4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/kthread.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/reciprocal_div.h>
66 #include <linux/unistd.h>
67 #include <linux/pagemap.h>
68 #include <linux/hrtimer.h>
71 #include <asm/irq_regs.h>
74 * Scheduler clock - returns current time in nanosec units.
75 * This is default implementation.
76 * Architectures and sub-architectures can override this.
78 unsigned long long __attribute__((weak
)) sched_clock(void)
80 return (unsigned long long)jiffies
* (NSEC_PER_SEC
/ HZ
);
84 * Convert user-nice values [ -20 ... 0 ... 19 ]
85 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
88 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
89 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
90 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
93 * 'User priority' is the nice value converted to something we
94 * can work with better when scaling various scheduler parameters,
95 * it's a [ 0 ... 39 ] range.
97 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
98 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
99 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
102 * Helpers for converting nanosecond timing to jiffy resolution
104 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
106 #define NICE_0_LOAD SCHED_LOAD_SCALE
107 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
110 * These are the 'tuning knobs' of the scheduler:
112 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
113 * Timeslices get refilled after they expire.
115 #define DEF_TIMESLICE (100 * HZ / 1000)
119 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
120 * Since cpu_power is a 'constant', we can use a reciprocal divide.
122 static inline u32
sg_div_cpu_power(const struct sched_group
*sg
, u32 load
)
124 return reciprocal_divide(load
, sg
->reciprocal_cpu_power
);
128 * Each time a sched group cpu_power is changed,
129 * we must compute its reciprocal value
131 static inline void sg_inc_cpu_power(struct sched_group
*sg
, u32 val
)
133 sg
->__cpu_power
+= val
;
134 sg
->reciprocal_cpu_power
= reciprocal_value(sg
->__cpu_power
);
138 static inline int rt_policy(int policy
)
140 if (unlikely(policy
== SCHED_FIFO
) || unlikely(policy
== SCHED_RR
))
145 static inline int task_has_rt_policy(struct task_struct
*p
)
147 return rt_policy(p
->policy
);
151 * This is the priority-queue data structure of the RT scheduling class:
153 struct rt_prio_array
{
154 DECLARE_BITMAP(bitmap
, MAX_RT_PRIO
+1); /* include 1 bit for delimiter */
155 struct list_head queue
[MAX_RT_PRIO
];
158 #ifdef CONFIG_GROUP_SCHED
160 #include <linux/cgroup.h>
164 static LIST_HEAD(task_groups
);
166 /* task group related information */
168 #ifdef CONFIG_CGROUP_SCHED
169 struct cgroup_subsys_state css
;
172 #ifdef CONFIG_FAIR_GROUP_SCHED
173 /* schedulable entities of this group on each cpu */
174 struct sched_entity
**se
;
175 /* runqueue "owned" by this group on each cpu */
176 struct cfs_rq
**cfs_rq
;
179 * shares assigned to a task group governs how much of cpu bandwidth
180 * is allocated to the group. The more shares a group has, the more is
181 * the cpu bandwidth allocated to it.
183 * For ex, lets say that there are three task groups, A, B and C which
184 * have been assigned shares 1000, 2000 and 3000 respectively. Then,
185 * cpu bandwidth allocated by the scheduler to task groups A, B and C
188 * Bw(A) = 1000/(1000+2000+3000) * 100 = 16.66%
189 * Bw(B) = 2000/(1000+2000+3000) * 100 = 33.33%
190 * Bw(C) = 3000/(1000+2000+3000) * 100 = 50%
192 * The weight assigned to a task group's schedulable entities on every
193 * cpu (task_group.se[a_cpu]->load.weight) is derived from the task
194 * group's shares. For ex: lets say that task group A has been
195 * assigned shares of 1000 and there are two CPUs in a system. Then,
197 * tg_A->se[0]->load.weight = tg_A->se[1]->load.weight = 1000;
199 * Note: It's not necessary that each of a task's group schedulable
200 * entity have the same weight on all CPUs. If the group
201 * has 2 of its tasks on CPU0 and 1 task on CPU1, then a
202 * better distribution of weight could be:
204 * tg_A->se[0]->load.weight = 2/3 * 2000 = 1333
205 * tg_A->se[1]->load.weight = 1/2 * 2000 = 667
207 * rebalance_shares() is responsible for distributing the shares of a
208 * task groups like this among the group's schedulable entities across
212 unsigned long shares
;
215 #ifdef CONFIG_RT_GROUP_SCHED
216 struct sched_rt_entity
**rt_se
;
217 struct rt_rq
**rt_rq
;
223 struct list_head list
;
226 #ifdef CONFIG_FAIR_GROUP_SCHED
227 /* Default task group's sched entity on each cpu */
228 static DEFINE_PER_CPU(struct sched_entity
, init_sched_entity
);
229 /* Default task group's cfs_rq on each cpu */
230 static DEFINE_PER_CPU(struct cfs_rq
, init_cfs_rq
) ____cacheline_aligned_in_smp
;
232 static struct sched_entity
*init_sched_entity_p
[NR_CPUS
];
233 static struct cfs_rq
*init_cfs_rq_p
[NR_CPUS
];
236 #ifdef CONFIG_RT_GROUP_SCHED
237 static DEFINE_PER_CPU(struct sched_rt_entity
, init_sched_rt_entity
);
238 static DEFINE_PER_CPU(struct rt_rq
, init_rt_rq
) ____cacheline_aligned_in_smp
;
240 static struct sched_rt_entity
*init_sched_rt_entity_p
[NR_CPUS
];
241 static struct rt_rq
*init_rt_rq_p
[NR_CPUS
];
244 /* task_group_lock serializes add/remove of task groups and also changes to
245 * a task group's cpu shares.
247 static DEFINE_SPINLOCK(task_group_lock
);
249 /* doms_cur_mutex serializes access to doms_cur[] array */
250 static DEFINE_MUTEX(doms_cur_mutex
);
252 #ifdef CONFIG_FAIR_GROUP_SCHED
254 /* kernel thread that runs rebalance_shares() periodically */
255 static struct task_struct
*lb_monitor_task
;
256 static int load_balance_monitor(void *unused
);
259 static void set_se_shares(struct sched_entity
*se
, unsigned long shares
);
261 #ifdef CONFIG_USER_SCHED
262 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
264 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
267 #define MIN_GROUP_SHARES 2
269 static int init_task_group_load
= INIT_TASK_GROUP_LOAD
;
272 /* Default task group.
273 * Every task in system belong to this group at bootup.
275 struct task_group init_task_group
= {
276 #ifdef CONFIG_FAIR_GROUP_SCHED
277 .se
= init_sched_entity_p
,
278 .cfs_rq
= init_cfs_rq_p
,
281 #ifdef CONFIG_RT_GROUP_SCHED
282 .rt_se
= init_sched_rt_entity_p
,
283 .rt_rq
= init_rt_rq_p
,
287 /* return group to which a task belongs */
288 static inline struct task_group
*task_group(struct task_struct
*p
)
290 struct task_group
*tg
;
292 #ifdef CONFIG_USER_SCHED
294 #elif defined(CONFIG_CGROUP_SCHED)
295 tg
= container_of(task_subsys_state(p
, cpu_cgroup_subsys_id
),
296 struct task_group
, css
);
298 tg
= &init_task_group
;
303 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
304 static inline void set_task_rq(struct task_struct
*p
, unsigned int cpu
)
306 #ifdef CONFIG_FAIR_GROUP_SCHED
307 p
->se
.cfs_rq
= task_group(p
)->cfs_rq
[cpu
];
308 p
->se
.parent
= task_group(p
)->se
[cpu
];
311 #ifdef CONFIG_RT_GROUP_SCHED
312 p
->rt
.rt_rq
= task_group(p
)->rt_rq
[cpu
];
313 p
->rt
.parent
= task_group(p
)->rt_se
[cpu
];
317 static inline void lock_doms_cur(void)
319 mutex_lock(&doms_cur_mutex
);
322 static inline void unlock_doms_cur(void)
324 mutex_unlock(&doms_cur_mutex
);
329 static inline void set_task_rq(struct task_struct
*p
, unsigned int cpu
) { }
330 static inline void lock_doms_cur(void) { }
331 static inline void unlock_doms_cur(void) { }
333 #endif /* CONFIG_GROUP_SCHED */
335 /* CFS-related fields in a runqueue */
337 struct load_weight load
;
338 unsigned long nr_running
;
343 struct rb_root tasks_timeline
;
344 struct rb_node
*rb_leftmost
;
345 struct rb_node
*rb_load_balance_curr
;
346 /* 'curr' points to currently running entity on this cfs_rq.
347 * It is set to NULL otherwise (i.e when none are currently running).
349 struct sched_entity
*curr
;
351 unsigned long nr_spread_over
;
353 #ifdef CONFIG_FAIR_GROUP_SCHED
354 struct rq
*rq
; /* cpu runqueue to which this cfs_rq is attached */
357 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
358 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
359 * (like users, containers etc.)
361 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
362 * list is used during load balance.
364 struct list_head leaf_cfs_rq_list
;
365 struct task_group
*tg
; /* group that "owns" this runqueue */
369 /* Real-Time classes' related field in a runqueue: */
371 struct rt_prio_array active
;
372 unsigned long rt_nr_running
;
373 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
374 int highest_prio
; /* highest queued rt task prio */
377 unsigned long rt_nr_migratory
;
383 #ifdef CONFIG_RT_GROUP_SCHED
384 unsigned long rt_nr_boosted
;
387 struct list_head leaf_rt_rq_list
;
388 struct task_group
*tg
;
389 struct sched_rt_entity
*rt_se
;
396 * We add the notion of a root-domain which will be used to define per-domain
397 * variables. Each exclusive cpuset essentially defines an island domain by
398 * fully partitioning the member cpus from any other cpuset. Whenever a new
399 * exclusive cpuset is created, we also create and attach a new root-domain
409 * The "RT overload" flag: it gets set if a CPU has more than
410 * one runnable RT task.
417 * By default the system creates a single root-domain with all cpus as
418 * members (mimicking the global state we have today).
420 static struct root_domain def_root_domain
;
425 * This is the main, per-CPU runqueue data structure.
427 * Locking rule: those places that want to lock multiple runqueues
428 * (such as the load balancing or the thread migration code), lock
429 * acquire operations must be ordered by ascending &runqueue.
436 * nr_running and cpu_load should be in the same cacheline because
437 * remote CPUs use both these fields when doing load calculation.
439 unsigned long nr_running
;
440 #define CPU_LOAD_IDX_MAX 5
441 unsigned long cpu_load
[CPU_LOAD_IDX_MAX
];
442 unsigned char idle_at_tick
;
444 unsigned char in_nohz_recently
;
446 /* capture load from *all* tasks on this cpu: */
447 struct load_weight load
;
448 unsigned long nr_load_updates
;
453 u64 rt_period_expire
;
456 #ifdef CONFIG_FAIR_GROUP_SCHED
457 /* list of leaf cfs_rq on this cpu: */
458 struct list_head leaf_cfs_rq_list
;
460 #ifdef CONFIG_RT_GROUP_SCHED
461 struct list_head leaf_rt_rq_list
;
465 * This is part of a global counter where only the total sum
466 * over all CPUs matters. A task can increase this counter on
467 * one CPU and if it got migrated afterwards it may decrease
468 * it on another CPU. Always updated under the runqueue lock:
470 unsigned long nr_uninterruptible
;
472 struct task_struct
*curr
, *idle
;
473 unsigned long next_balance
;
474 struct mm_struct
*prev_mm
;
476 u64 clock
, prev_clock_raw
;
479 unsigned int clock_warps
, clock_overflows
, clock_underflows
;
481 unsigned int clock_deep_idle_events
;
487 struct root_domain
*rd
;
488 struct sched_domain
*sd
;
490 /* For active balancing */
493 /* cpu of this runqueue: */
496 struct task_struct
*migration_thread
;
497 struct list_head migration_queue
;
500 #ifdef CONFIG_SCHED_HRTICK
501 unsigned long hrtick_flags
;
502 ktime_t hrtick_expire
;
503 struct hrtimer hrtick_timer
;
506 #ifdef CONFIG_SCHEDSTATS
508 struct sched_info rq_sched_info
;
510 /* sys_sched_yield() stats */
511 unsigned int yld_exp_empty
;
512 unsigned int yld_act_empty
;
513 unsigned int yld_both_empty
;
514 unsigned int yld_count
;
516 /* schedule() stats */
517 unsigned int sched_switch
;
518 unsigned int sched_count
;
519 unsigned int sched_goidle
;
521 /* try_to_wake_up() stats */
522 unsigned int ttwu_count
;
523 unsigned int ttwu_local
;
526 unsigned int bkl_count
;
528 struct lock_class_key rq_lock_key
;
531 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq
, runqueues
);
533 static inline void check_preempt_curr(struct rq
*rq
, struct task_struct
*p
)
535 rq
->curr
->sched_class
->check_preempt_curr(rq
, p
);
538 static inline int cpu_of(struct rq
*rq
)
548 * Update the per-runqueue clock, as finegrained as the platform can give
549 * us, but without assuming monotonicity, etc.:
551 static void __update_rq_clock(struct rq
*rq
)
553 u64 prev_raw
= rq
->prev_clock_raw
;
554 u64 now
= sched_clock();
555 s64 delta
= now
- prev_raw
;
556 u64 clock
= rq
->clock
;
558 #ifdef CONFIG_SCHED_DEBUG
559 WARN_ON_ONCE(cpu_of(rq
) != smp_processor_id());
562 * Protect against sched_clock() occasionally going backwards:
564 if (unlikely(delta
< 0)) {
569 * Catch too large forward jumps too:
571 if (unlikely(clock
+ delta
> rq
->tick_timestamp
+ TICK_NSEC
)) {
572 if (clock
< rq
->tick_timestamp
+ TICK_NSEC
)
573 clock
= rq
->tick_timestamp
+ TICK_NSEC
;
576 rq
->clock_overflows
++;
578 if (unlikely(delta
> rq
->clock_max_delta
))
579 rq
->clock_max_delta
= delta
;
584 rq
->prev_clock_raw
= now
;
588 static void update_rq_clock(struct rq
*rq
)
590 if (likely(smp_processor_id() == cpu_of(rq
)))
591 __update_rq_clock(rq
);
595 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
596 * See detach_destroy_domains: synchronize_sched for details.
598 * The domain tree of any CPU may only be accessed from within
599 * preempt-disabled sections.
601 #define for_each_domain(cpu, __sd) \
602 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
604 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
605 #define this_rq() (&__get_cpu_var(runqueues))
606 #define task_rq(p) cpu_rq(task_cpu(p))
607 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
609 unsigned long rt_needs_cpu(int cpu
)
611 struct rq
*rq
= cpu_rq(cpu
);
614 if (!rq
->rt_throttled
)
617 if (rq
->clock
> rq
->rt_period_expire
)
620 delta
= rq
->rt_period_expire
- rq
->clock
;
621 do_div(delta
, NSEC_PER_SEC
/ HZ
);
623 return (unsigned long)delta
;
627 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
629 #ifdef CONFIG_SCHED_DEBUG
630 # define const_debug __read_mostly
632 # define const_debug static const
636 * Debugging: various feature bits
639 SCHED_FEAT_NEW_FAIR_SLEEPERS
= 1,
640 SCHED_FEAT_WAKEUP_PREEMPT
= 2,
641 SCHED_FEAT_START_DEBIT
= 4,
642 SCHED_FEAT_TREE_AVG
= 8,
643 SCHED_FEAT_APPROX_AVG
= 16,
644 SCHED_FEAT_HRTICK
= 32,
645 SCHED_FEAT_DOUBLE_TICK
= 64,
648 const_debug
unsigned int sysctl_sched_features
=
649 SCHED_FEAT_NEW_FAIR_SLEEPERS
* 1 |
650 SCHED_FEAT_WAKEUP_PREEMPT
* 1 |
651 SCHED_FEAT_START_DEBIT
* 1 |
652 SCHED_FEAT_TREE_AVG
* 0 |
653 SCHED_FEAT_APPROX_AVG
* 0 |
654 SCHED_FEAT_HRTICK
* 1 |
655 SCHED_FEAT_DOUBLE_TICK
* 0;
657 #define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
660 * Number of tasks to iterate in a single balance run.
661 * Limited because this is done with IRQs disabled.
663 const_debug
unsigned int sysctl_sched_nr_migrate
= 32;
666 * period over which we measure -rt task cpu usage in us.
669 unsigned int sysctl_sched_rt_period
= 1000000;
672 * part of the period that we allow rt tasks to run in us.
675 int sysctl_sched_rt_runtime
= 950000;
678 * single value that denotes runtime == period, ie unlimited time.
680 #define RUNTIME_INF ((u64)~0ULL)
683 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
684 * clock constructed from sched_clock():
686 unsigned long long cpu_clock(int cpu
)
688 unsigned long long now
;
692 local_irq_save(flags
);
695 * Only call sched_clock() if the scheduler has already been
696 * initialized (some code might call cpu_clock() very early):
701 local_irq_restore(flags
);
705 EXPORT_SYMBOL_GPL(cpu_clock
);
707 #ifndef prepare_arch_switch
708 # define prepare_arch_switch(next) do { } while (0)
710 #ifndef finish_arch_switch
711 # define finish_arch_switch(prev) do { } while (0)
714 static inline int task_current(struct rq
*rq
, struct task_struct
*p
)
716 return rq
->curr
== p
;
719 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
720 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
722 return task_current(rq
, p
);
725 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
729 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
731 #ifdef CONFIG_DEBUG_SPINLOCK
732 /* this is a valid case when another task releases the spinlock */
733 rq
->lock
.owner
= current
;
736 * If we are tracking spinlock dependencies then we have to
737 * fix up the runqueue lock - which gets 'carried over' from
740 spin_acquire(&rq
->lock
.dep_map
, 0, 0, _THIS_IP_
);
742 spin_unlock_irq(&rq
->lock
);
745 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
746 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
751 return task_current(rq
, p
);
755 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
759 * We can optimise this out completely for !SMP, because the
760 * SMP rebalancing from interrupt is the only thing that cares
765 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
766 spin_unlock_irq(&rq
->lock
);
768 spin_unlock(&rq
->lock
);
772 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
776 * After ->oncpu is cleared, the task can be moved to a different CPU.
777 * We must ensure this doesn't happen until the switch is completely
783 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
787 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
790 * __task_rq_lock - lock the runqueue a given task resides on.
791 * Must be called interrupts disabled.
793 static inline struct rq
*__task_rq_lock(struct task_struct
*p
)
797 struct rq
*rq
= task_rq(p
);
798 spin_lock(&rq
->lock
);
799 if (likely(rq
== task_rq(p
)))
801 spin_unlock(&rq
->lock
);
806 * task_rq_lock - lock the runqueue a given task resides on and disable
807 * interrupts. Note the ordering: we can safely lookup the task_rq without
808 * explicitly disabling preemption.
