /* highest queued rt task prio */
412 unsigned long rt_nr_migratory
;
418 /* Nests inside the rq lock: */
419 spinlock_t rt_runtime_lock
;
421 #ifdef CONFIG_RT_GROUP_SCHED
422 unsigned long rt_nr_boosted
;
425 struct list_head leaf_rt_rq_list
;
426 struct task_group
*tg
;
427 struct sched_rt_entity
*rt_se
;
434 * We add the notion of a root-domain which will be used to define per-domain
435 * variables. Each exclusive cpuset essentially defines an island domain by
436 * fully partitioning the member cpus from any other cpuset. Whenever a new
437 * exclusive cpuset is created, we also create and attach a new root-domain
447 * The "RT overload" flag: it gets set if a CPU has more than
448 * one runnable RT task.
455 * By default the system creates a single root-domain with all cpus as
456 * members (mimicking the global state we have today).
458 static struct root_domain def_root_domain
;
463 * This is the main, per-CPU runqueue data structure.
465 * Locking rule: those places that want to lock multiple runqueues
466 * (such as the load balancing or the thread migration code), lock
467 * acquire operations must be ordered by ascending &runqueue.
474 * nr_running and cpu_load should be in the same cacheline because
475 * remote CPUs use both these fields when doing load calculation.
477 unsigned long nr_running
;
478 #define CPU_LOAD_IDX_MAX 5
479 unsigned long cpu_load
[CPU_LOAD_IDX_MAX
];
480 unsigned char idle_at_tick
;
482 unsigned long last_tick_seen
;
483 unsigned char in_nohz_recently
;
485 /* capture load from *all* tasks on this cpu: */
486 struct load_weight load
;
487 unsigned long nr_load_updates
;
493 #ifdef CONFIG_FAIR_GROUP_SCHED
494 /* list of leaf cfs_rq on this cpu: */
495 struct list_head leaf_cfs_rq_list
;
497 #ifdef CONFIG_RT_GROUP_SCHED
498 struct list_head leaf_rt_rq_list
;
502 * This is part of a global counter where only the total sum
503 * over all CPUs matters. A task can increase this counter on
504 * one CPU and if it got migrated afterwards it may decrease
505 * it on another CPU. Always updated under the runqueue lock:
507 unsigned long nr_uninterruptible
;
509 struct task_struct
*curr
, *idle
;
510 unsigned long next_balance
;
511 struct mm_struct
*prev_mm
;
518 struct root_domain
*rd
;
519 struct sched_domain
*sd
;
521 /* For active balancing */
524 /* cpu of this runqueue: */
527 struct task_struct
*migration_thread
;
528 struct list_head migration_queue
;
531 #ifdef CONFIG_SCHED_HRTICK
532 unsigned long hrtick_flags
;
533 ktime_t hrtick_expire
;
534 struct hrtimer hrtick_timer
;
537 #ifdef CONFIG_SCHEDSTATS
539 struct sched_info rq_sched_info
;
541 /* sys_sched_yield() stats */
542 unsigned int yld_exp_empty
;
543 unsigned int yld_act_empty
;
544 unsigned int yld_both_empty
;
545 unsigned int yld_count
;
547 /* schedule() stats */
548 unsigned int sched_switch
;
549 unsigned int sched_count
;
550 unsigned int sched_goidle
;
552 /* try_to_wake_up() stats */
553 unsigned int ttwu_count
;
554 unsigned int ttwu_local
;
557 unsigned int bkl_count
;
559 struct lock_class_key rq_lock_key
;
562 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq
, runqueues
);
564 static inline void check_preempt_curr(struct rq
*rq
, struct task_struct
*p
)
566 rq
->curr
->sched_class
->check_preempt_curr(rq
, p
);
569 static inline int cpu_of(struct rq
*rq
)
579 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
580 * See detach_destroy_domains: synchronize_sched for details.
582 * The domain tree of any CPU may only be accessed from within
583 * preempt-disabled sections.
585 #define for_each_domain(cpu, __sd) \
586 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
588 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
589 #define this_rq() (&__get_cpu_var(runqueues))
590 #define task_rq(p) cpu_rq(task_cpu(p))
591 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
593 static inline void update_rq_clock(struct rq
*rq
)
595 rq
->clock
= sched_clock_cpu(cpu_of(rq
));
599 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
601 #ifdef CONFIG_SCHED_DEBUG
602 # define const_debug __read_mostly
604 # define const_debug static const
608 * Debugging: various feature bits
611 #define SCHED_FEAT(name, enabled) \
612 __SCHED_FEAT_##name ,
615 #include "sched_features.h"
620 #define SCHED_FEAT(name, enabled) \
621 (1UL << __SCHED_FEAT_##name) * enabled |
623 const_debug
unsigned int sysctl_sched_features
=
624 #include "sched_features.h"
629 #ifdef CONFIG_SCHED_DEBUG
630 #define SCHED_FEAT(name, enabled) \
633 static __read_mostly
char *sched_feat_names
[] = {
634 #include "sched_features.h"
640 static int sched_feat_open(struct inode
*inode
, struct file
*filp
)
642 filp
->private_data
= inode
->i_private
;
647 sched_feat_read(struct file
*filp
, char __user
*ubuf
,
648 size_t cnt
, loff_t
*ppos
)
655 for (i
= 0; sched_feat_names
[i
]; i
++) {
656 len
+= strlen(sched_feat_names
[i
]);
660 buf
= kmalloc(len
+ 2, GFP_KERNEL
);
664 for (i
= 0; sched_feat_names
[i
]; i
++) {
665 if (sysctl_sched_features
& (1UL << i
))
666 r
+= sprintf(buf
+ r
, "%s ", sched_feat_names
[i
]);
668 r
+= sprintf(buf
+ r
, "NO_%s ", sched_feat_names
[i
]);
671 r
+= sprintf(buf
+ r
, "\n");
672 WARN_ON(r
>= len
+ 2);
674 r
= simple_read_from_buffer(ubuf
, cnt
, ppos
, buf
, r
);
682 sched_feat_write(struct file
*filp
, const char __user
*ubuf
,
683 size_t cnt
, loff_t
*ppos
)
693 if (copy_from_user(&buf
, ubuf
, cnt
))
698 if (strncmp(buf
, "NO_", 3) == 0) {
703 for (i
= 0; sched_feat_names
[i
]; i
++) {
704 int len
= strlen(sched_feat_names
[i
]);
706 if (strncmp(cmp
, sched_feat_names
[i
], len
) == 0) {
708 sysctl_sched_features
&= ~(1UL << i
);
710 sysctl_sched_features
|= (1UL << i
);
715 if (!sched_feat_names
[i
])
723 static struct file_operations sched_feat_fops
= {
724 .open
= sched_feat_open
,
725 .read
= sched_feat_read
,
726 .write
= sched_feat_write
,
729 static __init
int sched_init_debug(void)
731 debugfs_create_file("sched_features", 0644, NULL
, NULL
,
736 late_initcall(sched_init_debug
);
740 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
743 * Number of tasks to iterate in a single balance run.
744 * Limited because this is done with IRQs disabled.
746 const_debug
unsigned int sysctl_sched_nr_migrate
= 32;
749 * period over which we measure -rt task cpu usage in us.
752 unsigned int sysctl_sched_rt_period
= 1000000;
754 static __read_mostly
int scheduler_running
;
757 * part of the period that we allow rt tasks to run in us.
760 int sysctl_sched_rt_runtime
= 950000;
762 static inline u64
global_rt_period(void)
764 return (u64
)sysctl_sched_rt_period
* NSEC_PER_USEC
;
767 static inline u64
global_rt_runtime(void)
769 if (sysctl_sched_rt_period
< 0)
772 return (u64
)sysctl_sched_rt_runtime
* NSEC_PER_USEC
;
775 unsigned long long time_sync_thresh
= 100000;
777 static DEFINE_PER_CPU(unsigned long long, time_offset
);
778 static DEFINE_PER_CPU(unsigned long long, prev_cpu_time
);
781 * Global lock which we take every now and then to synchronize
782 * the CPUs time. This method is not warp-safe, but it's good
783 * enough to synchronize slowly diverging time sources and thus
784 * it's good enough for tracing:
786 static DEFINE_SPINLOCK(time_sync_lock
);
787 static unsigned long long prev_global_time
;
789 static unsigned long long __sync_cpu_clock(unsigned long long time
, int cpu
)
792 * We want this inlined, to not get tracer function calls
793 * in this critical section:
795 spin_acquire(&time_sync_lock
.dep_map
, 0, 0, _THIS_IP_
);
796 __raw_spin_lock(&time_sync_lock
.raw_lock
);
798 if (time
< prev_global_time
) {
799 per_cpu(time_offset
, cpu
) += prev_global_time
- time
;
800 time
= prev_global_time
;
802 prev_global_time
= time
;
805 __raw_spin_unlock(&time_sync_lock
.raw_lock
);
806 spin_release(&time_sync_lock
.dep_map
, 1, _THIS_IP_
);
811 static unsigned long long __cpu_clock(int cpu
)
813 unsigned long long now
;
816 * Only call sched_clock() if the scheduler has already been
817 * initialized (some code might call cpu_clock() very early):
819 if (unlikely(!scheduler_running
))
822 now
= sched_clock_cpu(cpu
);
828 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
829 * clock constructed from sched_clock():
831 unsigned long long cpu_clock(int cpu
)
833 unsigned long long prev_cpu_time
, time
, delta_time
;
836 local_irq_save(flags
);
837 prev_cpu_time
= per_cpu(prev_cpu_time
, cpu
);
838 time
= __cpu_clock(cpu
) + per_cpu(time_offset
, cpu
);
839 delta_time
= time
-prev_cpu_time
;
841 if (unlikely(delta_time
> time_sync_thresh
)) {
842 time
= __sync_cpu_clock(time
, cpu
);
843 per_cpu(prev_cpu_time
, cpu
) = time
;
845 local_irq_restore(flags
);
849 EXPORT_SYMBOL_GPL(cpu_clock
);
851 #ifndef prepare_arch_switch
852 # define prepare_arch_switch(next) do { } while (0)
854 #ifndef finish_arch_switch
855 # define finish_arch_switch(prev) do { } while (0)
858 static inline int task_current(struct rq
*rq
, struct task_struct
*p
)
860 return rq
->curr
== p
;
863 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
864 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
866 return task_current(rq
, p
);
869 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
873 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
875 #ifdef CONFIG_DEBUG_SPINLOCK
876 /* this is a valid case when another task releases the spinlock */
877 rq
->lock
.owner
= current
;
880 * If we are tracking spinlock dependencies then we have to
881 * fix up the runqueue lock - which gets 'carried over' from
884 spin_acquire(&rq
->lock
.dep_map
, 0, 0, _THIS_IP_
);
886 spin_unlock_irq(&rq
->lock
);
889 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
890 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
895 return task_current(rq
, p
);
899 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
903 * We can optimise this out completely for !SMP, because the
904 * SMP rebalancing from interrupt is the only thing that cares
909 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
910 spin_unlock_irq(&rq
->lock
);
912 spin_unlock(&rq
->lock
);
916 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
920 * After ->oncpu is cleared, the task can be moved to a different CPU.
921 * We must ensure this doesn't happen until the switch is completely
927 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
931 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
934 * __task_rq_lock - lock the runqueue a given task resides on.
935 * Must be called interrupts disabled.
937 static inline struct rq
*__task_rq_lock(struct task_struct
*p
)
941 struct rq
*rq
= task_rq(p
);
942 spin_lock(&rq
->lock
);
943 if (likely(rq
== task_rq(p
)))
945 spin_unlock(&rq
->lock
);
950 * task_rq_lock - lock the runqueue a given task resides on and disable
951 * interrupts. Note the ordering: we can safely lookup the task_rq without
952 * explicitly disabling preemption.
954 static struct rq
*task_rq_lock(struct task_struct
*p
, unsigned long *flags
)
960 local_irq_save(*flags
);
962 spin_lock(&rq
->lock
);
963 if (likely(rq
== task_rq(p
)))
965 spin_unlock_irqrestore(&rq
->lock
, *flags
);
969 static void __task_rq_unlock(struct rq
*rq
)
972 spin_unlock(&rq
->lock
);
975 static inline void task_rq_unlock(struct rq
*rq
, unsigned long *flags
)
978 spin_unlock_irqrestore(&rq
->lock
, *flags
);
982 * this_rq_lock - lock this runqueue and disable interrupts.
984 static struct rq
*this_rq_lock(void)
991 spin_lock(&rq
->lock
);
996 static void __resched_task(struct task_struct
*p
, int tif_bit
);
998 static inline void resched_task(struct task_struct
*p
)
1000 __resched_task(p
, TIF_NEED_RESCHED
);
1003 #ifdef CONFIG_SCHED_HRTICK
1005 * Use HR-timers to deliver accurate preemption points.
1007 * Its all a bit involved since we cannot program an hrt while holding the
1008 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1011 * When we get rescheduled we reprogram the hrtick_timer outside of the
1014 static inline void resched_hrt(struct task_struct
*p
)
1016 __resched_task(p
, TIF_HRTICK_RESCHED
);
1019 static inline void resched_rq(struct rq
*rq
)
1021 unsigned long flags
;
1023 spin_lock_irqsave(&rq
->lock
, flags
);
1024 resched_task(rq
->curr
);
1025 spin_unlock_irqrestore(&rq
->lock
, flags
);
1029 HRTICK_SET
, /* re-programm hrtick_timer */
1030 HRTICK_RESET
, /* not a new slice */
1031 HRTICK_BLOCK
, /* stop hrtick operations */
1036 * - enabled by features
1037 * - hrtimer is actually high res
1039 static inline int hrtick_enabled(struct rq
*rq
)
1041 if (!sched_feat(HRTICK
))
1043 if (unlikely(test_bit(HRTICK_BLOCK
, &rq
->hrtick_flags
)))
1045 return hrtimer_is_hres_active(&rq
->hrtick_timer
);
1049 * Called to set the hrtick timer state.
1051 * called with rq->lock held and irqs disabled
1053 static void hrtick_start(struct rq
*rq
, u64 delay
, int reset
)
1055 assert_spin_locked(&rq
->lock
);
1058 * preempt at: now + delay
1061 ktime_add_ns(rq
->hrtick_timer
.base
->get_time(), delay
);
1063 * indicate we need to program the timer
1065 __set_bit(HRTICK_SET
, &rq
->hrtick_flags
);
1067 __set_bit(HRTICK_RESET
, &rq
->hrtick_flags
);
1070 * New slices are called from the schedule path and don't need a
1071 * forced reschedule.
1074 resched_hrt(rq
->curr
);
1077 static void hrtick_clear(struct rq
*rq
)
1079 if (hrtimer_active(&rq
->hrtick_timer
))
1080 hrtimer_cancel(&rq
->hrtick_timer
);
1084 * Update the timer from the possible pending state.
1086 static void hrtick_set(struct rq
*rq
)
1090 unsigned long flags
;
1092 WARN_ON_ONCE(cpu_of(rq
) != smp_processor_id());
1094 spin_lock_irqsave(&rq
->lock
, flags
);
1095 set
= __test_and_clear_bit(HRTICK_SET
, &rq
->hrtick_flags
);
1096 reset
= __test_and_clear_bit(HRTICK_RESET
, &rq
->hrtick_flags
);
1097 time
= rq
->hrtick_expire
;
1098 clear_thread_flag(TIF_HRTICK_RESCHED
);
1099 spin_unlock_irqrestore(&rq
->lock
, flags
);
1102 hrtimer_start(&rq
->hrtick_timer
, time
, HRTIMER_MODE_ABS
);
1103 if (reset
&& !hrtimer_active(&rq
->hrtick_timer
))
1110 * High-resolution timer tick.
1111 * Runs from hardirq context with interrupts disabled.
1113 static enum hrtimer_restart
hrtick(struct hrtimer
*timer
)
1115 struct rq
*rq
= container_of(timer
, struct rq
, hrtick_timer
);
1117 WARN_ON_ONCE(cpu_of(rq
) != smp_processor_id());
1119 spin_lock(&rq
->lock
);
1120 update_rq_clock(rq
);
1121 rq
->curr
->sched_class
->task_tick(rq
, rq
->curr
, 1);
1122 spin_unlock(&rq
->lock
);
1124 return HRTIMER_NORESTART
;
1127 static void hotplug_hrtick_disable(int cpu
)
1129 struct rq
*rq
= cpu_rq(cpu
);
1130 unsigned long flags
;
1132 spin_lock_irqsave(&rq
->lock
, flags
);
1133 rq
->hrtick_flags
= 0;
1134 __set_bit(HRTICK_BLOCK
, &rq
->hrtick_flags
);
1135 spin_unlock_irqrestore(&rq
->lock
, flags
);
1140 static void hotplug_hrtick_enable(int cpu
)
1142 struct rq
*rq
= cpu_rq(cpu
);
1143 unsigned long flags
;
1145 spin_lock_irqsave(&rq
->lock
, flags
);
1146 __clear_bit(HRTICK_BLOCK
, &rq
->hrtick_flags
);
1147 spin_unlock_irqrestore(&rq
->lock
, flags
);
1151 hotplug_hrtick(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
)
1153 int cpu
= (int)(long)hcpu
;
1156 case CPU_UP_CANCELED
:
1157 case CPU_UP_CANCELED_FROZEN
:
1158 case CPU_DOWN_PREPARE
:
1159 case CPU_DOWN_PREPARE_FROZEN
:
1161 case CPU_DEAD_FROZEN
:
1162 hotplug_hrtick_disable(cpu
);
1165 case CPU_UP_PREPARE
:
1166 case CPU_UP_PREPARE_FROZEN
:
1167 case CPU_DOWN_FAILED
:
1168 case CPU_DOWN_FAILED_FROZEN
:
1170 case CPU_ONLINE_FROZEN
:
1171 hotplug_hrtick_enable(cpu
);
1178 static void init_hrtick(void)
1180 hotcpu_notifier(hotplug_hrtick
, 0);
1183 static void init_rq_hrtick(struct rq
*rq
)
1185 rq
->hrtick_flags
= 0;
1186 hrtimer_init(&rq
->hrtick_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
1187 rq
->hrtick_timer
.function
= hrtick
;
1188 rq
->hrtick_timer
.cb_mode
= HRTIMER_CB_IRQSAFE_NO_SOFTIRQ
;
1191 void hrtick_resched(void)
1194 unsigned long flags
;
1196 if (!test_thread_flag(TIF_HRTICK_RESCHED
))
1199 local_irq_save(flags
);
1200 rq
= cpu_rq(smp_processor_id());
1202 local_irq_restore(flags
);
1205 static inline void hrtick_clear(struct rq
*rq
)
1209 static inline void hrtick_set(struct rq
*rq
)
1213 static inline void init_rq_hrtick(struct rq
*rq
)
1217 void hrtick_resched(void)
1221 static inline void init_hrtick(void)
1227 * resched_task - mark a task 'to be rescheduled now'.
1229 * On UP this means the setting of the need_resched flag, on SMP it
1230 * might also involve a cross-CPU call to trigger the scheduler on
1235 #ifndef tsk_is_polling
1236 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1239 static void __resched_task(struct task_struct
*p
, int tif_bit
)
1243 assert_spin_locked(&task_rq(p
)->lock
);
1245 if (unlikely(test_tsk_thread_flag(p
, tif_bit
)))
1248 set_tsk_thread_flag(p
, tif_bit
);
1251 if (cpu
== smp_processor_id())
1254 /* NEED_RESCHED must be visible before we test polling */
1256 if (!tsk_is_polling(p
))
1257 smp_send_reschedule(cpu
);
1260 static void resched_cpu(int cpu
)
1262 struct rq
*rq
= cpu_rq(cpu
);
1263 unsigned long flags
;
1265 if (!spin_trylock_irqsave(&rq
->lock
, flags
))
1267 resched_task(cpu_curr(cpu
));
1268 spin_unlock_irqrestore(&rq
->lock
, flags
);
1273 * When add_timer_on() enqueues a timer into the timer wheel of an
1274 * idle CPU then this timer might expire before the next timer event
1275 * which is scheduled to wake up that CPU. In case of a completely
1276 * idle system the next event might even be infinite time into the
1277 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1278 * leaves the inner idle loop so the newly added timer is taken into
1279 * account when the CPU goes back to idle and evaluates the timer
1280 * wheel for the next timer event.
1282 void wake_up_idle_cpu(int cpu
)
1284 struct rq
*rq
= cpu_rq(cpu
);
1286 if (cpu
== smp_processor_id())
1290 * This is safe, as this function is called with the timer
1291 * wheel base lock of (cpu) held. When the CPU is on the way
1292 * to idle and has not yet set rq->curr to idle then it will
1293 * be serialized on the timer wheel base lock and take the new
1294 * timer into account automatically.
1296 if (rq
->curr
!= rq
->idle
)
1300 * We can set TIF_RESCHED on the idle task of the other CPU
1301 * lockless. The worst case is that the other CPU runs the
1302 * idle task through an additional NOOP schedule()
1304 set_tsk_thread_flag(rq
->idle
, TIF_NEED_RESCHED
);
1306 /* NEED_RESCHED must be visible before we test polling */
1308 if (!tsk_is_polling(rq
->idle
))
1309 smp_send_reschedule(cpu
);
1314 static void __resched_task(struct task_struct
*p
, int tif_bit
)
1316 assert_spin_locked(&task_rq(p
)->lock
);
1317 set_tsk_thread_flag(p
, tif_bit
);
1321 #if BITS_PER_LONG == 32
1322 # define WMULT_CONST (~0UL)
1324 # define WMULT_CONST (1UL << 32)
1327 #define WMULT_SHIFT 32
1330 * Shift right and round:
1332 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1334 static unsigned long
1335 calc_delta_mine(unsigned long delta_exec
, unsigned long weight
,
1336 struct load_weight
*lw
)
1340 if (!lw
->inv_weight
)
1341 lw
->inv_weight
= 1 + (WMULT_CONST
-lw
->weight
/2)/(lw
->weight
+1);
1343 tmp
= (u64
)delta_exec
* weight
;
1345 * Check whether we'd overflow the 64-bit multiplication:
1347 if (unlikely(tmp
> WMULT_CONST
))
1348 tmp
= SRR(SRR(tmp
, WMULT_SHIFT
/2) * lw
->inv_weight
,
1351 tmp
= SRR(tmp
* lw
->inv_weight
, WMULT_SHIFT
);
1353 return (unsigned long)min(tmp
, (u64
)(unsigned long)LONG_MAX
);
1356 static inline unsigned long
1357 calc_delta_fair(unsigned long delta_exec
, struct load_weight
*lw
)
1359 return calc_delta_mine(delta_exec
, NICE_0_LOAD
, lw
);
1362 static inline void update_load_add(struct load_weight
*lw
, unsigned long inc
)
1368 static inline void update_load_sub(struct load_weight
*lw
, unsigned long dec
)
1375 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1376 * of tasks with abnormal "nice" values across CPUs the contribution that
1377 * each task makes to its run queue's load is weighted according to its
1378 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1379 * scaled version of the new time slice allocation that they receive on time
1383 #define WEIGHT_IDLEPRIO 2
1384 #define WMULT_IDLEPRIO (1 << 31)
1387 * Nice levels are multiplicative, with a gentle 10% change for every
1388 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1389 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1390 * that remained on nice 0.
1392 * The "10% effect" is relative and cumulative: from _any_ nice level,
1393 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1394 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1395 * If a task goes up by ~10% and another task goes down by ~10% then
1396 * the relative distance between them is ~25%.)
1398 static const int prio_to_weight
[40] = {
1399 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1400 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1401 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1402 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1403 /* 0 */ 1024, 820, 655, 526, 423,
1404 /* 5 */ 335, 272, 215, 172, 137,
1405 /* 10 */ 110, 87, 70, 56, 45,
1406 /* 15 */ 36, 29, 23, 18, 15,
1410 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1412 * In cases where the weight does not change often, we can use the
1413 * precalculated inverse to speed up arithmetics by turning divisions
1414 * into multiplications:
1416 static const u32 prio_to_wmult
[40] = {
1417 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1418 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1419 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1420 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1421 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1422 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1423 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1424 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1427 static void activate_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
);
1430 * runqueue iterator, to support SMP load-balancing between different
1431 * scheduling classes, without having to expose their internal data
1432 * structures to the load-balancing proper:
1434 struct rq_iterator
{
1436 struct task_struct
*(*start
)(void *);
1437 struct task_struct
*(*next
)(void *);
1441 static unsigned long
1442 balance_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
1443 unsigned long max_load_move
, struct sched_domain
*sd
,
1444 enum cpu_idle_type idle
, int *all_pinned
,
1445 int *this_best_prio
, struct rq_iterator
*iterator
);
1448 iter_move_one_task(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
1449 struct sched_domain
*sd
, enum cpu_idle_type idle
,
1450 struct rq_iterator
*iterator
);
1453 #ifdef CONFIG_CGROUP_CPUACCT
1454 static void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
);
1456 static inline void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
) {}
1459 static inline void inc_cpu_load(struct rq
*rq
, unsigned long load
)
1461 update_load_add(&rq
->load
, load
);
1464 static inline void dec_cpu_load(struct rq
*rq
, unsigned long load
)
1466 update_load_sub(&rq
->load
, load
);
1470 static unsigned long source_load(int cpu
, int type
);
1471 static unsigned long target_load(int cpu
, int type
);
1472 static unsigned long cpu_avg_load_per_task(int cpu
);
1473 static int task_hot(struct task_struct
*p
, u64 now
, struct sched_domain
*sd
);
1474 #else /* CONFIG_SMP */
1476 #ifdef CONFIG_FAIR_GROUP_SCHED
1477 static void cfs_rq_set_shares(struct cfs_rq
*cfs_rq
, unsigned long shares
)
1482 #endif /* CONFIG_SMP */
1484 #include "sched_stats.h"
1485 #include "sched_idletask.c"
1486 #include "sched_fair.c"
1487 #include "sched_rt.c"
1488 #ifdef CONFIG_SCHED_DEBUG
1489 # include "sched_debug.c"
1492 #define sched_class_highest (&rt_sched_class)
1494 static inline void inc_load(struct rq
*rq
, const struct task_struct
*p
)
1496 update_load_add(&rq
->load
, p
->se
.load
.weight
);
1499 static inline void dec_load(struct rq
*rq
, const struct task_struct
*p
)
1501 update_load_sub(&rq
->load
, p
->se
.load
.weight
);
1504 static void inc_nr_running(struct task_struct
*p
, struct rq
*rq
)
1510 static void dec_nr_running(struct task_struct
*p
, struct rq
*rq
)
1516 static void set_load_weight(struct task_struct
*p
)
1518 if (task_has_rt_policy(p
)) {
1519 p
->se
.load
.weight
= prio_to_weight
[0] * 2;
1520 p
->se
.load
.inv_weight
= prio_to_wmult
[0] >> 1;
1525 * SCHED_IDLE tasks get minimal weight:
1527 if (p
->policy
== SCHED_IDLE
) {
1528 p
->se
.load
.weight
= WEIGHT_IDLEPRIO
;
1529 p
->se
.load
.inv_weight
= WMULT_IDLEPRIO
;
1533 p
->se
.load
.weight
= prio_to_weight
[p
->static_prio
- MAX_RT_PRIO
];
1534 p
->se
.load
.inv_weight
= prio_to_wmult
[p
->static_prio
- MAX_RT_PRIO
];
1537 static void enqueue_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
)
1539 sched_info_queued(p
);
1540 p
->sched_class
->enqueue_task(rq
, p
, wakeup
);
1544 static void dequeue_task(struct rq
*rq
, struct task_struct
*p
, int sleep
)
1546 p
->sched_class
->dequeue_task(rq
, p
, sleep
);
1551 * __normal_prio - return the priority that is based on the static prio
1553 static inline int __normal_prio(struct task_struct
*p
)
1555 return p
->static_prio
;
1559 * Calculate the expected normal priority: i.e. priority
1560 * without taking RT-inheritance into account. Might be
1561 * boosted by interactivity modifiers. Changes upon fork,
1562 * setprio syscalls, and whenever the interactivity
1563 * estimator recalculates.
1565 static inline int normal_prio(struct task_struct
*p
)
1569 if (task_has_rt_policy(p
))
1570 prio
= MAX_RT_PRIO
-1 - p
->rt_priority
;
1572 prio
= __normal_prio(p
);
1577 * Calculate the current priority, i.e. the priority
1578 * taken into account by the scheduler. This value might
1579 * be boosted by RT tasks, or might be boosted by
1580 * interactivity modifiers. Will be RT if the task got
1581 * RT-boosted. If not then it returns p->normal_prio.
1583 static int effective_prio(struct task_struct
*p
)
1585 p
->normal_prio
= normal_prio(p
);
1587 * If we are RT tasks or we were boosted to RT priority,
1588 * keep the priority unchanged. Otherwise, update priority
1589 * to the normal priority:
1591 if (!rt_prio(p
->prio
))
1592 return p
->normal_prio
;
1597 * activate_task - move a task to the runqueue.
1599 static void activate_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
)
1601 if (task_contributes_to_load(p
))
1602 rq
->nr_uninterruptible
--;
1604 enqueue_task(rq
, p
, wakeup
);
1605 inc_nr_running(p
, rq
);
1609 * deactivate_task - remove a task from the runqueue.
1611 static void deactivate_task(struct rq
*rq
, struct task_struct
*p
, int sleep
)
1613 if (task_contributes_to_load(p
))
1614 rq
->nr_uninterruptible
++;
1616 dequeue_task(rq
, p
, sleep
);
1617 dec_nr_running(p
, rq
);
1621 * task_curr - is this task currently executing on a CPU?