810 static struct rq
*task_rq_lock(struct task_struct
*p
, unsigned long *flags
)
816 local_irq_save(*flags
);
818 spin_lock(&rq
->lock
);
819 if (likely(rq
== task_rq(p
)))
821 spin_unlock_irqrestore(&rq
->lock
, *flags
);
825 static void __task_rq_unlock(struct rq
*rq
)
828 spin_unlock(&rq
->lock
);
831 static inline void task_rq_unlock(struct rq
*rq
, unsigned long *flags
)
834 spin_unlock_irqrestore(&rq
->lock
, *flags
);
838 * this_rq_lock - lock this runqueue and disable interrupts.
840 static struct rq
*this_rq_lock(void)
847 spin_lock(&rq
->lock
);
853 * We are going deep-idle (irqs are disabled):
855 void sched_clock_idle_sleep_event(void)
857 struct rq
*rq
= cpu_rq(smp_processor_id());
859 spin_lock(&rq
->lock
);
860 __update_rq_clock(rq
);
861 spin_unlock(&rq
->lock
);
862 rq
->clock_deep_idle_events
++;
864 EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event
);
867 * We just idled delta nanoseconds (called with irqs disabled):
869 void sched_clock_idle_wakeup_event(u64 delta_ns
)
871 struct rq
*rq
= cpu_rq(smp_processor_id());
872 u64 now
= sched_clock();
874 rq
->idle_clock
+= delta_ns
;
876 * Override the previous timestamp and ignore all
877 * sched_clock() deltas that occured while we idled,
878 * and use the PM-provided delta_ns to advance the
881 spin_lock(&rq
->lock
);
882 rq
->prev_clock_raw
= now
;
883 rq
->clock
+= delta_ns
;
884 spin_unlock(&rq
->lock
);
885 touch_softlockup_watchdog();
887 EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event
);
889 static void __resched_task(struct task_struct
*p
, int tif_bit
);
891 static inline void resched_task(struct task_struct
*p
)
893 __resched_task(p
, TIF_NEED_RESCHED
);
896 #ifdef CONFIG_SCHED_HRTICK
898 * Use HR-timers to deliver accurate preemption points.
900 * Its all a bit involved since we cannot program an hrt while holding the
901 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
904 * When we get rescheduled we reprogram the hrtick_timer outside of the
907 static inline void resched_hrt(struct task_struct
*p
)
909 __resched_task(p
, TIF_HRTICK_RESCHED
);
912 static inline void resched_rq(struct rq
*rq
)
916 spin_lock_irqsave(&rq
->lock
, flags
);
917 resched_task(rq
->curr
);
918 spin_unlock_irqrestore(&rq
->lock
, flags
);
922 HRTICK_SET
, /* re-programm hrtick_timer */
923 HRTICK_RESET
, /* not a new slice */
928 * - enabled by features
929 * - hrtimer is actually high res
931 static inline int hrtick_enabled(struct rq
*rq
)
933 if (!sched_feat(HRTICK
))
935 return hrtimer_is_hres_active(&rq
->hrtick_timer
);
939 * Called to set the hrtick timer state.
941 * called with rq->lock held and irqs disabled
943 static void hrtick_start(struct rq
*rq
, u64 delay
, int reset
)
945 assert_spin_locked(&rq
->lock
);
948 * preempt at: now + delay
951 ktime_add_ns(rq
->hrtick_timer
.base
->get_time(), delay
);
953 * indicate we need to program the timer
955 __set_bit(HRTICK_SET
, &rq
->hrtick_flags
);
957 __set_bit(HRTICK_RESET
, &rq
->hrtick_flags
);
960 * New slices are called from the schedule path and don't need a
964 resched_hrt(rq
->curr
);
967 static void hrtick_clear(struct rq
*rq
)
969 if (hrtimer_active(&rq
->hrtick_timer
))
970 hrtimer_cancel(&rq
->hrtick_timer
);
974 * Update the timer from the possible pending state.
976 static void hrtick_set(struct rq
*rq
)
982 WARN_ON_ONCE(cpu_of(rq
) != smp_processor_id());
984 spin_lock_irqsave(&rq
->lock
, flags
);
985 set
= __test_and_clear_bit(HRTICK_SET
, &rq
->hrtick_flags
);
986 reset
= __test_and_clear_bit(HRTICK_RESET
, &rq
->hrtick_flags
);
987 time
= rq
->hrtick_expire
;
988 clear_thread_flag(TIF_HRTICK_RESCHED
);
989 spin_unlock_irqrestore(&rq
->lock
, flags
);
992 hrtimer_start(&rq
->hrtick_timer
, time
, HRTIMER_MODE_ABS
);
993 if (reset
&& !hrtimer_active(&rq
->hrtick_timer
))
1000 * High-resolution timer tick.
1001 * Runs from hardirq context with interrupts disabled.
1003 static enum hrtimer_restart
hrtick(struct hrtimer
*timer
)
1005 struct rq
*rq
= container_of(timer
, struct rq
, hrtick_timer
);
1007 WARN_ON_ONCE(cpu_of(rq
) != smp_processor_id());
1009 spin_lock(&rq
->lock
);
1010 __update_rq_clock(rq
);
1011 rq
->curr
->sched_class
->task_tick(rq
, rq
->curr
, 1);
1012 spin_unlock(&rq
->lock
);
1014 return HRTIMER_NORESTART
;
1017 static inline void init_rq_hrtick(struct rq
*rq
)
1019 rq
->hrtick_flags
= 0;
1020 hrtimer_init(&rq
->hrtick_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
1021 rq
->hrtick_timer
.function
= hrtick
;
1022 rq
->hrtick_timer
.cb_mode
= HRTIMER_CB_IRQSAFE_NO_SOFTIRQ
;
1025 void hrtick_resched(void)
1028 unsigned long flags
;
1030 if (!test_thread_flag(TIF_HRTICK_RESCHED
))
1033 local_irq_save(flags
);
1034 rq
= cpu_rq(smp_processor_id());
1036 local_irq_restore(flags
);
1039 static inline void hrtick_clear(struct rq
*rq
)
1043 static inline void hrtick_set(struct rq
*rq
)
1047 static inline void init_rq_hrtick(struct rq
*rq
)
1051 void hrtick_resched(void)
1057 * resched_task - mark a task 'to be rescheduled now'.
1059 * On UP this means the setting of the need_resched flag, on SMP it
1060 * might also involve a cross-CPU call to trigger the scheduler on
1065 #ifndef tsk_is_polling
1066 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1069 static void __resched_task(struct task_struct
*p
, int tif_bit
)
1073 assert_spin_locked(&task_rq(p
)->lock
);
1075 if (unlikely(test_tsk_thread_flag(p
, tif_bit
)))
1078 set_tsk_thread_flag(p
, tif_bit
);
1081 if (cpu
== smp_processor_id())
1084 /* NEED_RESCHED must be visible before we test polling */
1086 if (!tsk_is_polling(p
))
1087 smp_send_reschedule(cpu
);
1090 static void resched_cpu(int cpu
)
1092 struct rq
*rq
= cpu_rq(cpu
);
1093 unsigned long flags
;
1095 if (!spin_trylock_irqsave(&rq
->lock
, flags
))
1097 resched_task(cpu_curr(cpu
));
1098 spin_unlock_irqrestore(&rq
->lock
, flags
);
1101 static void __resched_task(struct task_struct
*p
, int tif_bit
)
1103 assert_spin_locked(&task_rq(p
)->lock
);
1104 set_tsk_thread_flag(p
, tif_bit
);
1108 #if BITS_PER_LONG == 32
1109 # define WMULT_CONST (~0UL)
1111 # define WMULT_CONST (1UL << 32)
1114 #define WMULT_SHIFT 32
1117 * Shift right and round:
1119 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1121 static unsigned long
1122 calc_delta_mine(unsigned long delta_exec
, unsigned long weight
,
1123 struct load_weight
*lw
)
1127 if (unlikely(!lw
->inv_weight
))
1128 lw
->inv_weight
= (WMULT_CONST
- lw
->weight
/2) / lw
->weight
+ 1;
1130 tmp
= (u64
)delta_exec
* weight
;
1132 * Check whether we'd overflow the 64-bit multiplication:
1134 if (unlikely(tmp
> WMULT_CONST
))
1135 tmp
= SRR(SRR(tmp
, WMULT_SHIFT
/2) * lw
->inv_weight
,
1138 tmp
= SRR(tmp
* lw
->inv_weight
, WMULT_SHIFT
);
1140 return (unsigned long)min(tmp
, (u64
)(unsigned long)LONG_MAX
);
1143 static inline unsigned long
1144 calc_delta_fair(unsigned long delta_exec
, struct load_weight
*lw
)
1146 return calc_delta_mine(delta_exec
, NICE_0_LOAD
, lw
);
1149 static inline void update_load_add(struct load_weight
*lw
, unsigned long inc
)
1154 static inline void update_load_sub(struct load_weight
*lw
, unsigned long dec
)
1160 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1161 * of tasks with abnormal "nice" values across CPUs the contribution that
1162 * each task makes to its run queue's load is weighted according to its
1163 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1164 * scaled version of the new time slice allocation that they receive on time
1168 #define WEIGHT_IDLEPRIO 2
1169 #define WMULT_IDLEPRIO (1 << 31)
1172 * Nice levels are multiplicative, with a gentle 10% change for every
1173 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1174 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1175 * that remained on nice 0.
1177 * The "10% effect" is relative and cumulative: from _any_ nice level,
1178 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1179 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1180 * If a task goes up by ~10% and another task goes down by ~10% then
1181 * the relative distance between them is ~25%.)
1183 static const int prio_to_weight
[40] = {
1184 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1185 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1186 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1187 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1188 /* 0 */ 1024, 820, 655, 526, 423,
1189 /* 5 */ 335, 272, 215, 172, 137,
1190 /* 10 */ 110, 87, 70, 56, 45,
1191 /* 15 */ 36, 29, 23, 18, 15,
1195 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1197 * In cases where the weight does not change often, we can use the
1198 * precalculated inverse to speed up arithmetics by turning divisions
1199 * into multiplications:
1201 static const u32 prio_to_wmult
[40] = {
1202 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1203 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1204 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1205 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1206 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1207 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1208 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1209 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1212 static void activate_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
);
1215 * runqueue iterator, to support SMP load-balancing between different
1216 * scheduling classes, without having to expose their internal data
1217 * structures to the load-balancing proper:
1219 struct rq_iterator
{
1221 struct task_struct
*(*start
)(void *);
1222 struct task_struct
*(*next
)(void *);
1226 static unsigned long
1227 balance_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
1228 unsigned long max_load_move
, struct sched_domain
*sd
,
1229 enum cpu_idle_type idle
, int *all_pinned
,
1230 int *this_best_prio
, struct rq_iterator
*iterator
);
1233 iter_move_one_task(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
1234 struct sched_domain
*sd
, enum cpu_idle_type idle
,
1235 struct rq_iterator
*iterator
);
1238 #ifdef CONFIG_CGROUP_CPUACCT
1239 static void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
);
1241 static inline void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
) {}
1244 static inline void inc_cpu_load(struct rq
*rq
, unsigned long load
)
1246 update_load_add(&rq
->load
, load
);
1249 static inline void dec_cpu_load(struct rq
*rq
, unsigned long load
)
1251 update_load_sub(&rq
->load
, load
);
1255 static unsigned long source_load(int cpu
, int type
);
1256 static unsigned long target_load(int cpu
, int type
);
1257 static unsigned long cpu_avg_load_per_task(int cpu
);
1258 static int task_hot(struct task_struct
*p
, u64 now
, struct sched_domain
*sd
);
1259 #endif /* CONFIG_SMP */
1261 #include "sched_stats.h"
1262 #include "sched_idletask.c"
1263 #include "sched_fair.c"
1264 #include "sched_rt.c"
1265 #ifdef CONFIG_SCHED_DEBUG
1266 # include "sched_debug.c"
1269 #define sched_class_highest (&rt_sched_class)
1271 static void inc_nr_running(struct rq
*rq
)
1276 static void dec_nr_running(struct rq
*rq
)
1281 static void set_load_weight(struct task_struct
*p
)
1283 if (task_has_rt_policy(p
)) {
1284 p
->se
.load
.weight
= prio_to_weight
[0] * 2;
1285 p
->se
.load
.inv_weight
= prio_to_wmult
[0] >> 1;
1290 * SCHED_IDLE tasks get minimal weight:
1292 if (p
->policy
== SCHED_IDLE
) {
1293 p
->se
.load
.weight
= WEIGHT_IDLEPRIO
;
1294 p
->se
.load
.inv_weight
= WMULT_IDLEPRIO
;
1298 p
->se
.load
.weight
= prio_to_weight
[p
->static_prio
- MAX_RT_PRIO
];
1299 p
->se
.load
.inv_weight
= prio_to_wmult
[p
->static_prio
- MAX_RT_PRIO
];
1302 static void enqueue_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
)
1304 sched_info_queued(p
);
1305 p
->sched_class
->enqueue_task(rq
, p
, wakeup
);
1309 static void dequeue_task(struct rq
*rq
, struct task_struct
*p
, int sleep
)
1311 p
->sched_class
->dequeue_task(rq
, p
, sleep
);
1316 * __normal_prio - return the priority that is based on the static prio
1318 static inline int __normal_prio(struct task_struct
*p
)
1320 return p
->static_prio
;
1324 * Calculate the expected normal priority: i.e. priority
1325 * without taking RT-inheritance into account. Might be
1326 * boosted by interactivity modifiers. Changes upon fork,
1327 * setprio syscalls, and whenever the interactivity
1328 * estimator recalculates.
1330 static inline int normal_prio(struct task_struct
*p
)
1334 if (task_has_rt_policy(p
))
1335 prio
= MAX_RT_PRIO
-1 - p
->rt_priority
;
1337 prio
= __normal_prio(p
);
1342 * Calculate the current priority, i.e. the priority
1343 * taken into account by the scheduler. This value might
1344 * be boosted by RT tasks, or might be boosted by
1345 * interactivity modifiers. Will be RT if the task got
1346 * RT-boosted. If not then it returns p->normal_prio.
1348 static int effective_prio(struct task_struct
*p
)
1350 p
->normal_prio
= normal_prio(p
);
1352 * If we are RT tasks or we were boosted to RT priority,
1353 * keep the priority unchanged. Otherwise, update priority
1354 * to the normal priority:
1356 if (!rt_prio(p
->prio
))
1357 return p
->normal_prio
;
1362 * activate_task - move a task to the runqueue.
1364 static void activate_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
)
1366 if (task_contributes_to_load(p
))
1367 rq
->nr_uninterruptible
--;
1369 enqueue_task(rq
, p
, wakeup
);
1374 * deactivate_task - remove a task from the runqueue.
1376 static void deactivate_task(struct rq
*rq
, struct task_struct
*p
, int sleep
)
1378 if (task_contributes_to_load(p
))
1379 rq
->nr_uninterruptible
++;
1381 dequeue_task(rq
, p
, sleep
);
1386 * task_curr - is this task currently executing on a CPU?
1387 * @p: the task in question.
1389 inline int task_curr(const struct task_struct
*p
)
1391 return cpu_curr(task_cpu(p
)) == p
;
1394 /* Used instead of source_load when we know the type == 0 */
1395 unsigned long weighted_cpuload(const int cpu
)
1397 return cpu_rq(cpu
)->load
.weight
;
1400 static inline void __set_task_cpu(struct task_struct
*p
, unsigned int cpu
)
1402 set_task_rq(p
, cpu
);
1405 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1406 * successfuly executed on another CPU. We must ensure that updates of
1407 * per-task data have been completed by this moment.
1410 task_thread_info(p
)->cpu
= cpu
;
1414 static inline void check_class_changed(struct rq
*rq
, struct task_struct
*p
,
1415 const struct sched_class
*prev_class
,
1416 int oldprio
, int running
)
1418 if (prev_class
!= p
->sched_class
) {
1419 if (prev_class
->switched_from
)
1420 prev_class
->switched_from(rq
, p
, running
);
1421 p
->sched_class
->switched_to(rq
, p
, running
);
1423 p
->sched_class
->prio_changed(rq
, p
, oldprio
, running
);
1429 * Is this task likely cache-hot:
1432 task_hot(struct task_struct
*p
, u64 now
, struct sched_domain
*sd
)
1436 if (p
->sched_class
!= &fair_sched_class
)
1439 if (sysctl_sched_migration_cost
== -1)
1441 if (sysctl_sched_migration_cost
== 0)
1444 delta
= now
- p
->se
.exec_start
;
1446 return delta
< (s64
)sysctl_sched_migration_cost
;
1450 void set_task_cpu(struct task_struct
*p
, unsigned int new_cpu
)
1452 int old_cpu
= task_cpu(p
);
1453 struct rq
*old_rq
= cpu_rq(old_cpu
), *new_rq
= cpu_rq(new_cpu
);
1454 struct cfs_rq
*old_cfsrq
= task_cfs_rq(p
),
1455 *new_cfsrq
= cpu_cfs_rq(old_cfsrq
, new_cpu
);
1458 clock_offset
= old_rq
->clock
- new_rq
->clock
;
1460 #ifdef CONFIG_SCHEDSTATS
1461 if (p
->se
.wait_start
)
1462 p
->se
.wait_start
-= clock_offset
;
1463 if (p
->se
.sleep_start
)
1464 p
->se
.sleep_start
-= clock_offset
;
1465 if (p
->se
.block_start
)
1466 p
->se
.block_start
-= clock_offset
;
1467 if (old_cpu
!= new_cpu
) {
1468 schedstat_inc(p
, se
.nr_migrations
);
1469 if (task_hot(p
, old_rq
->clock
, NULL
))
1470 schedstat_inc(p
, se
.nr_forced2_migrations
);
1473 p
->se
.vruntime
-= old_cfsrq
->min_vruntime
-
1474 new_cfsrq
->min_vruntime
;
1476 __set_task_cpu(p
, new_cpu
);
1479 struct migration_req
{
1480 struct list_head list
;
1482 struct task_struct
*task
;
1485 struct completion done
;
1489 * The task's runqueue lock must be held.
1490 * Returns true if you have to wait for migration thread.
1493 migrate_task(struct task_struct
*p
, int dest_cpu
, struct migration_req
*req
)
1495 struct rq
*rq
= task_rq(p
);
1498 * If the task is not on a runqueue (and not running), then
1499 * it is sufficient to simply update the task's cpu field.
1501 if (!p
->se
.on_rq
&& !task_running(rq
, p
)) {
1502 set_task_cpu(p
, dest_cpu
);
1506 init_completion(&req
->done
);
1508 req
->dest_cpu
= dest_cpu
;
1509 list_add(&req
->list
, &rq
->migration_queue
);
1515 * wait_task_inactive - wait for a thread to unschedule.
1517 * The caller must ensure that the task *will* unschedule sometime soon,
1518 * else this function might spin for a *long* time. This function can't
1519 * be called with interrupts off, or it may introduce deadlock with
1520 * smp_call_function() if an IPI is sent by the same process we are
1521 * waiting to become inactive.
1523 void wait_task_inactive(struct task_struct
*p
)
1525 unsigned long flags
;
1531 * We do the initial early heuristics without holding
1532 * any task-queue locks at all. We'll only try to get
1533 * the runqueue lock when things look like they will
1539 * If the task is actively running on another CPU
1540 * still, just relax and busy-wait without holding
1543 * NOTE! Since we don't hold any locks, it's not
1544 * even sure that "rq" stays as the right runqueue!