1622 * @p: the task in question.
1624 inline int task_curr(const struct task_struct
*p
)
1626 return cpu_curr(task_cpu(p
)) == p
;
1629 /* Used instead of source_load when we know the type == 0 */
1630 unsigned long weighted_cpuload(const int cpu
)
1632 return cpu_rq(cpu
)->load
.weight
;
1635 static inline void __set_task_cpu(struct task_struct
*p
, unsigned int cpu
)
1637 set_task_rq(p
, cpu
);
1640 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1641 * successfuly executed on another CPU. We must ensure that updates of
1642 * per-task data have been completed by this moment.
1645 task_thread_info(p
)->cpu
= cpu
;
1649 static inline void check_class_changed(struct rq
*rq
, struct task_struct
*p
,
1650 const struct sched_class
*prev_class
,
1651 int oldprio
, int running
)
1653 if (prev_class
!= p
->sched_class
) {
1654 if (prev_class
->switched_from
)
1655 prev_class
->switched_from(rq
, p
, running
);
1656 p
->sched_class
->switched_to(rq
, p
, running
);
1658 p
->sched_class
->prio_changed(rq
, p
, oldprio
, running
);
1664 * Is this task likely cache-hot:
1667 task_hot(struct task_struct
*p
, u64 now
, struct sched_domain
*sd
)
1672 * Buddy candidates are cache hot:
1674 if (sched_feat(CACHE_HOT_BUDDY
) && (&p
->se
== cfs_rq_of(&p
->se
)->next
))
1677 if (p
->sched_class
!= &fair_sched_class
)
1680 if (sysctl_sched_migration_cost
== -1)
1682 if (sysctl_sched_migration_cost
== 0)
1685 delta
= now
- p
->se
.exec_start
;
1687 return delta
< (s64
)sysctl_sched_migration_cost
;
1691 void set_task_cpu(struct task_struct
*p
, unsigned int new_cpu
)
1693 int old_cpu
= task_cpu(p
);
1694 struct rq
*old_rq
= cpu_rq(old_cpu
), *new_rq
= cpu_rq(new_cpu
);
1695 struct cfs_rq
*old_cfsrq
= task_cfs_rq(p
),
1696 *new_cfsrq
= cpu_cfs_rq(old_cfsrq
, new_cpu
);
1699 clock_offset
= old_rq
->clock
- new_rq
->clock
;
1701 #ifdef CONFIG_SCHEDSTATS
1702 if (p
->se
.wait_start
)
1703 p
->se
.wait_start
-= clock_offset
;
1704 if (p
->se
.sleep_start
)
1705 p
->se
.sleep_start
-= clock_offset
;
1706 if (p
->se
.block_start
)
1707 p
->se
.block_start
-= clock_offset
;
1708 if (old_cpu
!= new_cpu
) {
1709 schedstat_inc(p
, se
.nr_migrations
);
1710 if (task_hot(p
, old_rq
->clock
, NULL
))
1711 schedstat_inc(p
, se
.nr_forced2_migrations
);
1714 p
->se
.vruntime
-= old_cfsrq
->min_vruntime
-
1715 new_cfsrq
->min_vruntime
;
1717 __set_task_cpu(p
, new_cpu
);
1720 struct migration_req
{
1721 struct list_head list
;
1723 struct task_struct
*task
;
1726 struct completion done
;
1730 * The task's runqueue lock must be held.
1731 * Returns true if you have to wait for migration thread.
1734 migrate_task(struct task_struct
*p
, int dest_cpu
, struct migration_req
*req
)
1736 struct rq
*rq
= task_rq(p
);
1739 * If the task is not on a runqueue (and not running), then
1740 * it is sufficient to simply update the task's cpu field.
1742 if (!p
->se
.on_rq
&& !task_running(rq
, p
)) {
1743 set_task_cpu(p
, dest_cpu
);
1747 init_completion(&req
->done
);
1749 req
->dest_cpu
= dest_cpu
;
1750 list_add(&req
->list
, &rq
->migration_queue
);
1756 * wait_task_inactive - wait for a thread to unschedule.
1758 * The caller must ensure that the task *will* unschedule sometime soon,
1759 * else this function might spin for a *long* time. This function can't
1760 * be called with interrupts off, or it may introduce deadlock with
1761 * smp_call_function() if an IPI is sent by the same process we are
1762 * waiting to become inactive.
1764 void wait_task_inactive(struct task_struct
*p
)
1766 unsigned long flags
;
1772 * We do the initial early heuristics without holding
1773 * any task-queue locks at all. We'll only try to get
1774 * the runqueue lock when things look like they will
1780 * If the task is actively running on another CPU
1781 * still, just relax and busy-wait without holding
1784 * NOTE! Since we don't hold any locks, it's not
1785 * even sure that "rq" stays as the right runqueue!
1786 * But we don't care, since "task_running()" will
1787 * return false if the runqueue has changed and p
1788 * is actually now running somewhere else!
1790 while (task_running(rq
, p
))
1794 * Ok, time to look more closely! We need the rq
1795 * lock now, to be *sure*. If we're wrong, we'll
1796 * just go back and repeat.
1798 rq
= task_rq_lock(p
, &flags
);
1799 running
= task_running(rq
, p
);
1800 on_rq
= p
->se
.on_rq
;
1801 task_rq_unlock(rq
, &flags
);
1804 * Was it really running after all now that we
1805 * checked with the proper locks actually held?
1807 * Oops. Go back and try again..
1809 if (unlikely(running
)) {
1815 * It's not enough that it's not actively running,
1816 * it must be off the runqueue _entirely_, and not
1819 * So if it wa still runnable (but just not actively
1820 * running right now), it's preempted, and we should
1821 * yield - it could be a while.
1823 if (unlikely(on_rq
)) {
1824 schedule_timeout_uninterruptible(1);
1829 * Ahh, all good. It wasn't running, and it wasn't
1830 * runnable, which means that it will never become
1831 * running in the future either. We're all done!
1838 * kick_process - kick a running thread to enter/exit the kernel
1839 * @p: the to-be-kicked thread
1841 * Cause a process which is running on another CPU to enter
1842 * kernel-mode, without any delay. (to get signals handled.)
1844 * NOTE: this function doesnt have to take the runqueue lock,
1845 * because all it wants to ensure is that the remote task enters
1846 * the kernel. If the IPI races and the task has been migrated
1847 * to another CPU then no harm is done and the purpose has been
1850 void kick_process(struct task_struct
*p
)
1856 if ((cpu
!= smp_processor_id()) && task_curr(p
))
1857 smp_send_reschedule(cpu
);
1862 * Return a low guess at the load of a migration-source cpu weighted
1863 * according to the scheduling class and "nice" value.
1865 * We want to under-estimate the load of migration sources, to
1866 * balance conservatively.
1868 static unsigned long source_load(int cpu
, int type
)
1870 struct rq
*rq
= cpu_rq(cpu
);
1871 unsigned long total
= weighted_cpuload(cpu
);
1876 return min(rq
->cpu_load
[type
-1], total
);
1880 * Return a high guess at the load of a migration-target cpu weighted
1881 * according to the scheduling class and "nice" value.
1883 static unsigned long target_load(int cpu
, int type
)
1885 struct rq
*rq
= cpu_rq(cpu
);
1886 unsigned long total
= weighted_cpuload(cpu
);
1891 return max(rq
->cpu_load
[type
-1], total
);
1895 * Return the average load per task on the cpu's run queue
1897 static unsigned long cpu_avg_load_per_task(int cpu
)
1899 struct rq
*rq
= cpu_rq(cpu
);
1900 unsigned long total
= weighted_cpuload(cpu
);
1901 unsigned long n
= rq
->nr_running
;
1903 return n
? total
/ n
: SCHED_LOAD_SCALE
;
1907 * find_idlest_group finds and returns the least busy CPU group within the
1910 static struct sched_group
*
1911 find_idlest_group(struct sched_domain
*sd
, struct task_struct
*p
, int this_cpu
)
1913 struct sched_group
*idlest
= NULL
, *this = NULL
, *group
= sd
->groups
;
1914 unsigned long min_load
= ULONG_MAX
, this_load
= 0;
1915 int load_idx
= sd
->forkexec_idx
;
1916 int imbalance
= 100 + (sd
->imbalance_pct
-100)/2;
1919 unsigned long load
, avg_load
;
1923 /* Skip over this group if it has no CPUs allowed */
1924 if (!cpus_intersects(group
->cpumask
, p
->cpus_allowed
))
1927 local_group
= cpu_isset(this_cpu
, group
->cpumask
);
1929 /* Tally up the load of all CPUs in the group */
1932 for_each_cpu_mask(i
, group
->cpumask
) {
1933 /* Bias balancing toward cpus of our domain */
1935 load
= source_load(i
, load_idx
);
1937 load
= target_load(i
, load_idx
);
1942 /* Adjust by relative CPU power of the group */
1943 avg_load
= sg_div_cpu_power(group
,
1944 avg_load
* SCHED_LOAD_SCALE
);
1947 this_load
= avg_load
;
1949 } else if (avg_load
< min_load
) {
1950 min_load
= avg_load
;
1953 } while (group
= group
->next
, group
!= sd
->groups
);
1955 if (!idlest
|| 100*this_load
< imbalance
*min_load
)
1961 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1964 find_idlest_cpu(struct sched_group
*group
, struct task_struct
*p
, int this_cpu
,
1967 unsigned long load
, min_load
= ULONG_MAX
;
1971 /* Traverse only the allowed CPUs */
1972 cpus_and(*tmp
, group
->cpumask
, p
->cpus_allowed
);
1974 for_each_cpu_mask(i
, *tmp
) {
1975 load
= weighted_cpuload(i
);
1977 if (load
< min_load
|| (load
== min_load
&& i
== this_cpu
)) {
1987 * sched_balance_self: balance the current task (running on cpu) in domains
1988 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1991 * Balance, ie. select the least loaded group.
1993 * Returns the target CPU number, or the same CPU if no balancing is needed.
1995 * preempt must be disabled.
1997 static int sched_balance_self(int cpu
, int flag
)
1999 struct task_struct
*t
= current
;
2000 struct sched_domain
*tmp
, *sd
= NULL
;
2002 for_each_domain(cpu
, tmp
) {
2004 * If power savings logic is enabled for a domain, stop there.
2006 if (tmp
->flags
& SD_POWERSAVINGS_BALANCE
)
2008 if (tmp
->flags
& flag
)
2013 cpumask_t span
, tmpmask
;
2014 struct sched_group
*group
;
2015 int new_cpu
, weight
;
2017 if (!(sd
->flags
& flag
)) {
2023 group
= find_idlest_group(sd
, t
, cpu
);
2029 new_cpu
= find_idlest_cpu(group
, t
, cpu
, &tmpmask
);
2030 if (new_cpu
== -1 || new_cpu
== cpu
) {
2031 /* Now try balancing at a lower domain level of cpu */
2036 /* Now try balancing at a lower domain level of new_cpu */
2039 weight
= cpus_weight(span
);
2040 for_each_domain(cpu
, tmp
) {
2041 if (weight
<= cpus_weight(tmp
->span
))
2043 if (tmp
->flags
& flag
)
2046 /* while loop will break here if sd == NULL */
2052 #endif /* CONFIG_SMP */
2055 * try_to_wake_up - wake up a thread
2056 * @p: the to-be-woken-up thread
2057 * @state: the mask of task states that can be woken
2058 * @sync: do a synchronous wakeup?
2060 * Put it on the run-queue if it's not already there. The "current"
2061 * thread is always on the run-queue (except when the actual
2062 * re-schedule is in progress), and as such you're allowed to do
2063 * the simpler "current->state = TASK_RUNNING" to mark yourself
2064 * runnable without the overhead of this.
2066 * returns failure only if the task is already active.
2068 static int try_to_wake_up(struct task_struct
*p
, unsigned int state
, int sync
)
2070 int cpu
, orig_cpu
, this_cpu
, success
= 0;
2071 unsigned long flags
;
2075 if (!sched_feat(SYNC_WAKEUPS
))
2079 rq
= task_rq_lock(p
, &flags
);
2080 old_state
= p
->state
;
2081 if (!(old_state
& state
))
2089 this_cpu
= smp_processor_id();
2092 if (unlikely(task_running(rq
, p
)))
2095 cpu
= p
->sched_class
->select_task_rq(p
, sync
);
2096 if (cpu
!= orig_cpu
) {
2097 set_task_cpu(p
, cpu
);
2098 task_rq_unlock(rq
, &flags
);
2099 /* might preempt at this point */
2100 rq
= task_rq_lock(p
, &flags
);
2101 old_state
= p
->state
;
2102 if (!(old_state
& state
))
2107 this_cpu
= smp_processor_id();
2111 #ifdef CONFIG_SCHEDSTATS
2112 schedstat_inc(rq
, ttwu_count
);
2113 if (cpu
== this_cpu
)
2114 schedstat_inc(rq
, ttwu_local
);
2116 struct sched_domain
*sd
;
2117 for_each_domain(this_cpu
, sd
) {
2118 if (cpu_isset(cpu
, sd
->span
)) {
2119 schedstat_inc(sd
, ttwu_wake_remote
);
2127 #endif /* CONFIG_SMP */
2128 schedstat_inc(p
, se
.nr_wakeups
);
2130 schedstat_inc(p
, se
.nr_wakeups_sync
);
2131 if (orig_cpu
!= cpu
)
2132 schedstat_inc(p
, se
.nr_wakeups_migrate
);
2133 if (cpu
== this_cpu
)
2134 schedstat_inc(p
, se
.nr_wakeups_local
);
2136 schedstat_inc(p
, se
.nr_wakeups_remote
);
2137 update_rq_clock(rq
);
2138 activate_task(rq
, p
, 1);
2142 check_preempt_curr(rq
, p
);
2144 p
->state
= TASK_RUNNING
;
2146 if (p
->sched_class
->task_wake_up
)
2147 p
->sched_class
->task_wake_up(rq
, p
);
2150 task_rq_unlock(rq
, &flags
);
2155 int wake_up_process(struct task_struct
*p
)
2157 return try_to_wake_up(p
, TASK_ALL
, 0);
2159 EXPORT_SYMBOL(wake_up_process
);
2161 int wake_up_state(struct task_struct
*p
, unsigned int state
)
2163 return try_to_wake_up(p
, state
, 0);
2167 * Perform scheduler related setup for a newly forked process p.
2168 * p is forked by current.
2170 * __sched_fork() is basic setup used by init_idle() too:
2172 static void __sched_fork(struct task_struct
*p
)
2174 p
->se
.exec_start
= 0;
2175 p
->se
.sum_exec_runtime
= 0;
2176 p
->se
.prev_sum_exec_runtime
= 0;
2177 p
->se
.last_wakeup
= 0;
2178 p
->se
.avg_overlap
= 0;
2180 #ifdef CONFIG_SCHEDSTATS
2181 p
->se
.wait_start
= 0;
2182 p
->se
.sum_sleep_runtime
= 0;
2183 p
->se
.sleep_start
= 0;
2184 p
->se
.block_start
= 0;
2185 p
->se
.sleep_max
= 0;
2186 p
->se
.block_max
= 0;
2188 p
->se
.slice_max
= 0;
2192 INIT_LIST_HEAD(&p
->rt
.run_list
);
2194 INIT_LIST_HEAD(&p
->se
.group_node
);
2196 #ifdef CONFIG_PREEMPT_NOTIFIERS
2197 INIT_HLIST_HEAD(&p
->preempt_notifiers
);
2201 * We mark the process as running here, but have not actually
2202 * inserted it onto the runqueue yet. This guarantees that
2203 * nobody will actually run it, and a signal or other external
2204 * event cannot wake it up and insert it on the runqueue either.
2206 p
->state
= TASK_RUNNING
;
2210 * fork()/clone()-time setup:
2212 void sched_fork(struct task_struct
*p
, int clone_flags
)
2214 int cpu
= get_cpu();
2219 cpu
= sched_balance_self(cpu
, SD_BALANCE_FORK
);
2221 set_task_cpu(p
, cpu
);
2224 * Make sure we do not leak PI boosting priority to the child:
2226 p
->prio
= current
->normal_prio
;
2227 if (!rt_prio(p
->prio
))
2228 p
->sched_class
= &fair_sched_class
;
2230 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2231 if (likely(sched_info_on()))
2232 memset(&p
->sched_info
, 0, sizeof(p
->sched_info
));
2234 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2237 #ifdef CONFIG_PREEMPT
2238 /* Want to start with kernel preemption disabled. */
2239 task_thread_info(p
)->preempt_count
= 1;
2245 * wake_up_new_task - wake up a newly created task for the first time.
2247 * This function will do some initial scheduler statistics housekeeping
2248 * that must be done for every newly created context, then puts the task
2249 * on the runqueue and wakes it.
2251 void wake_up_new_task(struct task_struct
*p
, unsigned long clone_flags
)
2253 unsigned long flags
;
2256 rq
= task_rq_lock(p
, &flags
);
2257 BUG_ON(p
->state
!= TASK_RUNNING
);
2258 update_rq_clock(rq
);
2260 p
->prio
= effective_prio(p
);
2262 if (!p
->sched_class
->task_new
|| !current
->se
.on_rq
) {
2263 activate_task(rq
, p
, 0);
2266 * Let the scheduling class do new task startup
2267 * management (if any):
2269 p
->sched_class
->task_new(rq
, p
);
2270 inc_nr_running(p
, rq
);
2272 check_preempt_curr(rq
, p
);
2274 if (p
->sched_class
->task_wake_up
)
2275 p
->sched_class
->task_wake_up(rq
, p
);
2277 task_rq_unlock(rq
, &flags
);
2280 #ifdef CONFIG_PREEMPT_NOTIFIERS
2283 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2284 * @notifier: notifier struct to register
2286 void preempt_notifier_register(struct preempt_notifier
*notifier
)
2288 hlist_add_head(¬ifier
->link
, ¤t
->preempt_notifiers
);
2290 EXPORT_SYMBOL_GPL(preempt_notifier_register
);
2293 * preempt_notifier_unregister - no longer interested in preemption notifications
2294 * @notifier: notifier struct to unregister
2296 * This is safe to call from within a preemption notifier.
2298 void preempt_notifier_unregister(struct preempt_notifier
*notifier
)
2300 hlist_del(¬ifier
->link
);
2302 EXPORT_SYMBOL_GPL(preempt_notifier_unregister
);
2304 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
2306 struct preempt_notifier
*notifier
;
2307 struct hlist_node
*node
;
2309 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
2310 notifier
->ops
->sched_in(notifier
, raw_smp_processor_id());
2314 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
2315 struct task_struct
*next
)
2317 struct preempt_notifier
*notifier
;
2318 struct hlist_node
*node
;
2320 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
2321 notifier
->ops
->sched_out(notifier
, next
);
2326 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
2331 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
2332 struct task_struct
*next
)
2339 * prepare_task_switch - prepare to switch tasks
2340 * @rq: the runqueue preparing to switch
2341 * @prev: the current task that is being switched out
2342 * @next: the task we are going to switch to.
2344 * This is called with the rq lock held and interrupts off. It must
2345 * be paired with a subsequent finish_task_switch after the context
2348 * prepare_task_switch sets up locking and calls architecture specific
2352 prepare_task_switch(struct rq
*rq
, struct task_struct
*prev
,
2353 struct task_struct
*next
)
2355 fire_sched_out_preempt_notifiers(prev
, next
);
2356 prepare_lock_switch(rq
, next
);
2357 prepare_arch_switch(next
);
2361 * finish_task_switch - clean up after a task-switch
2362 * @rq: runqueue associated with task-switch
2363 * @prev: the thread we just switched away from.
2365 * finish_task_switch must be called after the context switch, paired
2366 * with a prepare_task_switch call before the context switch.
2367 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2368 * and do any other architecture-specific cleanup actions.
2370 * Note that we may have delayed dropping an mm in context_switch(). If
2371 * so, we finish that here outside of the runqueue lock. (Doing it
2372 * with the lock held can cause deadlocks; see schedule() for
2375 static void finish_task_switch(struct rq
*rq
, struct task_struct
*prev
)
2376 __releases(rq
->lock
)
2378 struct mm_struct
*mm
= rq
->prev_mm
;
2384 * A task struct has one reference for the use as "current".
2385 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2386 * schedule one last time. The schedule call will never return, and
2387 * the scheduled task must drop that reference.
2388 * The test for TASK_DEAD must occur while the runqueue locks are
2389 * still held, otherwise prev could be scheduled on another cpu, die
2390 * there before we look at prev->state, and then the reference would
2392 * Manfred Spraul <manfred@colorfullife.com>
2394 prev_state
= prev
->state
;
2395 finish_arch_switch(prev
);
2396 finish_lock_switch(rq
, prev
);
2398 if (current
->sched_class
->post_schedule
)
2399 current
->sched_class
->post_schedule(rq
);
2402 fire_sched_in_preempt_notifiers(current
);
2405 if (unlikely(prev_state
== TASK_DEAD
)) {
2407 * Remove function-return probe instances associated with this
2408 * task and put them back on the free list.
2410 kprobe_flush_task(prev
);
2411 put_task_struct(prev
);
2416 * schedule_tail - first thing a freshly forked thread must call.
2417 * @prev: the thread we just switched away from.
2419 asmlinkage
void schedule_tail(struct task_struct
*prev
)
2420 __releases(rq
->lock
)
2422 struct rq
*rq
= this_rq();
2424 finish_task_switch(rq
, prev
);
2425 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2426 /* In this case, finish_task_switch does not reenable preemption */
2429 if (current
->set_child_tid
)
2430 put_user(task_pid_vnr(current
), current
->set_child_tid
);
2434 * context_switch - switch to the new MM and the new
2435 * thread's register state.
2438 context_switch(struct rq
*rq
, struct task_struct
*prev
,
2439 struct task_struct
*next
)
2441 struct mm_struct
*mm
, *oldmm
;
2443 prepare_task_switch(rq
, prev
, next
);
2445 oldmm
= prev
->active_mm
;
2447 * For paravirt, this is coupled with an exit in switch_to to
2448 * combine the page table reload and the switch backend into
2451 arch_enter_lazy_cpu_mode();
2453 if (unlikely(!mm
)) {
2454 next
->active_mm
= oldmm
;
2455 atomic_inc(&oldmm
->mm_count
);
2456 enter_lazy_tlb(oldmm
, next
);
2458 switch_mm(oldmm
, mm
, next
);
2460 if (unlikely(!prev
->mm
)) {
2461 prev
->active_mm
= NULL
;
2462 rq
->prev_mm
= oldmm
;
2465 * Since the runqueue lock will be released by the next
2466 * task (which is an invalid locking op but in the case
2467 * of the scheduler it's an obvious special-case), so we
2468 * do an early lockdep release here:
2470 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2471 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
2474 /* Here we just switch the register state and the stack. */
2475 switch_to(prev
, next
, prev
);
2479 * this_rq must be evaluated again because prev may have moved
2480 * CPUs since it called schedule(), thus the 'rq' on its stack
2481 * frame will be invalid.
2483 finish_task_switch(this_rq(), prev
);
2487 * nr_running, nr_uninterruptible and nr_context_switches:
2489 * externally visible scheduler statistics: current number of runnable
2490 * threads, current number of uninterruptible-sleeping threads, total
2491 * number of context switches performed since bootup.
2493 unsigned long nr_running(void)
2495 unsigned long i
, sum
= 0;
2497 for_each_online_cpu(i
)
2498 sum
+= cpu_rq(i
)->nr_running
;
2503 unsigned long nr_uninterruptible(void)
2505 unsigned long i
, sum
= 0;
2507 for_each_possible_cpu(i
)
2508 sum
+= cpu_rq(i
)->nr_uninterruptible
;
2511 * Since we read the counters lockless, it might be slightly
2512 * inaccurate. Do not allow it to go below zero though:
2514 if (unlikely((long)sum
< 0))
2520 unsigned long long nr_context_switches(void)
2523 unsigned long long sum
= 0;
2525 for_each_possible_cpu(i
)
2526 sum
+= cpu_rq(i
)->nr_switches
;
2531 unsigned long nr_iowait(void)
2533 unsigned long i
, sum
= 0;
2535 for_each_possible_cpu(i
)
2536 sum
+= atomic_read(&cpu_rq(i
)->nr_iowait
);
2541 unsigned long nr_active(void)
2543 unsigned long i
, running
= 0, uninterruptible
= 0;
2545 for_each_online_cpu(i
) {
2546 running
+= cpu_rq(i
)->nr_running
;
2547 uninterruptible
+= cpu_rq(i
)->nr_uninterruptible
;
2550 if (unlikely((long)uninterruptible
< 0))
2551 uninterruptible
= 0;
2553 return running
+ uninterruptible
;
2557 * Update rq->cpu_load[] statistics. This function is usually called every
2558 * scheduler tick (TICK_NSEC).
2560 static void update_cpu_load(struct rq
*this_rq
)
2562 unsigned long this_load
= this_rq
->load
.weight
;
2565 this_rq
->nr_load_updates
++;
2567 /* Update our load: */
2568 for (i
= 0, scale
= 1; i
< CPU_LOAD_IDX_MAX
; i
++, scale
+= scale
) {
2569 unsigned long old_load
, new_load
;
2571 /* scale is effectively 1 << i now, and >> i divides by scale */
2573 old_load
= this_rq
->cpu_load
[i
];
2574 new_load
= this_load
;
2576 * Round up the averaging division if load is increasing. This
2577 * prevents us from getting stuck on 9 if the load is 10, for
2580 if (new_load
> old_load
)
2581 new_load
+= scale
-1;
2582 this_rq
->cpu_load
[i
] = (old_load
*(scale
-1) + new_load
) >> i
;
2589 * double_rq_lock - safely lock two runqueues
2591 * Note this does not disable interrupts like task_rq_lock,
2592 * you need to do so manually before calling.
2594 static void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
)
2595 __acquires(rq1
->lock
)
2596 __acquires(rq2
->lock
)
2598 BUG_ON(!irqs_disabled());
2600 spin_lock(&rq1
->lock
);
2601 __acquire(rq2
->lock
); /* Fake it out ;) */
2604 spin_lock(&rq1
->lock
);
2605 spin_lock(&rq2
->lock
);
2607 spin_lock(&rq2
->lock
);
2608 spin_lock(&rq1
->lock
);
2611 update_rq_clock(rq1
);
2612 update_rq_clock(rq2
);
2616 * double_rq_unlock - safely unlock two runqueues
2618 * Note this does not restore interrupts like task_rq_unlock,
2619 * you need to do so manually after calling.
2621 static void double_rq_unlock(struct rq
*rq1
, struct rq
*rq2
)
2622 __releases(rq1
->lock
)
2623 __releases(rq2
->lock
)
2625 spin_unlock(&rq1
->lock
);
2627 spin_unlock(&rq2
->lock
);
2629 __release(rq2
->lock
);
2633 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2635 static int double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
2636 __releases(this_rq
->lock
)
2637 __acquires(busiest
->lock
)
2638 __acquires(this_rq
->lock
)
2642 if (unlikely(!irqs_disabled())) {
2643 /* printk() doesn't work good under rq->lock */
2644 spin_unlock(&this_rq
->lock
);
2647 if (unlikely(!spin_trylock(&busiest
->lock
))) {
2648 if (busiest
< this_rq
) {
2649 spin_unlock(&this_rq
->lock
);
2650 spin_lock(&busiest
->lock
);
2651 spin_lock(&this_rq
->lock
);
2654 spin_lock(&busiest
->lock
);
2660 * If dest_cpu is allowed for this process, migrate the task to it.
2661 * This is accomplished by forcing the cpu_allowed mask to only
2662 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2663 * the cpu_allowed mask is restored.
2665 static void sched_migrate_task(struct task_struct
*p
, int dest_cpu
)
2667 struct migration_req req
;
2668 unsigned long flags
;
2671 rq
= task_rq_lock(p
, &flags
);
2672 if (!cpu_isset(dest_cpu
, p
->cpus_allowed
)
2673 || unlikely(cpu_is_offline(dest_cpu
)))
2676 /* force the process onto the specified CPU */
2677 if (migrate_task(p
, dest_cpu
, &req
)) {
2678 /* Need to wait for migration thread (might exit: take ref). */
2679 struct task_struct
*mt
= rq
->migration_thread
;
2681 get_task_struct(mt
);
2682 task_rq_unlock(rq
, &flags
);
2683 wake_up_process(mt
);
2684 put_task_struct(mt
);
2685 wait_for_completion(&req
.done
);
2690 task_rq_unlock(rq
, &flags
);
2694 * sched_exec - execve() is a valuable balancing opportunity, because at
2695 * this point the task has the smallest effective memory and cache footprint.
2697 void sched_exec(void)
2699 int new_cpu
, this_cpu
= get_cpu();
2700 new_cpu
= sched_balance_self(this_cpu
, SD_BALANCE_EXEC
);
2702 if (new_cpu
!= this_cpu
)
2703 sched_migrate_task(current
, new_cpu
);
2707 * pull_task - move a task from a remote runqueue to the local runqueue.
2708 * Both runqueues must be locked.
2710 static void pull_task(struct rq
*src_rq
, struct task_struct
*p
,
2711 struct rq
*this_rq
, int this_cpu
)
2713 deactivate_task(src_rq
, p
, 0);
2714 set_task_cpu(p
, this_cpu
);
2715 activate_task(this_rq
, p
, 0);
2717 * Note that idle threads have a prio of MAX_PRIO, for this test
2718 * to be always true for them.
2720 check_preempt_curr(this_rq
, p
);
2724 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2727 int can_migrate_task(struct task_struct
*p
, struct rq
*rq
, int this_cpu
,
2728 struct sched_domain
*sd
, enum cpu_idle_type idle
,
2732 * We do not migrate tasks that are:
2733 * 1) running (obviously), or
2734 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2735 * 3) are cache-hot on their current CPU.
2737 if (!cpu_isset(this_cpu
, p
->cpus_allowed
)) {
2738 schedstat_inc(p
, se
.nr_failed_migrations_affine
);
2743 if (task_running(rq
, p
)) {
2744 schedstat_inc(p
, se
.nr_failed_migrations_running
);
2749 * Aggressive migration if:
2750 * 1) task is cache cold, or
2751 * 2) too many balance attempts have failed.
2754 if (!task_hot(p
, rq
->clock
, sd
) ||
2755 sd
->nr_balance_failed
> sd
->cache_nice_tries
) {
2756 #ifdef CONFIG_SCHEDSTATS
2757 if (task_hot(p
, rq
->clock
, sd
)) {
2758 schedstat_inc(sd
, lb_hot_gained
[idle
]);
2759 schedstat_inc(p
, se
.nr_forced_migrations
);
2765 if (task_hot(p
, rq
->clock
, sd
)) {
2766 schedstat_inc(p
, se
.nr_failed_migrations_hot
);
2772 static unsigned long
2773 balance_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
2774 unsigned long max_load_move
, struct sched_domain
*sd
,
2775 enum cpu_idle_type idle
, int *all_pinned
,
2776 int *this_best_prio
, struct rq_iterator
*iterator
)
2778 int loops
= 0, pulled
= 0, pinned
= 0, skip_for_load
;
2779 struct task_struct
*p
;
2780 long rem_load_move
= max_load_move
;
2782 if (max_load_move
== 0)
2788 * Start the load-balancing iterator:
2790 p
= iterator
->start(iterator
->arg
);
2792 if (!p
|| loops
++ > sysctl_sched_nr_migrate
)
2795 * To help distribute high priority tasks across CPUs we don't
2796 * skip a task if it will be the highest priority task (i.e. smallest
2797 * prio value) on its new queue regardless of its load weight
2799 skip_for_load
= (p
->se
.load
.weight
>> 1) > rem_load_move
+
2800 SCHED_LOAD_SCALE_FUZZ
;
2801 if ((skip_for_load
&& p
->prio
>= *this_best_prio
) ||
2802 !can_migrate_task(p
, busiest
, this_cpu
, sd
, idle
, &pinned
)) {
2803 p
= iterator
->next(iterator
->arg
);
2807 pull_task(busiest
, p
, this_rq
, this_cpu
);
2809 rem_load_move
-= p
->se
.load
.weight
;
2812 * We only want to steal up to the prescribed amount of weighted load.
2814 if (rem_load_move
> 0) {
2815 if (p
->prio
< *this_best_prio
)
2816 *this_best_prio
= p
->prio
;
2817 p
= iterator
->next(iterator
->arg
);
2822 * Right now, this is one of only two places pull_task() is called,
2823 * so we can safely collect pull_task() stats here rather than
2824 * inside pull_task().
2826 schedstat_add(sd
, lb_gained
[idle
], pulled
);
2829 *all_pinned
= pinned
;
2831 return max_load_move
- rem_load_move
;
2835 * move_tasks tries to move up to max_load_move weighted load from busiest to
2836 * this_rq, as part of a balancing operation within domain "sd".
2837 * Returns 1 if successful and 0 otherwise.
2839 * Called with both runqueues locked.
2841 static int move_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
2842 unsigned long max_load_move
,
2843 struct sched_domain
*sd
, enum cpu_idle_type idle
,
2846 const struct sched_class
*class = sched_class_highest
;
2847 unsigned long total_load_moved
= 0;
2848 int this_best_prio
= this_rq
->curr
->prio
;
2852 class->load_balance(this_rq
, this_cpu
, busiest
,
2853 max_load_move
- total_load_moved
,
2854 sd
, idle
, all_pinned
, &this_best_prio
);
2855 class = class->next
;
2856 } while (class && max_load_move
> total_load_moved
);
2858 return total_load_moved
> 0;
2862 iter_move_one_task(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
2863 struct sched_domain
*sd
, enum cpu_idle_type idle
,
2864 struct rq_iterator
*iterator
)
2866 struct task_struct
*p
= iterator
->start(iterator
->arg
);
2870 if (can_migrate_task(p
, busiest
, this_cpu
, sd
, idle
, &pinned
)) {
2871 pull_task(busiest
, p
, this_rq
, this_cpu
);
2873 * Right now, this is only the second place pull_task()
2874 * is called, so we can safely collect pull_task()
2875 * stats here rather than inside pull_task().
2877 schedstat_inc(sd
, lb_gained
[idle
]);
2881 p
= iterator
->next(iterator
->arg
);
2888 * move_one_task tries to move exactly one task from busiest to this_rq, as
2889 * part of active balancing operations within "domain".
2890 * Returns 1 if successful and 0 otherwise.
2892 * Called with both runqueues locked.
2894 static int move_one_task(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
2895 struct sched_domain
*sd
, enum cpu_idle_type idle
)
2897 const struct sched_class
*class;
2899 for (class = sched_class_highest
; class; class = class->next
)
2900 if (class->move_one_task(this_rq
, this_cpu
, busiest
, sd
, idle
))
2907 * find_busiest_group finds and returns the busiest CPU group within the
2908 * domain. It calculates and returns the amount of weighted load which
2909 * should be moved to restore balance via the imbalance parameter.
2911 static struct sched_group
*
2912 find_busiest_group(struct sched_domain
*sd
, int this_cpu
,
2913 unsigned long *imbalance
, enum cpu_idle_type idle
,
2914 int *sd_idle
, const cpumask_t
*cpus
, int *balance
)
2916 struct sched_group
*busiest
= NULL
, *this = NULL
, *group
= sd
->groups
;
2917 unsigned long max_load
, avg_load
, total_load
, this_load
, total_pwr
;
2918 unsigned long max_pull
;
2919 unsigned long busiest_load_per_task
, busiest_nr_running
;
2920 unsigned long this_load_per_task
, this_nr_running
;
2921 int load_idx
, group_imb
= 0;
2922 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2923 int power_savings_balance
= 1;
2924 unsigned long leader_nr_running
= 0, min_load_per_task
= 0;
2925 unsigned long min_nr_running
= ULONG_MAX
;
2926 struct sched_group
*group_min
= NULL
, *group_leader
= NULL
;
2929 max_load
= this_load
= total_load
= total_pwr
= 0;
2930 busiest_load_per_task
= busiest_nr_running
= 0;
2931 this_load_per_task
= this_nr_running
= 0;
2932 if (idle
== CPU_NOT_IDLE
)
2933 load_idx
= sd
->busy_idx
;
2934 else if (idle
== CPU_NEWLY_IDLE
)
2935 load_idx
= sd
->newidle_idx
;
2937 load_idx
= sd
->idle_idx
;
2940 unsigned long load
, group_capacity
, max_cpu_load
, min_cpu_load
;
2943 int __group_imb
= 0;
2944 unsigned int balance_cpu
= -1, first_idle_cpu
= 0;
2945 unsigned long sum_nr_running
, sum_weighted_load
;
2947 local_group
= cpu_isset(this_cpu
, group
->cpumask
);
2950 balance_cpu
= first_cpu(group
->cpumask
);
2952 /* Tally up the load of all CPUs in the group */
2953 sum_weighted_load
= sum_nr_running
= avg_load
= 0;
2955 min_cpu_load
= ~0UL;
2957 for_each_cpu_mask(i
, group
->cpumask
) {
2960 if (!cpu_isset(i
, *cpus
))
2965 if (*sd_idle
&& rq
->nr_running
)
2968 /* Bias balancing toward cpus of our domain */
2970 if (idle_cpu(i
) && !first_idle_cpu
) {
2975 load
= target_load(i
, load_idx
);
2977 load
= source_load(i
, load_idx
);
2978 if (load
> max_cpu_load
)
2979 max_cpu_load
= load
;
2980 if (min_cpu_load
> load
)
2981 min_cpu_load
= load
;
2985 sum_nr_running
+= rq
->nr_running
;
2986 sum_weighted_load
+= weighted_cpuload(i
);
2990 * First idle cpu or the first cpu(busiest) in this sched group
2991 * is eligible for doing load balancing at this and above
2992 * domains. In the newly idle case, we will allow all the cpu's
2993 * to do the newly idle load balance.
2995 if (idle
!= CPU_NEWLY_IDLE
&& local_group
&&
2996 balance_cpu
!= this_cpu
&& balance
) {
3001 total_load
+= avg_load
;
3002 total_pwr
+= group
->__cpu_power
;
3004 /* Adjust by relative CPU power of the group */
3005 avg_load
= sg_div_cpu_power(group
,
3006 avg_load
* SCHED_LOAD_SCALE
);
3008 if ((max_cpu_load
- min_cpu_load
) > SCHED_LOAD_SCALE
)
3011 group_capacity
= group
->__cpu_power
/ SCHED_LOAD_SCALE
;
3014 this_load
= avg_load
;
3016 this_nr_running
= sum_nr_running
;
3017 this_load_per_task
= sum_weighted_load
;
3018 } else if (avg_load
> max_load
&&
3019 (sum_nr_running
> group_capacity
|| __group_imb
)) {
3020 max_load
= avg_load
;
3022 busiest_nr_running
= sum_nr_running
;
3023 busiest_load_per_task
= sum_weighted_load
;
3024 group_imb
= __group_imb
;
3027 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3029 * Busy processors will not participate in power savings
3032 if (idle
== CPU_NOT_IDLE
||
3033 !(sd
->flags
& SD_POWERSAVINGS_BALANCE
))
3037 * If the local group is idle or completely loaded
3038 * no need to do power savings balance at this domain
3040 if (local_group
&& (this_nr_running
>= group_capacity
||
3042 power_savings_balance
= 0;
3045 * If a group is already running at full capacity or idle,
3046 * don't include that group in power savings calculations
3048 if (!power_savings_balance
|| sum_nr_running
>= group_capacity
3053 * Calculate the group which has the least non-idle load.
3054 * This is the group from where we need to pick up the load
3057 if ((sum_nr_running
< min_nr_running
) ||
3058 (sum_nr_running
== min_nr_running
&&
3059 first_cpu(group
->cpumask
) <
3060 first_cpu(group_min
->cpumask
))) {
3062 min_nr_running
= sum_nr_running
;
3063 min_load_per_task
= sum_weighted_load
/
3068 * Calculate the group which is almost near its
3069 * capacity but still has some space to pick up some load
3070 * from other group and save more power
3072 if (sum_nr_running
<= group_capacity
- 1) {
3073 if (sum_nr_running
> leader_nr_running
||
3074 (sum_nr_running
== leader_nr_running
&&
3075 first_cpu(group
->cpumask
) >
3076 first_cpu(group_leader
->cpumask
))) {
3077 group_leader
= group
;
3078 leader_nr_running
= sum_nr_running
;
3083 group
= group
->next
;
3084 } while (group
!= sd
->groups
);
3086 if (!busiest
|| this_load
>= max_load
|| busiest_nr_running
== 0)
3089 avg_load
= (SCHED_LOAD_SCALE
* total_load
) / total_pwr
;
3091 if (this_load
>= avg_load
||
3092 100*max_load
<= sd
->imbalance_pct
*this_load
)
3095 busiest_load_per_task
/= busiest_nr_running
;
3097 busiest_load_per_task
= min(busiest_load_per_task
, avg_load
);
3100 * We're trying to get all the cpus to the average_load, so we don't
3101 * want to push ourselves above the average load, nor do we wish to
3102 * reduce the max loaded cpu below the average load, as either of these
3103 * actions would just result in more rebalancing later, and ping-pong
3104 * tasks around. Thus we look for the minimum possible imbalance.
3105 * Negative imbalances (*we* are more loaded than anyone else) will
3106 * be counted as no imbalance for these purposes -- we can't fix that
3107 * by pulling tasks to us. Be careful of negative numbers as they'll
3108 * appear as very large values with unsigned longs.
3110 if (max_load
<= busiest_load_per_task
)
3114 * In the presence of smp nice balancing, certain scenarios can have
3115 * max load less than avg load(as we skip the groups at or below
3116 * its cpu_power, while calculating max_load..)
3118 if (max_load
< avg_load
) {
3120 goto small_imbalance
;
3123 /* Don't want to pull so many tasks that a group would go idle */
3124 max_pull
= min(max_load
- avg_load
, max_load
- busiest_load_per_task
);
3126 /* How much load to actually move to equalise the imbalance */
3127 *imbalance
= min(max_pull
* busiest
->__cpu_power
,
3128 (avg_load
- this_load
) * this->__cpu_power
)
3132 * if *imbalance is less than the average load per runnable task
3133 * there is no gaurantee that any tasks will be moved so we'll have
3134 * a think about bumping its value to force at least one task to be
3137 if (*imbalance
< busiest_load_per_task
) {
3138 unsigned long tmp
, pwr_now
, pwr_move
;
3142 pwr_move
= pwr_now
= 0;
3144 if (this_nr_running
) {
3145 this_load_per_task
/= this_nr_running
;
3146 if (busiest_load_per_task
> this_load_per_task
)
3149 this_load_per_task
= SCHED_LOAD_SCALE
;
3151 if (max_load
- this_load
+ SCHED_LOAD_SCALE_FUZZ
>=
3152 busiest_load_per_task
* imbn
) {
3153 *imbalance
= busiest_load_per_task
;
3158 * OK, we don't have enough imbalance to justify moving tasks,
3159 * however we may be able to increase total CPU power used by
3163 pwr_now
+= busiest
->__cpu_power
*
3164 min(busiest_load_per_task
, max_load
);
3165 pwr_now
+= this->__cpu_power
*
3166 min(this_load_per_task
, this_load
);
3167 pwr_now
/= SCHED_LOAD_SCALE
;
3169 /* Amount of load we'd subtract */
3170 tmp
= sg_div_cpu_power(busiest
,
3171 busiest_load_per_task
* SCHED_LOAD_SCALE
);
3173 pwr_move
+= busiest
->__cpu_power
*
3174 min(busiest_load_per_task
, max_load
- tmp
);
3176 /* Amount of load we'd add */
3177 if (max_load
* busiest
->__cpu_power
<
3178 busiest_load_per_task
* SCHED_LOAD_SCALE
)
3179 tmp
= sg_div_cpu_power(this,
3180 max_load
* busiest
->__cpu_power
);
3182 tmp
= sg_div_cpu_power(this,
3183 busiest_load_per_task
* SCHED_LOAD_SCALE
);
3184 pwr_move
+= this->__cpu_power
*
3185 min(this_load_per_task
, this_load
+ tmp
);
3186 pwr_move
/= SCHED_LOAD_SCALE
;
3188 /* Move if we gain throughput */
3189 if (pwr_move
> pwr_now
)
3190 *imbalance
= busiest_load_per_task
;
3196 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3197 if (idle
== CPU_NOT_IDLE
|| !(sd
->flags
& SD_POWERSAVINGS_BALANCE
))
3200 if (this == group_leader
&& group_leader
!= group_min
) {
3201 *imbalance
= min_load_per_task
;
3211 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3214 find_busiest_queue(struct sched_group
*group
, enum cpu_idle_type idle
,
3215 unsigned long imbalance
, const cpumask_t
*cpus
)
3217 struct rq
*busiest
= NULL
, *rq
;
3218 unsigned long max_load
= 0;
3221 for_each_cpu_mask(i
, group
->cpumask
) {
3224 if (!cpu_isset(i
, *cpus
))
3228 wl
= weighted_cpuload(i
);
3230 if (rq
->nr_running
== 1 && wl
> imbalance
)
3233 if (wl
> max_load
) {
3243 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3244 * so long as it is large enough.
3246 #define MAX_PINNED_INTERVAL 512
3249 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3250 * tasks if there is an imbalance.
3252 static int load_balance(int this_cpu
, struct rq
*this_rq
,
3253 struct sched_domain
*sd
, enum cpu_idle_type idle
,
3254 int *balance
, cpumask_t
*cpus
)
3256 int ld_moved
, all_pinned
= 0, active_balance
= 0, sd_idle
= 0;
3257 struct sched_group
*group
;
3258 unsigned long imbalance
;
3260 unsigned long flags
;
3265 * When power savings policy is enabled for the parent domain, idle
3266 * sibling can pick up load irrespective of busy siblings. In this case,
3267 * let the state of idle sibling percolate up as CPU_IDLE, instead of
3268 * portraying it as CPU_NOT_IDLE.
3270 if (idle
!= CPU_NOT_IDLE
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
3271 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3274 schedstat_inc(sd
, lb_count
[idle
]);
3277 group
= find_busiest_group(sd
, this_cpu
, &imbalance
, idle
, &sd_idle
,
3284 schedstat_inc(sd
, lb_nobusyg
[idle
]);
3288 busiest
= find_busiest_queue(group
, idle
, imbalance
, cpus
);
3290 schedstat_inc(sd
, lb_nobusyq
[idle
]);
3294 BUG_ON(busiest
== this_rq
);
3296 schedstat_add(sd
, lb_imbalance
[idle
], imbalance
);
3299 if (busiest
->nr_running
> 1) {
3301 * Attempt to move tasks. If find_busiest_group has found
3302 * an imbalance but busiest->nr_running <= 1, the group is
3303 * still unbalanced. ld_moved simply stays zero, so it is
3304 * correctly treated as an imbalance.
3306 local_irq_save(flags
);
3307 double_rq_lock(this_rq
, busiest
);
3308 ld_moved
= move_tasks(this_rq
, this_cpu
, busiest
,
3309 imbalance
, sd
, idle
, &all_pinned
);
3310 double_rq_unlock(this_rq
, busiest
);
3311 local_irq_restore(flags
);
3314 * some other cpu did the load balance for us.
3316 if (ld_moved
&& this_cpu
!= smp_processor_id())
3317 resched_cpu(this_cpu
);
3319 /* All tasks on this runqueue were pinned by CPU affinity */
3320 if (unlikely(all_pinned
)) {
3321 cpu_clear(cpu_of(busiest
), *cpus
);
3322 if (!cpus_empty(*cpus
))
3329 schedstat_inc(sd
, lb_failed
[idle
]);
3330 sd
->nr_balance_failed
++;
3332 if (unlikely(sd
->nr_balance_failed
> sd
->cache_nice_tries
+2)) {
3334 spin_lock_irqsave(&busiest
->lock
, flags
);
3336 /* don't kick the migration_thread, if the curr
3337 * task on busiest cpu can't be moved to this_cpu
3339 if (!cpu_isset(this_cpu
, busiest
->curr
->cpus_allowed
)) {
3340 spin_unlock_irqrestore(&busiest
->lock
, flags
);
3342 goto out_one_pinned
;
3345 if (!busiest
->active_balance
) {
3346 busiest
->active_balance
= 1;
3347 busiest
->push_cpu
= this_cpu
;
3350 spin_unlock_irqrestore(&busiest
->lock
, flags
);
3352 wake_up_process(busiest
->migration_thread
);
3355 * We've kicked active balancing, reset the failure
3358 sd
->nr_balance_failed
= sd
->cache_nice_tries
+1;
3361 sd
->nr_balance_failed
= 0;
3363 if (likely(!active_balance
)) {
3364 /* We were unbalanced, so reset the balancing interval */
3365 sd
->balance_interval
= sd
->min_interval
;
3368 * If we've begun active balancing, start to back off. This
3369 * case may not be covered by the all_pinned logic if there
3370 * is only 1 task on the busy runqueue (because we don't call
3373 if (sd
->balance_interval
< sd
->max_interval
)
3374 sd
->balance_interval
*= 2;
3377 if (!ld_moved
&& !sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
3378 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3383 schedstat_inc(sd
, lb_balanced
[idle
]);
3385 sd
->nr_balance_failed
= 0;
3388 /* tune up the balancing interval */
3389 if ((all_pinned
&& sd
->balance_interval
< MAX_PINNED_INTERVAL
) ||
3390 (sd
->balance_interval
< sd
->max_interval
))
3391 sd
->balance_interval
*= 2;
3393 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
3394 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3400 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3401 * tasks if there is an imbalance.
3403 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
3404 * this_rq is locked.
3407 load_balance_newidle(int this_cpu
, struct rq
*this_rq
, struct sched_domain
*sd
,
3410 struct sched_group
*group
;
3411 struct rq
*busiest
= NULL
;
3412 unsigned long imbalance
;
3420 * When power savings policy is enabled for the parent domain, idle
3421 * sibling can pick up load irrespective of busy siblings. In this case,
3422 * let the state of idle sibling percolate up as IDLE, instead of
3423 * portraying it as CPU_NOT_IDLE.
3425 if (sd
->flags
& SD_SHARE_CPUPOWER
&&
3426 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3429 schedstat_inc(sd
, lb_count
[CPU_NEWLY_IDLE
]);
3431 group
= find_busiest_group(sd
, this_cpu
, &imbalance
, CPU_NEWLY_IDLE
,
3432 &sd_idle
, cpus
, NULL
);
3434 schedstat_inc(sd
, lb_nobusyg
[CPU_NEWLY_IDLE
]);
3438 busiest
= find_busiest_queue(group
, CPU_NEWLY_IDLE
, imbalance
, cpus
);
3440 schedstat_inc(sd
, lb_nobusyq
[CPU_NEWLY_IDLE
]);
3444 BUG_ON(busiest
== this_rq
);
3446 schedstat_add(sd
, lb_imbalance
[CPU_NEWLY_IDLE
], imbalance
);
3449 if (busiest
->nr_running
> 1) {
3450 /* Attempt to move tasks */
3451 double_lock_balance(this_rq
, busiest
);
3452 /* this_rq->clock is already updated */
3453 update_rq_clock(busiest
);
3454 ld_moved
= move_tasks(this_rq
, this_cpu
, busiest
,
3455 imbalance
, sd
, CPU_NEWLY_IDLE
,
3457 spin_unlock(&busiest
->lock
);
3459 if (unlikely(all_pinned
)) {
3460 cpu_clear(cpu_of(busiest
), *cpus
);
3461 if (!cpus_empty(*cpus
))
3467 schedstat_inc(sd
, lb_failed
[CPU_NEWLY_IDLE
]);
3468 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
3469 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3472 sd
->nr_balance_failed
= 0;
3477 schedstat_inc(sd
, lb_balanced
[CPU_NEWLY_IDLE
]);
3478 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
3479 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3481 sd
->nr_balance_failed
= 0;
3487 * idle_balance is called by schedule() if this_cpu is about to become
3488 * idle. Attempts to pull tasks from other CPUs.
3490 static void idle_balance(int this_cpu
, struct rq
*this_rq
)
3492 struct sched_domain
*sd
;
3493 int pulled_task
= -1;
3494 unsigned long next_balance
= jiffies
+ HZ
;
3497 for_each_domain(this_cpu
, sd
) {
3498 unsigned long interval
;
3500 if (!(sd
->flags
& SD_LOAD_BALANCE
))
3503 if (sd
->flags
& SD_BALANCE_NEWIDLE
)
3504 /* If we've pulled tasks over stop searching: */
3505 pulled_task
= load_balance_newidle(this_cpu
, this_rq
,
3508 interval
= msecs_to_jiffies(sd
->balance_interval
);
3509 if (time_after(next_balance
, sd
->last_balance
+ interval
))
3510 next_balance
= sd
->last_balance
+ interval
;
3514 if (pulled_task
|| time_after(jiffies
, this_rq
->next_balance
)) {
3516 * We are going idle. next_balance may be set based on
3517 * a busy processor. So reset next_balance.
3519 this_rq
->next_balance
= next_balance
;
3524 * active_load_balance is run by migration threads. It pushes running tasks
3525 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3526 * running on each physical CPU where possible, and avoids physical /
3527 * logical imbalances.
3529 * Called with busiest_rq locked.
3531 static void active_load_balance(struct rq
*busiest_rq
, int busiest_cpu
)
3533 int target_cpu
= busiest_rq
->push_cpu
;
3534 struct sched_domain
*sd
;
3535 struct rq
*target_rq
;
3537 /* Is there any task to move? */
3538 if (busiest_rq
->nr_running
<= 1)
3541 target_rq
= cpu_rq(target_cpu
);
3544 * This condition is "impossible", if it occurs
3545 * we need to fix it. Originally reported by
3546 * Bjorn Helgaas on a 128-cpu setup.
3548 BUG_ON(busiest_rq
== target_rq
);
3550 /* move a task from busiest_rq to target_rq */
3551 double_lock_balance(busiest_rq
, target_rq
);
3552 update_rq_clock(busiest_rq
);
3553 update_rq_clock(target_rq
);
3555 /* Search for an sd spanning us and the target CPU. */
3556 for_each_domain(target_cpu
, sd
) {
3557 if ((sd
->flags
& SD_LOAD_BALANCE
) &&
3558 cpu_isset(busiest_cpu
, sd
->span
))
3563 schedstat_inc(sd
, alb_count
);
3565 if (move_one_task(target_rq
, target_cpu
, busiest_rq
,
3567 schedstat_inc(sd
, alb_pushed
);
3569 schedstat_inc(sd
, alb_failed
);
3571 spin_unlock(&target_rq
->lock
);
3576 atomic_t load_balancer
;
3578 } nohz ____cacheline_aligned
= {
3579 .load_balancer
= ATOMIC_INIT(-1),
3580 .cpu_mask
= CPU_MASK_NONE
,
3584 * This routine will try to nominate the ilb (idle load balancing)
3585 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3586 * load balancing on behalf of all those cpus. If all the cpus in the system
3587 * go into this tickless mode, then there will be no ilb owner (as there is
3588 * no need for one) and all the cpus will sleep till the next wakeup event
3591 * For the ilb owner, tick is not stopped. And this tick will be used
3592 * for idle load balancing. ilb owner will still be part of
3595 * While stopping the tick, this cpu will become the ilb owner if there
3596 * is no other owner. And will be the owner till that cpu becomes busy
3597 * or if all cpus in the system stop their ticks at which point
3598 * there is no need for ilb owner.
3600 * When the ilb owner becomes busy, it nominates another owner, during the
3601 * next busy scheduler_tick()
3603 int select_nohz_load_balancer(int stop_tick
)
3605 int cpu
= smp_processor_id();
3608 cpu_set(cpu
, nohz
.cpu_mask
);
3609 cpu_rq(cpu
)->in_nohz_recently
= 1;
3612 * If we are going offline and still the leader, give up!
3614 if (cpu_is_offline(cpu
) &&
3615 atomic_read(&nohz
.load_balancer
) == cpu
) {
3616 if (atomic_cmpxchg(&nohz
.load_balancer
, cpu
, -1) != cpu
)
3621 /* time for ilb owner also to sleep */
3622 if (cpus_weight(nohz
.cpu_mask
) == num_online_cpus()) {
3623 if (atomic_read(&nohz
.load_balancer
) == cpu
)
3624 atomic_set(&nohz
.load_balancer
, -1);
3628 if (atomic_read(&nohz
.load_balancer
) == -1) {
3629 /* make me the ilb owner */
3630 if (atomic_cmpxchg(&nohz
.load_balancer
, -1, cpu
) == -1)
3632 } else if (atomic_read(&nohz
.load_balancer
) == cpu
)
3635 if (!cpu_isset(cpu
, nohz
.cpu_mask
))
3638 cpu_clear(cpu
, nohz
.cpu_mask
);
3640 if (atomic_read(&nohz
.load_balancer
) == cpu
)
3641 if (atomic_cmpxchg(&nohz
.load_balancer
, cpu
, -1) != cpu
)
3648 static DEFINE_SPINLOCK(balancing
);
3651 * It checks each scheduling domain to see if it is due to be balanced,
3652 * and initiates a balancing operation if so.
3654 * Balancing parameters are set up in arch_init_sched_domains.
3656 static void rebalance_domains(int cpu
, enum cpu_idle_type idle
)
3659 struct rq
*rq
= cpu_rq(cpu
);
3660 unsigned long interval
;
3661 struct sched_domain
*sd
;
3662 /* Earliest time when we have to do rebalance again */
3663 unsigned long next_balance
= jiffies
+ 60*HZ
;
3664 int update_next_balance
= 0;
3667 for_each_domain(cpu
, sd
) {
3668 if (!(sd
->flags
& SD_LOAD_BALANCE
))
3671 interval
= sd
->balance_interval
;
3672 if (idle
!= CPU_IDLE
)
3673 interval
*= sd
->busy_factor
;
3675 /* scale ms to jiffies */
3676 interval
= msecs_to_jiffies(interval
);
3677 if (unlikely(!interval
))
3679 if (interval
> HZ
*NR_CPUS
/10)
3680 interval
= HZ
*NR_CPUS
/10;
3683 if (sd
->flags
& SD_SERIALIZE
) {
3684 if (!spin_trylock(&balancing
))
3688 if (time_after_eq(jiffies
, sd
->last_balance
+ interval
)) {
3689 if (load_balance(cpu
, rq
, sd
, idle
, &balance
, &tmp
)) {
3691 * We've pulled tasks over so either we're no
3692 * longer idle, or one of our SMT siblings is
3695 idle
= CPU_NOT_IDLE
;
3697 sd
->last_balance
= jiffies
;
3699 if (sd
->flags
& SD_SERIALIZE
)
3700 spin_unlock(&balancing
);
3702 if (time_after(next_balance
, sd
->last_balance
+ interval
)) {
3703 next_balance
= sd
->last_balance
+ interval
;
3704 update_next_balance
= 1;
3708 * Stop the load balance at this level. There is another
3709 * CPU in our sched group which is doing load balancing more
3717 * next_balance will be updated only when there is a need.