1545 * But we don't care, since "task_running()" will
1546 * return false if the runqueue has changed and p
1547 * is actually now running somewhere else!
1549 while (task_running(rq
, p
))
1553 * Ok, time to look more closely! We need the rq
1554 * lock now, to be *sure*. If we're wrong, we'll
1555 * just go back and repeat.
1557 rq
= task_rq_lock(p
, &flags
);
1558 running
= task_running(rq
, p
);
1559 on_rq
= p
->se
.on_rq
;
1560 task_rq_unlock(rq
, &flags
);
1563 * Was it really running after all now that we
1564 * checked with the proper locks actually held?
1566 * Oops. Go back and try again..
1568 if (unlikely(running
)) {
1574 * It's not enough that it's not actively running,
1575 * it must be off the runqueue _entirely_, and not
1578 * So if it wa still runnable (but just not actively
1579 * running right now), it's preempted, and we should
1580 * yield - it could be a while.
1582 if (unlikely(on_rq
)) {
1583 schedule_timeout_uninterruptible(1);
1588 * Ahh, all good. It wasn't running, and it wasn't
1589 * runnable, which means that it will never become
1590 * running in the future either. We're all done!
1597 * kick_process - kick a running thread to enter/exit the kernel
1598 * @p: the to-be-kicked thread
1600 * Cause a process which is running on another CPU to enter
1601 * kernel-mode, without any delay. (to get signals handled.)
1603 * NOTE: this function doesnt have to take the runqueue lock,
1604 * because all it wants to ensure is that the remote task enters
1605 * the kernel. If the IPI races and the task has been migrated
1606 * to another CPU then no harm is done and the purpose has been
1609 void kick_process(struct task_struct
*p
)
1615 if ((cpu
!= smp_processor_id()) && task_curr(p
))
1616 smp_send_reschedule(cpu
);
1621 * Return a low guess at the load of a migration-source cpu weighted
1622 * according to the scheduling class and "nice" value.
1624 * We want to under-estimate the load of migration sources, to
1625 * balance conservatively.
1627 static unsigned long source_load(int cpu
, int type
)
1629 struct rq
*rq
= cpu_rq(cpu
);
1630 unsigned long total
= weighted_cpuload(cpu
);
1635 return min(rq
->cpu_load
[type
-1], total
);
1639 * Return a high guess at the load of a migration-target cpu weighted
1640 * according to the scheduling class and "nice" value.
1642 static unsigned long target_load(int cpu
, int type
)
1644 struct rq
*rq
= cpu_rq(cpu
);
1645 unsigned long total
= weighted_cpuload(cpu
);
1650 return max(rq
->cpu_load
[type
-1], total
);
1654 * Return the average load per task on the cpu's run queue
1656 static unsigned long cpu_avg_load_per_task(int cpu
)
1658 struct rq
*rq
= cpu_rq(cpu
);
1659 unsigned long total
= weighted_cpuload(cpu
);
1660 unsigned long n
= rq
->nr_running
;
1662 return n
? total
/ n
: SCHED_LOAD_SCALE
;
1666 * find_idlest_group finds and returns the least busy CPU group within the
1669 static struct sched_group
*
1670 find_idlest_group(struct sched_domain
*sd
, struct task_struct
*p
, int this_cpu
)
1672 struct sched_group
*idlest
= NULL
, *this = NULL
, *group
= sd
->groups
;
1673 unsigned long min_load
= ULONG_MAX
, this_load
= 0;
1674 int load_idx
= sd
->forkexec_idx
;
1675 int imbalance
= 100 + (sd
->imbalance_pct
-100)/2;
1678 unsigned long load
, avg_load
;
1682 /* Skip over this group if it has no CPUs allowed */
1683 if (!cpus_intersects(group
->cpumask
, p
->cpus_allowed
))
1686 local_group
= cpu_isset(this_cpu
, group
->cpumask
);
1688 /* Tally up the load of all CPUs in the group */
1691 for_each_cpu_mask(i
, group
->cpumask
) {
1692 /* Bias balancing toward cpus of our domain */
1694 load
= source_load(i
, load_idx
);
1696 load
= target_load(i
, load_idx
);
1701 /* Adjust by relative CPU power of the group */
1702 avg_load
= sg_div_cpu_power(group
,
1703 avg_load
* SCHED_LOAD_SCALE
);
1706 this_load
= avg_load
;
1708 } else if (avg_load
< min_load
) {
1709 min_load
= avg_load
;
1712 } while (group
= group
->next
, group
!= sd
->groups
);
1714 if (!idlest
|| 100*this_load
< imbalance
*min_load
)
1720 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1723 find_idlest_cpu(struct sched_group
*group
, struct task_struct
*p
, int this_cpu
)
1726 unsigned long load
, min_load
= ULONG_MAX
;
1730 /* Traverse only the allowed CPUs */
1731 cpus_and(tmp
, group
->cpumask
, p
->cpus_allowed
);
1733 for_each_cpu_mask(i
, tmp
) {
1734 load
= weighted_cpuload(i
);
1736 if (load
< min_load
|| (load
== min_load
&& i
== this_cpu
)) {
1746 * sched_balance_self: balance the current task (running on cpu) in domains
1747 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1750 * Balance, ie. select the least loaded group.
1752 * Returns the target CPU number, or the same CPU if no balancing is needed.
1754 * preempt must be disabled.
1756 static int sched_balance_self(int cpu
, int flag
)
1758 struct task_struct
*t
= current
;
1759 struct sched_domain
*tmp
, *sd
= NULL
;
1761 for_each_domain(cpu
, tmp
) {
1763 * If power savings logic is enabled for a domain, stop there.
1765 if (tmp
->flags
& SD_POWERSAVINGS_BALANCE
)
1767 if (tmp
->flags
& flag
)
1773 struct sched_group
*group
;
1774 int new_cpu
, weight
;
1776 if (!(sd
->flags
& flag
)) {
1782 group
= find_idlest_group(sd
, t
, cpu
);
1788 new_cpu
= find_idlest_cpu(group
, t
, cpu
);
1789 if (new_cpu
== -1 || new_cpu
== cpu
) {
1790 /* Now try balancing at a lower domain level of cpu */
1795 /* Now try balancing at a lower domain level of new_cpu */
1798 weight
= cpus_weight(span
);
1799 for_each_domain(cpu
, tmp
) {
1800 if (weight
<= cpus_weight(tmp
->span
))
1802 if (tmp
->flags
& flag
)
1805 /* while loop will break here if sd == NULL */
1811 #endif /* CONFIG_SMP */
1814 * try_to_wake_up - wake up a thread
1815 * @p: the to-be-woken-up thread
1816 * @state: the mask of task states that can be woken
1817 * @sync: do a synchronous wakeup?
1819 * Put it on the run-queue if it's not already there. The "current"
1820 * thread is always on the run-queue (except when the actual
1821 * re-schedule is in progress), and as such you're allowed to do
1822 * the simpler "current->state = TASK_RUNNING" to mark yourself
1823 * runnable without the overhead of this.
1825 * returns failure only if the task is already active.
1827 static int try_to_wake_up(struct task_struct
*p
, unsigned int state
, int sync
)
1829 int cpu
, orig_cpu
, this_cpu
, success
= 0;
1830 unsigned long flags
;
1834 rq
= task_rq_lock(p
, &flags
);
1835 old_state
= p
->state
;
1836 if (!(old_state
& state
))
1844 this_cpu
= smp_processor_id();
1847 if (unlikely(task_running(rq
, p
)))
1850 cpu
= p
->sched_class
->select_task_rq(p
, sync
);
1851 if (cpu
!= orig_cpu
) {
1852 set_task_cpu(p
, cpu
);
1853 task_rq_unlock(rq
, &flags
);
1854 /* might preempt at this point */
1855 rq
= task_rq_lock(p
, &flags
);
1856 old_state
= p
->state
;
1857 if (!(old_state
& state
))
1862 this_cpu
= smp_processor_id();
1866 #ifdef CONFIG_SCHEDSTATS
1867 schedstat_inc(rq
, ttwu_count
);
1868 if (cpu
== this_cpu
)
1869 schedstat_inc(rq
, ttwu_local
);
1871 struct sched_domain
*sd
;
1872 for_each_domain(this_cpu
, sd
) {
1873 if (cpu_isset(cpu
, sd
->span
)) {
1874 schedstat_inc(sd
, ttwu_wake_remote
);
1882 #endif /* CONFIG_SMP */
1883 schedstat_inc(p
, se
.nr_wakeups
);
1885 schedstat_inc(p
, se
.nr_wakeups_sync
);
1886 if (orig_cpu
!= cpu
)
1887 schedstat_inc(p
, se
.nr_wakeups_migrate
);
1888 if (cpu
== this_cpu
)
1889 schedstat_inc(p
, se
.nr_wakeups_local
);
1891 schedstat_inc(p
, se
.nr_wakeups_remote
);
1892 update_rq_clock(rq
);
1893 activate_task(rq
, p
, 1);
1894 check_preempt_curr(rq
, p
);
1898 p
->state
= TASK_RUNNING
;
1900 if (p
->sched_class
->task_wake_up
)
1901 p
->sched_class
->task_wake_up(rq
, p
);
1904 task_rq_unlock(rq
, &flags
);
1909 int wake_up_process(struct task_struct
*p
)
1911 return try_to_wake_up(p
, TASK_ALL
, 0);
1913 EXPORT_SYMBOL(wake_up_process
);
1915 int wake_up_state(struct task_struct
*p
, unsigned int state
)
1917 return try_to_wake_up(p
, state
, 0);
1921 * Perform scheduler related setup for a newly forked process p.
1922 * p is forked by current.
1924 * __sched_fork() is basic setup used by init_idle() too:
1926 static void __sched_fork(struct task_struct
*p
)
1928 p
->se
.exec_start
= 0;
1929 p
->se
.sum_exec_runtime
= 0;
1930 p
->se
.prev_sum_exec_runtime
= 0;
1932 #ifdef CONFIG_SCHEDSTATS
1933 p
->se
.wait_start
= 0;
1934 p
->se
.sum_sleep_runtime
= 0;
1935 p
->se
.sleep_start
= 0;
1936 p
->se
.block_start
= 0;
1937 p
->se
.sleep_max
= 0;
1938 p
->se
.block_max
= 0;
1940 p
->se
.slice_max
= 0;
1944 INIT_LIST_HEAD(&p
->rt
.run_list
);
1947 #ifdef CONFIG_PREEMPT_NOTIFIERS
1948 INIT_HLIST_HEAD(&p
->preempt_notifiers
);
1952 * We mark the process as running here, but have not actually
1953 * inserted it onto the runqueue yet. This guarantees that
1954 * nobody will actually run it, and a signal or other external
1955 * event cannot wake it up and insert it on the runqueue either.
1957 p
->state
= TASK_RUNNING
;
1961 * fork()/clone()-time setup:
1963 void sched_fork(struct task_struct
*p
, int clone_flags
)
1965 int cpu
= get_cpu();
1970 cpu
= sched_balance_self(cpu
, SD_BALANCE_FORK
);
1972 set_task_cpu(p
, cpu
);
1975 * Make sure we do not leak PI boosting priority to the child:
1977 p
->prio
= current
->normal_prio
;
1978 if (!rt_prio(p
->prio
))
1979 p
->sched_class
= &fair_sched_class
;
1981 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1982 if (likely(sched_info_on()))
1983 memset(&p
->sched_info
, 0, sizeof(p
->sched_info
));
1985 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1988 #ifdef CONFIG_PREEMPT
1989 /* Want to start with kernel preemption disabled. */
1990 task_thread_info(p
)->preempt_count
= 1;
1996 * wake_up_new_task - wake up a newly created task for the first time.
1998 * This function will do some initial scheduler statistics housekeeping
1999 * that must be done for every newly created context, then puts the task
2000 * on the runqueue and wakes it.
2002 void wake_up_new_task(struct task_struct
*p
, unsigned long clone_flags
)
2004 unsigned long flags
;
2007 rq
= task_rq_lock(p
, &flags
);
2008 BUG_ON(p
->state
!= TASK_RUNNING
);
2009 update_rq_clock(rq
);
2011 p
->prio
= effective_prio(p
);
2013 if (!p
->sched_class
->task_new
|| !current
->se
.on_rq
) {
2014 activate_task(rq
, p
, 0);
2017 * Let the scheduling class do new task startup
2018 * management (if any):
2020 p
->sched_class
->task_new(rq
, p
);
2023 check_preempt_curr(rq
, p
);
2025 if (p
->sched_class
->task_wake_up
)
2026 p
->sched_class
->task_wake_up(rq
, p
);
2028 task_rq_unlock(rq
, &flags
);
2031 #ifdef CONFIG_PREEMPT_NOTIFIERS
2034 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2035 * @notifier: notifier struct to register
2037 void preempt_notifier_register(struct preempt_notifier
*notifier
)
2039 hlist_add_head(¬ifier
->link
, ¤t
->preempt_notifiers
);
2041 EXPORT_SYMBOL_GPL(preempt_notifier_register
);
2044 * preempt_notifier_unregister - no longer interested in preemption notifications
2045 * @notifier: notifier struct to unregister
2047 * This is safe to call from within a preemption notifier.
2049 void preempt_notifier_unregister(struct preempt_notifier
*notifier
)
2051 hlist_del(¬ifier
->link
);
2053 EXPORT_SYMBOL_GPL(preempt_notifier_unregister
);
2055 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
2057 struct preempt_notifier
*notifier
;
2058 struct hlist_node
*node
;
2060 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
2061 notifier
->ops
->sched_in(notifier
, raw_smp_processor_id());
2065 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
2066 struct task_struct
*next
)
2068 struct preempt_notifier
*notifier
;
2069 struct hlist_node
*node
;
2071 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
2072 notifier
->ops
->sched_out(notifier
, next
);
2077 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
2082 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
2083 struct task_struct
*next
)
2090 * prepare_task_switch - prepare to switch tasks
2091 * @rq: the runqueue preparing to switch
2092 * @prev: the current task that is being switched out
2093 * @next: the task we are going to switch to.
2095 * This is called with the rq lock held and interrupts off. It must
2096 * be paired with a subsequent finish_task_switch after the context
2099 * prepare_task_switch sets up locking and calls architecture specific
2103 prepare_task_switch(struct rq
*rq
, struct task_struct
*prev
,
2104 struct task_struct
*next
)
2106 fire_sched_out_preempt_notifiers(prev
, next
);
2107 prepare_lock_switch(rq
, next
);
2108 prepare_arch_switch(next
);
2112 * finish_task_switch - clean up after a task-switch
2113 * @rq: runqueue associated with task-switch
2114 * @prev: the thread we just switched away from.
2116 * finish_task_switch must be called after the context switch, paired
2117 * with a prepare_task_switch call before the context switch.
2118 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2119 * and do any other architecture-specific cleanup actions.
2121 * Note that we may have delayed dropping an mm in context_switch(). If
2122 * so, we finish that here outside of the runqueue lock. (Doing it
2123 * with the lock held can cause deadlocks; see schedule() for
2126 static void finish_task_switch(struct rq
*rq
, struct task_struct
*prev
)
2127 __releases(rq
->lock
)
2129 struct mm_struct
*mm
= rq
->prev_mm
;
2135 * A task struct has one reference for the use as "current".
2136 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2137 * schedule one last time. The schedule call will never return, and
2138 * the scheduled task must drop that reference.
2139 * The test for TASK_DEAD must occur while the runqueue locks are
2140 * still held, otherwise prev could be scheduled on another cpu, die
2141 * there before we look at prev->state, and then the reference would
2143 * Manfred Spraul <manfred@colorfullife.com>
2145 prev_state
= prev
->state
;
2146 finish_arch_switch(prev
);
2147 finish_lock_switch(rq
, prev
);
2149 if (current
->sched_class
->post_schedule
)
2150 current
->sched_class
->post_schedule(rq
);
2153 fire_sched_in_preempt_notifiers(current
);
2156 if (unlikely(prev_state
== TASK_DEAD
)) {
2158 * Remove function-return probe instances associated with this
2159 * task and put them back on the free list.
2161 kprobe_flush_task(prev
);
2162 put_task_struct(prev
);
2167 * schedule_tail - first thing a freshly forked thread must call.
2168 * @prev: the thread we just switched away from.
2170 asmlinkage
void schedule_tail(struct task_struct
*prev
)
2171 __releases(rq
->lock
)
2173 struct rq
*rq
= this_rq();
2175 finish_task_switch(rq
, prev
);
2176 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2177 /* In this case, finish_task_switch does not reenable preemption */
2180 if (current
->set_child_tid
)
2181 put_user(task_pid_vnr(current
), current
->set_child_tid
);
2185 * context_switch - switch to the new MM and the new
2186 * thread's register state.
2189 context_switch(struct rq
*rq
, struct task_struct
*prev
,
2190 struct task_struct
*next
)
2192 struct mm_struct
*mm
, *oldmm
;
2194 prepare_task_switch(rq
, prev
, next
);
2196 oldmm
= prev
->active_mm
;
2198 * For paravirt, this is coupled with an exit in switch_to to
2199 * combine the page table reload and the switch backend into
2202 arch_enter_lazy_cpu_mode();
2204 if (unlikely(!mm
)) {
2205 next
->active_mm
= oldmm
;
2206 atomic_inc(&oldmm
->mm_count
);
2207 enter_lazy_tlb(oldmm
, next
);
2209 switch_mm(oldmm
, mm
, next
);
2211 if (unlikely(!prev
->mm
)) {
2212 prev
->active_mm
= NULL
;
2213 rq
->prev_mm
= oldmm
;
2216 * Since the runqueue lock will be released by the next
2217 * task (which is an invalid locking op but in the case
2218 * of the scheduler it's an obvious special-case), so we
2219 * do an early lockdep release here:
2221 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2222 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
2225 /* Here we just switch the register state and the stack. */
2226 switch_to(prev
, next
, prev
);
2230 * this_rq must be evaluated again because prev may have moved
2231 * CPUs since it called schedule(), thus the 'rq' on its stack
2232 * frame will be invalid.
2234 finish_task_switch(this_rq(), prev
);
2238 * nr_running, nr_uninterruptible and nr_context_switches:
2240 * externally visible scheduler statistics: current number of runnable
2241 * threads, current number of uninterruptible-sleeping threads, total
2242 * number of context switches performed since bootup.
2244 unsigned long nr_running(void)
2246 unsigned long i
, sum
= 0;
2248 for_each_online_cpu(i
)
2249 sum
+= cpu_rq(i
)->nr_running
;
2254 unsigned long nr_uninterruptible(void)
2256 unsigned long i
, sum
= 0;
2258 for_each_possible_cpu(i
)
2259 sum
+= cpu_rq(i
)->nr_uninterruptible
;
2262 * Since we read the counters lockless, it might be slightly
2263 * inaccurate. Do not allow it to go below zero though:
2265 if (unlikely((long)sum
< 0))
2271 unsigned long long nr_context_switches(void)
2274 unsigned long long sum
= 0;
2276 for_each_possible_cpu(i
)
2277 sum
+= cpu_rq(i
)->nr_switches
;
2282 unsigned long nr_iowait(void)
2284 unsigned long i
, sum
= 0;
2286 for_each_possible_cpu(i
)
2287 sum
+= atomic_read(&cpu_rq(i
)->nr_iowait
);
2292 unsigned long nr_active(void)
2294 unsigned long i
, running
= 0, uninterruptible
= 0;
2296 for_each_online_cpu(i
) {
2297 running
+= cpu_rq(i
)->nr_running
;
2298 uninterruptible
+= cpu_rq(i
)->nr_uninterruptible
;
2301 if (unlikely((long)uninterruptible
< 0))
2302 uninterruptible
= 0;
2304 return running
+ uninterruptible
;
2308 * Update rq->cpu_load[] statistics. This function is usually called every
2309 * scheduler tick (TICK_NSEC).
2311 static void update_cpu_load(struct rq
*this_rq
)
2313 unsigned long this_load
= this_rq
->load
.weight
;
2316 this_rq
->nr_load_updates
++;
2318 /* Update our load: */
2319 for (i
= 0, scale
= 1; i
< CPU_LOAD_IDX_MAX
; i
++, scale
+= scale
) {
2320 unsigned long old_load
, new_load
;
2322 /* scale is effectively 1 << i now, and >> i divides by scale */
2324 old_load
= this_rq
->cpu_load
[i
];
2325 new_load
= this_load
;
2327 * Round up the averaging division if load is increasing. This
2328 * prevents us from getting stuck on 9 if the load is 10, for
2331 if (new_load
> old_load
)
2332 new_load
+= scale
-1;
2333 this_rq
->cpu_load
[i
] = (old_load
*(scale
-1) + new_load
) >> i
;
2340 * double_rq_lock - safely lock two runqueues
2342 * Note this does not disable interrupts like task_rq_lock,
2343 * you need to do so manually before calling.
2345 static void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
)
2346 __acquires(rq1
->lock
)
2347 __acquires(rq2
->lock
)
2349 BUG_ON(!irqs_disabled());
2351 spin_lock(&rq1
->lock
);
2352 __acquire(rq2
->lock
); /* Fake it out ;) */
2355 spin_lock(&rq1
->lock
);
2356 spin_lock(&rq2
->lock
);
2358 spin_lock(&rq2
->lock
);
2359 spin_lock(&rq1
->lock
);
2362 update_rq_clock(rq1
);
2363 update_rq_clock(rq2
);
2367 * double_rq_unlock - safely unlock two runqueues
2369 * Note this does not restore interrupts like task_rq_unlock,
2370 * you need to do so manually after calling.
2372 static void double_rq_unlock(struct rq
*rq1
, struct rq
*rq2
)
2373 __releases(rq1
->lock
)
2374 __releases(rq2
->lock
)
2376 spin_unlock(&rq1
->lock
);
2378 spin_unlock(&rq2
->lock
);
2380 __release(rq2
->lock
);
2384 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2386 static int double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
2387 __releases(this_rq
->lock
)
2388 __acquires(busiest
->lock
)
2389 __acquires(this_rq
->lock
)
2393 if (unlikely(!irqs_disabled())) {
2394 /* printk() doesn't work good under rq->lock */
2395 spin_unlock(&this_rq
->lock
);
2398 if (unlikely(!spin_trylock(&busiest
->lock
))) {
2399 if (busiest
< this_rq
) {
2400 spin_unlock(&this_rq
->lock
);
2401 spin_lock(&busiest
->lock
);
2402 spin_lock(&this_rq
->lock
);
2405 spin_lock(&busiest
->lock
);
2411 * If dest_cpu is allowed for this process, migrate the task to it.
2412 * This is accomplished by forcing the cpu_allowed mask to only
2413 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2414 * the cpu_allowed mask is restored.
2416 static void sched_migrate_task(struct task_struct
*p
, int dest_cpu
)
2418 struct migration_req req
;
2419 unsigned long flags
;
2422 rq
= task_rq_lock(p
, &flags
);
2423 if (!cpu_isset(dest_cpu
, p
->cpus_allowed
)
2424 || unlikely(cpu_is_offline(dest_cpu
)))
2427 /* force the process onto the specified CPU */
2428 if (migrate_task(p
, dest_cpu
, &req
)) {
2429 /* Need to wait for migration thread (might exit: take ref). */
2430 struct task_struct
*mt
= rq
->migration_thread
;
2432 get_task_struct(mt
);
2433 task_rq_unlock(rq
, &flags
);
2434 wake_up_process(mt
);
2435 put_task_struct(mt
);
2436 wait_for_completion(&req
.done
);
2441 task_rq_unlock(rq
, &flags
);
2445 * sched_exec - execve() is a valuable balancing opportunity, because at
2446 * this point the task has the smallest effective memory and cache footprint.
2448 void sched_exec(void)
2450 int new_cpu
, this_cpu
= get_cpu();
2451 new_cpu
= sched_balance_self(this_cpu
, SD_BALANCE_EXEC
);
2453 if (new_cpu
!= this_cpu
)
2454 sched_migrate_task(current
, new_cpu
);
2458 * pull_task - move a task from a remote runqueue to the local runqueue.
2459 * Both runqueues must be locked.
2461 static void pull_task(struct rq
*src_rq
, struct task_struct
*p
,
2462 struct rq
*this_rq
, int this_cpu
)
2464 deactivate_task(src_rq
, p
, 0);
2465 set_task_cpu(p
, this_cpu
);
2466 activate_task(this_rq
, p
, 0);
2468 * Note that idle threads have a prio of MAX_PRIO, for this test
2469 * to be always true for them.
2471 check_preempt_curr(this_rq
, p
);
2475 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2478 int can_migrate_task(struct task_struct
*p
, struct rq
*rq
, int this_cpu
,
2479 struct sched_domain
*sd
, enum cpu_idle_type idle
,
2483 * We do not migrate tasks that are:
2484 * 1) running (obviously), or
2485 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2486 * 3) are cache-hot on their current CPU.
2488 if (!cpu_isset(this_cpu
, p
->cpus_allowed
)) {
2489 schedstat_inc(p
, se
.nr_failed_migrations_affine
);
2494 if (task_running(rq
, p
)) {
2495 schedstat_inc(p
, se
.nr_failed_migrations_running
);
2500 * Aggressive migration if:
2501 * 1) task is cache cold, or
2502 * 2) too many balance attempts have failed.
2505 if (!task_hot(p
, rq
->clock
, sd
) ||
2506 sd
->nr_balance_failed
> sd
->cache_nice_tries
) {
2507 #ifdef CONFIG_SCHEDSTATS
2508 if (task_hot(p
, rq
->clock
, sd
)) {
2509 schedstat_inc(sd
, lb_hot_gained
[idle
]);
2510 schedstat_inc(p
, se
.nr_forced_migrations
);
2516 if (task_hot(p
, rq
->clock
, sd
)) {
2517 schedstat_inc(p
, se
.nr_failed_migrations_hot
);
2523 static unsigned long
2524 balance_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
2525 unsigned long max_load_move
, struct sched_domain
*sd
,
2526 enum cpu_idle_type idle
, int *all_pinned
,
2527 int *this_best_prio
, struct rq_iterator
*iterator
)
2529 int loops
= 0, pulled
= 0, pinned
= 0, skip_for_load
;
2530 struct task_struct
*p
;
2531 long rem_load_move
= max_load_move
;
2533 if (max_load_move
== 0)
2539 * Start the load-balancing iterator:
2541 p
= iterator
->start(iterator
->arg
);
2543 if (!p
|| loops
++ > sysctl_sched_nr_migrate
)
2546 * To help distribute high priority tasks across CPUs we don't
2547 * skip a task if it will be the highest priority task (i.e. smallest
2548 * prio value) on its new queue regardless of its load weight
2550 skip_for_load
= (p
->se
.load
.weight
>> 1) > rem_load_move
+
2551 SCHED_LOAD_SCALE_FUZZ
;
2552 if ((skip_for_load
&& p
->prio
>= *this_best_prio
) ||
2553 !can_migrate_task(p
, busiest
, this_cpu
, sd
, idle
, &pinned
)) {
2554 p
= iterator
->next(iterator
->arg
);
2558 pull_task(busiest
, p
, this_rq
, this_cpu
);
2560 rem_load_move
-= p
->se
.load
.weight
;
2563 * We only want to steal up to the prescribed amount of weighted load.
2565 if (rem_load_move
> 0) {
2566 if (p
->prio
< *this_best_prio
)
2567 *this_best_prio
= p
->prio
;
2568 p
= iterator
->next(iterator
->arg
);
2573 * Right now, this is one of only two places pull_task() is called,
2574 * so we can safely collect pull_task() stats here rather than
2575 * inside pull_task().
2577 schedstat_add(sd
, lb_gained
[idle
], pulled
);
2580 *all_pinned
= pinned
;
2582 return max_load_move
- rem_load_move
;
2586 * move_tasks tries to move up to max_load_move weighted load from busiest to
2587 * this_rq, as part of a balancing operation within domain "sd".
2588 * Returns 1 if successful and 0 otherwise.
2590 * Called with both runqueues locked.
2592 static int move_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
2593 unsigned long max_load_move
,
2594 struct sched_domain
*sd
, enum cpu_idle_type idle
,
2597 const struct sched_class
*class = sched_class_highest
;
2598 unsigned long total_load_moved
= 0;
2599 int this_best_prio
= this_rq
->curr
->prio
;
2603 class->load_balance(this_rq
, this_cpu
, busiest
,
2604 max_load_move
- total_load_moved
,
2605 sd
, idle
, all_pinned
, &this_best_prio
);
2606 class = class->next
;
2607 } while (class && max_load_move
> total_load_moved
);
2609 return total_load_moved
> 0;
2613 iter_move_one_task(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
2614 struct sched_domain
*sd
, enum cpu_idle_type idle
,
2615 struct rq_iterator
*iterator
)
2617 struct task_struct
*p
= iterator
->start(iterator
->arg
);
2621 if (can_migrate_task(p
, busiest
, this_cpu
, sd
, idle
, &pinned
)) {
2622 pull_task(busiest
, p
, this_rq
, this_cpu
);
2624 * Right now, this is only the second place pull_task()
2625 * is called, so we can safely collect pull_task()
2626 * stats here rather than inside pull_task().
2628 schedstat_inc(sd
, lb_gained
[idle
]);
2632 p
= iterator
->next(iterator
->arg
);
2639 * move_one_task tries to move exactly one task from busiest to this_rq, as
2640 * part of active balancing operations within "domain".
2641 * Returns 1 if successful and 0 otherwise.
2643 * Called with both runqueues locked.
2645 static int move_one_task(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
2646 struct sched_domain
*sd
, enum cpu_idle_type idle
)
2648 const struct sched_class
*class;
2650 for (class = sched_class_highest
; class; class = class->next
)
2651 if (class->move_one_task(this_rq
, this_cpu
, busiest
, sd
, idle
))
2658 * find_busiest_group finds and returns the busiest CPU group within the
2659 * domain. It calculates and returns the amount of weighted load which
2660 * should be moved to restore balance via the imbalance parameter.
2662 static struct sched_group
*
2663 find_busiest_group(struct sched_domain
*sd
, int this_cpu
,
2664 unsigned long *imbalance
, enum cpu_idle_type idle
,
2665 int *sd_idle
, cpumask_t
*cpus
, int *balance
)
2667 struct sched_group
*busiest
= NULL
, *this = NULL
, *group
= sd
->groups
;
2668 unsigned long max_load
, avg_load
, total_load
, this_load
, total_pwr
;
2669 unsigned long max_pull
;
2670 unsigned long busiest_load_per_task
, busiest_nr_running
;
2671 unsigned long this_load_per_task
, this_nr_running
;
2672 int load_idx
, group_imb
= 0;
2673 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2674 int power_savings_balance
= 1;
2675 unsigned long leader_nr_running
= 0, min_load_per_task
= 0;
2676 unsigned long min_nr_running
= ULONG_MAX
;
2677 struct sched_group
*group_min
= NULL
, *group_leader
= NULL
;
2680 max_load
= this_load
= total_load
= total_pwr
= 0;
2681 busiest_load_per_task
= busiest_nr_running
= 0;
2682 this_load_per_task
= this_nr_running
= 0;
2683 if (idle
== CPU_NOT_IDLE
)
2684 load_idx
= sd
->busy_idx
;
2685 else if (idle
== CPU_NEWLY_IDLE
)
2686 load_idx
= sd
->newidle_idx
;
2688 load_idx
= sd
->idle_idx
;
2691 unsigned long load
, group_capacity
, max_cpu_load
, min_cpu_load
;
2694 int __group_imb
= 0;
2695 unsigned int balance_cpu
= -1, first_idle_cpu
= 0;
2696 unsigned long sum_nr_running
, sum_weighted_load
;
2698 local_group
= cpu_isset(this_cpu
, group
->cpumask
);
2701 balance_cpu
= first_cpu(group
->cpumask
);
2703 /* Tally up the load of all CPUs in the group */
2704 sum_weighted_load
= sum_nr_running
= avg_load
= 0;
2706 min_cpu_load
= ~0UL;
2708 for_each_cpu_mask(i
, group
->cpumask
) {
2711 if (!cpu_isset(i
, *cpus
))
2716 if (*sd_idle
&& rq
->nr_running
)
2719 /* Bias balancing toward cpus of our domain */
2721 if (idle_cpu(i
) && !first_idle_cpu
) {
2726 load
= target_load(i
, load_idx
);
2728 load
= source_load(i
, load_idx
);
2729 if (load
> max_cpu_load
)
2730 max_cpu_load
= load
;
2731 if (min_cpu_load
> load
)
2732 min_cpu_load
= load
;
2736 sum_nr_running
+= rq
->nr_running
;
2737 sum_weighted_load
+= weighted_cpuload(i
);
2741 * First idle cpu or the first cpu(busiest) in this sched group
2742 * is eligible for doing load balancing at this and above
2743 * domains. In the newly idle case, we will allow all the cpu's
2744 * to do the newly idle load balance.
2746 if (idle
!= CPU_NEWLY_IDLE
&& local_group
&&
2747 balance_cpu
!= this_cpu
&& balance
) {
2752 total_load
+= avg_load
;
2753 total_pwr
+= group
->__cpu_power
;
2755 /* Adjust by relative CPU power of the group */
2756 avg_load
= sg_div_cpu_power(group
,
2757 avg_load
* SCHED_LOAD_SCALE
);
2759 if ((max_cpu_load
- min_cpu_load
) > SCHED_LOAD_SCALE
)
2762 group_capacity
= group
->__cpu_power
/ SCHED_LOAD_SCALE
;
2765 this_load
= avg_load
;
2767 this_nr_running
= sum_nr_running
;
2768 this_load_per_task
= sum_weighted_load
;
2769 } else if (avg_load
> max_load
&&
2770 (sum_nr_running
> group_capacity
|| __group_imb
)) {
2771 max_load
= avg_load
;
2773 busiest_nr_running
= sum_nr_running
;
2774 busiest_load_per_task
= sum_weighted_load
;
2775 group_imb
= __group_imb
;
2778 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2780 * Busy processors will not participate in power savings
2783 if (idle
== CPU_NOT_IDLE
||
2784 !(sd
->flags
& SD_POWERSAVINGS_BALANCE
))
2788 * If the local group is idle or completely loaded
2789 * no need to do power savings balance at this domain
2791 if (local_group
&& (this_nr_running
>= group_capacity
||
2793 power_savings_balance
= 0;
2796 * If a group is already running at full capacity or idle,
2797 * don't include that group in power savings calculations
2799 if (!power_savings_balance
|| sum_nr_running
>= group_capacity
2804 * Calculate the group which has the least non-idle load.
2805 * This is the group from where we need to pick up the load
2808 if ((sum_nr_running
< min_nr_running
) ||
2809 (sum_nr_running
== min_nr_running
&&
2810 first_cpu(group
->cpumask
) <
2811 first_cpu(group_min
->cpumask
))) {
2813 min_nr_running
= sum_nr_running
;
2814 min_load_per_task
= sum_weighted_load
/
2819 * Calculate the group which is almost near its
2820 * capacity but still has some space to pick up some load
2821 * from other group and save more power
2823 if (sum_nr_running
<= group_capacity
- 1) {
2824 if (sum_nr_running
> leader_nr_running
||
2825 (sum_nr_running
== leader_nr_running
&&
2826 first_cpu(group
->cpumask
) >
2827 first_cpu(group_leader
->cpumask
))) {
2828 group_leader
= group
;
2829 leader_nr_running
= sum_nr_running
;
2834 group
= group
->next
;
2835 } while (group
!= sd
->groups
);
2837 if (!busiest
|| this_load
>= max_load
|| busiest_nr_running
== 0)
2840 avg_load
= (SCHED_LOAD_SCALE
* total_load
) / total_pwr
;
2842 if (this_load
>= avg_load
||
2843 100*max_load
<= sd
->imbalance_pct
*this_load
)
2846 busiest_load_per_task
/= busiest_nr_running
;
2848 busiest_load_per_task
= min(busiest_load_per_task
, avg_load
);
2851 * We're trying to get all the cpus to the average_load, so we don't
2852 * want to push ourselves above the average load, nor do we wish to
2853 * reduce the max loaded cpu below the average load, as either of these
2854 * actions would just result in more rebalancing later, and ping-pong
2855 * tasks around. Thus we look for the minimum possible imbalance.
2856 * Negative imbalances (*we* are more loaded than anyone else) will
2857 * be counted as no imbalance for these purposes -- we can't fix that
2858 * by pulling tasks to us. Be careful of negative numbers as they'll
2859 * appear as very large values with unsigned longs.
2861 if (max_load
<= busiest_load_per_task
)
2865 * In the presence of smp nice balancing, certain scenarios can have
2866 * max load less than avg load(as we skip the groups at or below
2867 * its cpu_power, while calculating max_load..)