3718 * When the cpu is attached to null domain for ex, it will not be
3721 if (likely(update_next_balance
))
3722 rq
->next_balance
= next_balance
;
3726 * run_rebalance_domains is triggered when needed from the scheduler tick.
3727 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3728 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3730 static void run_rebalance_domains(struct softirq_action
*h
)
3732 int this_cpu
= smp_processor_id();
3733 struct rq
*this_rq
= cpu_rq(this_cpu
);
3734 enum cpu_idle_type idle
= this_rq
->idle_at_tick
?
3735 CPU_IDLE
: CPU_NOT_IDLE
;
3737 rebalance_domains(this_cpu
, idle
);
3741 * If this cpu is the owner for idle load balancing, then do the
3742 * balancing on behalf of the other idle cpus whose ticks are
3745 if (this_rq
->idle_at_tick
&&
3746 atomic_read(&nohz
.load_balancer
) == this_cpu
) {
3747 cpumask_t cpus
= nohz
.cpu_mask
;
3751 cpu_clear(this_cpu
, cpus
);
3752 for_each_cpu_mask(balance_cpu
, cpus
) {
3754 * If this cpu gets work to do, stop the load balancing
3755 * work being done for other cpus. Next load
3756 * balancing owner will pick it up.
3761 rebalance_domains(balance_cpu
, CPU_IDLE
);
3763 rq
= cpu_rq(balance_cpu
);
3764 if (time_after(this_rq
->next_balance
, rq
->next_balance
))
3765 this_rq
->next_balance
= rq
->next_balance
;
3772 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3774 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3775 * idle load balancing owner or decide to stop the periodic load balancing,
3776 * if the whole system is idle.
3778 static inline void trigger_load_balance(struct rq
*rq
, int cpu
)
3782 * If we were in the nohz mode recently and busy at the current
3783 * scheduler tick, then check if we need to nominate new idle
3786 if (rq
->in_nohz_recently
&& !rq
->idle_at_tick
) {
3787 rq
->in_nohz_recently
= 0;
3789 if (atomic_read(&nohz
.load_balancer
) == cpu
) {
3790 cpu_clear(cpu
, nohz
.cpu_mask
);
3791 atomic_set(&nohz
.load_balancer
, -1);
3794 if (atomic_read(&nohz
.load_balancer
) == -1) {
3796 * simple selection for now: Nominate the
3797 * first cpu in the nohz list to be the next
3800 * TBD: Traverse the sched domains and nominate
3801 * the nearest cpu in the nohz.cpu_mask.
3803 int ilb
= first_cpu(nohz
.cpu_mask
);
3805 if (ilb
< nr_cpu_ids
)
3811 * If this cpu is idle and doing idle load balancing for all the
3812 * cpus with ticks stopped, is it time for that to stop?
3814 if (rq
->idle_at_tick
&& atomic_read(&nohz
.load_balancer
) == cpu
&&
3815 cpus_weight(nohz
.cpu_mask
) == num_online_cpus()) {
3821 * If this cpu is idle and the idle load balancing is done by
3822 * someone else, then no need raise the SCHED_SOFTIRQ
3824 if (rq
->idle_at_tick
&& atomic_read(&nohz
.load_balancer
) != cpu
&&
3825 cpu_isset(cpu
, nohz
.cpu_mask
))
3828 if (time_after_eq(jiffies
, rq
->next_balance
))
3829 raise_softirq(SCHED_SOFTIRQ
);
3832 #else /* CONFIG_SMP */
3835 * on UP we do not need to balance between CPUs:
3837 static inline void idle_balance(int cpu
, struct rq
*rq
)
3843 DEFINE_PER_CPU(struct kernel_stat
, kstat
);
3845 EXPORT_PER_CPU_SYMBOL(kstat
);
3848 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3849 * that have not yet been banked in case the task is currently running.
3851 unsigned long long task_sched_runtime(struct task_struct
*p
)
3853 unsigned long flags
;
3857 rq
= task_rq_lock(p
, &flags
);
3858 ns
= p
->se
.sum_exec_runtime
;
3859 if (task_current(rq
, p
)) {
3860 update_rq_clock(rq
);
3861 delta_exec
= rq
->clock
- p
->se
.exec_start
;
3862 if ((s64
)delta_exec
> 0)
3865 task_rq_unlock(rq
, &flags
);
3871 * Account user cpu time to a process.
3872 * @p: the process that the cpu time gets accounted to
3873 * @cputime: the cpu time spent in user space since the last update
3875 void account_user_time(struct task_struct
*p
, cputime_t cputime
)
3877 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3880 p
->utime
= cputime_add(p
->utime
, cputime
);
3882 /* Add user time to cpustat. */
3883 tmp
= cputime_to_cputime64(cputime
);
3884 if (TASK_NICE(p
) > 0)
3885 cpustat
->nice
= cputime64_add(cpustat
->nice
, tmp
);
3887 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
3891 * Account guest cpu time to a process.
3892 * @p: the process that the cpu time gets accounted to
3893 * @cputime: the cpu time spent in virtual machine since the last update
3895 static void account_guest_time(struct task_struct
*p
, cputime_t cputime
)
3898 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3900 tmp
= cputime_to_cputime64(cputime
);
3902 p
->utime
= cputime_add(p
->utime
, cputime
);
3903 p
->gtime
= cputime_add(p
->gtime
, cputime
);
3905 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
3906 cpustat
->guest
= cputime64_add(cpustat
->guest
, tmp
);
3910 * Account scaled user cpu time to a process.
3911 * @p: the process that the cpu time gets accounted to
3912 * @cputime: the cpu time spent in user space since the last update
3914 void account_user_time_scaled(struct task_struct
*p
, cputime_t cputime
)
3916 p
->utimescaled
= cputime_add(p
->utimescaled
, cputime
);
3920 * Account system cpu time to a process.
3921 * @p: the process that the cpu time gets accounted to
3922 * @hardirq_offset: the offset to subtract from hardirq_count()
3923 * @cputime: the cpu time spent in kernel space since the last update
3925 void account_system_time(struct task_struct
*p
, int hardirq_offset
,
3928 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3929 struct rq
*rq
= this_rq();
3932 if ((p
->flags
& PF_VCPU
) && (irq_count() - hardirq_offset
== 0)) {
3933 account_guest_time(p
, cputime
);
3937 p
->stime
= cputime_add(p
->stime
, cputime
);
3939 /* Add system time to cpustat. */
3940 tmp
= cputime_to_cputime64(cputime
);
3941 if (hardirq_count() - hardirq_offset
)
3942 cpustat
->irq
= cputime64_add(cpustat
->irq
, tmp
);
3943 else if (softirq_count())
3944 cpustat
->softirq
= cputime64_add(cpustat
->softirq
, tmp
);
3945 else if (p
!= rq
->idle
)
3946 cpustat
->system
= cputime64_add(cpustat
->system
, tmp
);
3947 else if (atomic_read(&rq
->nr_iowait
) > 0)
3948 cpustat
->iowait
= cputime64_add(cpustat
->iowait
, tmp
);
3950 cpustat
->idle
= cputime64_add(cpustat
->idle
, tmp
);
3951 /* Account for system time used */
3952 acct_update_integrals(p
);
3956 * Account scaled system cpu time to a process.
3957 * @p: the process that the cpu time gets accounted to
3958 * @hardirq_offset: the offset to subtract from hardirq_count()
3959 * @cputime: the cpu time spent in kernel space since the last update
3961 void account_system_time_scaled(struct task_struct
*p
, cputime_t cputime
)
3963 p
->stimescaled
= cputime_add(p
->stimescaled
, cputime
);
3967 * Account for involuntary wait time.
3968 * @p: the process from which the cpu time has been stolen
3969 * @steal: the cpu time spent in involuntary wait
3971 void account_steal_time(struct task_struct
*p
, cputime_t steal
)
3973 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3974 cputime64_t tmp
= cputime_to_cputime64(steal
);
3975 struct rq
*rq
= this_rq();
3977 if (p
== rq
->idle
) {
3978 p
->stime
= cputime_add(p
->stime
, steal
);
3979 if (atomic_read(&rq
->nr_iowait
) > 0)
3980 cpustat
->iowait
= cputime64_add(cpustat
->iowait
, tmp
);
3982 cpustat
->idle
= cputime64_add(cpustat
->idle
, tmp
);
3984 cpustat
->steal
= cputime64_add(cpustat
->steal
, tmp
);
3988 * This function gets called by the timer code, with HZ frequency.
3989 * We call it with interrupts disabled.
3991 * It also gets called by the fork code, when changing the parent's
3994 void scheduler_tick(void)
3996 int cpu
= smp_processor_id();
3997 struct rq
*rq
= cpu_rq(cpu
);
3998 struct task_struct
*curr
= rq
->curr
;
4002 spin_lock(&rq
->lock
);
4003 update_rq_clock(rq
);
4004 update_cpu_load(rq
);
4005 curr
->sched_class
->task_tick(rq
, curr
, 0);
4006 spin_unlock(&rq
->lock
);
4009 rq
->idle_at_tick
= idle_cpu(cpu
);
4010 trigger_load_balance(rq
, cpu
);
4014 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
4016 void __kprobes
add_preempt_count(int val
)
4021 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4023 preempt_count() += val
;
4025 * Spinlock count overflowing soon?
4027 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK
) >=
4030 EXPORT_SYMBOL(add_preempt_count
);
4032 void __kprobes
sub_preempt_count(int val
)
4037 if (DEBUG_LOCKS_WARN_ON(val
> preempt_count()))
4040 * Is the spinlock portion underflowing?
4042 if (DEBUG_LOCKS_WARN_ON((val
< PREEMPT_MASK
) &&
4043 !(preempt_count() & PREEMPT_MASK
)))
4046 preempt_count() -= val
;
4048 EXPORT_SYMBOL(sub_preempt_count
);
4053 * Print scheduling while atomic bug:
4055 static noinline
void __schedule_bug(struct task_struct
*prev
)
4057 struct pt_regs
*regs
= get_irq_regs();
4059 printk(KERN_ERR
"BUG: scheduling while atomic: %s/%d/0x%08x\n",
4060 prev
->comm
, prev
->pid
, preempt_count());
4062 debug_show_held_locks(prev
);
4063 if (irqs_disabled())
4064 print_irqtrace_events(prev
);
4073 * Various schedule()-time debugging checks and statistics:
4075 static inline void schedule_debug(struct task_struct
*prev
)
4078 * Test if we are atomic. Since do_exit() needs to call into
4079 * schedule() atomically, we ignore that path for now.
4080 * Otherwise, whine if we are scheduling when we should not be.
4082 if (unlikely(in_atomic_preempt_off() && !prev
->exit_state
))
4083 __schedule_bug(prev
);
4085 profile_hit(SCHED_PROFILING
, __builtin_return_address(0));
4087 schedstat_inc(this_rq(), sched_count
);
4088 #ifdef CONFIG_SCHEDSTATS
4089 if (unlikely(prev
->lock_depth
>= 0)) {
4090 schedstat_inc(this_rq(), bkl_count
);
4091 schedstat_inc(prev
, sched_info
.bkl_count
);
4097 * Pick up the highest-prio task:
4099 static inline struct task_struct
*
4100 pick_next_task(struct rq
*rq
, struct task_struct
*prev
)
4102 const struct sched_class
*class;
4103 struct task_struct
*p
;
4106 * Optimization: we know that if all tasks are in
4107 * the fair class we can call that function directly:
4109 if (likely(rq
->nr_running
== rq
->cfs
.nr_running
)) {
4110 p
= fair_sched_class
.pick_next_task(rq
);
4115 class = sched_class_highest
;
4117 p
= class->pick_next_task(rq
);
4121 * Will never be NULL as the idle class always
4122 * returns a non-NULL p:
4124 class = class->next
;
4129 * schedule() is the main scheduler function.
4131 asmlinkage
void __sched
schedule(void)
4133 struct task_struct
*prev
, *next
;
4134 unsigned long *switch_count
;
4140 cpu
= smp_processor_id();
4144 switch_count
= &prev
->nivcsw
;
4146 release_kernel_lock(prev
);
4147 need_resched_nonpreemptible
:
4149 schedule_debug(prev
);
4154 * Do the rq-clock update outside the rq lock:
4156 local_irq_disable();
4157 update_rq_clock(rq
);
4158 spin_lock(&rq
->lock
);
4159 clear_tsk_need_resched(prev
);
4161 if (prev
->state
&& !(preempt_count() & PREEMPT_ACTIVE
)) {
4162 if (unlikely((prev
->state
& TASK_INTERRUPTIBLE
) &&
4163 signal_pending(prev
))) {
4164 prev
->state
= TASK_RUNNING
;
4166 deactivate_task(rq
, prev
, 1);
4168 switch_count
= &prev
->nvcsw
;
4172 if (prev
->sched_class
->pre_schedule
)
4173 prev
->sched_class
->pre_schedule(rq
, prev
);
4176 if (unlikely(!rq
->nr_running
))
4177 idle_balance(cpu
, rq
);
4179 prev
->sched_class
->put_prev_task(rq
, prev
);
4180 next
= pick_next_task(rq
, prev
);
4182 if (likely(prev
!= next
)) {
4183 sched_info_switch(prev
, next
);
4189 context_switch(rq
, prev
, next
); /* unlocks the rq */
4191 * the context switch might have flipped the stack from under
4192 * us, hence refresh the local variables.
4194 cpu
= smp_processor_id();
4197 spin_unlock_irq(&rq
->lock
);
4201 if (unlikely(reacquire_kernel_lock(current
) < 0))
4202 goto need_resched_nonpreemptible
;
4204 preempt_enable_no_resched();
4205 if (unlikely(test_thread_flag(TIF_NEED_RESCHED
)))
4208 EXPORT_SYMBOL(schedule
);
4210 #ifdef CONFIG_PREEMPT
4212 * this is the entry point to schedule() from in-kernel preemption
4213 * off of preempt_enable. Kernel preemptions off return from interrupt
4214 * occur there and call schedule directly.
4216 asmlinkage
void __sched
preempt_schedule(void)
4218 struct thread_info
*ti
= current_thread_info();
4221 * If there is a non-zero preempt_count or interrupts are disabled,
4222 * we do not want to preempt the current task. Just return..
4224 if (likely(ti
->preempt_count
|| irqs_disabled()))
4228 add_preempt_count(PREEMPT_ACTIVE
);
4230 sub_preempt_count(PREEMPT_ACTIVE
);
4233 * Check again in case we missed a preemption opportunity
4234 * between schedule and now.
4237 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED
)));
4239 EXPORT_SYMBOL(preempt_schedule
);
4242 * this is the entry point to schedule() from kernel preemption
4243 * off of irq context.
4244 * Note, that this is called and return with irqs disabled. This will
4245 * protect us against recursive calling from irq.
4247 asmlinkage
void __sched
preempt_schedule_irq(void)
4249 struct thread_info
*ti
= current_thread_info();
4251 /* Catch callers which need to be fixed */
4252 BUG_ON(ti
->preempt_count
|| !irqs_disabled());
4255 add_preempt_count(PREEMPT_ACTIVE
);
4258 local_irq_disable();
4259 sub_preempt_count(PREEMPT_ACTIVE
);
4262 * Check again in case we missed a preemption opportunity
4263 * between schedule and now.
4266 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED
)));
4269 #endif /* CONFIG_PREEMPT */
4271 int default_wake_function(wait_queue_t
*curr
, unsigned mode
, int sync
,
4274 return try_to_wake_up(curr
->private, mode
, sync
);
4276 EXPORT_SYMBOL(default_wake_function
);
4279 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4280 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
4281 * number) then we wake all the non-exclusive tasks and one exclusive task.
4283 * There are circumstances in which we can try to wake a task which has already
4284 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4285 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4287 static void __wake_up_common(wait_queue_head_t
*q
, unsigned int mode
,
4288 int nr_exclusive
, int sync
, void *key
)
4290 wait_queue_t
*curr
, *next
;
4292 list_for_each_entry_safe(curr
, next
, &q
->task_list
, task_list
) {
4293 unsigned flags
= curr
->flags
;
4295 if (curr
->func(curr
, mode
, sync
, key
) &&
4296 (flags
& WQ_FLAG_EXCLUSIVE
) && !--nr_exclusive
)
4302 * __wake_up - wake up threads blocked on a waitqueue.
4304 * @mode: which threads
4305 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4306 * @key: is directly passed to the wakeup function
4308 void __wake_up(wait_queue_head_t
*q
, unsigned int mode
,
4309 int nr_exclusive
, void *key
)
4311 unsigned long flags
;
4313 spin_lock_irqsave(&q
->lock
, flags
);
4314 __wake_up_common(q
, mode
, nr_exclusive
, 0, key
);
4315 spin_unlock_irqrestore(&q
->lock
, flags
);
4317 EXPORT_SYMBOL(__wake_up
);
4320 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4322 void __wake_up_locked(wait_queue_head_t
*q
, unsigned int mode
)
4324 __wake_up_common(q
, mode
, 1, 0, NULL
);
4328 * __wake_up_sync - wake up threads blocked on a waitqueue.
4330 * @mode: which threads
4331 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4333 * The sync wakeup differs that the waker knows that it will schedule
4334 * away soon, so while the target thread will be woken up, it will not
4335 * be migrated to another CPU - ie. the two threads are 'synchronized'
4336 * with each other. This can prevent needless bouncing between CPUs.
4338 * On UP it can prevent extra preemption.
4341 __wake_up_sync(wait_queue_head_t
*q
, unsigned int mode
, int nr_exclusive
)
4343 unsigned long flags
;
4349 if (unlikely(!nr_exclusive
))
4352 spin_lock_irqsave(&q
->lock
, flags
);
4353 __wake_up_common(q
, mode
, nr_exclusive
, sync
, NULL
);
4354 spin_unlock_irqrestore(&q
->lock
, flags
);
4356 EXPORT_SYMBOL_GPL(__wake_up_sync
); /* For internal use only */
4358 void complete(struct completion
*x
)
4360 unsigned long flags
;
4362 spin_lock_irqsave(&x
->wait
.lock
, flags
);
4364 __wake_up_common(&x
->wait
, TASK_NORMAL
, 1, 0, NULL
);
4365 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
4367 EXPORT_SYMBOL(complete
);
4369 void complete_all(struct completion
*x
)
4371 unsigned long flags
;
4373 spin_lock_irqsave(&x
->wait
.lock
, flags
);
4374 x
->done
+= UINT_MAX
/2;
4375 __wake_up_common(&x
->wait
, TASK_NORMAL
, 0, 0, NULL
);
4376 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
4378 EXPORT_SYMBOL(complete_all
);
4380 static inline long __sched
4381 do_wait_for_common(struct completion
*x
, long timeout
, int state
)
4384 DECLARE_WAITQUEUE(wait
, current
);
4386 wait
.flags
|= WQ_FLAG_EXCLUSIVE
;
4387 __add_wait_queue_tail(&x
->wait
, &wait
);
4389 if ((state
== TASK_INTERRUPTIBLE
&&
4390 signal_pending(current
)) ||
4391 (state
== TASK_KILLABLE
&&
4392 fatal_signal_pending(current
))) {
4393 __remove_wait_queue(&x
->wait
, &wait
);
4394 return -ERESTARTSYS
;
4396 __set_current_state(state
);
4397 spin_unlock_irq(&x
->wait
.lock
);
4398 timeout
= schedule_timeout(timeout
);
4399 spin_lock_irq(&x
->wait
.lock
);
4401 __remove_wait_queue(&x
->wait
, &wait
);
4405 __remove_wait_queue(&x
->wait
, &wait
);
4412 wait_for_common(struct completion
*x
, long timeout
, int state
)
4416 spin_lock_irq(&x
->wait
.lock
);
4417 timeout
= do_wait_for_common(x
, timeout
, state
);
4418 spin_unlock_irq(&x
->wait
.lock
);
4422 void __sched
wait_for_completion(struct completion
*x
)
4424 wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_UNINTERRUPTIBLE
);
4426 EXPORT_SYMBOL(wait_for_completion
);
4428 unsigned long __sched
4429 wait_for_completion_timeout(struct completion
*x
, unsigned long timeout
)
4431 return wait_for_common(x
, timeout
, TASK_UNINTERRUPTIBLE
);
4433 EXPORT_SYMBOL(wait_for_completion_timeout
);
4435 int __sched
wait_for_completion_interruptible(struct completion
*x
)
4437 long t
= wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_INTERRUPTIBLE
);
4438 if (t
== -ERESTARTSYS
)
4442 EXPORT_SYMBOL(wait_for_completion_interruptible
);
4444 unsigned long __sched
4445 wait_for_completion_interruptible_timeout(struct completion
*x
,
4446 unsigned long timeout
)
4448 return wait_for_common(x
, timeout
, TASK_INTERRUPTIBLE
);
4450 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout
);
4452 int __sched
wait_for_completion_killable(struct completion
*x
)
4454 long t
= wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_KILLABLE
);
4455 if (t
== -ERESTARTSYS
)
4459 EXPORT_SYMBOL(wait_for_completion_killable
);
4462 sleep_on_common(wait_queue_head_t
*q
, int state
, long timeout
)
4464 unsigned long flags
;
4467 init_waitqueue_entry(&wait
, current
);
4469 __set_current_state(state
);
4471 spin_lock_irqsave(&q
->lock
, flags
);
4472 __add_wait_queue(q
, &wait
);
4473 spin_unlock(&q
->lock
);
4474 timeout
= schedule_timeout(timeout
);
4475 spin_lock_irq(&q
->lock
);
4476 __remove_wait_queue(q
, &wait
);
4477 spin_unlock_irqrestore(&q
->lock
, flags
);
4482 void __sched
interruptible_sleep_on(wait_queue_head_t
*q
)
4484 sleep_on_common(q
, TASK_INTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
4486 EXPORT_SYMBOL(interruptible_sleep_on
);
4489 interruptible_sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
4491 return sleep_on_common(q
, TASK_INTERRUPTIBLE
, timeout
);
4493 EXPORT_SYMBOL(interruptible_sleep_on_timeout
);
4495 void __sched
sleep_on(wait_queue_head_t
*q
)
4497 sleep_on_common(q
, TASK_UNINTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
4499 EXPORT_SYMBOL(sleep_on
);
4501 long __sched
sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
4503 return sleep_on_common(q
, TASK_UNINTERRUPTIBLE
, timeout
);
4505 EXPORT_SYMBOL(sleep_on_timeout
);
4507 #ifdef CONFIG_RT_MUTEXES
4510 * rt_mutex_setprio - set the current priority of a task
4512 * @prio: prio value (kernel-internal form)
4514 * This function changes the 'effective' priority of a task. It does
4515 * not touch ->normal_prio like __setscheduler().
4517 * Used by the rt_mutex code to implement priority inheritance logic.
4519 void rt_mutex_setprio(struct task_struct
*p
, int prio
)
4521 unsigned long flags
;
4522 int oldprio
, on_rq
, running
;
4524 const struct sched_class
*prev_class
= p
->sched_class
;
4526 BUG_ON(prio
< 0 || prio
> MAX_PRIO
);
4528 rq
= task_rq_lock(p
, &flags
);
4529 update_rq_clock(rq
);
4532 on_rq
= p
->se
.on_rq
;
4533 running
= task_current(rq
, p
);
4535 dequeue_task(rq
, p
, 0);
4537 p
->sched_class
->put_prev_task(rq
, p
);
4540 p
->sched_class
= &rt_sched_class
;
4542 p
->sched_class
= &fair_sched_class
;
4547 p
->sched_class
->set_curr_task(rq
);
4549 enqueue_task(rq
, p
, 0);
4551 check_class_changed(rq
, p
, prev_class
, oldprio
, running
);
4553 task_rq_unlock(rq
, &flags
);
4558 void set_user_nice(struct task_struct
*p
, long nice
)
4560 int old_prio
, delta
, on_rq
;
4561 unsigned long flags
;
4564 if (TASK_NICE(p
) == nice
|| nice
< -20 || nice
> 19)
4567 * We have to be careful, if called from sys_setpriority(),
4568 * the task might be in the middle of scheduling on another CPU.
4570 rq
= task_rq_lock(p
, &flags
);
4571 update_rq_clock(rq
);
4573 * The RT priorities are set via sched_setscheduler(), but we still
4574 * allow the 'normal' nice value to be set - but as expected
4575 * it wont have any effect on scheduling until the task is
4576 * SCHED_FIFO/SCHED_RR:
4578 if (task_has_rt_policy(p
)) {
4579 p
->static_prio
= NICE_TO_PRIO(nice
);
4582 on_rq
= p
->se
.on_rq
;
4584 dequeue_task(rq
, p
, 0);
4588 p
->static_prio
= NICE_TO_PRIO(nice
);
4591 p
->prio
= effective_prio(p
);
4592 delta
= p
->prio
- old_prio
;
4595 enqueue_task(rq
, p
, 0);
4598 * If the task increased its priority or is running and
4599 * lowered its priority, then reschedule its CPU:
4601 if (delta
< 0 || (delta
> 0 && task_running(rq
, p
)))
4602 resched_task(rq
->curr
);
4605 task_rq_unlock(rq
, &flags
);
4607 EXPORT_SYMBOL(set_user_nice
);
4610 * can_nice - check if a task can reduce its nice value
4614 int can_nice(const struct task_struct
*p
, const int nice
)
4616 /* convert nice value [19,-20] to rlimit style value [1,40] */
4617 int nice_rlim
= 20 - nice
;
4619 return (nice_rlim
<= p
->signal
->rlim
[RLIMIT_NICE
].rlim_cur
||
4620 capable(CAP_SYS_NICE
));
4623 #ifdef __ARCH_WANT_SYS_NICE
4626 * sys_nice - change the priority of the current process.
4627 * @increment: priority increment
4629 * sys_setpriority is a more generic, but much slower function that
4630 * does similar things.
4632 asmlinkage
long sys_nice(int increment
)
4637 * Setpriority might change our priority at the same moment.
4638 * We don't have to worry. Conceptually one call occurs first
4639 * and we have a single winner.
4641 if (increment
< -40)
4646 nice
= PRIO_TO_NICE(current
->static_prio
) + increment
;
4652 if (increment
< 0 && !can_nice(current
, nice
))
4655 retval
= security_task_setnice(current
, nice
);
4659 set_user_nice(current
, nice
);
4666 * task_prio - return the priority value of a given task.
4667 * @p: the task in question.
4669 * This is the priority value as seen by users in /proc.
4670 * RT tasks are offset by -200. Normal tasks are centered
4671 * around 0, value goes from -16 to +15.
4673 int task_prio(const struct task_struct
*p
)
4675 return p
->prio
- MAX_RT_PRIO
;
4679 * task_nice - return the nice value of a given task.
4680 * @p: the task in question.
4682 int task_nice(const struct task_struct
*p
)
4684 return TASK_NICE(p
);
4686 EXPORT_SYMBOL(task_nice
);
4689 * idle_cpu - is a given cpu idle currently?
4690 * @cpu: the processor in question.
4692 int idle_cpu(int cpu
)
4694 return cpu_curr(cpu
) == cpu_rq(cpu
)->idle
;
4698 * idle_task - return the idle task for a given cpu.
4699 * @cpu: the processor in question.
4701 struct task_struct
*idle_task(int cpu
)
4703 return cpu_rq(cpu
)->idle
;
4707 * find_process_by_pid - find a process with a matching PID value.
4708 * @pid: the pid in question.
4710 static struct task_struct
*find_process_by_pid(pid_t pid
)
4712 return pid
? find_task_by_vpid(pid
) : current
;
4715 /* Actually do priority change: must hold rq lock. */
4717 __setscheduler(struct rq
*rq
, struct task_struct
*p
, int policy
, int prio
)
4719 BUG_ON(p
->se
.on_rq
);
4722 switch (p
->policy
) {
4726 p
->sched_class
= &fair_sched_class
;
4730 p
->sched_class
= &rt_sched_class
;
4734 p
->rt_priority
= prio
;
4735 p
->normal_prio
= normal_prio(p
);
4736 /* we are holding p->pi_lock already */
4737 p
->prio
= rt_mutex_getprio(p
);
4742 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4743 * @p: the task in question.
4744 * @policy: new policy.
4745 * @param: structure containing the new RT priority.
4747 * NOTE that the task may be already dead.
4749 int sched_setscheduler(struct task_struct
*p
, int policy
,
4750 struct sched_param
*param
)
4752 int retval
, oldprio
, oldpolicy
= -1, on_rq
, running
;
4753 unsigned long flags
;
4754 const struct sched_class
*prev_class
= p
->sched_class
;
4757 /* may grab non-irq protected spin_locks */
4758 BUG_ON(in_interrupt());
4760 /* double check policy once rq lock held */
4762 policy
= oldpolicy
= p
->policy
;
4763 else if (policy
!= SCHED_FIFO
&& policy
!= SCHED_RR
&&
4764 policy
!= SCHED_NORMAL
&& policy
!= SCHED_BATCH
&&
4765 policy
!= SCHED_IDLE
)
4768 * Valid priorities for SCHED_FIFO and SCHED_RR are
4769 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4770 * SCHED_BATCH and SCHED_IDLE is 0.