2869 if (max_load
< avg_load
) {
2871 goto small_imbalance
;
2874 /* Don't want to pull so many tasks that a group would go idle */
2875 max_pull
= min(max_load
- avg_load
, max_load
- busiest_load_per_task
);
2877 /* How much load to actually move to equalise the imbalance */
2878 *imbalance
= min(max_pull
* busiest
->__cpu_power
,
2879 (avg_load
- this_load
) * this->__cpu_power
)
2883 * if *imbalance is less than the average load per runnable task
2884 * there is no gaurantee that any tasks will be moved so we'll have
2885 * a think about bumping its value to force at least one task to be
2888 if (*imbalance
< busiest_load_per_task
) {
2889 unsigned long tmp
, pwr_now
, pwr_move
;
2893 pwr_move
= pwr_now
= 0;
2895 if (this_nr_running
) {
2896 this_load_per_task
/= this_nr_running
;
2897 if (busiest_load_per_task
> this_load_per_task
)
2900 this_load_per_task
= SCHED_LOAD_SCALE
;
2902 if (max_load
- this_load
+ SCHED_LOAD_SCALE_FUZZ
>=
2903 busiest_load_per_task
* imbn
) {
2904 *imbalance
= busiest_load_per_task
;
2909 * OK, we don't have enough imbalance to justify moving tasks,
2910 * however we may be able to increase total CPU power used by
2914 pwr_now
+= busiest
->__cpu_power
*
2915 min(busiest_load_per_task
, max_load
);
2916 pwr_now
+= this->__cpu_power
*
2917 min(this_load_per_task
, this_load
);
2918 pwr_now
/= SCHED_LOAD_SCALE
;
2920 /* Amount of load we'd subtract */
2921 tmp
= sg_div_cpu_power(busiest
,
2922 busiest_load_per_task
* SCHED_LOAD_SCALE
);
2924 pwr_move
+= busiest
->__cpu_power
*
2925 min(busiest_load_per_task
, max_load
- tmp
);
2927 /* Amount of load we'd add */
2928 if (max_load
* busiest
->__cpu_power
<
2929 busiest_load_per_task
* SCHED_LOAD_SCALE
)
2930 tmp
= sg_div_cpu_power(this,
2931 max_load
* busiest
->__cpu_power
);
2933 tmp
= sg_div_cpu_power(this,
2934 busiest_load_per_task
* SCHED_LOAD_SCALE
);
2935 pwr_move
+= this->__cpu_power
*
2936 min(this_load_per_task
, this_load
+ tmp
);
2937 pwr_move
/= SCHED_LOAD_SCALE
;
2939 /* Move if we gain throughput */
2940 if (pwr_move
> pwr_now
)
2941 *imbalance
= busiest_load_per_task
;
2947 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2948 if (idle
== CPU_NOT_IDLE
|| !(sd
->flags
& SD_POWERSAVINGS_BALANCE
))
2951 if (this == group_leader
&& group_leader
!= group_min
) {
2952 *imbalance
= min_load_per_task
;
2962 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2965 find_busiest_queue(struct sched_group
*group
, enum cpu_idle_type idle
,
2966 unsigned long imbalance
, cpumask_t
*cpus
)
2968 struct rq
*busiest
= NULL
, *rq
;
2969 unsigned long max_load
= 0;
2972 for_each_cpu_mask(i
, group
->cpumask
) {
2975 if (!cpu_isset(i
, *cpus
))
2979 wl
= weighted_cpuload(i
);
2981 if (rq
->nr_running
== 1 && wl
> imbalance
)
2984 if (wl
> max_load
) {
2994 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2995 * so long as it is large enough.
2997 #define MAX_PINNED_INTERVAL 512
3000 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3001 * tasks if there is an imbalance.
3003 static int load_balance(int this_cpu
, struct rq
*this_rq
,
3004 struct sched_domain
*sd
, enum cpu_idle_type idle
,
3007 int ld_moved
, all_pinned
= 0, active_balance
= 0, sd_idle
= 0;
3008 struct sched_group
*group
;
3009 unsigned long imbalance
;
3011 cpumask_t cpus
= CPU_MASK_ALL
;
3012 unsigned long flags
;
3015 * When power savings policy is enabled for the parent domain, idle
3016 * sibling can pick up load irrespective of busy siblings. In this case,
3017 * let the state of idle sibling percolate up as CPU_IDLE, instead of
3018 * portraying it as CPU_NOT_IDLE.
3020 if (idle
!= CPU_NOT_IDLE
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
3021 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3024 schedstat_inc(sd
, lb_count
[idle
]);
3027 group
= find_busiest_group(sd
, this_cpu
, &imbalance
, idle
, &sd_idle
,
3034 schedstat_inc(sd
, lb_nobusyg
[idle
]);
3038 busiest
= find_busiest_queue(group
, idle
, imbalance
, &cpus
);
3040 schedstat_inc(sd
, lb_nobusyq
[idle
]);
3044 BUG_ON(busiest
== this_rq
);
3046 schedstat_add(sd
, lb_imbalance
[idle
], imbalance
);
3049 if (busiest
->nr_running
> 1) {
3051 * Attempt to move tasks. If find_busiest_group has found
3052 * an imbalance but busiest->nr_running <= 1, the group is
3053 * still unbalanced. ld_moved simply stays zero, so it is
3054 * correctly treated as an imbalance.
3056 local_irq_save(flags
);
3057 double_rq_lock(this_rq
, busiest
);
3058 ld_moved
= move_tasks(this_rq
, this_cpu
, busiest
,
3059 imbalance
, sd
, idle
, &all_pinned
);
3060 double_rq_unlock(this_rq
, busiest
);
3061 local_irq_restore(flags
);
3064 * some other cpu did the load balance for us.
3066 if (ld_moved
&& this_cpu
!= smp_processor_id())
3067 resched_cpu(this_cpu
);
3069 /* All tasks on this runqueue were pinned by CPU affinity */
3070 if (unlikely(all_pinned
)) {
3071 cpu_clear(cpu_of(busiest
), cpus
);
3072 if (!cpus_empty(cpus
))
3079 schedstat_inc(sd
, lb_failed
[idle
]);
3080 sd
->nr_balance_failed
++;
3082 if (unlikely(sd
->nr_balance_failed
> sd
->cache_nice_tries
+2)) {
3084 spin_lock_irqsave(&busiest
->lock
, flags
);
3086 /* don't kick the migration_thread, if the curr
3087 * task on busiest cpu can't be moved to this_cpu
3089 if (!cpu_isset(this_cpu
, busiest
->curr
->cpus_allowed
)) {
3090 spin_unlock_irqrestore(&busiest
->lock
, flags
);
3092 goto out_one_pinned
;
3095 if (!busiest
->active_balance
) {
3096 busiest
->active_balance
= 1;
3097 busiest
->push_cpu
= this_cpu
;
3100 spin_unlock_irqrestore(&busiest
->lock
, flags
);
3102 wake_up_process(busiest
->migration_thread
);
3105 * We've kicked active balancing, reset the failure
3108 sd
->nr_balance_failed
= sd
->cache_nice_tries
+1;
3111 sd
->nr_balance_failed
= 0;
3113 if (likely(!active_balance
)) {
3114 /* We were unbalanced, so reset the balancing interval */
3115 sd
->balance_interval
= sd
->min_interval
;
3118 * If we've begun active balancing, start to back off. This
3119 * case may not be covered by the all_pinned logic if there
3120 * is only 1 task on the busy runqueue (because we don't call
3123 if (sd
->balance_interval
< sd
->max_interval
)
3124 sd
->balance_interval
*= 2;
3127 if (!ld_moved
&& !sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
3128 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3133 schedstat_inc(sd
, lb_balanced
[idle
]);
3135 sd
->nr_balance_failed
= 0;
3138 /* tune up the balancing interval */
3139 if ((all_pinned
&& sd
->balance_interval
< MAX_PINNED_INTERVAL
) ||
3140 (sd
->balance_interval
< sd
->max_interval
))
3141 sd
->balance_interval
*= 2;
3143 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
3144 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3150 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3151 * tasks if there is an imbalance.
3153 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
3154 * this_rq is locked.
3157 load_balance_newidle(int this_cpu
, struct rq
*this_rq
, struct sched_domain
*sd
)
3159 struct sched_group
*group
;
3160 struct rq
*busiest
= NULL
;
3161 unsigned long imbalance
;
3165 cpumask_t cpus
= CPU_MASK_ALL
;
3168 * When power savings policy is enabled for the parent domain, idle
3169 * sibling can pick up load irrespective of busy siblings. In this case,
3170 * let the state of idle sibling percolate up as IDLE, instead of
3171 * portraying it as CPU_NOT_IDLE.
3173 if (sd
->flags
& SD_SHARE_CPUPOWER
&&
3174 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3177 schedstat_inc(sd
, lb_count
[CPU_NEWLY_IDLE
]);
3179 group
= find_busiest_group(sd
, this_cpu
, &imbalance
, CPU_NEWLY_IDLE
,
3180 &sd_idle
, &cpus
, NULL
);
3182 schedstat_inc(sd
, lb_nobusyg
[CPU_NEWLY_IDLE
]);
3186 busiest
= find_busiest_queue(group
, CPU_NEWLY_IDLE
, imbalance
,
3189 schedstat_inc(sd
, lb_nobusyq
[CPU_NEWLY_IDLE
]);
3193 BUG_ON(busiest
== this_rq
);
3195 schedstat_add(sd
, lb_imbalance
[CPU_NEWLY_IDLE
], imbalance
);
3198 if (busiest
->nr_running
> 1) {
3199 /* Attempt to move tasks */
3200 double_lock_balance(this_rq
, busiest
);
3201 /* this_rq->clock is already updated */
3202 update_rq_clock(busiest
);
3203 ld_moved
= move_tasks(this_rq
, this_cpu
, busiest
,
3204 imbalance
, sd
, CPU_NEWLY_IDLE
,
3206 spin_unlock(&busiest
->lock
);
3208 if (unlikely(all_pinned
)) {
3209 cpu_clear(cpu_of(busiest
), cpus
);
3210 if (!cpus_empty(cpus
))
3216 schedstat_inc(sd
, lb_failed
[CPU_NEWLY_IDLE
]);
3217 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
3218 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3221 sd
->nr_balance_failed
= 0;
3226 schedstat_inc(sd
, lb_balanced
[CPU_NEWLY_IDLE
]);
3227 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
3228 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3230 sd
->nr_balance_failed
= 0;
3236 * idle_balance is called by schedule() if this_cpu is about to become
3237 * idle. Attempts to pull tasks from other CPUs.
3239 static void idle_balance(int this_cpu
, struct rq
*this_rq
)
3241 struct sched_domain
*sd
;
3242 int pulled_task
= -1;
3243 unsigned long next_balance
= jiffies
+ HZ
;
3245 for_each_domain(this_cpu
, sd
) {
3246 unsigned long interval
;
3248 if (!(sd
->flags
& SD_LOAD_BALANCE
))
3251 if (sd
->flags
& SD_BALANCE_NEWIDLE
)
3252 /* If we've pulled tasks over stop searching: */
3253 pulled_task
= load_balance_newidle(this_cpu
,
3256 interval
= msecs_to_jiffies(sd
->balance_interval
);
3257 if (time_after(next_balance
, sd
->last_balance
+ interval
))
3258 next_balance
= sd
->last_balance
+ interval
;
3262 if (pulled_task
|| time_after(jiffies
, this_rq
->next_balance
)) {
3264 * We are going idle. next_balance may be set based on
3265 * a busy processor. So reset next_balance.
3267 this_rq
->next_balance
= next_balance
;
3272 * active_load_balance is run by migration threads. It pushes running tasks
3273 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3274 * running on each physical CPU where possible, and avoids physical /
3275 * logical imbalances.
3277 * Called with busiest_rq locked.
3279 static void active_load_balance(struct rq
*busiest_rq
, int busiest_cpu
)
3281 int target_cpu
= busiest_rq
->push_cpu
;
3282 struct sched_domain
*sd
;
3283 struct rq
*target_rq
;
3285 /* Is there any task to move? */
3286 if (busiest_rq
->nr_running
<= 1)
3289 target_rq
= cpu_rq(target_cpu
);
3292 * This condition is "impossible", if it occurs
3293 * we need to fix it. Originally reported by
3294 * Bjorn Helgaas on a 128-cpu setup.
3296 BUG_ON(busiest_rq
== target_rq
);
3298 /* move a task from busiest_rq to target_rq */
3299 double_lock_balance(busiest_rq
, target_rq
);
3300 update_rq_clock(busiest_rq
);
3301 update_rq_clock(target_rq
);
3303 /* Search for an sd spanning us and the target CPU. */
3304 for_each_domain(target_cpu
, sd
) {
3305 if ((sd
->flags
& SD_LOAD_BALANCE
) &&
3306 cpu_isset(busiest_cpu
, sd
->span
))
3311 schedstat_inc(sd
, alb_count
);
3313 if (move_one_task(target_rq
, target_cpu
, busiest_rq
,
3315 schedstat_inc(sd
, alb_pushed
);
3317 schedstat_inc(sd
, alb_failed
);
3319 spin_unlock(&target_rq
->lock
);
3324 atomic_t load_balancer
;
3326 } nohz ____cacheline_aligned
= {
3327 .load_balancer
= ATOMIC_INIT(-1),
3328 .cpu_mask
= CPU_MASK_NONE
,
3332 * This routine will try to nominate the ilb (idle load balancing)
3333 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3334 * load balancing on behalf of all those cpus. If all the cpus in the system
3335 * go into this tickless mode, then there will be no ilb owner (as there is
3336 * no need for one) and all the cpus will sleep till the next wakeup event
3339 * For the ilb owner, tick is not stopped. And this tick will be used
3340 * for idle load balancing. ilb owner will still be part of
3343 * While stopping the tick, this cpu will become the ilb owner if there
3344 * is no other owner. And will be the owner till that cpu becomes busy
3345 * or if all cpus in the system stop their ticks at which point
3346 * there is no need for ilb owner.
3348 * When the ilb owner becomes busy, it nominates another owner, during the
3349 * next busy scheduler_tick()
3351 int select_nohz_load_balancer(int stop_tick
)
3353 int cpu
= smp_processor_id();
3356 cpu_set(cpu
, nohz
.cpu_mask
);
3357 cpu_rq(cpu
)->in_nohz_recently
= 1;
3360 * If we are going offline and still the leader, give up!
3362 if (cpu_is_offline(cpu
) &&
3363 atomic_read(&nohz
.load_balancer
) == cpu
) {
3364 if (atomic_cmpxchg(&nohz
.load_balancer
, cpu
, -1) != cpu
)
3369 /* time for ilb owner also to sleep */
3370 if (cpus_weight(nohz
.cpu_mask
) == num_online_cpus()) {
3371 if (atomic_read(&nohz
.load_balancer
) == cpu
)
3372 atomic_set(&nohz
.load_balancer
, -1);
3376 if (atomic_read(&nohz
.load_balancer
) == -1) {
3377 /* make me the ilb owner */
3378 if (atomic_cmpxchg(&nohz
.load_balancer
, -1, cpu
) == -1)
3380 } else if (atomic_read(&nohz
.load_balancer
) == cpu
)
3383 if (!cpu_isset(cpu
, nohz
.cpu_mask
))
3386 cpu_clear(cpu
, nohz
.cpu_mask
);
3388 if (atomic_read(&nohz
.load_balancer
) == cpu
)
3389 if (atomic_cmpxchg(&nohz
.load_balancer
, cpu
, -1) != cpu
)
3396 static DEFINE_SPINLOCK(balancing
);
3399 * It checks each scheduling domain to see if it is due to be balanced,
3400 * and initiates a balancing operation if so.
3402 * Balancing parameters are set up in arch_init_sched_domains.
3404 static void rebalance_domains(int cpu
, enum cpu_idle_type idle
)
3407 struct rq
*rq
= cpu_rq(cpu
);
3408 unsigned long interval
;
3409 struct sched_domain
*sd
;
3410 /* Earliest time when we have to do rebalance again */
3411 unsigned long next_balance
= jiffies
+ 60*HZ
;
3412 int update_next_balance
= 0;
3414 for_each_domain(cpu
, sd
) {
3415 if (!(sd
->flags
& SD_LOAD_BALANCE
))
3418 interval
= sd
->balance_interval
;
3419 if (idle
!= CPU_IDLE
)
3420 interval
*= sd
->busy_factor
;
3422 /* scale ms to jiffies */
3423 interval
= msecs_to_jiffies(interval
);
3424 if (unlikely(!interval
))
3426 if (interval
> HZ
*NR_CPUS
/10)
3427 interval
= HZ
*NR_CPUS
/10;
3430 if (sd
->flags
& SD_SERIALIZE
) {
3431 if (!spin_trylock(&balancing
))
3435 if (time_after_eq(jiffies
, sd
->last_balance
+ interval
)) {
3436 if (load_balance(cpu
, rq
, sd
, idle
, &balance
)) {
3438 * We've pulled tasks over so either we're no
3439 * longer idle, or one of our SMT siblings is
3442 idle
= CPU_NOT_IDLE
;
3444 sd
->last_balance
= jiffies
;
3446 if (sd
->flags
& SD_SERIALIZE
)
3447 spin_unlock(&balancing
);
3449 if (time_after(next_balance
, sd
->last_balance
+ interval
)) {
3450 next_balance
= sd
->last_balance
+ interval
;
3451 update_next_balance
= 1;
3455 * Stop the load balance at this level. There is another
3456 * CPU in our sched group which is doing load balancing more
3464 * next_balance will be updated only when there is a need.
3465 * When the cpu is attached to null domain for ex, it will not be
3468 if (likely(update_next_balance
))
3469 rq
->next_balance
= next_balance
;
3473 * run_rebalance_domains is triggered when needed from the scheduler tick.
3474 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3475 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3477 static void run_rebalance_domains(struct softirq_action
*h
)
3479 int this_cpu
= smp_processor_id();
3480 struct rq
*this_rq
= cpu_rq(this_cpu
);
3481 enum cpu_idle_type idle
= this_rq
->idle_at_tick
?
3482 CPU_IDLE
: CPU_NOT_IDLE
;
3484 rebalance_domains(this_cpu
, idle
);
3488 * If this cpu is the owner for idle load balancing, then do the
3489 * balancing on behalf of the other idle cpus whose ticks are
3492 if (this_rq
->idle_at_tick
&&
3493 atomic_read(&nohz
.load_balancer
) == this_cpu
) {
3494 cpumask_t cpus
= nohz
.cpu_mask
;
3498 cpu_clear(this_cpu
, cpus
);
3499 for_each_cpu_mask(balance_cpu
, cpus
) {
3501 * If this cpu gets work to do, stop the load balancing
3502 * work being done for other cpus. Next load
3503 * balancing owner will pick it up.
3508 rebalance_domains(balance_cpu
, CPU_IDLE
);
3510 rq
= cpu_rq(balance_cpu
);
3511 if (time_after(this_rq
->next_balance
, rq
->next_balance
))
3512 this_rq
->next_balance
= rq
->next_balance
;
3519 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3521 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3522 * idle load balancing owner or decide to stop the periodic load balancing,
3523 * if the whole system is idle.
3525 static inline void trigger_load_balance(struct rq
*rq
, int cpu
)
3529 * If we were in the nohz mode recently and busy at the current
3530 * scheduler tick, then check if we need to nominate new idle
3533 if (rq
->in_nohz_recently
&& !rq
->idle_at_tick
) {
3534 rq
->in_nohz_recently
= 0;
3536 if (atomic_read(&nohz
.load_balancer
) == cpu
) {
3537 cpu_clear(cpu
, nohz
.cpu_mask
);
3538 atomic_set(&nohz
.load_balancer
, -1);
3541 if (atomic_read(&nohz
.load_balancer
) == -1) {
3543 * simple selection for now: Nominate the
3544 * first cpu in the nohz list to be the next
3547 * TBD: Traverse the sched domains and nominate
3548 * the nearest cpu in the nohz.cpu_mask.
3550 int ilb
= first_cpu(nohz
.cpu_mask
);
3558 * If this cpu is idle and doing idle load balancing for all the
3559 * cpus with ticks stopped, is it time for that to stop?
3561 if (rq
->idle_at_tick
&& atomic_read(&nohz
.load_balancer
) == cpu
&&
3562 cpus_weight(nohz
.cpu_mask
) == num_online_cpus()) {
3568 * If this cpu is idle and the idle load balancing is done by
3569 * someone else, then no need raise the SCHED_SOFTIRQ
3571 if (rq
->idle_at_tick
&& atomic_read(&nohz
.load_balancer
) != cpu
&&
3572 cpu_isset(cpu
, nohz
.cpu_mask
))
3575 if (time_after_eq(jiffies
, rq
->next_balance
))
3576 raise_softirq(SCHED_SOFTIRQ
);
3579 #else /* CONFIG_SMP */
3582 * on UP we do not need to balance between CPUs:
3584 static inline void idle_balance(int cpu
, struct rq
*rq
)
3590 DEFINE_PER_CPU(struct kernel_stat
, kstat
);
3592 EXPORT_PER_CPU_SYMBOL(kstat
);
3595 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3596 * that have not yet been banked in case the task is currently running.