4772 if (param
->sched_priority
< 0 ||
4773 (p
->mm
&& param
->sched_priority
> MAX_USER_RT_PRIO
-1) ||
4774 (!p
->mm
&& param
->sched_priority
> MAX_RT_PRIO
-1))
4776 if (rt_policy(policy
) != (param
->sched_priority
!= 0))
4780 * Allow unprivileged RT tasks to decrease priority:
4782 if (!capable(CAP_SYS_NICE
)) {
4783 if (rt_policy(policy
)) {
4784 unsigned long rlim_rtprio
;
4786 if (!lock_task_sighand(p
, &flags
))
4788 rlim_rtprio
= p
->signal
->rlim
[RLIMIT_RTPRIO
].rlim_cur
;
4789 unlock_task_sighand(p
, &flags
);
4791 /* can't set/change the rt policy */
4792 if (policy
!= p
->policy
&& !rlim_rtprio
)
4795 /* can't increase priority */
4796 if (param
->sched_priority
> p
->rt_priority
&&
4797 param
->sched_priority
> rlim_rtprio
)
4801 * Like positive nice levels, dont allow tasks to
4802 * move out of SCHED_IDLE either:
4804 if (p
->policy
== SCHED_IDLE
&& policy
!= SCHED_IDLE
)
4807 /* can't change other user's priorities */
4808 if ((current
->euid
!= p
->euid
) &&
4809 (current
->euid
!= p
->uid
))
4813 #ifdef CONFIG_RT_GROUP_SCHED
4815 * Do not allow realtime tasks into groups that have no runtime
4818 if (rt_policy(policy
) && task_group(p
)->rt_bandwidth
.rt_runtime
== 0)
4822 retval
= security_task_setscheduler(p
, policy
, param
);
4826 * make sure no PI-waiters arrive (or leave) while we are
4827 * changing the priority of the task:
4829 spin_lock_irqsave(&p
->pi_lock
, flags
);
4831 * To be able to change p->policy safely, the apropriate
4832 * runqueue lock must be held.
4834 rq
= __task_rq_lock(p
);
4835 /* recheck policy now with rq lock held */
4836 if (unlikely(oldpolicy
!= -1 && oldpolicy
!= p
->policy
)) {
4837 policy
= oldpolicy
= -1;
4838 __task_rq_unlock(rq
);
4839 spin_unlock_irqrestore(&p
->pi_lock
, flags
);
4842 update_rq_clock(rq
);
4843 on_rq
= p
->se
.on_rq
;
4844 running
= task_current(rq
, p
);
4846 deactivate_task(rq
, p
, 0);
4848 p
->sched_class
->put_prev_task(rq
, p
);
4851 __setscheduler(rq
, p
, policy
, param
->sched_priority
);
4854 p
->sched_class
->set_curr_task(rq
);
4856 activate_task(rq
, p
, 0);
4858 check_class_changed(rq
, p
, prev_class
, oldprio
, running
);
4860 __task_rq_unlock(rq
);
4861 spin_unlock_irqrestore(&p
->pi_lock
, flags
);
4863 rt_mutex_adjust_pi(p
);
4867 EXPORT_SYMBOL_GPL(sched_setscheduler
);
4870 do_sched_setscheduler(pid_t pid
, int policy
, struct sched_param __user
*param
)
4872 struct sched_param lparam
;
4873 struct task_struct
*p
;
4876 if (!param
|| pid
< 0)
4878 if (copy_from_user(&lparam
, param
, sizeof(struct sched_param
)))
4883 p
= find_process_by_pid(pid
);
4885 retval
= sched_setscheduler(p
, policy
, &lparam
);
4892 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4893 * @pid: the pid in question.
4894 * @policy: new policy.
4895 * @param: structure containing the new RT priority.
4898 sys_sched_setscheduler(pid_t pid
, int policy
, struct sched_param __user
*param
)
4900 /* negative values for policy are not valid */
4904 return do_sched_setscheduler(pid
, policy
, param
);
4908 * sys_sched_setparam - set/change the RT priority of a thread
4909 * @pid: the pid in question.
4910 * @param: structure containing the new RT priority.
4912 asmlinkage
long sys_sched_setparam(pid_t pid
, struct sched_param __user
*param
)
4914 return do_sched_setscheduler(pid
, -1, param
);
4918 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4919 * @pid: the pid in question.
4921 asmlinkage
long sys_sched_getscheduler(pid_t pid
)
4923 struct task_struct
*p
;
4930 read_lock(&tasklist_lock
);
4931 p
= find_process_by_pid(pid
);
4933 retval
= security_task_getscheduler(p
);
4937 read_unlock(&tasklist_lock
);
4942 * sys_sched_getscheduler - get the RT priority of a thread
4943 * @pid: the pid in question.
4944 * @param: structure containing the RT priority.
4946 asmlinkage
long sys_sched_getparam(pid_t pid
, struct sched_param __user
*param
)
4948 struct sched_param lp
;
4949 struct task_struct
*p
;
4952 if (!param
|| pid
< 0)
4955 read_lock(&tasklist_lock
);
4956 p
= find_process_by_pid(pid
);
4961 retval
= security_task_getscheduler(p
);
4965 lp
.sched_priority
= p
->rt_priority
;
4966 read_unlock(&tasklist_lock
);
4969 * This one might sleep, we cannot do it with a spinlock held ...
4971 retval
= copy_to_user(param
, &lp
, sizeof(*param
)) ? -EFAULT
: 0;
4976 read_unlock(&tasklist_lock
);
4980 long sched_setaffinity(pid_t pid
, const cpumask_t
*in_mask
)
4982 cpumask_t cpus_allowed
;
4983 cpumask_t new_mask
= *in_mask
;
4984 struct task_struct
*p
;
4988 read_lock(&tasklist_lock
);
4990 p
= find_process_by_pid(pid
);
4992 read_unlock(&tasklist_lock
);
4998 * It is not safe to call set_cpus_allowed with the
4999 * tasklist_lock held. We will bump the task_struct's
5000 * usage count and then drop tasklist_lock.
5003 read_unlock(&tasklist_lock
);
5006 if ((current
->euid
!= p
->euid
) && (current
->euid
!= p
->uid
) &&
5007 !capable(CAP_SYS_NICE
))
5010 retval
= security_task_setscheduler(p
, 0, NULL
);
5014 cpuset_cpus_allowed(p
, &cpus_allowed
);
5015 cpus_and(new_mask
, new_mask
, cpus_allowed
);
5017 retval
= set_cpus_allowed_ptr(p
, &new_mask
);
5020 cpuset_cpus_allowed(p
, &cpus_allowed
);
5021 if (!cpus_subset(new_mask
, cpus_allowed
)) {
5023 * We must have raced with a concurrent cpuset
5024 * update. Just reset the cpus_allowed to the
5025 * cpuset's cpus_allowed
5027 new_mask
= cpus_allowed
;
5037 static int get_user_cpu_mask(unsigned long __user
*user_mask_ptr
, unsigned len
,
5038 cpumask_t
*new_mask
)
5040 if (len
< sizeof(cpumask_t
)) {
5041 memset(new_mask
, 0, sizeof(cpumask_t
));
5042 } else if (len
> sizeof(cpumask_t
)) {
5043 len
= sizeof(cpumask_t
);
5045 return copy_from_user(new_mask
, user_mask_ptr
, len
) ? -EFAULT
: 0;
5049 * sys_sched_setaffinity - set the cpu affinity of a process
5050 * @pid: pid of the process
5051 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5052 * @user_mask_ptr: user-space pointer to the new cpu mask
5054 asmlinkage
long sys_sched_setaffinity(pid_t pid
, unsigned int len
,
5055 unsigned long __user
*user_mask_ptr
)
5060 retval
= get_user_cpu_mask(user_mask_ptr
, len
, &new_mask
);
5064 return sched_setaffinity(pid
, &new_mask
);
5068 * Represents all cpu's present in the system
5069 * In systems capable of hotplug, this map could dynamically grow
5070 * as new cpu's are detected in the system via any platform specific
5071 * method, such as ACPI for e.g.
5074 cpumask_t cpu_present_map __read_mostly
;
5075 EXPORT_SYMBOL(cpu_present_map
);
5078 cpumask_t cpu_online_map __read_mostly
= CPU_MASK_ALL
;
5079 EXPORT_SYMBOL(cpu_online_map
);
5081 cpumask_t cpu_possible_map __read_mostly
= CPU_MASK_ALL
;
5082 EXPORT_SYMBOL(cpu_possible_map
);
5085 long sched_getaffinity(pid_t pid
, cpumask_t
*mask
)
5087 struct task_struct
*p
;
5091 read_lock(&tasklist_lock
);
5094 p
= find_process_by_pid(pid
);
5098 retval
= security_task_getscheduler(p
);
5102 cpus_and(*mask
, p
->cpus_allowed
, cpu_online_map
);
5105 read_unlock(&tasklist_lock
);
5112 * sys_sched_getaffinity - get the cpu affinity of a process
5113 * @pid: pid of the process
5114 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5115 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5117 asmlinkage
long sys_sched_getaffinity(pid_t pid
, unsigned int len
,
5118 unsigned long __user
*user_mask_ptr
)
5123 if (len
< sizeof(cpumask_t
))
5126 ret
= sched_getaffinity(pid
, &mask
);
5130 if (copy_to_user(user_mask_ptr
, &mask
, sizeof(cpumask_t
)))
5133 return sizeof(cpumask_t
);
5137 * sys_sched_yield - yield the current processor to other threads.
5139 * This function yields the current CPU to other tasks. If there are no
5140 * other threads running on this CPU then this function will return.
5142 asmlinkage
long sys_sched_yield(void)
5144 struct rq
*rq
= this_rq_lock();
5146 schedstat_inc(rq
, yld_count
);
5147 current
->sched_class
->yield_task(rq
);
5150 * Since we are going to call schedule() anyway, there's
5151 * no need to preempt or enable interrupts:
5153 __release(rq
->lock
);
5154 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
5155 _raw_spin_unlock(&rq
->lock
);
5156 preempt_enable_no_resched();
5163 static void __cond_resched(void)
5165 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5166 __might_sleep(__FILE__
, __LINE__
);
5169 * The BKS might be reacquired before we have dropped
5170 * PREEMPT_ACTIVE, which could trigger a second
5171 * cond_resched() call.
5174 add_preempt_count(PREEMPT_ACTIVE
);
5176 sub_preempt_count(PREEMPT_ACTIVE
);
5177 } while (need_resched());
5180 int __sched
_cond_resched(void)
5182 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE
) &&
5183 system_state
== SYSTEM_RUNNING
) {
5189 EXPORT_SYMBOL(_cond_resched
);
5192 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
5193 * call schedule, and on return reacquire the lock.
5195 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5196 * operations here to prevent schedule() from being called twice (once via
5197 * spin_unlock(), once by hand).
5199 int cond_resched_lock(spinlock_t
*lock
)
5201 int resched
= need_resched() && system_state
== SYSTEM_RUNNING
;
5204 if (spin_needbreak(lock
) || resched
) {
5206 if (resched
&& need_resched())
5215 EXPORT_SYMBOL(cond_resched_lock
);
5217 int __sched
cond_resched_softirq(void)
5219 BUG_ON(!in_softirq());
5221 if (need_resched() && system_state
== SYSTEM_RUNNING
) {
5229 EXPORT_SYMBOL(cond_resched_softirq
);
5232 * yield - yield the current processor to other threads.
5234 * This is a shortcut for kernel-space yielding - it marks the
5235 * thread runnable and calls sys_sched_yield().
5237 void __sched
yield(void)
5239 set_current_state(TASK_RUNNING
);
5242 EXPORT_SYMBOL(yield
);
5245 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5246 * that process accounting knows that this is a task in IO wait state.
5248 * But don't do that if it is a deliberate, throttling IO wait (this task
5249 * has set its backing_dev_info: the queue against which it should throttle)
5251 void __sched
io_schedule(void)
5253 struct rq
*rq
= &__raw_get_cpu_var(runqueues
);
5255 delayacct_blkio_start();
5256 atomic_inc(&rq
->nr_iowait
);
5258 atomic_dec(&rq
->nr_iowait
);
5259 delayacct_blkio_end();
5261 EXPORT_SYMBOL(io_schedule
);
5263 long __sched
io_schedule_timeout(long timeout
)
5265 struct rq
*rq
= &__raw_get_cpu_var(runqueues
);
5268 delayacct_blkio_start();
5269 atomic_inc(&rq
->nr_iowait
);
5270 ret
= schedule_timeout(timeout
);
5271 atomic_dec(&rq
->nr_iowait
);
5272 delayacct_blkio_end();
5277 * sys_sched_get_priority_max - return maximum RT priority.
5278 * @policy: scheduling class.
5280 * this syscall returns the maximum rt_priority that can be used
5281 * by a given scheduling class.
5283 asmlinkage
long sys_sched_get_priority_max(int policy
)
5290 ret
= MAX_USER_RT_PRIO
-1;
5302 * sys_sched_get_priority_min - return minimum RT priority.
5303 * @policy: scheduling class.
5305 * this syscall returns the minimum rt_priority that can be used
5306 * by a given scheduling class.
5308 asmlinkage
long sys_sched_get_priority_min(int policy
)
5326 * sys_sched_rr_get_interval - return the default timeslice of a process.
5327 * @pid: pid of the process.
5328 * @interval: userspace pointer to the timeslice value.
5330 * this syscall writes the default timeslice value of a given process
5331 * into the user-space timespec buffer. A value of '0' means infinity.
5334 long sys_sched_rr_get_interval(pid_t pid
, struct timespec __user
*interval
)
5336 struct task_struct
*p
;
5337 unsigned int time_slice
;
5345 read_lock(&tasklist_lock
);
5346 p
= find_process_by_pid(pid
);
5350 retval
= security_task_getscheduler(p
);
5355 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5356 * tasks that are on an otherwise idle runqueue:
5359 if (p
->policy
== SCHED_RR
) {
5360 time_slice
= DEF_TIMESLICE
;
5361 } else if (p
->policy
!= SCHED_FIFO
) {
5362 struct sched_entity
*se
= &p
->se
;
5363 unsigned long flags
;
5366 rq
= task_rq_lock(p
, &flags
);
5367 if (rq
->cfs
.load
.weight
)
5368 time_slice
= NS_TO_JIFFIES(sched_slice(&rq
->cfs
, se
));
5369 task_rq_unlock(rq
, &flags
);
5371 read_unlock(&tasklist_lock
);
5372 jiffies_to_timespec(time_slice
, &t
);
5373 retval
= copy_to_user(interval
, &t
, sizeof(t
)) ? -EFAULT
: 0;
5377 read_unlock(&tasklist_lock
);
5381 static const char stat_nam
[] = "RSDTtZX";
5383 void sched_show_task(struct task_struct
*p
)
5385 unsigned long free
= 0;
5388 state
= p
->state
? __ffs(p
->state
) + 1 : 0;
5389 printk(KERN_INFO
"%-13.13s %c", p
->comm
,
5390 state
< sizeof(stat_nam
) - 1 ? stat_nam
[state
] : '?');
5391 #if BITS_PER_LONG == 32
5392 if (state
== TASK_RUNNING
)
5393 printk(KERN_CONT
" running ");
5395 printk(KERN_CONT
" %08lx ", thread_saved_pc(p
));
5397 if (state
== TASK_RUNNING
)
5398 printk(KERN_CONT
" running task ");
5400 printk(KERN_CONT
" %016lx ", thread_saved_pc(p
));
5402 #ifdef CONFIG_DEBUG_STACK_USAGE
5404 unsigned long *n
= end_of_stack(p
);
5407 free
= (unsigned long)n
- (unsigned long)end_of_stack(p
);
5410 printk(KERN_CONT
"%5lu %5d %6d\n", free
,
5411 task_pid_nr(p
), task_pid_nr(p
->real_parent
));
5413 show_stack(p
, NULL
);
5416 void show_state_filter(unsigned long state_filter
)
5418 struct task_struct
*g
, *p
;
5420 #if BITS_PER_LONG == 32
5422 " task PC stack pid father\n");
5425 " task PC stack pid father\n");
5427 read_lock(&tasklist_lock
);
5428 do_each_thread(g
, p
) {
5430 * reset the NMI-timeout, listing all files on a slow
5431 * console might take alot of time:
5433 touch_nmi_watchdog();
5434 if (!state_filter
|| (p
->state
& state_filter
))
5436 } while_each_thread(g
, p
);
5438 touch_all_softlockup_watchdogs();
5440 #ifdef CONFIG_SCHED_DEBUG
5441 sysrq_sched_debug_show();
5443 read_unlock(&tasklist_lock
);
5445 * Only show locks if all tasks are dumped:
5447 if (state_filter
== -1)
5448 debug_show_all_locks();
5451 void __cpuinit
init_idle_bootup_task(struct task_struct
*idle
)
5453 idle
->sched_class
= &idle_sched_class
;
5457 * init_idle - set up an idle thread for a given CPU
5458 * @idle: task in question
5459 * @cpu: cpu the idle task belongs to
5461 * NOTE: this function does not set the idle thread's NEED_RESCHED
5462 * flag, to make booting more robust.
5464 void __cpuinit
init_idle(struct task_struct
*idle
, int cpu
)
5466 struct rq
*rq
= cpu_rq(cpu
);
5467 unsigned long flags
;
5470 idle
->se
.exec_start
= sched_clock();
5472 idle
->prio
= idle
->normal_prio
= MAX_PRIO
;
5473 idle
->cpus_allowed
= cpumask_of_cpu(cpu
);
5474 __set_task_cpu(idle
, cpu
);
5476 spin_lock_irqsave(&rq
->lock
, flags
);
5477 rq
->curr
= rq
->idle
= idle
;
5478 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5481 spin_unlock_irqrestore(&rq
->lock
, flags
);
5483 /* Set the preempt count _outside_ the spinlocks! */
5484 #if defined(CONFIG_PREEMPT)
5485 task_thread_info(idle
)->preempt_count
= (idle
->lock_depth
>= 0);
5487 task_thread_info(idle
)->preempt_count
= 0;
5490 * The idle tasks have their own, simple scheduling class:
5492 idle
->sched_class
= &idle_sched_class
;
5496 * In a system that switches off the HZ timer nohz_cpu_mask
5497 * indicates which cpus entered this state. This is used
5498 * in the rcu update to wait only for active cpus. For system
5499 * which do not switch off the HZ timer nohz_cpu_mask should
5500 * always be CPU_MASK_NONE.
5502 cpumask_t nohz_cpu_mask
= CPU_MASK_NONE
;
5505 * Increase the granularity value when there are more CPUs,
5506 * because with more CPUs the 'effective latency' as visible
5507 * to users decreases. But the relationship is not linear,
5508 * so pick a second-best guess by going with the log2 of the
5511 * This idea comes from the SD scheduler of Con Kolivas:
5513 static inline void sched_init_granularity(void)
5515 unsigned int factor
= 1 + ilog2(num_online_cpus());
5516 const unsigned long limit
= 200000000;
5518 sysctl_sched_min_granularity
*= factor
;
5519 if (sysctl_sched_min_granularity
> limit
)
5520 sysctl_sched_min_granularity
= limit
;
5522 sysctl_sched_latency
*= factor
;
5523 if (sysctl_sched_latency
> limit
)
5524 sysctl_sched_latency
= limit
;
5526 sysctl_sched_wakeup_granularity
*= factor
;
5531 * This is how migration works:
5533 * 1) we queue a struct migration_req structure in the source CPU's
5534 * runqueue and wake up that CPU's migration thread.
5535 * 2) we down() the locked semaphore => thread blocks.
5536 * 3) migration thread wakes up (implicitly it forces the migrated
5537 * thread off the CPU)
5538 * 4) it gets the migration request and checks whether the migrated
5539 * task is still in the wrong runqueue.
5540 * 5) if it's in the wrong runqueue then the migration thread removes
5541 * it and puts it into the right queue.
5542 * 6) migration thread up()s the semaphore.
5543 * 7) we wake up and the migration is done.
5547 * Change a given task's CPU affinity. Migrate the thread to a
5548 * proper CPU and schedule it away if the CPU it's executing on
5549 * is removed from the allowed bitmask.
5551 * NOTE: the caller must have a valid reference to the task, the
5552 * task must not exit() & deallocate itself prematurely. The
5553 * call is not atomic; no spinlocks may be held.
5555 int set_cpus_allowed_ptr(struct task_struct
*p
, const cpumask_t
*new_mask
)
5557 struct migration_req req
;
5558 unsigned long flags
;
5562 rq
= task_rq_lock(p
, &flags
);
5563 if (!cpus_intersects(*new_mask
, cpu_online_map
)) {
5568 if (p
->sched_class
->set_cpus_allowed
)
5569 p
->sched_class
->set_cpus_allowed(p
, new_mask
);
5571 p
->cpus_allowed
= *new_mask
;
5572 p
->rt
.nr_cpus_allowed
= cpus_weight(*new_mask
);
5575 /* Can the task run on the task's current CPU? If so, we're done */
5576 if (cpu_isset(task_cpu(p
), *new_mask
))
5579 if (migrate_task(p
, any_online_cpu(*new_mask
), &req
)) {
5580 /* Need help from migration thread: drop lock and wait. */
5581 task_rq_unlock(rq
, &flags
);
5582 wake_up_process(rq
->migration_thread
);
5583 wait_for_completion(&req
.done
);
5584 tlb_migrate_finish(p
->mm
);
5588 task_rq_unlock(rq
, &flags
);
5592 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr
);
5595 * Move (not current) task off this cpu, onto dest cpu. We're doing
5596 * this because either it can't run here any more (set_cpus_allowed()
5597 * away from this CPU, or CPU going down), or because we're
5598 * attempting to rebalance this task on exec (sched_exec).
5600 * So we race with normal scheduler movements, but that's OK, as long
5601 * as the task is no longer on this CPU.
5603 * Returns non-zero if task was successfully migrated.
5605 static int __migrate_task(struct task_struct
*p
, int src_cpu
, int dest_cpu
)
5607 struct rq
*rq_dest
, *rq_src
;
5610 if (unlikely(cpu_is_offline(dest_cpu
)))
5613 rq_src
= cpu_rq(src_cpu
);
5614 rq_dest
= cpu_rq(dest_cpu
);
5616 double_rq_lock(rq_src
, rq_dest
);
5617 /* Already moved. */
5618 if (task_cpu(p
) != src_cpu
)
5620 /* Affinity changed (again). */
5621 if (!cpu_isset(dest_cpu
, p
->cpus_allowed
))
5624 on_rq
= p
->se
.on_rq
;
5626 deactivate_task(rq_src
, p
, 0);
5628 set_task_cpu(p
, dest_cpu
);
5630 activate_task(rq_dest
, p
, 0);
5631 check_preempt_curr(rq_dest
, p
);
5635 double_rq_unlock(rq_src
, rq_dest
);
5640 * migration_thread - this is a highprio system thread that performs
5641 * thread migration by bumping thread off CPU then 'pushing' onto
5644 static int migration_thread(void *data
)
5646 int cpu
= (long)data
;
5650 BUG_ON(rq
->migration_thread
!= current
);
5652 set_current_state(TASK_INTERRUPTIBLE
);
5653 while (!kthread_should_stop()) {
5654 struct migration_req
*req
;
5655 struct list_head
*head
;
5657 spin_lock_irq(&rq
->lock
);
5659 if (cpu_is_offline(cpu
)) {
5660 spin_unlock_irq(&rq
->lock
);
5664 if (rq
->active_balance
) {
5665 active_load_balance(rq
, cpu
);
5666 rq
->active_balance
= 0;
5669 head
= &rq
->migration_queue
;
5671 if (list_empty(head
)) {
5672 spin_unlock_irq(&rq
->lock
);
5674 set_current_state(TASK_INTERRUPTIBLE
);
5677 req
= list_entry(head
->next
, struct migration_req
, list
);
5678 list_del_init(head
->next
);
5680 spin_unlock(&rq
->lock
);
5681 __migrate_task(req
->task
, cpu
, req
->dest_cpu
);
5684 complete(&req
->done
);
5686 __set_current_state(TASK_RUNNING
);
5690 /* Wait for kthread_stop */
5691 set_current_state(TASK_INTERRUPTIBLE
);
5692 while (!kthread_should_stop()) {
5694 set_current_state(TASK_INTERRUPTIBLE
);
5696 __set_current_state(TASK_RUNNING
);
5700 #ifdef CONFIG_HOTPLUG_CPU
5702 static int __migrate_task_irq(struct task_struct
*p
, int src_cpu
, int dest_cpu
)
5706 local_irq_disable();
5707 ret
= __migrate_task(p
, src_cpu
, dest_cpu
);
5713 * Figure out where task on dead CPU should go, use force if necessary.
5714 * NOTE: interrupts should be disabled by the caller
5716 static void move_task_off_dead_cpu(int dead_cpu
, struct task_struct
*p
)
5718 unsigned long flags
;
5725 mask
= node_to_cpumask(cpu_to_node(dead_cpu
));
5726 cpus_and(mask
, mask
, p
->cpus_allowed
);
5727 dest_cpu
= any_online_cpu(mask
);
5729 /* On any allowed CPU? */
5730 if (dest_cpu
>= nr_cpu_ids
)
5731 dest_cpu
= any_online_cpu(p
->cpus_allowed
);
5733 /* No more Mr. Nice Guy. */
5734 if (dest_cpu
>= nr_cpu_ids
) {
5735 cpumask_t cpus_allowed
;
5737 cpuset_cpus_allowed_locked(p
, &cpus_allowed
);
5739 * Try to stay on the same cpuset, where the
5740 * current cpuset may be a subset of all cpus.
5741 * The cpuset_cpus_allowed_locked() variant of
5742 * cpuset_cpus_allowed() will not block. It must be
5743 * called within calls to cpuset_lock/cpuset_unlock.
5745 rq
= task_rq_lock(p
, &flags
);
5746 p
->cpus_allowed
= cpus_allowed
;
5747 dest_cpu
= any_online_cpu(p
->cpus_allowed
);
5748 task_rq_unlock(rq
, &flags
);
5751 * Don't tell them about moving exiting tasks or
5752 * kernel threads (both mm NULL), since they never
5755 if (p
->mm
&& printk_ratelimit()) {
5756 printk(KERN_INFO
"process %d (%s) no "
5757 "longer affine to cpu%d\n",
5758 task_pid_nr(p
), p
->comm
, dead_cpu
);
5761 } while (!__migrate_task_irq(p
, dead_cpu
, dest_cpu
));
5765 * While a dead CPU has no uninterruptible tasks queued at this point,
5766 * it might still have a nonzero ->nr_uninterruptible counter, because
5767 * for performance reasons the counter is not stricly tracking tasks to
5768 * their home CPUs. So we just add the counter to another CPU's counter,
5769 * to keep the global sum constant after CPU-down:
5771 static void migrate_nr_uninterruptible(struct rq
*rq_src
)
5773 struct rq
*rq_dest
= cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR
));
5774 unsigned long flags
;
5776 local_irq_save(flags
);
5777 double_rq_lock(rq_src
, rq_dest
);
5778 rq_dest
->nr_uninterruptible
+= rq_src
->nr_uninterruptible
;
5779 rq_src
->nr_uninterruptible
= 0;
5780 double_rq_unlock(rq_src
, rq_dest
);
5781 local_irq_restore(flags
);
5784 /* Run through task list and migrate tasks from the dead cpu. */
5785 static void migrate_live_tasks(int src_cpu
)
5787 struct task_struct
*p
, *t
;
5789 read_lock(&tasklist_lock
);
5791 do_each_thread(t
, p
) {
5795 if (task_cpu(p
) == src_cpu
)
5796 move_task_off_dead_cpu(src_cpu
, p
);
5797 } while_each_thread(t
, p
);
5799 read_unlock(&tasklist_lock
);
5803 * Schedules idle task to be the next runnable task on current CPU.
5804 * It does so by boosting its priority to highest possible.
5805 * Used by CPU offline code.
5807 void sched_idle_next(void)
5809 int this_cpu
= smp_processor_id();
5810 struct rq
*rq
= cpu_rq(this_cpu
);
5811 struct task_struct
*p
= rq
->idle
;
5812 unsigned long flags
;
5814 /* cpu has to be offline */
5815 BUG_ON(cpu_online(this_cpu
));
5818 * Strictly not necessary since rest of the CPUs are stopped by now
5819 * and interrupts disabled on the current cpu.
5821 spin_lock_irqsave(&rq
->lock
, flags
);
5823 __setscheduler(rq
, p
, SCHED_FIFO
, MAX_RT_PRIO
-1);
5825 update_rq_clock(rq
);
5826 activate_task(rq
, p
, 0);
5828 spin_unlock_irqrestore(&rq
->lock
, flags
);
5832 * Ensures that the idle task is using init_mm right before its cpu goes
5835 void idle_task_exit(void)
5837 struct mm_struct
*mm
= current
->active_mm
;
5839 BUG_ON(cpu_online(smp_processor_id()));
5842 switch_mm(mm
, &init_mm
, current
);
5846 /* called under rq->lock with disabled interrupts */
5847 static void migrate_dead(unsigned int dead_cpu
, struct task_struct
*p
)
5849 struct rq
*rq
= cpu_rq(dead_cpu
);
5851 /* Must be exiting, otherwise would be on tasklist. */
5852 BUG_ON(!p
->exit_state
);
5854 /* Cannot have done final schedule yet: would have vanished. */
5855 BUG_ON(p
->state
== TASK_DEAD
);
5860 * Drop lock around migration; if someone else moves it,
5861 * that's OK. No task can be added to this CPU, so iteration is
5864 spin_unlock_irq(&rq
->lock
);
5865 move_task_off_dead_cpu(dead_cpu
, p
);
5866 spin_lock_irq(&rq
->lock
);
5871 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5872 static void migrate_dead_tasks(unsigned int dead_cpu
)
5874 struct rq
*rq
= cpu_rq(dead_cpu
);
5875 struct task_struct
*next
;
5878 if (!rq
->nr_running
)
5880 update_rq_clock(rq
);
5881 next
= pick_next_task(rq
, rq
->curr
);
5884 migrate_dead(dead_cpu
, next
);
5888 #endif /* CONFIG_HOTPLUG_CPU */
5890 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5892 static struct ctl_table sd_ctl_dir
[] = {
5894 .procname
= "sched_domain",
5900 static struct ctl_table sd_ctl_root
[] = {
5902 .ctl_name
= CTL_KERN
,
5903 .procname
= "kernel",
5905 .child
= sd_ctl_dir
,
5910 static struct ctl_table
*sd_alloc_ctl_entry(int n
)
5912 struct ctl_table
*entry
=
5913 kcalloc(n
, sizeof(struct ctl_table
), GFP_KERNEL
);
5918 static void sd_free_ctl_entry(struct ctl_table
**tablep
)
5920 struct ctl_table
*entry
;
5923 * In the intermediate directories, both the child directory and
5924 * procname are dynamically allocated and could fail but the mode
5925 * will always be set. In the lowest directory the names are
5926 * static strings and all have proc handlers.