3598 unsigned long long task_sched_runtime(struct task_struct
*p
)
3600 unsigned long flags
;
3604 rq
= task_rq_lock(p
, &flags
);
3605 ns
= p
->se
.sum_exec_runtime
;
3606 if (task_current(rq
, p
)) {
3607 update_rq_clock(rq
);
3608 delta_exec
= rq
->clock
- p
->se
.exec_start
;
3609 if ((s64
)delta_exec
> 0)
3612 task_rq_unlock(rq
, &flags
);
3618 * Account user cpu time to a process.
3619 * @p: the process that the cpu time gets accounted to
3620 * @cputime: the cpu time spent in user space since the last update
3622 void account_user_time(struct task_struct
*p
, cputime_t cputime
)
3624 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3627 p
->utime
= cputime_add(p
->utime
, cputime
);
3629 /* Add user time to cpustat. */
3630 tmp
= cputime_to_cputime64(cputime
);
3631 if (TASK_NICE(p
) > 0)
3632 cpustat
->nice
= cputime64_add(cpustat
->nice
, tmp
);
3634 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
3638 * Account guest cpu time to a process.
3639 * @p: the process that the cpu time gets accounted to
3640 * @cputime: the cpu time spent in virtual machine since the last update
3642 static void account_guest_time(struct task_struct
*p
, cputime_t cputime
)
3645 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3647 tmp
= cputime_to_cputime64(cputime
);
3649 p
->utime
= cputime_add(p
->utime
, cputime
);
3650 p
->gtime
= cputime_add(p
->gtime
, cputime
);
3652 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
3653 cpustat
->guest
= cputime64_add(cpustat
->guest
, tmp
);
3657 * Account scaled user cpu time to a process.
3658 * @p: the process that the cpu time gets accounted to
3659 * @cputime: the cpu time spent in user space since the last update
3661 void account_user_time_scaled(struct task_struct
*p
, cputime_t cputime
)
3663 p
->utimescaled
= cputime_add(p
->utimescaled
, cputime
);
3667 * Account system cpu time to a process.
3668 * @p: the process that the cpu time gets accounted to
3669 * @hardirq_offset: the offset to subtract from hardirq_count()
3670 * @cputime: the cpu time spent in kernel space since the last update
3672 void account_system_time(struct task_struct
*p
, int hardirq_offset
,
3675 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3676 struct rq
*rq
= this_rq();
3679 if ((p
->flags
& PF_VCPU
) && (irq_count() - hardirq_offset
== 0))
3680 return account_guest_time(p
, cputime
);
3682 p
->stime
= cputime_add(p
->stime
, cputime
);
3684 /* Add system time to cpustat. */
3685 tmp
= cputime_to_cputime64(cputime
);
3686 if (hardirq_count() - hardirq_offset
)
3687 cpustat
->irq
= cputime64_add(cpustat
->irq
, tmp
);
3688 else if (softirq_count())
3689 cpustat
->softirq
= cputime64_add(cpustat
->softirq
, tmp
);
3690 else if (p
!= rq
->idle
)
3691 cpustat
->system
= cputime64_add(cpustat
->system
, tmp
);
3692 else if (atomic_read(&rq
->nr_iowait
) > 0)
3693 cpustat
->iowait
= cputime64_add(cpustat
->iowait
, tmp
);
3695 cpustat
->idle
= cputime64_add(cpustat
->idle
, tmp
);
3696 /* Account for system time used */
3697 acct_update_integrals(p
);
3701 * Account scaled system cpu time to a process.
3702 * @p: the process that the cpu time gets accounted to
3703 * @hardirq_offset: the offset to subtract from hardirq_count()
3704 * @cputime: the cpu time spent in kernel space since the last update
3706 void account_system_time_scaled(struct task_struct
*p
, cputime_t cputime
)
3708 p
->stimescaled
= cputime_add(p
->stimescaled
, cputime
);
3712 * Account for involuntary wait time.
3713 * @p: the process from which the cpu time has been stolen
3714 * @steal: the cpu time spent in involuntary wait
3716 void account_steal_time(struct task_struct
*p
, cputime_t steal
)
3718 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3719 cputime64_t tmp
= cputime_to_cputime64(steal
);
3720 struct rq
*rq
= this_rq();
3722 if (p
== rq
->idle
) {
3723 p
->stime
= cputime_add(p
->stime
, steal
);
3724 if (atomic_read(&rq
->nr_iowait
) > 0)
3725 cpustat
->iowait
= cputime64_add(cpustat
->iowait
, tmp
);
3727 cpustat
->idle
= cputime64_add(cpustat
->idle
, tmp
);
3729 cpustat
->steal
= cputime64_add(cpustat
->steal
, tmp
);
3733 * This function gets called by the timer code, with HZ frequency.
3734 * We call it with interrupts disabled.
3736 * It also gets called by the fork code, when changing the parent's
3739 void scheduler_tick(void)
3741 int cpu
= smp_processor_id();
3742 struct rq
*rq
= cpu_rq(cpu
);
3743 struct task_struct
*curr
= rq
->curr
;
3744 u64 next_tick
= rq
->tick_timestamp
+ TICK_NSEC
;
3746 spin_lock(&rq
->lock
);
3747 __update_rq_clock(rq
);
3749 * Let rq->clock advance by at least TICK_NSEC:
3751 if (unlikely(rq
->clock
< next_tick
)) {
3752 rq
->clock
= next_tick
;
3753 rq
->clock_underflows
++;
3755 rq
->tick_timestamp
= rq
->clock
;
3756 update_cpu_load(rq
);
3757 curr
->sched_class
->task_tick(rq
, curr
, 0);
3758 update_sched_rt_period(rq
);
3759 spin_unlock(&rq
->lock
);
3762 rq
->idle_at_tick
= idle_cpu(cpu
);
3763 trigger_load_balance(rq
, cpu
);
3767 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3769 void add_preempt_count(int val
)
3774 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3776 preempt_count() += val
;
3778 * Spinlock count overflowing soon?
3780 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK
) >=
3783 EXPORT_SYMBOL(add_preempt_count
);
3785 void sub_preempt_count(int val
)
3790 if (DEBUG_LOCKS_WARN_ON(val
> preempt_count()))
3793 * Is the spinlock portion underflowing?
3795 if (DEBUG_LOCKS_WARN_ON((val
< PREEMPT_MASK
) &&
3796 !(preempt_count() & PREEMPT_MASK
)))
3799 preempt_count() -= val
;
3801 EXPORT_SYMBOL(sub_preempt_count
);
3806 * Print scheduling while atomic bug:
3808 static noinline
void __schedule_bug(struct task_struct
*prev
)
3810 struct pt_regs
*regs
= get_irq_regs();
3812 printk(KERN_ERR
"BUG: scheduling while atomic: %s/%d/0x%08x\n",
3813 prev
->comm
, prev
->pid
, preempt_count());
3815 debug_show_held_locks(prev
);
3816 if (irqs_disabled())
3817 print_irqtrace_events(prev
);
3826 * Various schedule()-time debugging checks and statistics:
3828 static inline void schedule_debug(struct task_struct
*prev
)
3831 * Test if we are atomic. Since do_exit() needs to call into
3832 * schedule() atomically, we ignore that path for now.
3833 * Otherwise, whine if we are scheduling when we should not be.
3835 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev
->exit_state
))
3836 __schedule_bug(prev
);
3838 profile_hit(SCHED_PROFILING
, __builtin_return_address(0));
3840 schedstat_inc(this_rq(), sched_count
);
3841 #ifdef CONFIG_SCHEDSTATS
3842 if (unlikely(prev
->lock_depth
>= 0)) {
3843 schedstat_inc(this_rq(), bkl_count
);
3844 schedstat_inc(prev
, sched_info
.bkl_count
);
3850 * Pick up the highest-prio task:
3852 static inline struct task_struct
*
3853 pick_next_task(struct rq
*rq
, struct task_struct
*prev
)
3855 const struct sched_class
*class;
3856 struct task_struct
*p
;
3859 * Optimization: we know that if all tasks are in
3860 * the fair class we can call that function directly:
3862 if (likely(rq
->nr_running
== rq
->cfs
.nr_running
)) {
3863 p
= fair_sched_class
.pick_next_task(rq
);
3868 class = sched_class_highest
;
3870 p
= class->pick_next_task(rq
);
3874 * Will never be NULL as the idle class always
3875 * returns a non-NULL p:
3877 class = class->next
;
3882 * schedule() is the main scheduler function.
3884 asmlinkage
void __sched
schedule(void)
3886 struct task_struct
*prev
, *next
;
3893 cpu
= smp_processor_id();
3897 switch_count
= &prev
->nivcsw
;
3899 release_kernel_lock(prev
);
3900 need_resched_nonpreemptible
:
3902 schedule_debug(prev
);
3907 * Do the rq-clock update outside the rq lock:
3909 local_irq_disable();
3910 __update_rq_clock(rq
);
3911 spin_lock(&rq
->lock
);
3912 clear_tsk_need_resched(prev
);
3914 if (prev
->state
&& !(preempt_count() & PREEMPT_ACTIVE
)) {
3915 if (unlikely((prev
->state
& TASK_INTERRUPTIBLE
) &&
3916 unlikely(signal_pending(prev
)))) {
3917 prev
->state
= TASK_RUNNING
;
3919 deactivate_task(rq
, prev
, 1);
3921 switch_count
= &prev
->nvcsw
;
3925 if (prev
->sched_class
->pre_schedule
)
3926 prev
->sched_class
->pre_schedule(rq
, prev
);
3929 if (unlikely(!rq
->nr_running
))
3930 idle_balance(cpu
, rq
);
3932 prev
->sched_class
->put_prev_task(rq
, prev
);
3933 next
= pick_next_task(rq
, prev
);
3935 sched_info_switch(prev
, next
);
3937 if (likely(prev
!= next
)) {
3942 context_switch(rq
, prev
, next
); /* unlocks the rq */
3944 * the context switch might have flipped the stack from under
3945 * us, hence refresh the local variables.
3947 cpu
= smp_processor_id();
3950 spin_unlock_irq(&rq
->lock
);
3954 if (unlikely(reacquire_kernel_lock(current
) < 0))
3955 goto need_resched_nonpreemptible
;
3957 preempt_enable_no_resched();
3958 if (unlikely(test_thread_flag(TIF_NEED_RESCHED
)))
3961 EXPORT_SYMBOL(schedule
);
3963 #ifdef CONFIG_PREEMPT
3965 * this is the entry point to schedule() from in-kernel preemption
3966 * off of preempt_enable. Kernel preemptions off return from interrupt
3967 * occur there and call schedule directly.
3969 asmlinkage
void __sched
preempt_schedule(void)
3971 struct thread_info
*ti
= current_thread_info();
3972 struct task_struct
*task
= current
;
3973 int saved_lock_depth
;
3976 * If there is a non-zero preempt_count or interrupts are disabled,
3977 * we do not want to preempt the current task. Just return..
3979 if (likely(ti
->preempt_count
|| irqs_disabled()))
3983 add_preempt_count(PREEMPT_ACTIVE
);
3986 * We keep the big kernel semaphore locked, but we
3987 * clear ->lock_depth so that schedule() doesnt
3988 * auto-release the semaphore:
3990 saved_lock_depth
= task
->lock_depth
;
3991 task
->lock_depth
= -1;
3993 task
->lock_depth
= saved_lock_depth
;
3994 sub_preempt_count(PREEMPT_ACTIVE
);
3997 * Check again in case we missed a preemption opportunity
3998 * between schedule and now.
4001 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED
)));
4003 EXPORT_SYMBOL(preempt_schedule
);
4006 * this is the entry point to schedule() from kernel preemption
4007 * off of irq context.
4008 * Note, that this is called and return with irqs disabled. This will
4009 * protect us against recursive calling from irq.
4011 asmlinkage
void __sched
preempt_schedule_irq(void)
4013 struct thread_info
*ti
= current_thread_info();
4014 struct task_struct
*task
= current
;
4015 int saved_lock_depth
;
4017 /* Catch callers which need to be fixed */
4018 BUG_ON(ti
->preempt_count
|| !irqs_disabled());
4021 add_preempt_count(PREEMPT_ACTIVE
);
4024 * We keep the big kernel semaphore locked, but we
4025 * clear ->lock_depth so that schedule() doesnt
4026 * auto-release the semaphore:
4028 saved_lock_depth
= task
->lock_depth
;
4029 task
->lock_depth
= -1;
4032 local_irq_disable();
4033 task
->lock_depth
= saved_lock_depth
;
4034 sub_preempt_count(PREEMPT_ACTIVE
);
4037 * Check again in case we missed a preemption opportunity
4038 * between schedule and now.
4041 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED
)));
4044 #endif /* CONFIG_PREEMPT */
4046 int default_wake_function(wait_queue_t
*curr
, unsigned mode
, int sync
,
4049 return try_to_wake_up(curr
->private, mode
, sync
);
4051 EXPORT_SYMBOL(default_wake_function
);
4054 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4055 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
4056 * number) then we wake all the non-exclusive tasks and one exclusive task.
4058 * There are circumstances in which we can try to wake a task which has already
4059 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4060 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4062 static void __wake_up_common(wait_queue_head_t
*q
, unsigned int mode
,
4063 int nr_exclusive
, int sync
, void *key
)
4065 wait_queue_t
*curr
, *next
;
4067 list_for_each_entry_safe(curr
, next
, &q
->task_list
, task_list
) {
4068 unsigned flags
= curr
->flags
;
4070 if (curr
->func(curr
, mode
, sync
, key
) &&
4071 (flags
& WQ_FLAG_EXCLUSIVE
) && !--nr_exclusive
)
4077 * __wake_up - wake up threads blocked on a waitqueue.
4079 * @mode: which threads
4080 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4081 * @key: is directly passed to the wakeup function
4083 void __wake_up(wait_queue_head_t
*q
, unsigned int mode
,
4084 int nr_exclusive
, void *key
)
4086 unsigned long flags
;
4088 spin_lock_irqsave(&q
->lock
, flags
);
4089 __wake_up_common(q
, mode
, nr_exclusive
, 0, key
);
4090 spin_unlock_irqrestore(&q
->lock
, flags
);
4092 EXPORT_SYMBOL(__wake_up
);
4095 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4097 void __wake_up_locked(wait_queue_head_t
*q
, unsigned int mode
)
4099 __wake_up_common(q
, mode
, 1, 0, NULL
);
4103 * __wake_up_sync - wake up threads blocked on a waitqueue.
4105 * @mode: which threads
4106 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4108 * The sync wakeup differs that the waker knows that it will schedule
4109 * away soon, so while the target thread will be woken up, it will not
4110 * be migrated to another CPU - ie. the two threads are 'synchronized'
4111 * with each other. This can prevent needless bouncing between CPUs.
4113 * On UP it can prevent extra preemption.
4116 __wake_up_sync(wait_queue_head_t
*q
, unsigned int mode
, int nr_exclusive
)
4118 unsigned long flags
;
4124 if (unlikely(!nr_exclusive
))
4127 spin_lock_irqsave(&q
->lock
, flags
);
4128 __wake_up_common(q
, mode
, nr_exclusive
, sync
, NULL
);
4129 spin_unlock_irqrestore(&q
->lock
, flags
);
4131 EXPORT_SYMBOL_GPL(__wake_up_sync
); /* For internal use only */
4133 void complete(struct completion
*x
)
4135 unsigned long flags
;
4137 spin_lock_irqsave(&x
->wait
.lock
, flags
);
4139 __wake_up_common(&x
->wait
, TASK_NORMAL
, 1, 0, NULL
);
4140 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
4142 EXPORT_SYMBOL(complete
);
4144 void complete_all(struct completion
*x
)
4146 unsigned long flags
;
4148 spin_lock_irqsave(&x
->wait
.lock
, flags
);
4149 x
->done
+= UINT_MAX
/2;
4150 __wake_up_common(&x
->wait
, TASK_NORMAL
, 0, 0, NULL
);
4151 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
4153 EXPORT_SYMBOL(complete_all
);
4155 static inline long __sched
4156 do_wait_for_common(struct completion
*x
, long timeout
, int state
)
4159 DECLARE_WAITQUEUE(wait
, current
);
4161 wait
.flags
|= WQ_FLAG_EXCLUSIVE
;
4162 __add_wait_queue_tail(&x
->wait
, &wait
);
4164 if ((state
== TASK_INTERRUPTIBLE
&&
4165 signal_pending(current
)) ||
4166 (state
== TASK_KILLABLE
&&
4167 fatal_signal_pending(current
))) {
4168 __remove_wait_queue(&x
->wait
, &wait
);
4169 return -ERESTARTSYS
;
4171 __set_current_state(state
);
4172 spin_unlock_irq(&x
->wait
.lock
);
4173 timeout
= schedule_timeout(timeout
);
4174 spin_lock_irq(&x
->wait
.lock
);
4176 __remove_wait_queue(&x
->wait
, &wait
);
4180 __remove_wait_queue(&x
->wait
, &wait
);
4187 wait_for_common(struct completion
*x
, long timeout
, int state
)
4191 spin_lock_irq(&x
->wait
.lock
);
4192 timeout
= do_wait_for_common(x
, timeout
, state
);
4193 spin_unlock_irq(&x
->wait
.lock
);
4197 void __sched
wait_for_completion(struct completion
*x
)
4199 wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_UNINTERRUPTIBLE
);
4201 EXPORT_SYMBOL(wait_for_completion
);
4203 unsigned long __sched
4204 wait_for_completion_timeout(struct completion
*x
, unsigned long timeout
)
4206 return wait_for_common(x
, timeout
, TASK_UNINTERRUPTIBLE
);
4208 EXPORT_SYMBOL(wait_for_completion_timeout
);
4210 int __sched
wait_for_completion_interruptible(struct completion
*x
)
4212 long t
= wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_INTERRUPTIBLE
);
4213 if (t
== -ERESTARTSYS
)
4217 EXPORT_SYMBOL(wait_for_completion_interruptible
);
4219 unsigned long __sched
4220 wait_for_completion_interruptible_timeout(struct completion
*x
,
4221 unsigned long timeout
)
4223 return wait_for_common(x
, timeout
, TASK_INTERRUPTIBLE
);
4225 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout
);
4227 int __sched
wait_for_completion_killable(struct completion
*x
)
4229 long t
= wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_KILLABLE
);
4230 if (t
== -ERESTARTSYS
)
4234 EXPORT_SYMBOL(wait_for_completion_killable
);
4237 sleep_on_common(wait_queue_head_t
*q
, int state
, long timeout
)
4239 unsigned long flags
;
4242 init_waitqueue_entry(&wait
, current
);
4244 __set_current_state(state
);
4246 spin_lock_irqsave(&q
->lock
, flags
);
4247 __add_wait_queue(q
, &wait
);
4248 spin_unlock(&q
->lock
);
4249 timeout
= schedule_timeout(timeout
);
4250 spin_lock_irq(&q
->lock
);
4251 __remove_wait_queue(q
, &wait
);
4252 spin_unlock_irqrestore(&q
->lock
, flags
);
4257 void __sched
interruptible_sleep_on(wait_queue_head_t
*q
)
4259 sleep_on_common(q
, TASK_INTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
4261 EXPORT_SYMBOL(interruptible_sleep_on
);
4264 interruptible_sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
4266 return sleep_on_common(q
, TASK_INTERRUPTIBLE
, timeout
);
4268 EXPORT_SYMBOL(interruptible_sleep_on_timeout
);
4270 void __sched
sleep_on(wait_queue_head_t
*q
)
4272 sleep_on_common(q
, TASK_UNINTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
4274 EXPORT_SYMBOL(sleep_on
);
4276 long __sched
sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
4278 return sleep_on_common(q
, TASK_UNINTERRUPTIBLE
, timeout
);
4280 EXPORT_SYMBOL(sleep_on_timeout
);
4282 #ifdef CONFIG_RT_MUTEXES
4285 * rt_mutex_setprio - set the current priority of a task
4287 * @prio: prio value (kernel-internal form)
4289 * This function changes the 'effective' priority of a task. It does
4290 * not touch ->normal_prio like __setscheduler().