5928 for (entry
= *tablep
; entry
->mode
; entry
++) {
5930 sd_free_ctl_entry(&entry
->child
);
5931 if (entry
->proc_handler
== NULL
)
5932 kfree(entry
->procname
);
5940 set_table_entry(struct ctl_table
*entry
,
5941 const char *procname
, void *data
, int maxlen
,
5942 mode_t mode
, proc_handler
*proc_handler
)
5944 entry
->procname
= procname
;
5946 entry
->maxlen
= maxlen
;
5948 entry
->proc_handler
= proc_handler
;
5951 static struct ctl_table
*
5952 sd_alloc_ctl_domain_table(struct sched_domain
*sd
)
5954 struct ctl_table
*table
= sd_alloc_ctl_entry(12);
5959 set_table_entry(&table
[0], "min_interval", &sd
->min_interval
,
5960 sizeof(long), 0644, proc_doulongvec_minmax
);
5961 set_table_entry(&table
[1], "max_interval", &sd
->max_interval
,
5962 sizeof(long), 0644, proc_doulongvec_minmax
);
5963 set_table_entry(&table
[2], "busy_idx", &sd
->busy_idx
,
5964 sizeof(int), 0644, proc_dointvec_minmax
);
5965 set_table_entry(&table
[3], "idle_idx", &sd
->idle_idx
,
5966 sizeof(int), 0644, proc_dointvec_minmax
);
5967 set_table_entry(&table
[4], "newidle_idx", &sd
->newidle_idx
,
5968 sizeof(int), 0644, proc_dointvec_minmax
);
5969 set_table_entry(&table
[5], "wake_idx", &sd
->wake_idx
,
5970 sizeof(int), 0644, proc_dointvec_minmax
);
5971 set_table_entry(&table
[6], "forkexec_idx", &sd
->forkexec_idx
,
5972 sizeof(int), 0644, proc_dointvec_minmax
);
5973 set_table_entry(&table
[7], "busy_factor", &sd
->busy_factor
,
5974 sizeof(int), 0644, proc_dointvec_minmax
);
5975 set_table_entry(&table
[8], "imbalance_pct", &sd
->imbalance_pct
,
5976 sizeof(int), 0644, proc_dointvec_minmax
);
5977 set_table_entry(&table
[9], "cache_nice_tries",
5978 &sd
->cache_nice_tries
,
5979 sizeof(int), 0644, proc_dointvec_minmax
);
5980 set_table_entry(&table
[10], "flags", &sd
->flags
,
5981 sizeof(int), 0644, proc_dointvec_minmax
);
5982 /* &table[11] is terminator */
5987 static ctl_table
*sd_alloc_ctl_cpu_table(int cpu
)
5989 struct ctl_table
*entry
, *table
;
5990 struct sched_domain
*sd
;
5991 int domain_num
= 0, i
;
5994 for_each_domain(cpu
, sd
)
5996 entry
= table
= sd_alloc_ctl_entry(domain_num
+ 1);
6001 for_each_domain(cpu
, sd
) {
6002 snprintf(buf
, 32, "domain%d", i
);
6003 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
6005 entry
->child
= sd_alloc_ctl_domain_table(sd
);
6012 static struct ctl_table_header
*sd_sysctl_header
;
6013 static void register_sched_domain_sysctl(void)
6015 int i
, cpu_num
= num_online_cpus();
6016 struct ctl_table
*entry
= sd_alloc_ctl_entry(cpu_num
+ 1);
6019 WARN_ON(sd_ctl_dir
[0].child
);
6020 sd_ctl_dir
[0].child
= entry
;
6025 for_each_online_cpu(i
) {
6026 snprintf(buf
, 32, "cpu%d", i
);
6027 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
6029 entry
->child
= sd_alloc_ctl_cpu_table(i
);
6033 WARN_ON(sd_sysctl_header
);
6034 sd_sysctl_header
= register_sysctl_table(sd_ctl_root
);
6037 /* may be called multiple times per register */
6038 static void unregister_sched_domain_sysctl(void)
6040 if (sd_sysctl_header
)
6041 unregister_sysctl_table(sd_sysctl_header
);
6042 sd_sysctl_header
= NULL
;
6043 if (sd_ctl_dir
[0].child
)
6044 sd_free_ctl_entry(&sd_ctl_dir
[0].child
);
6047 static void register_sched_domain_sysctl(void)
6050 static void unregister_sched_domain_sysctl(void)
6056 * migration_call - callback that gets triggered when a CPU is added.
6057 * Here we can start up the necessary migration thread for the new CPU.
6059 static int __cpuinit
6060 migration_call(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
)
6062 struct task_struct
*p
;
6063 int cpu
= (long)hcpu
;
6064 unsigned long flags
;
6069 case CPU_UP_PREPARE
:
6070 case CPU_UP_PREPARE_FROZEN
:
6071 p
= kthread_create(migration_thread
, hcpu
, "migration/%d", cpu
);
6074 kthread_bind(p
, cpu
);
6075 /* Must be high prio: stop_machine expects to yield to it. */
6076 rq
= task_rq_lock(p
, &flags
);
6077 __setscheduler(rq
, p
, SCHED_FIFO
, MAX_RT_PRIO
-1);
6078 task_rq_unlock(rq
, &flags
);
6079 cpu_rq(cpu
)->migration_thread
= p
;
6083 case CPU_ONLINE_FROZEN
:
6084 /* Strictly unnecessary, as first user will wake it. */
6085 wake_up_process(cpu_rq(cpu
)->migration_thread
);
6087 /* Update our root-domain */
6089 spin_lock_irqsave(&rq
->lock
, flags
);
6091 BUG_ON(!cpu_isset(cpu
, rq
->rd
->span
));
6092 cpu_set(cpu
, rq
->rd
->online
);
6094 spin_unlock_irqrestore(&rq
->lock
, flags
);
6097 #ifdef CONFIG_HOTPLUG_CPU
6098 case CPU_UP_CANCELED
:
6099 case CPU_UP_CANCELED_FROZEN
:
6100 if (!cpu_rq(cpu
)->migration_thread
)
6102 /* Unbind it from offline cpu so it can run. Fall thru. */
6103 kthread_bind(cpu_rq(cpu
)->migration_thread
,
6104 any_online_cpu(cpu_online_map
));
6105 kthread_stop(cpu_rq(cpu
)->migration_thread
);
6106 cpu_rq(cpu
)->migration_thread
= NULL
;
6110 case CPU_DEAD_FROZEN
:
6111 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
6112 migrate_live_tasks(cpu
);
6114 kthread_stop(rq
->migration_thread
);
6115 rq
->migration_thread
= NULL
;
6116 /* Idle task back to normal (off runqueue, low prio) */
6117 spin_lock_irq(&rq
->lock
);
6118 update_rq_clock(rq
);
6119 deactivate_task(rq
, rq
->idle
, 0);
6120 rq
->idle
->static_prio
= MAX_PRIO
;
6121 __setscheduler(rq
, rq
->idle
, SCHED_NORMAL
, 0);
6122 rq
->idle
->sched_class
= &idle_sched_class
;
6123 migrate_dead_tasks(cpu
);
6124 spin_unlock_irq(&rq
->lock
);
6126 migrate_nr_uninterruptible(rq
);
6127 BUG_ON(rq
->nr_running
!= 0);
6130 * No need to migrate the tasks: it was best-effort if
6131 * they didn't take sched_hotcpu_mutex. Just wake up
6134 spin_lock_irq(&rq
->lock
);
6135 while (!list_empty(&rq
->migration_queue
)) {
6136 struct migration_req
*req
;
6138 req
= list_entry(rq
->migration_queue
.next
,
6139 struct migration_req
, list
);
6140 list_del_init(&req
->list
);
6141 complete(&req
->done
);
6143 spin_unlock_irq(&rq
->lock
);
6147 case CPU_DYING_FROZEN
:
6148 /* Update our root-domain */
6150 spin_lock_irqsave(&rq
->lock
, flags
);
6152 BUG_ON(!cpu_isset(cpu
, rq
->rd
->span
));
6153 cpu_clear(cpu
, rq
->rd
->online
);
6155 spin_unlock_irqrestore(&rq
->lock
, flags
);
6162 /* Register at highest priority so that task migration (migrate_all_tasks)
6163 * happens before everything else.
6165 static struct notifier_block __cpuinitdata migration_notifier
= {
6166 .notifier_call
= migration_call
,
6170 void __init
migration_init(void)
6172 void *cpu
= (void *)(long)smp_processor_id();
6175 /* Start one for the boot CPU: */
6176 err
= migration_call(&migration_notifier
, CPU_UP_PREPARE
, cpu
);
6177 BUG_ON(err
== NOTIFY_BAD
);
6178 migration_call(&migration_notifier
, CPU_ONLINE
, cpu
);
6179 register_cpu_notifier(&migration_notifier
);
6185 #ifdef CONFIG_SCHED_DEBUG
6187 static int sched_domain_debug_one(struct sched_domain
*sd
, int cpu
, int level
,
6188 cpumask_t
*groupmask
)
6190 struct sched_group
*group
= sd
->groups
;
6193 cpulist_scnprintf(str
, sizeof(str
), sd
->span
);
6194 cpus_clear(*groupmask
);
6196 printk(KERN_DEBUG
"%*s domain %d: ", level
, "", level
);
6198 if (!(sd
->flags
& SD_LOAD_BALANCE
)) {
6199 printk("does not load-balance\n");
6201 printk(KERN_ERR
"ERROR: !SD_LOAD_BALANCE domain"
6206 printk(KERN_CONT
"span %s\n", str
);
6208 if (!cpu_isset(cpu
, sd
->span
)) {
6209 printk(KERN_ERR
"ERROR: domain->span does not contain "
6212 if (!cpu_isset(cpu
, group
->cpumask
)) {
6213 printk(KERN_ERR
"ERROR: domain->groups does not contain"
6217 printk(KERN_DEBUG
"%*s groups:", level
+ 1, "");
6221 printk(KERN_ERR
"ERROR: group is NULL\n");
6225 if (!group
->__cpu_power
) {
6226 printk(KERN_CONT
"\n");
6227 printk(KERN_ERR
"ERROR: domain->cpu_power not "
6232 if (!cpus_weight(group
->cpumask
)) {
6233 printk(KERN_CONT
"\n");
6234 printk(KERN_ERR
"ERROR: empty group\n");
6238 if (cpus_intersects(*groupmask
, group
->cpumask
)) {
6239 printk(KERN_CONT
"\n");
6240 printk(KERN_ERR
"ERROR: repeated CPUs\n");
6244 cpus_or(*groupmask
, *groupmask
, group
->cpumask
);
6246 cpulist_scnprintf(str
, sizeof(str
), group
->cpumask
);
6247 printk(KERN_CONT
" %s", str
);
6249 group
= group
->next
;
6250 } while (group
!= sd
->groups
);
6251 printk(KERN_CONT
"\n");
6253 if (!cpus_equal(sd
->span
, *groupmask
))
6254 printk(KERN_ERR
"ERROR: groups don't span domain->span\n");
6256 if (sd
->parent
&& !cpus_subset(*groupmask
, sd
->parent
->span
))
6257 printk(KERN_ERR
"ERROR: parent span is not a superset "
6258 "of domain->span\n");
6262 static void sched_domain_debug(struct sched_domain
*sd
, int cpu
)
6264 cpumask_t
*groupmask
;
6268 printk(KERN_DEBUG
"CPU%d attaching NULL sched-domain.\n", cpu
);
6272 printk(KERN_DEBUG
"CPU%d attaching sched-domain:\n", cpu
);
6274 groupmask
= kmalloc(sizeof(cpumask_t
), GFP_KERNEL
);
6276 printk(KERN_DEBUG
"Cannot load-balance (out of memory)\n");
6281 if (sched_domain_debug_one(sd
, cpu
, level
, groupmask
))
6291 # define sched_domain_debug(sd, cpu) do { } while (0)
6294 static int sd_degenerate(struct sched_domain
*sd
)
6296 if (cpus_weight(sd
->span
) == 1)
6299 /* Following flags need at least 2 groups */
6300 if (sd
->flags
& (SD_LOAD_BALANCE
|
6301 SD_BALANCE_NEWIDLE
|
6305 SD_SHARE_PKG_RESOURCES
)) {
6306 if (sd
->groups
!= sd
->groups
->next
)
6310 /* Following flags don't use groups */
6311 if (sd
->flags
& (SD_WAKE_IDLE
|
6320 sd_parent_degenerate(struct sched_domain
*sd
, struct sched_domain
*parent
)
6322 unsigned long cflags
= sd
->flags
, pflags
= parent
->flags
;
6324 if (sd_degenerate(parent
))
6327 if (!cpus_equal(sd
->span
, parent
->span
))
6330 /* Does parent contain flags not in child? */
6331 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6332 if (cflags
& SD_WAKE_AFFINE
)
6333 pflags
&= ~SD_WAKE_BALANCE
;
6334 /* Flags needing groups don't count if only 1 group in parent */
6335 if (parent
->groups
== parent
->groups
->next
) {
6336 pflags
&= ~(SD_LOAD_BALANCE
|
6337 SD_BALANCE_NEWIDLE
|
6341 SD_SHARE_PKG_RESOURCES
);
6343 if (~cflags
& pflags
)
6349 static void rq_attach_root(struct rq
*rq
, struct root_domain
*rd
)
6351 unsigned long flags
;
6352 const struct sched_class
*class;
6354 spin_lock_irqsave(&rq
->lock
, flags
);
6357 struct root_domain
*old_rd
= rq
->rd
;
6359 for (class = sched_class_highest
; class; class = class->next
) {
6360 if (class->leave_domain
)
6361 class->leave_domain(rq
);
6364 cpu_clear(rq
->cpu
, old_rd
->span
);
6365 cpu_clear(rq
->cpu
, old_rd
->online
);
6367 if (atomic_dec_and_test(&old_rd
->refcount
))
6371 atomic_inc(&rd
->refcount
);
6374 cpu_set(rq
->cpu
, rd
->span
);
6375 if (cpu_isset(rq
->cpu
, cpu_online_map
))
6376 cpu_set(rq
->cpu
, rd
->online
);
6378 for (class = sched_class_highest
; class; class = class->next
) {
6379 if (class->join_domain
)
6380 class->join_domain(rq
);
6383 spin_unlock_irqrestore(&rq
->lock
, flags
);
6386 static void init_rootdomain(struct root_domain
*rd
)
6388 memset(rd
, 0, sizeof(*rd
));
6390 cpus_clear(rd
->span
);
6391 cpus_clear(rd
->online
);
6394 static void init_defrootdomain(void)
6396 init_rootdomain(&def_root_domain
);
6397 atomic_set(&def_root_domain
.refcount
, 1);
6400 static struct root_domain
*alloc_rootdomain(void)
6402 struct root_domain
*rd
;
6404 rd
= kmalloc(sizeof(*rd
), GFP_KERNEL
);
6408 init_rootdomain(rd
);
6414 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6415 * hold the hotplug lock.
6418 cpu_attach_domain(struct sched_domain
*sd
, struct root_domain
*rd
, int cpu
)
6420 struct rq
*rq
= cpu_rq(cpu
);
6421 struct sched_domain
*tmp
;
6423 /* Remove the sched domains which do not contribute to scheduling. */
6424 for (tmp
= sd
; tmp
; tmp
= tmp
->parent
) {
6425 struct sched_domain
*parent
= tmp
->parent
;
6428 if (sd_parent_degenerate(tmp
, parent
)) {
6429 tmp
->parent
= parent
->parent
;
6431 parent
->parent
->child
= tmp
;
6435 if (sd
&& sd_degenerate(sd
)) {
6441 sched_domain_debug(sd
, cpu
);
6443 rq_attach_root(rq
, rd
);
6444 rcu_assign_pointer(rq
->sd
, sd
);
6447 /* cpus with isolated domains */
6448 static cpumask_t cpu_isolated_map
= CPU_MASK_NONE
;
6450 /* Setup the mask of cpus configured for isolated domains */
6451 static int __init
isolated_cpu_setup(char *str
)
6453 int ints
[NR_CPUS
], i
;
6455 str
= get_options(str
, ARRAY_SIZE(ints
), ints
);
6456 cpus_clear(cpu_isolated_map
);
6457 for (i
= 1; i
<= ints
[0]; i
++)
6458 if (ints
[i
] < NR_CPUS
)
6459 cpu_set(ints
[i
], cpu_isolated_map
);
6463 __setup("isolcpus=", isolated_cpu_setup
);
6466 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6467 * to a function which identifies what group(along with sched group) a CPU
6468 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
6469 * (due to the fact that we keep track of groups covered with a cpumask_t).
6471 * init_sched_build_groups will build a circular linked list of the groups
6472 * covered by the given span, and will set each group's ->cpumask correctly,
6473 * and ->cpu_power to 0.
6476 init_sched_build_groups(const cpumask_t
*span
, const cpumask_t
*cpu_map
,
6477 int (*group_fn
)(int cpu
, const cpumask_t
*cpu_map
,
6478 struct sched_group
**sg
,
6479 cpumask_t
*tmpmask
),
6480 cpumask_t
*covered
, cpumask_t
*tmpmask
)
6482 struct sched_group
*first
= NULL
, *last
= NULL
;
6485 cpus_clear(*covered
);
6487 for_each_cpu_mask(i
, *span
) {
6488 struct sched_group
*sg
;
6489 int group
= group_fn(i
, cpu_map
, &sg
, tmpmask
);
6492 if (cpu_isset(i
, *covered
))
6495 cpus_clear(sg
->cpumask
);
6496 sg
->__cpu_power
= 0;
6498 for_each_cpu_mask(j
, *span
) {
6499 if (group_fn(j
, cpu_map
, NULL
, tmpmask
) != group
)
6502 cpu_set(j
, *covered
);
6503 cpu_set(j
, sg
->cpumask
);
6514 #define SD_NODES_PER_DOMAIN 16
6519 * find_next_best_node - find the next node to include in a sched_domain
6520 * @node: node whose sched_domain we're building
6521 * @used_nodes: nodes already in the sched_domain
6523 * Find the next node to include in a given scheduling domain. Simply
6524 * finds the closest node not already in the @used_nodes map.
6526 * Should use nodemask_t.
6528 static int find_next_best_node(int node
, nodemask_t
*used_nodes
)
6530 int i
, n
, val
, min_val
, best_node
= 0;
6534 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
6535 /* Start at @node */
6536 n
= (node
+ i
) % MAX_NUMNODES
;
6538 if (!nr_cpus_node(n
))
6541 /* Skip already used nodes */
6542 if (node_isset(n
, *used_nodes
))
6545 /* Simple min distance search */
6546 val
= node_distance(node
, n
);
6548 if (val
< min_val
) {
6554 node_set(best_node
, *used_nodes
);
6559 * sched_domain_node_span - get a cpumask for a node's sched_domain
6560 * @node: node whose cpumask we're constructing
6561 * @span: resulting cpumask
6563 * Given a node, construct a good cpumask for its sched_domain to span. It
6564 * should be one that prevents unnecessary balancing, but also spreads tasks
6567 static void sched_domain_node_span(int node
, cpumask_t
*span
)
6569 nodemask_t used_nodes
;
6570 node_to_cpumask_ptr(nodemask
, node
);
6574 nodes_clear(used_nodes
);
6576 cpus_or(*span
, *span
, *nodemask
);
6577 node_set(node
, used_nodes
);
6579 for (i
= 1; i
< SD_NODES_PER_DOMAIN
; i
++) {
6580 int next_node
= find_next_best_node(node
, &used_nodes
);
6582 node_to_cpumask_ptr_next(nodemask
, next_node
);
6583 cpus_or(*span
, *span
, *nodemask
);
6588 int sched_smt_power_savings
= 0, sched_mc_power_savings
= 0;
6591 * SMT sched-domains:
6593 #ifdef CONFIG_SCHED_SMT
6594 static DEFINE_PER_CPU(struct sched_domain
, cpu_domains
);
6595 static DEFINE_PER_CPU(struct sched_group
, sched_group_cpus
);
6598 cpu_to_cpu_group(int cpu
, const cpumask_t
*cpu_map
, struct sched_group
**sg
,
6602 *sg
= &per_cpu(sched_group_cpus
, cpu
);
6608 * multi-core sched-domains:
6610 #ifdef CONFIG_SCHED_MC
6611 static DEFINE_PER_CPU(struct sched_domain
, core_domains
);
6612 static DEFINE_PER_CPU(struct sched_group
, sched_group_core
);
6615 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6617 cpu_to_core_group(int cpu
, const cpumask_t
*cpu_map
, struct sched_group
**sg
,
6622 *mask
= per_cpu(cpu_sibling_map
, cpu
);
6623 cpus_and(*mask
, *mask
, *cpu_map
);
6624 group
= first_cpu(*mask
);
6626 *sg
= &per_cpu(sched_group_core
, group
);
6629 #elif defined(CONFIG_SCHED_MC)
6631 cpu_to_core_group(int cpu
, const cpumask_t
*cpu_map
, struct sched_group
**sg
,
6635 *sg
= &per_cpu(sched_group_core
, cpu
);
6640 static DEFINE_PER_CPU(struct sched_domain
, phys_domains
);
6641 static DEFINE_PER_CPU(struct sched_group
, sched_group_phys
);
6644 cpu_to_phys_group(int cpu
, const cpumask_t
*cpu_map
, struct sched_group
**sg
,
6648 #ifdef CONFIG_SCHED_MC
6649 *mask
= cpu_coregroup_map(cpu
);
6650 cpus_and(*mask
, *mask
, *cpu_map
);
6651 group
= first_cpu(*mask
);
6652 #elif defined(CONFIG_SCHED_SMT)
6653 *mask
= per_cpu(cpu_sibling_map
, cpu
);
6654 cpus_and(*mask
, *mask
, *cpu_map
);
6655 group
= first_cpu(*mask
);
6660 *sg
= &per_cpu(sched_group_phys
, group
);
6666 * The init_sched_build_groups can't handle what we want to do with node
6667 * groups, so roll our own. Now each node has its own list of groups which
6668 * gets dynamically allocated.
6670 static DEFINE_PER_CPU(struct sched_domain
, node_domains
);
6671 static struct sched_group
***sched_group_nodes_bycpu
;
6673 static DEFINE_PER_CPU(struct sched_domain
, allnodes_domains
);
6674 static DEFINE_PER_CPU(struct sched_group
, sched_group_allnodes
);
6676 static int cpu_to_allnodes_group(int cpu
, const cpumask_t
*cpu_map
,
6677 struct sched_group
**sg
, cpumask_t
*nodemask
)
6681 *nodemask
= node_to_cpumask(cpu_to_node(cpu
));
6682 cpus_and(*nodemask
, *nodemask
, *cpu_map
);
6683 group
= first_cpu(*nodemask
);
6686 *sg
= &per_cpu(sched_group_allnodes
, group
);
6690 static void init_numa_sched_groups_power(struct sched_group
*group_head
)
6692 struct sched_group
*sg
= group_head
;
6698 for_each_cpu_mask(j
, sg
->cpumask
) {
6699 struct sched_domain
*sd
;
6701 sd
= &per_cpu(phys_domains
, j
);
6702 if (j
!= first_cpu(sd
->groups
->cpumask
)) {
6704 * Only add "power" once for each
6710 sg_inc_cpu_power(sg
, sd
->groups
->__cpu_power
);
6713 } while (sg
!= group_head
);
6718 /* Free memory allocated for various sched_group structures */
6719 static void free_sched_groups(const cpumask_t
*cpu_map
, cpumask_t
*nodemask
)
6723 for_each_cpu_mask(cpu
, *cpu_map
) {
6724 struct sched_group
**sched_group_nodes
6725 = sched_group_nodes_bycpu
[cpu
];
6727 if (!sched_group_nodes
)
6730 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
6731 struct sched_group
*oldsg
, *sg
= sched_group_nodes
[i
];
6733 *nodemask
= node_to_cpumask(i
);
6734 cpus_and(*nodemask
, *nodemask
, *cpu_map
);
6735 if (cpus_empty(*nodemask
))
6745 if (oldsg
!= sched_group_nodes
[i
])
6748 kfree(sched_group_nodes
);
6749 sched_group_nodes_bycpu
[cpu
] = NULL
;
6753 static void free_sched_groups(const cpumask_t
*cpu_map
, cpumask_t
*nodemask
)
6759 * Initialize sched groups cpu_power.
6761 * cpu_power indicates the capacity of sched group, which is used while
6762 * distributing the load between different sched groups in a sched domain.
6763 * Typically cpu_power for all the groups in a sched domain will be same unless
6764 * there are asymmetries in the topology. If there are asymmetries, group
6765 * having more cpu_power will pickup more load compared to the group having
6768 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
6769 * the maximum number of tasks a group can handle in the presence of other idle
6770 * or lightly loaded groups in the same sched domain.
6772 static void init_sched_groups_power(int cpu
, struct sched_domain
*sd
)
6774 struct sched_domain
*child
;
6775 struct sched_group
*group
;
6777 WARN_ON(!sd
|| !sd
->groups
);
6779 if (cpu
!= first_cpu(sd
->groups
->cpumask
))
6784 sd
->groups
->__cpu_power
= 0;
6787 * For perf policy, if the groups in child domain share resources
6788 * (for example cores sharing some portions of the cache hierarchy
6789 * or SMT), then set this domain groups cpu_power such that each group
6790 * can handle only one task, when there are other idle groups in the
6791 * same sched domain.
6793 if (!child
|| (!(sd
->flags
& SD_POWERSAVINGS_BALANCE
) &&
6795 (SD_SHARE_CPUPOWER
| SD_SHARE_PKG_RESOURCES
)))) {
6796 sg_inc_cpu_power(sd
->groups
, SCHED_LOAD_SCALE
);
6801 * add cpu_power of each child group to this groups cpu_power
6803 group
= child
->groups
;
6805 sg_inc_cpu_power(sd
->groups
, group
->__cpu_power
);
6806 group
= group
->next
;
6807 } while (group
!= child
->groups
);
6811 * Initializers for schedule domains
6812 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6815 #define SD_INIT(sd, type) sd_init_##type(sd)
6816 #define SD_INIT_FUNC(type) \
6817 static noinline void sd_init_##type(struct sched_domain *sd) \
6819 memset(sd, 0, sizeof(*sd)); \
6820 *sd = SD_##type##_INIT; \
6821 sd->level = SD_LV_##type; \
6826 SD_INIT_FUNC(ALLNODES
)
6829 #ifdef CONFIG_SCHED_SMT
6830 SD_INIT_FUNC(SIBLING
)
6832 #ifdef CONFIG_SCHED_MC
6837 * To minimize stack usage kmalloc room for cpumasks and share the
6838 * space as the usage in build_sched_domains() dictates. Used only
6839 * if the amount of space is significant.
6842 cpumask_t tmpmask
; /* make this one first */
6845 cpumask_t this_sibling_map
;
6846 cpumask_t this_core_map
;
6848 cpumask_t send_covered
;
6851 cpumask_t domainspan
;
6853 cpumask_t notcovered
;
6858 #define SCHED_CPUMASK_ALLOC 1
6859 #define SCHED_CPUMASK_FREE(v) kfree(v)
6860 #define SCHED_CPUMASK_DECLARE(v) struct allmasks *v
6862 #define SCHED_CPUMASK_ALLOC 0
6863 #define SCHED_CPUMASK_FREE(v)
6864 #define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v
6867 #define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \
6868 ((unsigned long)(a) + offsetof(struct allmasks, v))
6870 static int default_relax_domain_level
= -1;
6872 static int __init
setup_relax_domain_level(char *str
)
6874 default_relax_domain_level
= simple_strtoul(str
, NULL
, 0);
6877 __setup("relax_domain_level=", setup_relax_domain_level
);
6879 static void set_domain_attribute(struct sched_domain
*sd
,
6880 struct sched_domain_attr
*attr
)
6884 if (!attr
|| attr
->relax_domain_level
< 0) {
6885 if (default_relax_domain_level
< 0)
6888 request
= default_relax_domain_level
;
6890 request
= attr
->relax_domain_level
;
6891 if (request
< sd
->level
) {
6892 /* turn off idle balance on this domain */
6893 sd
->flags
&= ~(SD_WAKE_IDLE
|SD_BALANCE_NEWIDLE
);
6895 /* turn on idle balance on this domain */
6896 sd
->flags
|= (SD_WAKE_IDLE_FAR
|SD_BALANCE_NEWIDLE
);
6901 * Build sched domains for a given set of cpus and attach the sched domains
6902 * to the individual cpus
6904 static int __build_sched_domains(const cpumask_t
*cpu_map
,
6905 struct sched_domain_attr
*attr
)
6908 struct root_domain
*rd
;
6909 SCHED_CPUMASK_DECLARE(allmasks
);
6912 struct sched_group
**sched_group_nodes
= NULL
;
6913 int sd_allnodes
= 0;
6916 * Allocate the per-node list of sched groups
6918 sched_group_nodes
= kcalloc(MAX_NUMNODES
, sizeof(struct sched_group
*),
6920 if (!sched_group_nodes
) {
6921 printk(KERN_WARNING
"Can not alloc sched group node list\n");
6926 rd
= alloc_rootdomain();
6928 printk(KERN_WARNING
"Cannot alloc root domain\n");
6930 kfree(sched_group_nodes
);
6935 #if SCHED_CPUMASK_ALLOC
6936 /* get space for all scratch cpumask variables */
6937 allmasks
= kmalloc(sizeof(*allmasks
), GFP_KERNEL
);
6939 printk(KERN_WARNING
"Cannot alloc cpumask array\n");
6942 kfree(sched_group_nodes
);
6947 tmpmask
= (cpumask_t
*)allmasks
;
6951 sched_group_nodes_bycpu
[first_cpu(*cpu_map
)] = sched_group_nodes
;
6955 * Set up domains for cpus specified by the cpu_map.
6957 for_each_cpu_mask(i
, *cpu_map
) {
6958 struct sched_domain
*sd
= NULL
, *p
;
6959 SCHED_CPUMASK_VAR(nodemask
, allmasks
);
6961 *nodemask
= node_to_cpumask(cpu_to_node(i
));
6962 cpus_and(*nodemask
, *nodemask
, *cpu_map
);
6965 if (cpus_weight(*cpu_map
) >
6966 SD_NODES_PER_DOMAIN
*cpus_weight(*nodemask
)) {
6967 sd
= &per_cpu(allnodes_domains
, i
);
6968 SD_INIT(sd
, ALLNODES
);
6969 set_domain_attribute(sd
, attr
);
6970 sd
->span
= *cpu_map
;
6971 cpu_to_allnodes_group(i
, cpu_map
, &sd
->groups
, tmpmask
);
6977 sd
= &per_cpu(node_domains
, i
);
6979 set_domain_attribute(sd
, attr
);
6980 sched_domain_node_span(cpu_to_node(i
), &sd
->span
);
6984 cpus_and(sd
->span
, sd
->span
, *cpu_map
);
6988 sd
= &per_cpu(phys_domains
, i
);
6990 set_domain_attribute(sd
, attr
);
6991 sd
->span
= *nodemask
;
6995 cpu_to_phys_group(i
, cpu_map
, &sd
->groups
, tmpmask
);
6997 #ifdef CONFIG_SCHED_MC
6999 sd
= &per_cpu(core_domains
, i
);
7001 set_domain_attribute(sd
, attr
);
7002 sd
->span
= cpu_coregroup_map(i
);
7003 cpus_and(sd
->span
, sd
->span
, *cpu_map
);
7006 cpu_to_core_group(i
, cpu_map
, &sd
->groups
, tmpmask
);
7009 #ifdef CONFIG_SCHED_SMT
7011 sd
= &per_cpu(cpu_domains
, i
);
7012 SD_INIT(sd
, SIBLING
);
7013 set_domain_attribute(sd
, attr
);
7014 sd
->span
= per_cpu(cpu_sibling_map
, i
);
7015 cpus_and(sd
->span
, sd
->span
, *cpu_map
);
7018 cpu_to_cpu_group(i
, cpu_map
, &sd
->groups
, tmpmask
);
7022 #ifdef CONFIG_SCHED_SMT
7023 /* Set up CPU (sibling) groups */
7024 for_each_cpu_mask(i
, *cpu_map
) {
7025 SCHED_CPUMASK_VAR(this_sibling_map
, allmasks
);
7026 SCHED_CPUMASK_VAR(send_covered
, allmasks
);
7028 *this_sibling_map
= per_cpu(cpu_sibling_map
, i
);
7029 cpus_and(*this_sibling_map
, *this_sibling_map
, *cpu_map
);
7030 if (i
!= first_cpu(*this_sibling_map
))
7033 init_sched_build_groups(this_sibling_map
, cpu_map
,
7035 send_covered
, tmpmask
);
7039 #ifdef CONFIG_SCHED_MC
7040 /* Set up multi-core groups */
7041 for_each_cpu_mask(i
, *cpu_map
) {
7042 SCHED_CPUMASK_VAR(this_core_map
, allmasks
);
7043 SCHED_CPUMASK_VAR(send_covered
, allmasks
);
7045 *this_core_map
= cpu_coregroup_map(i
);
7046 cpus_and(*this_core_map
, *this_core_map
, *cpu_map
);
7047 if (i
!= first_cpu(*this_core_map
))
7050 init_sched_build_groups(this_core_map
, cpu_map
,
7052 send_covered
, tmpmask
);
7056 /* Set up physical groups */
7057 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
7058 SCHED_CPUMASK_VAR(nodemask
, allmasks
);
7059 SCHED_CPUMASK_VAR(send_covered
, allmasks
);
7061 *nodemask
= node_to_cpumask(i
);
7062 cpus_and(*nodemask
, *nodemask
, *cpu_map
);
7063 if (cpus_empty(*nodemask
))
7066 init_sched_build_groups(nodemask
, cpu_map
,
7068 send_covered
, tmpmask
);
7072 /* Set up node groups */
7074 SCHED_CPUMASK_VAR(send_covered
, allmasks
);
7076 init_sched_build_groups(cpu_map
, cpu_map
,
7077 &cpu_to_allnodes_group
,
7078 send_covered
, tmpmask
);
7081 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
7082 /* Set up node groups */
7083 struct sched_group
*sg
, *prev
;
7084 SCHED_CPUMASK_VAR(nodemask
, allmasks
);
7085 SCHED_CPUMASK_VAR(domainspan
, allmasks
);
7086 SCHED_CPUMASK_VAR(covered
, allmasks
);
7089 *nodemask
= node_to_cpumask(i
);
7090 cpus_clear(*covered
);
7092 cpus_and(*nodemask
, *nodemask
, *cpu_map
);
7093 if (cpus_empty(*nodemask
)) {
7094 sched_group_nodes
[i
] = NULL
;
7098 sched_domain_node_span(i
, domainspan
);
7099 cpus_and(*domainspan
, *domainspan
, *cpu_map
);
7101 sg
= kmalloc_node(sizeof(struct sched_group
), GFP_KERNEL
, i
);
7103 printk(KERN_WARNING
"Can not alloc domain group for "
7107 sched_group_nodes
[i
] = sg
;
7108 for_each_cpu_mask(j
, *nodemask
) {
7109 struct sched_domain
*sd
;
7111 sd
= &per_cpu(node_domains
, j
);
7114 sg
->__cpu_power
= 0;
7115 sg
->cpumask
= *nodemask
;
7117 cpus_or(*covered
, *covered
, *nodemask
);
7120 for (j
= 0; j
< MAX_NUMNODES
; j
++) {
7121 SCHED_CPUMASK_VAR(notcovered
, allmasks
);
7122 int n
= (i
+ j
) % MAX_NUMNODES
;
7123 node_to_cpumask_ptr(pnodemask
, n
);
7125 cpus_complement(*notcovered
, *covered
);
7126 cpus_and(*tmpmask
, *notcovered
, *cpu_map
);
7127 cpus_and(*tmpmask
, *tmpmask
, *domainspan
);
7128 if (cpus_empty(*tmpmask
))
7131 cpus_and(*tmpmask
, *tmpmask
, *pnodemask
);
7132 if (cpus_empty(*tmpmask
))
7135 sg
= kmalloc_node(sizeof(struct sched_group
),
7139 "Can not alloc domain group for node %d\n", j
);
7142 sg
->__cpu_power
= 0;
7143 sg
->cpumask
= *tmpmask
;
7144 sg
->next
= prev
->next
;
7145 cpus_or(*covered
, *covered
, *tmpmask
);
7152 /* Calculate CPU power for physical packages and nodes */
7153 #ifdef CONFIG_SCHED_SMT
7154 for_each_cpu_mask(i
, *cpu_map
) {
7155 struct sched_domain
*sd
= &per_cpu(cpu_domains
, i
);
7157 init_sched_groups_power(i
, sd
);
7160 #ifdef CONFIG_SCHED_MC
7161 for_each_cpu_mask(i
, *cpu_map
) {
7162 struct sched_domain
*sd
= &per_cpu(core_domains
, i
);
7164 init_sched_groups_power(i
, sd
);
7168 for_each_cpu_mask(i
, *cpu_map
) {
7169 struct sched_domain
*sd
= &per_cpu(phys_domains
, i
);
7171 init_sched_groups_power(i
, sd
);
7175 for (i
= 0; i
< MAX_NUMNODES
; i
++)
7176 init_numa_sched_groups_power(sched_group_nodes
[i
]);
7179 struct sched_group
*sg
;
7181 cpu_to_allnodes_group(first_cpu(*cpu_map
), cpu_map
, &sg
,
7183 init_numa_sched_groups_power(sg
);
7187 /* Attach the domains */
7188 for_each_cpu_mask(i
, *cpu_map
) {
7189 struct sched_domain
*sd
;
7190 #ifdef CONFIG_SCHED_SMT
7191 sd
= &per_cpu(cpu_domains
, i
);
7192 #elif defined(CONFIG_SCHED_MC)
7193 sd
= &per_cpu(core_domains
, i
);
7195 sd
= &per_cpu(phys_domains
, i
);
7197 cpu_attach_domain(sd
, rd
, i
);
7200 SCHED_CPUMASK_FREE((void *)allmasks
);
7205 free_sched_groups(cpu_map
, tmpmask
);
7206 SCHED_CPUMASK_FREE((void *)allmasks
);
7211 static int build_sched_domains(const cpumask_t
*cpu_map
)
7213 return __build_sched_domains(cpu_map
, NULL
);
7216 static cpumask_t
*doms_cur
; /* current sched domains */
7217 static int ndoms_cur
; /* number of sched domains in 'doms_cur' */
7218 static struct sched_domain_attr
*dattr_cur
;
7219 /* attribues of custom domains in 'doms_cur' */
7222 * Special case: If a kmalloc of a doms_cur partition (array of
7223 * cpumask_t) fails, then fallback to a single sched domain,
7224 * as determined by the single cpumask_t fallback_doms.
7226 static cpumask_t fallback_doms
;
7228 void __attribute__((weak
)) arch_update_cpu_topology(void)
7233 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7234 * For now this just excludes isolated cpus, but could be used to
7235 * exclude other special cases in the future.
7237 static int arch_init_sched_domains(const cpumask_t
*cpu_map
)
7241 arch_update_cpu_topology();
7243 doms_cur
= kmalloc(sizeof(cpumask_t
), GFP_KERNEL
);
7245 doms_cur
= &fallback_doms
;
7246 cpus_andnot(*doms_cur
, *cpu_map
, cpu_isolated_map
);
7248 err
= build_sched_domains(doms_cur
);
7249 register_sched_domain_sysctl();
7254 static void arch_destroy_sched_domains(const cpumask_t
*cpu_map
,
7257 free_sched_groups(cpu_map
, tmpmask
);
7261 * Detach sched domains from a group of cpus specified in cpu_map
7262 * These cpus will now be attached to the NULL domain
7264 static void detach_destroy_domains(const cpumask_t
*cpu_map
)
7269 unregister_sched_domain_sysctl();
7271 for_each_cpu_mask(i
, *cpu_map
)
7272 cpu_attach_domain(NULL
, &def_root_domain
, i
);
7273 synchronize_sched();
7274 arch_destroy_sched_domains(cpu_map
, &tmpmask
);
7277 /* handle null as "default" */
7278 static int dattrs_equal(struct sched_domain_attr
*cur
, int idx_cur
,
7279 struct sched_domain_attr
*new, int idx_new
)
7281 struct sched_domain_attr tmp
;
7288 return !memcmp(cur
? (cur
+ idx_cur
) : &tmp
,
7289 new ? (new + idx_new
) : &tmp
,
7290 sizeof(struct sched_domain_attr
));
7294 * Partition sched domains as specified by the 'ndoms_new'
7295 * cpumasks in the array doms_new[] of cpumasks. This compares
7296 * doms_new[] to the current sched domain partitioning, doms_cur[].
7297 * It destroys each deleted domain and builds each new domain.
7299 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
7300 * The masks don't intersect (don't overlap.) We should setup one
7301 * sched domain for each mask. CPUs not in any of the cpumasks will
7302 * not be load balanced. If the same cpumask appears both in the
7303 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7306 * The passed in 'doms_new' should be kmalloc'd. This routine takes
7307 * ownership of it and will kfree it when done with it. If the caller
7308 * failed the kmalloc call, then it can pass in doms_new == NULL,
7309 * and partition_sched_domains() will fallback to the single partition
7312 * Call with hotplug lock held
7314 void partition_sched_domains(int ndoms_new
, cpumask_t
*doms_new
,
7315 struct sched_domain_attr
*dattr_new
)
7319 mutex_lock(&sched_domains_mutex
);
7321 /* always unregister in case we don't destroy any domains */
7322 unregister_sched_domain_sysctl();
7324 if (doms_new
== NULL
) {
7326 doms_new
= &fallback_doms
;
7327 cpus_andnot(doms_new
[0], cpu_online_map
, cpu_isolated_map
);
7331 /* Destroy deleted domains */
7332 for (i
= 0; i
< ndoms_cur
; i
++) {
7333 for (j
= 0; j
< ndoms_new
; j
++) {
7334 if (cpus_equal(doms_cur
[i
], doms_new
[j
])
7335 && dattrs_equal(dattr_cur
, i
, dattr_new
, j
))
7338 /* no match - a current sched domain not in new doms_new[] */
7339 detach_destroy_domains(doms_cur
+ i
);
7344 /* Build new domains */
7345 for (i
= 0; i
< ndoms_new
; i
++) {
7346 for (j
= 0; j
< ndoms_cur
; j
++) {
7347 if (cpus_equal(doms_new
[i
], doms_cur
[j
])
7348 && dattrs_equal(dattr_new
, i
, dattr_cur
, j
))
7351 /* no match - add a new doms_new */
7352 __build_sched_domains(doms_new
+ i
,
7353 dattr_new
? dattr_new
+ i
: NULL
);
7358 /* Remember the new sched domains */
7359 if (doms_cur
!= &fallback_doms
)
7361 kfree(dattr_cur
); /* kfree(NULL) is safe */
7362 doms_cur
= doms_new
;
7363 dattr_cur
= dattr_new
;
7364 ndoms_cur
= ndoms_new
;
7366 register_sched_domain_sysctl();
7368 mutex_unlock(&sched_domains_mutex
);
7371 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7372 int arch_reinit_sched_domains(void)
7377 mutex_lock(&sched_domains_mutex
);
7378 detach_destroy_domains(&cpu_online_map
);
7379 err
= arch_init_sched_domains(&cpu_online_map
);
7380 mutex_unlock(&sched_domains_mutex
);
7386 static ssize_t
sched_power_savings_store(const char *buf
, size_t count
, int smt
)
7390 if (buf
[0] != '0' && buf
[0] != '1')
7394 sched_smt_power_savings
= (buf
[0] == '1');
7396 sched_mc_power_savings
= (buf
[0] == '1');
7398 ret
= arch_reinit_sched_domains();
7400 return ret
? ret
: count
;
7403 #ifdef CONFIG_SCHED_MC
7404 static ssize_t
sched_mc_power_savings_show(struct sys_device
*dev
, char *page
)
7406 return sprintf(page
, "%u\n", sched_mc_power_savings
);
7408 static ssize_t
sched_mc_power_savings_store(struct sys_device
*dev
,
7409 const char *buf
, size_t count
)
7411 return sched_power_savings_store(buf
, count
, 0);
7413 static SYSDEV_ATTR(sched_mc_power_savings
, 0644, sched_mc_power_savings_show
,
7414 sched_mc_power_savings_store
);
7417 #ifdef CONFIG_SCHED_SMT
7418 static ssize_t
sched_smt_power_savings_show(struct sys_device
*dev
, char *page
)
7420 return sprintf(page
, "%u\n", sched_smt_power_savings
);
7422 static ssize_t
sched_smt_power_savings_store(struct sys_device
*dev
,
7423 const char *buf
, size_t count
)
7425 return sched_power_savings_store(buf
, count
, 1);
7427 static SYSDEV_ATTR(sched_smt_power_savings
, 0644, sched_smt_power_savings_show
,
7428 sched_smt_power_savings_store
);
7431 int sched_create_sysfs_power_savings_entries(struct sysdev_class
*cls
)
7435 #ifdef CONFIG_SCHED_SMT
7437 err
= sysfs_create_file(&cls
->kset
.kobj
,
7438 &attr_sched_smt_power_savings
.attr
);
7440 #ifdef CONFIG_SCHED_MC
7441 if (!err
&& mc_capable())
7442 err
= sysfs_create_file(&cls
->kset
.kobj
,
7443 &attr_sched_mc_power_savings
.attr
);
7450 * Force a reinitialization of the sched domains hierarchy. The domains
7451 * and groups cannot be updated in place without racing with the balancing
7452 * code, so we temporarily attach all running cpus to the NULL domain
7453 * which will prevent rebalancing while the sched domains are recalculated.
7455 static int update_sched_domains(struct notifier_block
*nfb
,
7456 unsigned long action
, void *hcpu
)
7459 case CPU_UP_PREPARE
:
7460 case CPU_UP_PREPARE_FROZEN
:
7461 case CPU_DOWN_PREPARE
:
7462 case CPU_DOWN_PREPARE_FROZEN
:
7463 detach_destroy_domains(&cpu_online_map
);
7466 case CPU_UP_CANCELED
:
7467 case CPU_UP_CANCELED_FROZEN
:
7468 case CPU_DOWN_FAILED
:
7469 case CPU_DOWN_FAILED_FROZEN
:
7471 case CPU_ONLINE_FROZEN
:
7473 case CPU_DEAD_FROZEN
:
7475 * Fall through and re-initialise the domains.
7482 /* The hotplug lock is already held by cpu_up/cpu_down */
7483 arch_init_sched_domains(&cpu_online_map
);
7488 void __init
sched_init_smp(void)
7490 cpumask_t non_isolated_cpus
;
7492 #if defined(CONFIG_NUMA)
7493 sched_group_nodes_bycpu
= kzalloc(nr_cpu_ids
* sizeof(void **),
7495 BUG_ON(sched_group_nodes_bycpu
== NULL
);
7498 mutex_lock(&sched_domains_mutex
);
7499 arch_init_sched_domains(&cpu_online_map
);
7500 cpus_andnot(non_isolated_cpus
, cpu_possible_map
, cpu_isolated_map
);
7501 if (cpus_empty(non_isolated_cpus
))
7502 cpu_set(smp_processor_id(), non_isolated_cpus
);
7503 mutex_unlock(&sched_domains_mutex
);
7505 /* XXX: Theoretical race here - CPU may be hotplugged now */
7506 hotcpu_notifier(update_sched_domains
, 0);
7509 /* Move init over to a non-isolated CPU */
7510 if (set_cpus_allowed_ptr(current
, &non_isolated_cpus
) < 0)
7512 sched_init_granularity();
7515 void __init
sched_init_smp(void)
7517 sched_init_granularity();
7519 #endif /* CONFIG_SMP */
7521 int in_sched_functions(unsigned long addr
)
7523 return in_lock_functions(addr
) ||
7524 (addr
>= (unsigned long)__sched_text_start
7525 && addr
< (unsigned long)__sched_text_end
);
7528 static void init_cfs_rq(struct cfs_rq
*cfs_rq
, struct rq
*rq
)
7530 cfs_rq
->tasks_timeline
= RB_ROOT
;
7531 INIT_LIST_HEAD(&cfs_rq
->tasks
);
7532 #ifdef CONFIG_FAIR_GROUP_SCHED
7535 cfs_rq
->min_vruntime
= (u64
)(-(1LL << 20));
7538 static void init_rt_rq(struct rt_rq
*rt_rq
, struct rq
*rq
)
7540 struct rt_prio_array
*array
;
7543 array
= &rt_rq
->active
;
7544 for (i
= 0; i
< MAX_RT_PRIO
; i
++) {
7545 INIT_LIST_HEAD(array
->queue
+ i
);
7546 __clear_bit(i
, array
->bitmap
);
7548 /* delimiter for bitsearch: */
7549 __set_bit(MAX_RT_PRIO
, array
->bitmap
);
7551 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
7552 rt_rq
->highest_prio
= MAX_RT_PRIO
;
7555 rt_rq
->rt_nr_migratory
= 0;
7556 rt_rq
->overloaded
= 0;
7560 rt_rq
->rt_throttled
= 0;
7561 rt_rq
->rt_runtime
= 0;
7562 spin_lock_init(&rt_rq
->rt_runtime_lock
);
7564 #ifdef CONFIG_RT_GROUP_SCHED
7565 rt_rq
->rt_nr_boosted
= 0;
7570 #ifdef CONFIG_FAIR_GROUP_SCHED
7571 static void init_tg_cfs_entry(struct task_group
*tg
, struct cfs_rq
*cfs_rq
,
7572 struct sched_entity
*se
, int cpu
, int add
,
7573 struct sched_entity
*parent
)
7575 struct rq
*rq
= cpu_rq(cpu
);
7576 tg
->cfs_rq
[cpu
] = cfs_rq
;
7577 init_cfs_rq(cfs_rq
, rq
);
7580 list_add(&cfs_rq
->leaf_cfs_rq_list
, &rq
->leaf_cfs_rq_list
);
7583 /* se could be NULL for init_task_group */
7588 se
->cfs_rq
= &rq
->cfs
;
7590 se
->cfs_rq
= parent
->my_q
;
7593 se
->load
.weight
= tg
->shares
;
7594 se
->load
.inv_weight
= 0;
7595 se
->parent
= parent
;
7599 #ifdef CONFIG_RT_GROUP_SCHED
7600 static void init_tg_rt_entry(struct task_group
*tg
, struct rt_rq
*rt_rq
,
7601 struct sched_rt_entity
*rt_se
, int cpu
, int add
,
7602 struct sched_rt_entity
*parent
)
7604 struct rq
*rq
= cpu_rq(cpu
);
7606 tg
->rt_rq
[cpu
] = rt_rq
;
7607 init_rt_rq(rt_rq
, rq
);
7609 rt_rq
->rt_se
= rt_se
;
7610 rt_rq
->rt_runtime
= tg
->rt_bandwidth
.rt_runtime
;
7612 list_add(&rt_rq
->leaf_rt_rq_list
, &rq
->leaf_rt_rq_list
);
7614 tg
->rt_se
[cpu
] = rt_se
;
7619 rt_se
->rt_rq
= &rq
->rt
;
7621 rt_se
->rt_rq
= parent
->my_q
;
7623 rt_se
->rt_rq
= &rq
->rt
;
7624 rt_se
->my_q
= rt_rq
;
7625 rt_se
->parent
= parent
;
7626 INIT_LIST_HEAD(&rt_se
->run_list
);
7630 void __init
sched_init(void)
7633 unsigned long alloc_size
= 0, ptr
;
7635 #ifdef CONFIG_FAIR_GROUP_SCHED
7636 alloc_size
+= 2 * nr_cpu_ids
* sizeof(void **);
7638 #ifdef CONFIG_RT_GROUP_SCHED
7639 alloc_size
+= 2 * nr_cpu_ids
* sizeof(void **);
7641 #ifdef CONFIG_USER_SCHED
7645 * As sched_init() is called before page_alloc is setup,
7646 * we use alloc_bootmem().
7649 ptr
= (unsigned long)alloc_bootmem(alloc_size
);
7651 #ifdef CONFIG_FAIR_GROUP_SCHED
7652 init_task_group
.se
= (struct sched_entity
**)ptr
;
7653 ptr
+= nr_cpu_ids
* sizeof(void **);
7655 init_task_group
.cfs_rq
= (struct cfs_rq
**)ptr
;
7656 ptr
+= nr_cpu_ids
* sizeof(void **);
7658 #ifdef CONFIG_USER_SCHED
7659 root_task_group
.se
= (struct sched_entity
**)ptr
;
7660 ptr
+= nr_cpu_ids
* sizeof(void **);
7662 root_task_group
.cfs_rq
= (struct cfs_rq
**)ptr
;
7663 ptr
+= nr_cpu_ids
* sizeof(void **);
7666 #ifdef CONFIG_RT_GROUP_SCHED
7667 init_task_group
.rt_se
= (struct sched_rt_entity
**)ptr
;
7668 ptr
+= nr_cpu_ids
* sizeof(void **);
7670 init_task_group
.rt_rq
= (struct rt_rq
**)ptr
;
7671 ptr
+= nr_cpu_ids
* sizeof(void **);
7673 #ifdef CONFIG_USER_SCHED
7674 root_task_group
.rt_se
= (struct sched_rt_entity
**)ptr
;
7675 ptr
+= nr_cpu_ids
* sizeof(void **);
7677 root_task_group
.rt_rq
= (struct rt_rq
**)ptr
;
7678 ptr
+= nr_cpu_ids
* sizeof(void **);
7684 init_defrootdomain();
7687 init_rt_bandwidth(&def_rt_bandwidth
,
7688 global_rt_period(), global_rt_runtime());
7690 #ifdef CONFIG_RT_GROUP_SCHED
7691 init_rt_bandwidth(&init_task_group
.rt_bandwidth
,
7692 global_rt_period(), global_rt_runtime());
7693 #ifdef CONFIG_USER_SCHED
7694 init_rt_bandwidth(&root_task_group
.rt_bandwidth
,
7695 global_rt_period(), RUNTIME_INF
);
7699 #ifdef CONFIG_GROUP_SCHED
7700 list_add(&init_task_group
.list
, &task_groups
);
7701 INIT_LIST_HEAD(&init_task_group
.children
);
7703 #ifdef CONFIG_USER_SCHED
7704 INIT_LIST_HEAD(&root_task_group
.children
);
7705 init_task_group
.parent
= &root_task_group
;
7706 list_add(&init_task_group
.siblings
, &root_task_group
.children
);
7710 for_each_possible_cpu(i
) {
7714 spin_lock_init(&rq
->lock
);
7715 lockdep_set_class(&rq
->lock
, &rq
->rq_lock_key
);
7717 init_cfs_rq(&rq
->cfs
, rq
);
7718 init_rt_rq(&rq
->rt
, rq
);
7719 #ifdef CONFIG_FAIR_GROUP_SCHED
7720 init_task_group
.shares
= init_task_group_load
;
7721 INIT_LIST_HEAD(&rq
->leaf_cfs_rq_list
);
7722 #ifdef CONFIG_CGROUP_SCHED
7724 * How much cpu bandwidth does init_task_group get?
7726 * In case of task-groups formed thr' the cgroup filesystem, it
7727 * gets 100% of the cpu resources in the system. This overall
7728 * system cpu resource is divided among the tasks of
7729 * init_task_group and its child task-groups in a fair manner,
7730 * based on each entity's (task or task-group's) weight
7731 * (se->load.weight).
7733 * In other words, if init_task_group has 10 tasks of weight
7734 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7735 * then A0's share of the cpu resource is:
7737 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7739 * We achieve this by letting init_task_group's tasks sit
7740 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
7742 init_tg_cfs_entry(&init_task_group
, &rq
->cfs
, NULL
, i
, 1, NULL
);
7743 #elif defined CONFIG_USER_SCHED
7744 root_task_group
.shares
= NICE_0_LOAD
;
7745 init_tg_cfs_entry(&root_task_group
, &rq
->cfs
, NULL
, i
, 0, NULL
);
7747 * In case of task-groups formed thr' the user id of tasks,
7748 * init_task_group represents tasks belonging to root user.
7749 * Hence it forms a sibling of all subsequent groups formed.
7750 * In this case, init_task_group gets only a fraction of overall
7751 * system cpu resource, based on the weight assigned to root
7752 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
7753 * by letting tasks of init_task_group sit in a separate cfs_rq
7754 * (init_cfs_rq) and having one entity represent this group of
7755 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
7757 init_tg_cfs_entry(&init_task_group
,
7758 &per_cpu(init_cfs_rq
, i
),
7759 &per_cpu(init_sched_entity
, i
), i
, 1,
7760 root_task_group
.se
[i
]);
7763 #endif /* CONFIG_FAIR_GROUP_SCHED */
7765 rq
->rt
.rt_runtime
= def_rt_bandwidth
.rt_runtime
;
7766 #ifdef CONFIG_RT_GROUP_SCHED
7767 INIT_LIST_HEAD(&rq
->leaf_rt_rq_list
);
7768 #ifdef CONFIG_CGROUP_SCHED
7769 init_tg_rt_entry(&init_task_group
, &rq
->rt
, NULL
, i
, 1, NULL
);
7770 #elif defined CONFIG_USER_SCHED
7771 init_tg_rt_entry(&root_task_group
, &rq
->rt
, NULL
, i
, 0, NULL
);
7772 init_tg_rt_entry(&init_task_group
,
7773 &per_cpu(init_rt_rq
, i
),
7774 &per_cpu(init_sched_rt_entity
, i
), i
, 1,
7775 root_task_group
.rt_se
[i
]);
7779 for (j
= 0; j
< CPU_LOAD_IDX_MAX
; j
++)
7780 rq
->cpu_load
[j
] = 0;
7784 rq
->active_balance
= 0;
7785 rq
->next_balance
= jiffies
;
7788 rq
->migration_thread
= NULL
;
7789 INIT_LIST_HEAD(&rq
->migration_queue
);
7790 rq_attach_root(rq
, &def_root_domain
);
7793 atomic_set(&rq
->nr_iowait
, 0);
7796 set_load_weight(&init_task
);
7798 #ifdef CONFIG_PREEMPT_NOTIFIERS
7799 INIT_HLIST_HEAD(&init_task
.preempt_notifiers
);
7803 open_softirq(SCHED_SOFTIRQ
, run_rebalance_domains
, NULL
);
7806 #ifdef CONFIG_RT_MUTEXES
7807 plist_head_init(&init_task
.pi_waiters
, &init_task
.pi_lock
);
7811 * The boot idle thread does lazy MMU switching as well:
7813 atomic_inc(&init_mm
.mm_count
);
7814 enter_lazy_tlb(&init_mm
, current
);
7817 * Make us the idle thread. Technically, schedule() should not be
7818 * called from this thread, however somewhere below it might be,
7819 * but because we are the idle thread, we just pick up running again
7820 * when this runqueue becomes "idle".