4292 * Used by the rt_mutex code to implement priority inheritance logic.
4294 void rt_mutex_setprio(struct task_struct
*p
, int prio
)
4296 unsigned long flags
;
4297 int oldprio
, on_rq
, running
;
4299 const struct sched_class
*prev_class
= p
->sched_class
;
4301 BUG_ON(prio
< 0 || prio
> MAX_PRIO
);
4303 rq
= task_rq_lock(p
, &flags
);
4304 update_rq_clock(rq
);
4307 on_rq
= p
->se
.on_rq
;
4308 running
= task_current(rq
, p
);
4310 dequeue_task(rq
, p
, 0);
4312 p
->sched_class
->put_prev_task(rq
, p
);
4316 p
->sched_class
= &rt_sched_class
;
4318 p
->sched_class
= &fair_sched_class
;
4324 p
->sched_class
->set_curr_task(rq
);
4326 enqueue_task(rq
, p
, 0);
4328 check_class_changed(rq
, p
, prev_class
, oldprio
, running
);
4330 task_rq_unlock(rq
, &flags
);
4335 void set_user_nice(struct task_struct
*p
, long nice
)
4337 int old_prio
, delta
, on_rq
;
4338 unsigned long flags
;
4341 if (TASK_NICE(p
) == nice
|| nice
< -20 || nice
> 19)
4344 * We have to be careful, if called from sys_setpriority(),
4345 * the task might be in the middle of scheduling on another CPU.
4347 rq
= task_rq_lock(p
, &flags
);
4348 update_rq_clock(rq
);
4350 * The RT priorities are set via sched_setscheduler(), but we still
4351 * allow the 'normal' nice value to be set - but as expected
4352 * it wont have any effect on scheduling until the task is
4353 * SCHED_FIFO/SCHED_RR:
4355 if (task_has_rt_policy(p
)) {
4356 p
->static_prio
= NICE_TO_PRIO(nice
);
4359 on_rq
= p
->se
.on_rq
;
4361 dequeue_task(rq
, p
, 0);
4363 p
->static_prio
= NICE_TO_PRIO(nice
);
4366 p
->prio
= effective_prio(p
);
4367 delta
= p
->prio
- old_prio
;
4370 enqueue_task(rq
, p
, 0);
4372 * If the task increased its priority or is running and
4373 * lowered its priority, then reschedule its CPU:
4375 if (delta
< 0 || (delta
> 0 && task_running(rq
, p
)))
4376 resched_task(rq
->curr
);
4379 task_rq_unlock(rq
, &flags
);
4381 EXPORT_SYMBOL(set_user_nice
);
4384 * can_nice - check if a task can reduce its nice value
4388 int can_nice(const struct task_struct
*p
, const int nice
)
4390 /* convert nice value [19,-20] to rlimit style value [1,40] */
4391 int nice_rlim
= 20 - nice
;
4393 return (nice_rlim
<= p
->signal
->rlim
[RLIMIT_NICE
].rlim_cur
||
4394 capable(CAP_SYS_NICE
));
4397 #ifdef __ARCH_WANT_SYS_NICE
4400 * sys_nice - change the priority of the current process.
4401 * @increment: priority increment
4403 * sys_setpriority is a more generic, but much slower function that
4404 * does similar things.
4406 asmlinkage
long sys_nice(int increment
)
4411 * Setpriority might change our priority at the same moment.
4412 * We don't have to worry. Conceptually one call occurs first
4413 * and we have a single winner.
4415 if (increment
< -40)
4420 nice
= PRIO_TO_NICE(current
->static_prio
) + increment
;
4426 if (increment
< 0 && !can_nice(current
, nice
))
4429 retval
= security_task_setnice(current
, nice
);
4433 set_user_nice(current
, nice
);
4440 * task_prio - return the priority value of a given task.
4441 * @p: the task in question.
4443 * This is the priority value as seen by users in /proc.
4444 * RT tasks are offset by -200. Normal tasks are centered
4445 * around 0, value goes from -16 to +15.
4447 int task_prio(const struct task_struct
*p
)
4449 return p
->prio
- MAX_RT_PRIO
;
4453 * task_nice - return the nice value of a given task.
4454 * @p: the task in question.
4456 int task_nice(const struct task_struct
*p
)
4458 return TASK_NICE(p
);
4460 EXPORT_SYMBOL_GPL(task_nice
);
4463 * idle_cpu - is a given cpu idle currently?
4464 * @cpu: the processor in question.
4466 int idle_cpu(int cpu
)
4468 return cpu_curr(cpu
) == cpu_rq(cpu
)->idle
;
4472 * idle_task - return the idle task for a given cpu.
4473 * @cpu: the processor in question.
4475 struct task_struct
*idle_task(int cpu
)
4477 return cpu_rq(cpu
)->idle
;
4481 * find_process_by_pid - find a process with a matching PID value.
4482 * @pid: the pid in question.
4484 static struct task_struct
*find_process_by_pid(pid_t pid
)
4486 return pid
? find_task_by_vpid(pid
) : current
;
4489 /* Actually do priority change: must hold rq lock. */
4491 __setscheduler(struct rq
*rq
, struct task_struct
*p
, int policy
, int prio
)
4493 BUG_ON(p
->se
.on_rq
);
4496 switch (p
->policy
) {
4500 p
->sched_class
= &fair_sched_class
;
4504 p
->sched_class
= &rt_sched_class
;
4508 p
->rt_priority
= prio
;
4509 p
->normal_prio
= normal_prio(p
);
4510 /* we are holding p->pi_lock already */
4511 p
->prio
= rt_mutex_getprio(p
);
4516 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4517 * @p: the task in question.
4518 * @policy: new policy.
4519 * @param: structure containing the new RT priority.
4521 * NOTE that the task may be already dead.
4523 int sched_setscheduler(struct task_struct
*p
, int policy
,
4524 struct sched_param
*param
)
4526 int retval
, oldprio
, oldpolicy
= -1, on_rq
, running
;
4527 unsigned long flags
;
4528 const struct sched_class
*prev_class
= p
->sched_class
;
4531 /* may grab non-irq protected spin_locks */
4532 BUG_ON(in_interrupt());
4534 /* double check policy once rq lock held */
4536 policy
= oldpolicy
= p
->policy
;
4537 else if (policy
!= SCHED_FIFO
&& policy
!= SCHED_RR
&&
4538 policy
!= SCHED_NORMAL
&& policy
!= SCHED_BATCH
&&
4539 policy
!= SCHED_IDLE
)
4542 * Valid priorities for SCHED_FIFO and SCHED_RR are
4543 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4544 * SCHED_BATCH and SCHED_IDLE is 0.
4546 if (param
->sched_priority
< 0 ||
4547 (p
->mm
&& param
->sched_priority
> MAX_USER_RT_PRIO
-1) ||
4548 (!p
->mm
&& param
->sched_priority
> MAX_RT_PRIO
-1))
4550 if (rt_policy(policy
) != (param
->sched_priority
!= 0))
4554 * Allow unprivileged RT tasks to decrease priority:
4556 if (!capable(CAP_SYS_NICE
)) {
4557 if (rt_policy(policy
)) {
4558 unsigned long rlim_rtprio
;
4560 if (!lock_task_sighand(p
, &flags
))
4562 rlim_rtprio
= p
->signal
->rlim
[RLIMIT_RTPRIO
].rlim_cur
;
4563 unlock_task_sighand(p
, &flags
);
4565 /* can't set/change the rt policy */
4566 if (policy
!= p
->policy
&& !rlim_rtprio
)
4569 /* can't increase priority */
4570 if (param
->sched_priority
> p
->rt_priority
&&
4571 param
->sched_priority
> rlim_rtprio
)
4575 * Like positive nice levels, dont allow tasks to
4576 * move out of SCHED_IDLE either:
4578 if (p
->policy
== SCHED_IDLE
&& policy
!= SCHED_IDLE
)
4581 /* can't change other user's priorities */
4582 if ((current
->euid
!= p
->euid
) &&
4583 (current
->euid
!= p
->uid
))
4587 #ifdef CONFIG_RT_GROUP_SCHED
4589 * Do not allow realtime tasks into groups that have no runtime
4592 if (rt_policy(policy
) && task_group(p
)->rt_runtime
== 0)
4596 retval
= security_task_setscheduler(p
, policy
, param
);
4600 * make sure no PI-waiters arrive (or leave) while we are
4601 * changing the priority of the task:
4603 spin_lock_irqsave(&p
->pi_lock
, flags
);
4605 * To be able to change p->policy safely, the apropriate
4606 * runqueue lock must be held.
4608 rq
= __task_rq_lock(p
);
4609 /* recheck policy now with rq lock held */
4610 if (unlikely(oldpolicy
!= -1 && oldpolicy
!= p
->policy
)) {
4611 policy
= oldpolicy
= -1;
4612 __task_rq_unlock(rq
);
4613 spin_unlock_irqrestore(&p
->pi_lock
, flags
);
4616 update_rq_clock(rq
);
4617 on_rq
= p
->se
.on_rq
;
4618 running
= task_current(rq
, p
);
4620 deactivate_task(rq
, p
, 0);
4622 p
->sched_class
->put_prev_task(rq
, p
);
4626 __setscheduler(rq
, p
, policy
, param
->sched_priority
);
4630 p
->sched_class
->set_curr_task(rq
);
4632 activate_task(rq
, p
, 0);
4634 check_class_changed(rq
, p
, prev_class
, oldprio
, running
);
4636 __task_rq_unlock(rq
);
4637 spin_unlock_irqrestore(&p
->pi_lock
, flags
);
4639 rt_mutex_adjust_pi(p
);
4643 EXPORT_SYMBOL_GPL(sched_setscheduler
);
4646 do_sched_setscheduler(pid_t pid
, int policy
, struct sched_param __user
*param
)
4648 struct sched_param lparam
;
4649 struct task_struct
*p
;
4652 if (!param
|| pid
< 0)
4654 if (copy_from_user(&lparam
, param
, sizeof(struct sched_param
)))
4659 p
= find_process_by_pid(pid
);
4661 retval
= sched_setscheduler(p
, policy
, &lparam
);
4668 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4669 * @pid: the pid in question.
4670 * @policy: new policy.
4671 * @param: structure containing the new RT priority.
4674 sys_sched_setscheduler(pid_t pid
, int policy
, struct sched_param __user
*param
)
4676 /* negative values for policy are not valid */
4680 return do_sched_setscheduler(pid
, policy
, param
);
4684 * sys_sched_setparam - set/change the RT priority of a thread
4685 * @pid: the pid in question.
4686 * @param: structure containing the new RT priority.
4688 asmlinkage
long sys_sched_setparam(pid_t pid
, struct sched_param __user
*param
)
4690 return do_sched_setscheduler(pid
, -1, param
);
4694 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4695 * @pid: the pid in question.
4697 asmlinkage
long sys_sched_getscheduler(pid_t pid
)
4699 struct task_struct
*p
;
4706 read_lock(&tasklist_lock
);
4707 p
= find_process_by_pid(pid
);
4709 retval
= security_task_getscheduler(p
);
4713 read_unlock(&tasklist_lock
);
4718 * sys_sched_getscheduler - get the RT priority of a thread
4719 * @pid: the pid in question.
4720 * @param: structure containing the RT priority.
4722 asmlinkage
long sys_sched_getparam(pid_t pid
, struct sched_param __user
*param
)
4724 struct sched_param lp
;
4725 struct task_struct
*p
;
4728 if (!param
|| pid
< 0)
4731 read_lock(&tasklist_lock
);
4732 p
= find_process_by_pid(pid
);
4737 retval
= security_task_getscheduler(p
);
4741 lp
.sched_priority
= p
->rt_priority
;
4742 read_unlock(&tasklist_lock
);
4745 * This one might sleep, we cannot do it with a spinlock held ...
4747 retval
= copy_to_user(param
, &lp
, sizeof(*param
)) ? -EFAULT
: 0;
4752 read_unlock(&tasklist_lock
);
4756 long sched_setaffinity(pid_t pid
, cpumask_t new_mask
)
4758 cpumask_t cpus_allowed
;
4759 struct task_struct
*p
;
4763 read_lock(&tasklist_lock
);
4765 p
= find_process_by_pid(pid
);
4767 read_unlock(&tasklist_lock
);
4773 * It is not safe to call set_cpus_allowed with the
4774 * tasklist_lock held. We will bump the task_struct's
4775 * usage count and then drop tasklist_lock.
4778 read_unlock(&tasklist_lock
);
4781 if ((current
->euid
!= p
->euid
) && (current
->euid
!= p
->uid
) &&
4782 !capable(CAP_SYS_NICE
))
4785 retval
= security_task_setscheduler(p
, 0, NULL
);
4789 cpus_allowed
= cpuset_cpus_allowed(p
);
4790 cpus_and(new_mask
, new_mask
, cpus_allowed
);
4792 retval
= set_cpus_allowed(p
, new_mask
);
4795 cpus_allowed
= cpuset_cpus_allowed(p
);
4796 if (!cpus_subset(new_mask
, cpus_allowed
)) {
4798 * We must have raced with a concurrent cpuset
4799 * update. Just reset the cpus_allowed to the
4800 * cpuset's cpus_allowed
4802 new_mask
= cpus_allowed
;
4812 static int get_user_cpu_mask(unsigned long __user
*user_mask_ptr
, unsigned len
,
4813 cpumask_t
*new_mask
)
4815 if (len
< sizeof(cpumask_t
)) {
4816 memset(new_mask
, 0, sizeof(cpumask_t
));
4817 } else if (len
> sizeof(cpumask_t
)) {
4818 len
= sizeof(cpumask_t
);
4820 return copy_from_user(new_mask
, user_mask_ptr
, len
) ? -EFAULT
: 0;
4824 * sys_sched_setaffinity - set the cpu affinity of a process
4825 * @pid: pid of the process
4826 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4827 * @user_mask_ptr: user-space pointer to the new cpu mask
4829 asmlinkage
long sys_sched_setaffinity(pid_t pid
, unsigned int len
,
4830 unsigned long __user
*user_mask_ptr
)
4835 retval
= get_user_cpu_mask(user_mask_ptr
, len
, &new_mask
);
4839 return sched_setaffinity(pid
, new_mask
);
4843 * Represents all cpu's present in the system
4844 * In systems capable of hotplug, this map could dynamically grow
4845 * as new cpu's are detected in the system via any platform specific
4846 * method, such as ACPI for e.g.
4849 cpumask_t cpu_present_map __read_mostly
;
4850 EXPORT_SYMBOL(cpu_present_map
);
4853 cpumask_t cpu_online_map __read_mostly
= CPU_MASK_ALL
;
4854 EXPORT_SYMBOL(cpu_online_map
);
4856 cpumask_t cpu_possible_map __read_mostly
= CPU_MASK_ALL
;
4857 EXPORT_SYMBOL(cpu_possible_map
);
4860 long sched_getaffinity(pid_t pid
, cpumask_t
*mask
)
4862 struct task_struct
*p
;
4866 read_lock(&tasklist_lock
);
4869 p
= find_process_by_pid(pid
);
4873 retval
= security_task_getscheduler(p
);
4877 cpus_and(*mask
, p
->cpus_allowed
, cpu_online_map
);
4880 read_unlock(&tasklist_lock
);
4887 * sys_sched_getaffinity - get the cpu affinity of a process
4888 * @pid: pid of the process
4889 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4890 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4892 asmlinkage
long sys_sched_getaffinity(pid_t pid
, unsigned int len
,
4893 unsigned long __user
*user_mask_ptr
)
4898 if (len
< sizeof(cpumask_t
))
4901 ret
= sched_getaffinity(pid
, &mask
);
4905 if (copy_to_user(user_mask_ptr
, &mask
, sizeof(cpumask_t
)))
4908 return sizeof(cpumask_t
);
4912 * sys_sched_yield - yield the current processor to other threads.
4914 * This function yields the current CPU to other tasks. If there are no
4915 * other threads running on this CPU then this function will return.
4917 asmlinkage
long sys_sched_yield(void)
4919 struct rq
*rq
= this_rq_lock();
4921 schedstat_inc(rq
, yld_count
);
4922 current
->sched_class
->yield_task(rq
);
4925 * Since we are going to call schedule() anyway, there's
4926 * no need to preempt or enable interrupts:
4928 __release(rq
->lock
);
4929 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
4930 _raw_spin_unlock(&rq
->lock
);
4931 preempt_enable_no_resched();
4938 static void __cond_resched(void)
4940 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4941 __might_sleep(__FILE__
, __LINE__
);
4944 * The BKS might be reacquired before we have dropped
4945 * PREEMPT_ACTIVE, which could trigger a second
4946 * cond_resched() call.
4949 add_preempt_count(PREEMPT_ACTIVE
);
4951 sub_preempt_count(PREEMPT_ACTIVE
);
4952 } while (need_resched());
4955 #if !defined(CONFIG_PREEMPT) || defined(CONFIG_PREEMPT_VOLUNTARY)
4956 int __sched
_cond_resched(void)
4958 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE
) &&
4959 system_state
== SYSTEM_RUNNING
) {
4965 EXPORT_SYMBOL(_cond_resched
);
4969 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4970 * call schedule, and on return reacquire the lock.
4972 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4973 * operations here to prevent schedule() from being called twice (once via
4974 * spin_unlock(), once by hand).
4976 int cond_resched_lock(spinlock_t
*lock
)
4978 int resched
= need_resched() && system_state
== SYSTEM_RUNNING
;
4981 if (spin_needbreak(lock
) || resched
) {
4983 if (resched
&& need_resched())
4992 EXPORT_SYMBOL(cond_resched_lock
);
4994 int __sched
cond_resched_softirq(void)
4996 BUG_ON(!in_softirq());
4998 if (need_resched() && system_state
== SYSTEM_RUNNING
) {
5006 EXPORT_SYMBOL(cond_resched_softirq
);
5009 * yield - yield the current processor to other threads.