7822 init_idle(current
, smp_processor_id());
7824 * During early bootup we pretend to be a normal task:
7826 current
->sched_class
= &fair_sched_class
;
7828 scheduler_running
= 1;
7831 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
7832 void __might_sleep(char *file
, int line
)
7835 static unsigned long prev_jiffy
; /* ratelimiting */
7837 if ((in_atomic() || irqs_disabled()) &&
7838 system_state
== SYSTEM_RUNNING
&& !oops_in_progress
) {
7839 if (time_before(jiffies
, prev_jiffy
+ HZ
) && prev_jiffy
)
7841 prev_jiffy
= jiffies
;
7842 printk(KERN_ERR
"BUG: sleeping function called from invalid"
7843 " context at %s:%d\n", file
, line
);
7844 printk("in_atomic():%d, irqs_disabled():%d\n",
7845 in_atomic(), irqs_disabled());
7846 debug_show_held_locks(current
);
7847 if (irqs_disabled())
7848 print_irqtrace_events(current
);
7853 EXPORT_SYMBOL(__might_sleep
);
7856 #ifdef CONFIG_MAGIC_SYSRQ
7857 static void normalize_task(struct rq
*rq
, struct task_struct
*p
)
7861 update_rq_clock(rq
);
7862 on_rq
= p
->se
.on_rq
;
7864 deactivate_task(rq
, p
, 0);
7865 __setscheduler(rq
, p
, SCHED_NORMAL
, 0);
7867 activate_task(rq
, p
, 0);
7868 resched_task(rq
->curr
);
7872 void normalize_rt_tasks(void)
7874 struct task_struct
*g
, *p
;
7875 unsigned long flags
;
7878 read_lock_irqsave(&tasklist_lock
, flags
);
7879 do_each_thread(g
, p
) {
7881 * Only normalize user tasks:
7886 p
->se
.exec_start
= 0;
7887 #ifdef CONFIG_SCHEDSTATS
7888 p
->se
.wait_start
= 0;
7889 p
->se
.sleep_start
= 0;
7890 p
->se
.block_start
= 0;
7895 * Renice negative nice level userspace
7898 if (TASK_NICE(p
) < 0 && p
->mm
)
7899 set_user_nice(p
, 0);
7903 spin_lock(&p
->pi_lock
);
7904 rq
= __task_rq_lock(p
);
7906 normalize_task(rq
, p
);
7908 __task_rq_unlock(rq
);
7909 spin_unlock(&p
->pi_lock
);
7910 } while_each_thread(g
, p
);
7912 read_unlock_irqrestore(&tasklist_lock
, flags
);
7915 #endif /* CONFIG_MAGIC_SYSRQ */
7919 * These functions are only useful for the IA64 MCA handling.
7921 * They can only be called when the whole system has been
7922 * stopped - every CPU needs to be quiescent, and no scheduling
7923 * activity can take place. Using them for anything else would
7924 * be a serious bug, and as a result, they aren't even visible
7925 * under any other configuration.
7929 * curr_task - return the current task for a given cpu.
7930 * @cpu: the processor in question.
7932 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7934 struct task_struct
*curr_task(int cpu
)
7936 return cpu_curr(cpu
);
7940 * set_curr_task - set the current task for a given cpu.
7941 * @cpu: the processor in question.
7942 * @p: the task pointer to set.
7944 * Description: This function must only be used when non-maskable interrupts
7945 * are serviced on a separate stack. It allows the architecture to switch the
7946 * notion of the current task on a cpu in a non-blocking manner. This function
7947 * must be called with all CPU's synchronized, and interrupts disabled, the
7948 * and caller must save the original value of the current task (see
7949 * curr_task() above) and restore that value before reenabling interrupts and
7950 * re-starting the system.
7952 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7954 void set_curr_task(int cpu
, struct task_struct
*p
)
7961 #ifdef CONFIG_FAIR_GROUP_SCHED
7962 static void free_fair_sched_group(struct task_group
*tg
)
7966 for_each_possible_cpu(i
) {
7968 kfree(tg
->cfs_rq
[i
]);
7978 int alloc_fair_sched_group(struct task_group
*tg
, struct task_group
*parent
)
7980 struct cfs_rq
*cfs_rq
;
7981 struct sched_entity
*se
, *parent_se
;
7985 tg
->cfs_rq
= kzalloc(sizeof(cfs_rq
) * nr_cpu_ids
, GFP_KERNEL
);
7988 tg
->se
= kzalloc(sizeof(se
) * nr_cpu_ids
, GFP_KERNEL
);
7992 tg
->shares
= NICE_0_LOAD
;
7994 for_each_possible_cpu(i
) {
7997 cfs_rq
= kmalloc_node(sizeof(struct cfs_rq
),
7998 GFP_KERNEL
|__GFP_ZERO
, cpu_to_node(i
));
8002 se
= kmalloc_node(sizeof(struct sched_entity
),
8003 GFP_KERNEL
|__GFP_ZERO
, cpu_to_node(i
));
8007 parent_se
= parent
? parent
->se
[i
] : NULL
;
8008 init_tg_cfs_entry(tg
, cfs_rq
, se
, i
, 0, parent_se
);
8017 static inline void register_fair_sched_group(struct task_group
*tg
, int cpu
)
8019 list_add_rcu(&tg
->cfs_rq
[cpu
]->leaf_cfs_rq_list
,
8020 &cpu_rq(cpu
)->leaf_cfs_rq_list
);
8023 static inline void unregister_fair_sched_group(struct task_group
*tg
, int cpu
)
8025 list_del_rcu(&tg
->cfs_rq
[cpu
]->leaf_cfs_rq_list
);
8028 static inline void free_fair_sched_group(struct task_group
*tg
)
8033 int alloc_fair_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8038 static inline void register_fair_sched_group(struct task_group
*tg
, int cpu
)
8042 static inline void unregister_fair_sched_group(struct task_group
*tg
, int cpu
)
8047 #ifdef CONFIG_RT_GROUP_SCHED
8048 static void free_rt_sched_group(struct task_group
*tg
)
8052 destroy_rt_bandwidth(&tg
->rt_bandwidth
);
8054 for_each_possible_cpu(i
) {
8056 kfree(tg
->rt_rq
[i
]);
8058 kfree(tg
->rt_se
[i
]);
8066 int alloc_rt_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8068 struct rt_rq
*rt_rq
;
8069 struct sched_rt_entity
*rt_se
, *parent_se
;
8073 tg
->rt_rq
= kzalloc(sizeof(rt_rq
) * nr_cpu_ids
, GFP_KERNEL
);
8076 tg
->rt_se
= kzalloc(sizeof(rt_se
) * nr_cpu_ids
, GFP_KERNEL
);
8080 init_rt_bandwidth(&tg
->rt_bandwidth
,
8081 ktime_to_ns(def_rt_bandwidth
.rt_period
), 0);
8083 for_each_possible_cpu(i
) {
8086 rt_rq
= kmalloc_node(sizeof(struct rt_rq
),
8087 GFP_KERNEL
|__GFP_ZERO
, cpu_to_node(i
));
8091 rt_se
= kmalloc_node(sizeof(struct sched_rt_entity
),
8092 GFP_KERNEL
|__GFP_ZERO
, cpu_to_node(i
));
8096 parent_se
= parent
? parent
->rt_se
[i
] : NULL
;
8097 init_tg_rt_entry(tg
, rt_rq
, rt_se
, i
, 0, parent_se
);
8106 static inline void register_rt_sched_group(struct task_group
*tg
, int cpu
)
8108 list_add_rcu(&tg
->rt_rq
[cpu
]->leaf_rt_rq_list
,
8109 &cpu_rq(cpu
)->leaf_rt_rq_list
);
8112 static inline void unregister_rt_sched_group(struct task_group
*tg
, int cpu
)
8114 list_del_rcu(&tg
->rt_rq
[cpu
]->leaf_rt_rq_list
);
8117 static inline void free_rt_sched_group(struct task_group
*tg
)
8122 int alloc_rt_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8127 static inline void register_rt_sched_group(struct task_group
*tg
, int cpu
)
8131 static inline void unregister_rt_sched_group(struct task_group
*tg
, int cpu
)
8136 #ifdef CONFIG_GROUP_SCHED
8137 static void free_sched_group(struct task_group
*tg
)
8139 free_fair_sched_group(tg
);
8140 free_rt_sched_group(tg
);
8144 /* allocate runqueue etc for a new task group */
8145 struct task_group
*sched_create_group(struct task_group
*parent
)
8147 struct task_group
*tg
;
8148 unsigned long flags
;
8151 tg
= kzalloc(sizeof(*tg
), GFP_KERNEL
);
8153 return ERR_PTR(-ENOMEM
);
8155 if (!alloc_fair_sched_group(tg
, parent
))
8158 if (!alloc_rt_sched_group(tg
, parent
))
8161 spin_lock_irqsave(&task_group_lock
, flags
);
8162 for_each_possible_cpu(i
) {
8163 register_fair_sched_group(tg
, i
);
8164 register_rt_sched_group(tg
, i
);
8166 list_add_rcu(&tg
->list
, &task_groups
);
8168 WARN_ON(!parent
); /* root should already exist */
8170 tg
->parent
= parent
;
8171 list_add_rcu(&tg
->siblings
, &parent
->children
);
8172 INIT_LIST_HEAD(&tg
->children
);
8173 spin_unlock_irqrestore(&task_group_lock
, flags
);
8178 free_sched_group(tg
);
8179 return ERR_PTR(-ENOMEM
);
8182 /* rcu callback to free various structures associated with a task group */
8183 static void free_sched_group_rcu(struct rcu_head
*rhp
)
8185 /* now it should be safe to free those cfs_rqs */
8186 free_sched_group(container_of(rhp
, struct task_group
, rcu
));
8189 /* Destroy runqueue etc associated with a task group */
8190 void sched_destroy_group(struct task_group
*tg
)
8192 unsigned long flags
;
8195 spin_lock_irqsave(&task_group_lock
, flags
);
8196 for_each_possible_cpu(i
) {
8197 unregister_fair_sched_group(tg
, i
);
8198 unregister_rt_sched_group(tg
, i
);
8200 list_del_rcu(&tg
->list
);
8201 list_del_rcu(&tg
->siblings
);
8202 spin_unlock_irqrestore(&task_group_lock
, flags
);
8204 /* wait for possible concurrent references to cfs_rqs complete */
8205 call_rcu(&tg
->rcu
, free_sched_group_rcu
);
8208 /* change task's runqueue when it moves between groups.
8209 * The caller of this function should have put the task in its new group
8210 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8211 * reflect its new group.
8213 void sched_move_task(struct task_struct
*tsk
)
8216 unsigned long flags
;
8219 rq
= task_rq_lock(tsk
, &flags
);
8221 update_rq_clock(rq
);
8223 running
= task_current(rq
, tsk
);
8224 on_rq
= tsk
->se
.on_rq
;
8227 dequeue_task(rq
, tsk
, 0);
8228 if (unlikely(running
))
8229 tsk
->sched_class
->put_prev_task(rq
, tsk
);
8231 set_task_rq(tsk
, task_cpu(tsk
));
8233 #ifdef CONFIG_FAIR_GROUP_SCHED
8234 if (tsk
->sched_class
->moved_group
)
8235 tsk
->sched_class
->moved_group(tsk
);
8238 if (unlikely(running
))
8239 tsk
->sched_class
->set_curr_task(rq
);
8241 enqueue_task(rq
, tsk
, 0);
8243 task_rq_unlock(rq
, &flags
);
8247 #ifdef CONFIG_FAIR_GROUP_SCHED
8248 static void set_se_shares(struct sched_entity
*se
, unsigned long shares
)
8250 struct cfs_rq
*cfs_rq
= se
->cfs_rq
;
8251 struct rq
*rq
= cfs_rq
->rq
;
8254 spin_lock_irq(&rq
->lock
);
8258 dequeue_entity(cfs_rq
, se
, 0);
8260 se
->load
.weight
= shares
;
8261 se
->load
.inv_weight
= 0;
8264 enqueue_entity(cfs_rq
, se
, 0);
8266 spin_unlock_irq(&rq
->lock
);
8269 static DEFINE_MUTEX(shares_mutex
);
8271 int sched_group_set_shares(struct task_group
*tg
, unsigned long shares
)
8274 unsigned long flags
;
8277 * We can't change the weight of the root cgroup.
8282 if (shares
< MIN_SHARES
)
8283 shares
= MIN_SHARES
;
8284 else if (shares
> MAX_SHARES
)
8285 shares
= MAX_SHARES
;
8287 mutex_lock(&shares_mutex
);
8288 if (tg
->shares
== shares
)
8291 spin_lock_irqsave(&task_group_lock
, flags
);
8292 for_each_possible_cpu(i
)
8293 unregister_fair_sched_group(tg
, i
);
8294 list_del_rcu(&tg
->siblings
);
8295 spin_unlock_irqrestore(&task_group_lock
, flags
);
8297 /* wait for any ongoing reference to this group to finish */
8298 synchronize_sched();
8301 * Now we are free to modify the group's share on each cpu
8302 * w/o tripping rebalance_share or load_balance_fair.
8304 tg
->shares
= shares
;
8305 for_each_possible_cpu(i
)
8306 set_se_shares(tg
->se
[i
], shares
);
8309 * Enable load balance activity on this group, by inserting it back on
8310 * each cpu's rq->leaf_cfs_rq_list.
8312 spin_lock_irqsave(&task_group_lock
, flags
);
8313 for_each_possible_cpu(i
)
8314 register_fair_sched_group(tg
, i
);
8315 list_add_rcu(&tg
->siblings
, &tg
->parent
->children
);
8316 spin_unlock_irqrestore(&task_group_lock
, flags
);
8318 mutex_unlock(&shares_mutex
);
8322 unsigned long sched_group_shares(struct task_group
*tg
)
8328 #ifdef CONFIG_RT_GROUP_SCHED
8330 * Ensure that the real time constraints are schedulable.
8332 static DEFINE_MUTEX(rt_constraints_mutex
);
8334 static unsigned long to_ratio(u64 period
, u64 runtime
)
8336 if (runtime
== RUNTIME_INF
)
8339 return div64_u64(runtime
<< 16, period
);
8342 #ifdef CONFIG_CGROUP_SCHED
8343 static int __rt_schedulable(struct task_group
*tg
, u64 period
, u64 runtime
)
8345 struct task_group
*tgi
, *parent
= tg
->parent
;
8346 unsigned long total
= 0;
8349 if (global_rt_period() < period
)
8352 return to_ratio(period
, runtime
) <
8353 to_ratio(global_rt_period(), global_rt_runtime());
8356 if (ktime_to_ns(parent
->rt_bandwidth
.rt_period
) < period
)
8360 list_for_each_entry_rcu(tgi
, &parent
->children
, siblings
) {
8364 total
+= to_ratio(ktime_to_ns(tgi
->rt_bandwidth
.rt_period
),
8365 tgi
->rt_bandwidth
.rt_runtime
);
8369 return total
+ to_ratio(period
, runtime
) <
8370 to_ratio(ktime_to_ns(parent
->rt_bandwidth
.rt_period
),
8371 parent
->rt_bandwidth
.rt_runtime
);
8373 #elif defined CONFIG_USER_SCHED
8374 static int __rt_schedulable(struct task_group
*tg
, u64 period
, u64 runtime
)
8376 struct task_group
*tgi
;
8377 unsigned long total
= 0;
8378 unsigned long global_ratio
=
8379 to_ratio(global_rt_period(), global_rt_runtime());
8382 list_for_each_entry_rcu(tgi
, &task_groups
, list
) {
8386 total
+= to_ratio(ktime_to_ns(tgi
->rt_bandwidth
.rt_period
),
8387 tgi
->rt_bandwidth
.rt_runtime
);
8391 return total
+ to_ratio(period
, runtime
) < global_ratio
;
8395 /* Must be called with tasklist_lock held */
8396 static inline int tg_has_rt_tasks(struct task_group
*tg
)
8398 struct task_struct
*g
, *p
;
8399 do_each_thread(g
, p
) {
8400 if (rt_task(p
) && rt_rq_of_se(&p
->rt
)->tg
== tg
)
8402 } while_each_thread(g
, p
);
8406 static int tg_set_bandwidth(struct task_group
*tg
,
8407 u64 rt_period
, u64 rt_runtime
)
8411 mutex_lock(&rt_constraints_mutex
);
8412 read_lock(&tasklist_lock
);
8413 if (rt_runtime
== 0 && tg_has_rt_tasks(tg
)) {
8417 if (!__rt_schedulable(tg
, rt_period
, rt_runtime
)) {
8422 spin_lock_irq(&tg
->rt_bandwidth
.rt_runtime_lock
);
8423 tg
->rt_bandwidth
.rt_period
= ns_to_ktime(rt_period
);
8424 tg
->rt_bandwidth
.rt_runtime
= rt_runtime
;
8426 for_each_possible_cpu(i
) {
8427 struct rt_rq
*rt_rq
= tg
->rt_rq
[i
];
8429 spin_lock(&rt_rq
->rt_runtime_lock
);
8430 rt_rq
->rt_runtime
= rt_runtime
;
8431 spin_unlock(&rt_rq
->rt_runtime_lock
);
8433 spin_unlock_irq(&tg
->rt_bandwidth
.rt_runtime_lock
);
8435 read_unlock(&tasklist_lock
);
8436 mutex_unlock(&rt_constraints_mutex
);
8441 int sched_group_set_rt_runtime(struct task_group
*tg
, long rt_runtime_us
)
8443 u64 rt_runtime
, rt_period
;
8445 rt_period
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
8446 rt_runtime
= (u64
)rt_runtime_us
* NSEC_PER_USEC
;
8447 if (rt_runtime_us
< 0)
8448 rt_runtime
= RUNTIME_INF
;
8450 return tg_set_bandwidth(tg
, rt_period
, rt_runtime
);
8453 long sched_group_rt_runtime(struct task_group
*tg
)
8457 if (tg
->rt_bandwidth
.rt_runtime
== RUNTIME_INF
)
8460 rt_runtime_us
= tg
->rt_bandwidth
.rt_runtime
;
8461 do_div(rt_runtime_us
, NSEC_PER_USEC
);
8462 return rt_runtime_us
;
8465 int sched_group_set_rt_period(struct task_group
*tg
, long rt_period_us
)
8467 u64 rt_runtime
, rt_period
;
8469 rt_period
= (u64
)rt_period_us
* NSEC_PER_USEC
;
8470 rt_runtime
= tg
->rt_bandwidth
.rt_runtime
;
8472 return tg_set_bandwidth(tg
, rt_period
, rt_runtime
);
8475 long sched_group_rt_period(struct task_group
*tg
)
8479 rt_period_us
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
8480 do_div(rt_period_us
, NSEC_PER_USEC
);
8481 return rt_period_us
;
8484 static int sched_rt_global_constraints(void)
8488 mutex_lock(&rt_constraints_mutex
);
8489 if (!__rt_schedulable(NULL
, 1, 0))
8491 mutex_unlock(&rt_constraints_mutex
);
8496 static int sched_rt_global_constraints(void)
8498 unsigned long flags
;
8501 spin_lock_irqsave(&def_rt_bandwidth
.rt_runtime_lock
, flags
);
8502 for_each_possible_cpu(i
) {
8503 struct rt_rq
*rt_rq
= &cpu_rq(i
)->rt
;
8505 spin_lock(&rt_rq
->rt_runtime_lock
);
8506 rt_rq
->rt_runtime
= global_rt_runtime();
8507 spin_unlock(&rt_rq
->rt_runtime_lock
);
8509 spin_unlock_irqrestore(&def_rt_bandwidth
.rt_runtime_lock
, flags
);
8515 int sched_rt_handler(struct ctl_table
*table
, int write
,
8516 struct file
*filp
, void __user
*buffer
, size_t *lenp
,
8520 int old_period
, old_runtime
;
8521 static DEFINE_MUTEX(mutex
);
8524 old_period
= sysctl_sched_rt_period
;
8525 old_runtime
= sysctl_sched_rt_runtime
;
8527 ret
= proc_dointvec(table
, write
, filp
, buffer
, lenp
, ppos
);
8529 if (!ret
&& write
) {
8530 ret
= sched_rt_global_constraints();
8532 sysctl_sched_rt_period
= old_period
;
8533 sysctl_sched_rt_runtime
= old_runtime
;
8535 def_rt_bandwidth
.rt_runtime
= global_rt_runtime();
8536 def_rt_bandwidth
.rt_period
=
8537 ns_to_ktime(global_rt_period());
8540 mutex_unlock(&mutex
);
8545 #ifdef CONFIG_CGROUP_SCHED
8547 /* return corresponding task_group object of a cgroup */
8548 static inline struct task_group
*cgroup_tg(struct cgroup
*cgrp
)
8550 return container_of(cgroup_subsys_state(cgrp
, cpu_cgroup_subsys_id
),
8551 struct task_group
, css
);
8554 static struct cgroup_subsys_state
*
8555 cpu_cgroup_create(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
8557 struct task_group
*tg
, *parent
;
8559 if (!cgrp
->parent
) {
8560 /* This is early initialization for the top cgroup */
8561 init_task_group
.css
.cgroup
= cgrp
;
8562 return &init_task_group
.css
;
8565 parent
= cgroup_tg(cgrp
->parent
);
8566 tg
= sched_create_group(parent
);
8568 return ERR_PTR(-ENOMEM
);
8570 /* Bind the cgroup to task_group object we just created */
8571 tg
->css
.cgroup
= cgrp
;
8577 cpu_cgroup_destroy(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
8579 struct task_group
*tg
= cgroup_tg(cgrp
);
8581 sched_destroy_group(tg
);
8585 cpu_cgroup_can_attach(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
,
8586 struct task_struct
*tsk
)
8588 #ifdef CONFIG_RT_GROUP_SCHED
8589 /* Don't accept realtime tasks when there is no way for them to run */
8590 if (rt_task(tsk
) && cgroup_tg(cgrp
)->rt_bandwidth
.rt_runtime
== 0)
8593 /* We don't support RT-tasks being in separate groups */
8594 if (tsk
->sched_class
!= &fair_sched_class
)
8602 cpu_cgroup_attach(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
,
8603 struct cgroup
*old_cont
, struct task_struct
*tsk
)
8605 sched_move_task(tsk
);
8608 #ifdef CONFIG_FAIR_GROUP_SCHED
8609 static int cpu_shares_write_u64(struct cgroup
*cgrp
, struct cftype
*cftype
,
8612 return sched_group_set_shares(cgroup_tg(cgrp
), shareval
);
8615 static u64
cpu_shares_read_u64(struct cgroup
*cgrp
, struct cftype
*cft
)
8617 struct task_group
*tg
= cgroup_tg(cgrp
);
8619 return (u64
) tg
->shares
;
8623 #ifdef CONFIG_RT_GROUP_SCHED
8624 static int cpu_rt_runtime_write(struct cgroup
*cgrp
, struct cftype
*cft
,
8627 return sched_group_set_rt_runtime(cgroup_tg(cgrp
), val
);
8630 static s64
cpu_rt_runtime_read(struct cgroup
*cgrp
, struct cftype
*cft
)
8632 return sched_group_rt_runtime(cgroup_tg(cgrp
));
8635 static int cpu_rt_period_write_uint(struct cgroup
*cgrp
, struct cftype
*cftype
,
8638 return sched_group_set_rt_period(cgroup_tg(cgrp
), rt_period_us
);
8641 static u64
cpu_rt_period_read_uint(struct cgroup
*cgrp
, struct cftype
*cft
)
8643 return sched_group_rt_period(cgroup_tg(cgrp
));
8647 static struct cftype cpu_files
[] = {
8648 #ifdef CONFIG_FAIR_GROUP_SCHED
8651 .read_u64
= cpu_shares_read_u64
,
8652 .write_u64
= cpu_shares_write_u64
,
8655 #ifdef CONFIG_RT_GROUP_SCHED
8657 .name
= "rt_runtime_us",
8658 .read_s64
= cpu_rt_runtime_read
,
8659 .write_s64
= cpu_rt_runtime_write
,
8662 .name
= "rt_period_us",
8663 .read_u64
= cpu_rt_period_read_uint
,
8664 .write_u64
= cpu_rt_period_write_uint
,
8669 static int cpu_cgroup_populate(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
8671 return cgroup_add_files(cont
, ss
, cpu_files
, ARRAY_SIZE(cpu_files
));
8674 struct cgroup_subsys cpu_cgroup_subsys
= {
8676 .create
= cpu_cgroup_create
,
8677 .destroy
= cpu_cgroup_destroy
,
8678 .can_attach
= cpu_cgroup_can_attach
,
8679 .attach
= cpu_cgroup_attach
,
8680 .populate
= cpu_cgroup_populate
,
8681 .subsys_id
= cpu_cgroup_subsys_id
,
8685 #endif /* CONFIG_CGROUP_SCHED */
8687 #ifdef CONFIG_CGROUP_CPUACCT
8690 * CPU accounting code for task groups.
8692 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8693 * (balbir@in.ibm.com).
8696 /* track cpu usage of a group of tasks */
8698 struct cgroup_subsys_state css
;
8699 /* cpuusage holds pointer to a u64-type object on every cpu */
8703 struct cgroup_subsys cpuacct_subsys
;
8705 /* return cpu accounting group corresponding to this container */
8706 static inline struct cpuacct
*cgroup_ca(struct cgroup
*cgrp
)
8708 return container_of(cgroup_subsys_state(cgrp
, cpuacct_subsys_id
),
8709 struct cpuacct
, css
);
8712 /* return cpu accounting group to which this task belongs */
8713 static inline struct cpuacct
*task_ca(struct task_struct
*tsk
)
8715 return container_of(task_subsys_state(tsk
, cpuacct_subsys_id
),
8716 struct cpuacct
, css
);
8719 /* create a new cpu accounting group */
8720 static struct cgroup_subsys_state
*cpuacct_create(
8721 struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
8723 struct cpuacct
*ca
= kzalloc(sizeof(*ca
), GFP_KERNEL
);
8726 return ERR_PTR(-ENOMEM
);
8728 ca
->cpuusage
= alloc_percpu(u64
);
8729 if (!ca
->cpuusage
) {
8731 return ERR_PTR(-ENOMEM
);
8737 /* destroy an existing cpu accounting group */
8739 cpuacct_destroy(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
8741 struct cpuacct
*ca
= cgroup_ca(cgrp
);
8743 free_percpu(ca
->cpuusage
);
8747 /* return total cpu usage (in nanoseconds) of a group */
8748 static u64
cpuusage_read(struct cgroup
*cgrp
, struct cftype
*cft
)
8750 struct cpuacct
*ca
= cgroup_ca(cgrp
);
8751 u64 totalcpuusage
= 0;
8754 for_each_possible_cpu(i
) {
8755 u64
*cpuusage
= percpu_ptr(ca
->cpuusage
, i
);
8758 * Take rq->lock to make 64-bit addition safe on 32-bit
8761 spin_lock_irq(&cpu_rq(i
)->lock
);
8762 totalcpuusage
+= *cpuusage
;
8763 spin_unlock_irq(&cpu_rq(i
)->lock
);
8766 return totalcpuusage
;
8769 static int cpuusage_write(struct cgroup
*cgrp
, struct cftype
*cftype
,
8772 struct cpuacct
*ca
= cgroup_ca(cgrp
);
8781 for_each_possible_cpu(i
) {
8782 u64
*cpuusage
= percpu_ptr(ca
->cpuusage
, i
);
8784 spin_lock_irq(&cpu_rq(i
)->lock
);
8786 spin_unlock_irq(&cpu_rq(i
)->lock
);
8792 static struct cftype files
[] = {
8795 .read_u64
= cpuusage_read
,
8796 .write_u64
= cpuusage_write
,
8800 static int cpuacct_populate(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
8802 return cgroup_add_files(cgrp
, ss
, files
, ARRAY_SIZE(files
));
8806 * charge this task's execution time to its accounting group.
8808 * called with rq->lock held.
8810 static void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
)
8814 if (!cpuacct_subsys
.active
)
8819 u64
*cpuusage
= percpu_ptr(ca
->cpuusage
, task_cpu(tsk
));
8821 *cpuusage
+= cputime
;
8825 struct cgroup_subsys cpuacct_subsys
= {
8827 .create
= cpuacct_create
,
8828 .destroy
= cpuacct_destroy
,
8829 .populate
= cpuacct_populate
,
8830 .subsys_id
= cpuacct_subsys_id
,
8832 #endif /* CONFIG_CGROUP_CPUACCT */