5011 * This is a shortcut for kernel-space yielding - it marks the
5012 * thread runnable and calls sys_sched_yield().
5014 void __sched
yield(void)
5016 set_current_state(TASK_RUNNING
);
5019 EXPORT_SYMBOL(yield
);
5022 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5023 * that process accounting knows that this is a task in IO wait state.
5025 * But don't do that if it is a deliberate, throttling IO wait (this task
5026 * has set its backing_dev_info: the queue against which it should throttle)
5028 void __sched
io_schedule(void)
5030 struct rq
*rq
= &__raw_get_cpu_var(runqueues
);
5032 delayacct_blkio_start();
5033 atomic_inc(&rq
->nr_iowait
);
5035 atomic_dec(&rq
->nr_iowait
);
5036 delayacct_blkio_end();
5038 EXPORT_SYMBOL(io_schedule
);
5040 long __sched
io_schedule_timeout(long timeout
)
5042 struct rq
*rq
= &__raw_get_cpu_var(runqueues
);
5045 delayacct_blkio_start();
5046 atomic_inc(&rq
->nr_iowait
);
5047 ret
= schedule_timeout(timeout
);
5048 atomic_dec(&rq
->nr_iowait
);
5049 delayacct_blkio_end();
5054 * sys_sched_get_priority_max - return maximum RT priority.
5055 * @policy: scheduling class.
5057 * this syscall returns the maximum rt_priority that can be used
5058 * by a given scheduling class.
5060 asmlinkage
long sys_sched_get_priority_max(int policy
)
5067 ret
= MAX_USER_RT_PRIO
-1;
5079 * sys_sched_get_priority_min - return minimum RT priority.
5080 * @policy: scheduling class.
5082 * this syscall returns the minimum rt_priority that can be used
5083 * by a given scheduling class.
5085 asmlinkage
long sys_sched_get_priority_min(int policy
)
5103 * sys_sched_rr_get_interval - return the default timeslice of a process.
5104 * @pid: pid of the process.
5105 * @interval: userspace pointer to the timeslice value.
5107 * this syscall writes the default timeslice value of a given process
5108 * into the user-space timespec buffer. A value of '0' means infinity.
5111 long sys_sched_rr_get_interval(pid_t pid
, struct timespec __user
*interval
)
5113 struct task_struct
*p
;
5114 unsigned int time_slice
;
5122 read_lock(&tasklist_lock
);
5123 p
= find_process_by_pid(pid
);
5127 retval
= security_task_getscheduler(p
);
5132 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5133 * tasks that are on an otherwise idle runqueue:
5136 if (p
->policy
== SCHED_RR
) {
5137 time_slice
= DEF_TIMESLICE
;
5139 struct sched_entity
*se
= &p
->se
;
5140 unsigned long flags
;
5143 rq
= task_rq_lock(p
, &flags
);
5144 if (rq
->cfs
.load
.weight
)
5145 time_slice
= NS_TO_JIFFIES(sched_slice(&rq
->cfs
, se
));
5146 task_rq_unlock(rq
, &flags
);
5148 read_unlock(&tasklist_lock
);
5149 jiffies_to_timespec(time_slice
, &t
);
5150 retval
= copy_to_user(interval
, &t
, sizeof(t
)) ? -EFAULT
: 0;
5154 read_unlock(&tasklist_lock
);
5158 static const char stat_nam
[] = "RSDTtZX";
5160 void sched_show_task(struct task_struct
*p
)
5162 unsigned long free
= 0;
5165 state
= p
->state
? __ffs(p
->state
) + 1 : 0;
5166 printk(KERN_INFO
"%-13.13s %c", p
->comm
,
5167 state
< sizeof(stat_nam
) - 1 ? stat_nam
[state
] : '?');
5168 #if BITS_PER_LONG == 32
5169 if (state
== TASK_RUNNING
)
5170 printk(KERN_CONT
" running ");
5172 printk(KERN_CONT
" %08lx ", thread_saved_pc(p
));
5174 if (state
== TASK_RUNNING
)
5175 printk(KERN_CONT
" running task ");
5177 printk(KERN_CONT
" %016lx ", thread_saved_pc(p
));
5179 #ifdef CONFIG_DEBUG_STACK_USAGE
5181 unsigned long *n
= end_of_stack(p
);
5184 free
= (unsigned long)n
- (unsigned long)end_of_stack(p
);
5187 printk(KERN_CONT
"%5lu %5d %6d\n", free
,
5188 task_pid_nr(p
), task_pid_nr(p
->real_parent
));
5190 show_stack(p
, NULL
);
5193 void show_state_filter(unsigned long state_filter
)
5195 struct task_struct
*g
, *p
;
5197 #if BITS_PER_LONG == 32
5199 " task PC stack pid father\n");
5202 " task PC stack pid father\n");
5204 read_lock(&tasklist_lock
);
5205 do_each_thread(g
, p
) {
5207 * reset the NMI-timeout, listing all files on a slow
5208 * console might take alot of time:
5210 touch_nmi_watchdog();
5211 if (!state_filter
|| (p
->state
& state_filter
))
5213 } while_each_thread(g
, p
);
5215 touch_all_softlockup_watchdogs();
5217 #ifdef CONFIG_SCHED_DEBUG
5218 sysrq_sched_debug_show();
5220 read_unlock(&tasklist_lock
);
5222 * Only show locks if all tasks are dumped:
5224 if (state_filter
== -1)
5225 debug_show_all_locks();
5228 void __cpuinit
init_idle_bootup_task(struct task_struct
*idle
)
5230 idle
->sched_class
= &idle_sched_class
;
5234 * init_idle - set up an idle thread for a given CPU
5235 * @idle: task in question
5236 * @cpu: cpu the idle task belongs to
5238 * NOTE: this function does not set the idle thread's NEED_RESCHED
5239 * flag, to make booting more robust.
5241 void __cpuinit
init_idle(struct task_struct
*idle
, int cpu
)
5243 struct rq
*rq
= cpu_rq(cpu
);
5244 unsigned long flags
;
5247 idle
->se
.exec_start
= sched_clock();
5249 idle
->prio
= idle
->normal_prio
= MAX_PRIO
;
5250 idle
->cpus_allowed
= cpumask_of_cpu(cpu
);
5251 __set_task_cpu(idle
, cpu
);
5253 spin_lock_irqsave(&rq
->lock
, flags
);
5254 rq
->curr
= rq
->idle
= idle
;
5255 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5258 spin_unlock_irqrestore(&rq
->lock
, flags
);
5260 /* Set the preempt count _outside_ the spinlocks! */
5261 task_thread_info(idle
)->preempt_count
= 0;
5264 * The idle tasks have their own, simple scheduling class:
5266 idle
->sched_class
= &idle_sched_class
;
5270 * In a system that switches off the HZ timer nohz_cpu_mask
5271 * indicates which cpus entered this state. This is used
5272 * in the rcu update to wait only for active cpus. For system
5273 * which do not switch off the HZ timer nohz_cpu_mask should
5274 * always be CPU_MASK_NONE.
5276 cpumask_t nohz_cpu_mask
= CPU_MASK_NONE
;
5279 * Increase the granularity value when there are more CPUs,
5280 * because with more CPUs the 'effective latency' as visible
5281 * to users decreases. But the relationship is not linear,
5282 * so pick a second-best guess by going with the log2 of the
5285 * This idea comes from the SD scheduler of Con Kolivas:
5287 static inline void sched_init_granularity(void)
5289 unsigned int factor
= 1 + ilog2(num_online_cpus());
5290 const unsigned long limit
= 200000000;
5292 sysctl_sched_min_granularity
*= factor
;
5293 if (sysctl_sched_min_granularity
> limit
)
5294 sysctl_sched_min_granularity
= limit
;
5296 sysctl_sched_latency
*= factor
;
5297 if (sysctl_sched_latency
> limit
)
5298 sysctl_sched_latency
= limit
;
5300 sysctl_sched_wakeup_granularity
*= factor
;
5301 sysctl_sched_batch_wakeup_granularity
*= factor
;
5306 * This is how migration works:
5308 * 1) we queue a struct migration_req structure in the source CPU's
5309 * runqueue and wake up that CPU's migration thread.
5310 * 2) we down() the locked semaphore => thread blocks.
5311 * 3) migration thread wakes up (implicitly it forces the migrated
5312 * thread off the CPU)
5313 * 4) it gets the migration request and checks whether the migrated
5314 * task is still in the wrong runqueue.
5315 * 5) if it's in the wrong runqueue then the migration thread removes
5316 * it and puts it into the right queue.
5317 * 6) migration thread up()s the semaphore.
5318 * 7) we wake up and the migration is done.
5322 * Change a given task's CPU affinity. Migrate the thread to a
5323 * proper CPU and schedule it away if the CPU it's executing on
5324 * is removed from the allowed bitmask.
5326 * NOTE: the caller must have a valid reference to the task, the
5327 * task must not exit() & deallocate itself prematurely. The
5328 * call is not atomic; no spinlocks may be held.
5330 int set_cpus_allowed(struct task_struct
*p
, cpumask_t new_mask
)
5332 struct migration_req req
;
5333 unsigned long flags
;
5337 rq
= task_rq_lock(p
, &flags
);
5338 if (!cpus_intersects(new_mask
, cpu_online_map
)) {
5343 if (p
->sched_class
->set_cpus_allowed
)
5344 p
->sched_class
->set_cpus_allowed(p
, &new_mask
);
5346 p
->cpus_allowed
= new_mask
;
5347 p
->rt
.nr_cpus_allowed
= cpus_weight(new_mask
);
5350 /* Can the task run on the task's current CPU? If so, we're done */
5351 if (cpu_isset(task_cpu(p
), new_mask
))
5354 if (migrate_task(p
, any_online_cpu(new_mask
), &req
)) {
5355 /* Need help from migration thread: drop lock and wait. */
5356 task_rq_unlock(rq
, &flags
);
5357 wake_up_process(rq
->migration_thread
);
5358 wait_for_completion(&req
.done
);
5359 tlb_migrate_finish(p
->mm
);
5363 task_rq_unlock(rq
, &flags
);
5367 EXPORT_SYMBOL_GPL(set_cpus_allowed
);
5370 * Move (not current) task off this cpu, onto dest cpu. We're doing
5371 * this because either it can't run here any more (set_cpus_allowed()
5372 * away from this CPU, or CPU going down), or because we're
5373 * attempting to rebalance this task on exec (sched_exec).
5375 * So we race with normal scheduler movements, but that's OK, as long
5376 * as the task is no longer on this CPU.
5378 * Returns non-zero if task was successfully migrated.
5380 static int __migrate_task(struct task_struct
*p
, int src_cpu
, int dest_cpu
)
5382 struct rq
*rq_dest
, *rq_src
;
5385 if (unlikely(cpu_is_offline(dest_cpu
)))
5388 rq_src
= cpu_rq(src_cpu
);
5389 rq_dest
= cpu_rq(dest_cpu
);
5391 double_rq_lock(rq_src
, rq_dest
);
5392 /* Already moved. */
5393 if (task_cpu(p
) != src_cpu
)
5395 /* Affinity changed (again). */
5396 if (!cpu_isset(dest_cpu
, p
->cpus_allowed
))
5399 on_rq
= p
->se
.on_rq
;
5401 deactivate_task(rq_src
, p
, 0);
5403 set_task_cpu(p
, dest_cpu
);
5405 activate_task(rq_dest
, p
, 0);
5406 check_preempt_curr(rq_dest
, p
);
5410 double_rq_unlock(rq_src
, rq_dest
);
5415 * migration_thread - this is a highprio system thread that performs
5416 * thread migration by bumping thread off CPU then 'pushing' onto
5419 static int migration_thread(void *data
)
5421 int cpu
= (long)data
;
5425 BUG_ON(rq
->migration_thread
!= current
);
5427 set_current_state(TASK_INTERRUPTIBLE
);
5428 while (!kthread_should_stop()) {
5429 struct migration_req
*req
;
5430 struct list_head
*head
;
5432 spin_lock_irq(&rq
->lock
);
5434 if (cpu_is_offline(cpu
)) {
5435 spin_unlock_irq(&rq
->lock
);
5439 if (rq
->active_balance
) {
5440 active_load_balance(rq
, cpu
);
5441 rq
->active_balance
= 0;
5444 head
= &rq
->migration_queue
;
5446 if (list_empty(head
)) {
5447 spin_unlock_irq(&rq
->lock
);
5449 set_current_state(TASK_INTERRUPTIBLE
);
5452 req
= list_entry(head
->next
, struct migration_req
, list
);
5453 list_del_init(head
->next
);
5455 spin_unlock(&rq
->lock
);
5456 __migrate_task(req
->task
, cpu
, req
->dest_cpu
);
5459 complete(&req
->done
);
5461 __set_current_state(TASK_RUNNING
);
5465 /* Wait for kthread_stop */
5466 set_current_state(TASK_INTERRUPTIBLE
);
5467 while (!kthread_should_stop()) {
5469 set_current_state(TASK_INTERRUPTIBLE
);
5471 __set_current_state(TASK_RUNNING
);
5475 #ifdef CONFIG_HOTPLUG_CPU
5477 static int __migrate_task_irq(struct task_struct
*p
, int src_cpu
, int dest_cpu
)
5481 local_irq_disable();
5482 ret
= __migrate_task(p
, src_cpu
, dest_cpu
);
5488 * Figure out where task on dead CPU should go, use force if necessary.
5489 * NOTE: interrupts should be disabled by the caller
5491 static void move_task_off_dead_cpu(int dead_cpu
, struct task_struct
*p
)
5493 unsigned long flags
;
5500 mask
= node_to_cpumask(cpu_to_node(dead_cpu
));
5501 cpus_and(mask
, mask
, p
->cpus_allowed
);
5502 dest_cpu
= any_online_cpu(mask
);
5504 /* On any allowed CPU? */
5505 if (dest_cpu
== NR_CPUS
)
5506 dest_cpu
= any_online_cpu(p
->cpus_allowed
);
5508 /* No more Mr. Nice Guy. */
5509 if (dest_cpu
== NR_CPUS
) {
5510 cpumask_t cpus_allowed
= cpuset_cpus_allowed_locked(p
);
5512 * Try to stay on the same cpuset, where the
5513 * current cpuset may be a subset of all cpus.
5514 * The cpuset_cpus_allowed_locked() variant of
5515 * cpuset_cpus_allowed() will not block. It must be
5516 * called within calls to cpuset_lock/cpuset_unlock.
5518 rq
= task_rq_lock(p
, &flags
);
5519 p
->cpus_allowed
= cpus_allowed
;
5520 dest_cpu
= any_online_cpu(p
->cpus_allowed
);
5521 task_rq_unlock(rq
, &flags
);
5524 * Don't tell them about moving exiting tasks or
5525 * kernel threads (both mm NULL), since they never
5528 if (p
->mm
&& printk_ratelimit()) {
5529 printk(KERN_INFO
"process %d (%s) no "
5530 "longer affine to cpu%d\n",
5531 task_pid_nr(p
), p
->comm
, dead_cpu
);
5534 } while (!__migrate_task_irq(p
, dead_cpu
, dest_cpu
));
5538 * While a dead CPU has no uninterruptible tasks queued at this point,
5539 * it might still have a nonzero ->nr_uninterruptible counter, because
5540 * for performance reasons the counter is not stricly tracking tasks to
5541 * their home CPUs. So we just add the counter to another CPU's counter,
5542 * to keep the global sum constant after CPU-down:
5544 static void migrate_nr_uninterruptible(struct rq
*rq_src
)
5546 struct rq
*rq_dest
= cpu_rq(any_online_cpu(CPU_MASK_ALL
));
5547 unsigned long flags
;
5549 local_irq_save(flags
);
5550 double_rq_lock(rq_src
, rq_dest
);
5551 rq_dest
->nr_uninterruptible
+= rq_src
->nr_uninterruptible
;
5552 rq_src
->nr_uninterruptible
= 0;
5553 double_rq_unlock(rq_src
, rq_dest
);
5554 local_irq_restore(flags
);
5557 /* Run through task list and migrate tasks from the dead cpu. */
5558 static void migrate_live_tasks(int src_cpu
)
5560 struct task_struct
*p
, *t
;
5562 read_lock(&tasklist_lock
);
5564 do_each_thread(t
, p
) {
5568 if (task_cpu(p
) == src_cpu
)
5569 move_task_off_dead_cpu(src_cpu
, p
);
5570 } while_each_thread(t
, p
);
5572 read_unlock(&tasklist_lock
);
5576 * Schedules idle task to be the next runnable task on current CPU.
5577 * It does so by boosting its priority to highest possible.
5578 * Used by CPU offline code.
5580 void sched_idle_next(void)
5582 int this_cpu
= smp_processor_id();
5583 struct rq
*rq
= cpu_rq(this_cpu
);
5584 struct task_struct
*p
= rq
->idle
;
5585 unsigned long flags
;
5587 /* cpu has to be offline */
5588 BUG_ON(cpu_online(this_cpu
));
5591 * Strictly not necessary since rest of the CPUs are stopped by now
5592 * and interrupts disabled on the current cpu.
5594 spin_lock_irqsave(&rq
->lock
, flags
);
5596 __setscheduler(rq
, p
, SCHED_FIFO
, MAX_RT_PRIO
-1);
5598 update_rq_clock(rq
);
5599 activate_task(rq
, p
, 0);
5601 spin_unlock_irqrestore(&rq
->lock
, flags
);
5605 * Ensures that the idle task is using init_mm right before its cpu goes
5608 void idle_task_exit(void)
5610 struct mm_struct
*mm
= current
->active_mm
;
5612 BUG_ON(cpu_online(smp_processor_id()));
5615 switch_mm(mm
, &init_mm
, current
);
5619 /* called under rq->lock with disabled interrupts */
5620 static void migrate_dead(unsigned int dead_cpu
, struct task_struct
*p
)
5622 struct rq
*rq
= cpu_rq(dead_cpu
);
5624 /* Must be exiting, otherwise would be on tasklist. */
5625 BUG_ON(!p
->exit_state
);
5627 /* Cannot have done final schedule yet: would have vanished. */
5628 BUG_ON(p
->state
== TASK_DEAD
);
5633 * Drop lock around migration; if someone else moves it,
5634 * that's OK. No task can be added to this CPU, so iteration is
5637 spin_unlock_irq(&rq
->lock
);
5638 move_task_off_dead_cpu(dead_cpu
, p
);
5639 spin_lock_irq(&rq
->lock
);
5644 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5645 static void migrate_dead_tasks(unsigned int dead_cpu
)
5647 struct rq
*rq
= cpu_rq(dead_cpu
);
5648 struct task_struct
*next
;
5651 if (!rq
->nr_running
)
5653 update_rq_clock(rq
);
5654 next
= pick_next_task(rq
, rq
->curr
);
5657 migrate_dead(dead_cpu
, next
);
5661 #endif /* CONFIG_HOTPLUG_CPU */
5663 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5665 static struct ctl_table sd_ctl_dir
[] = {
5667 .procname
= "sched_domain",
5673 static struct ctl_table sd_ctl_root
[] = {
5675 .ctl_name
= CTL_KERN
,
5676 .procname
= "kernel",
5678 .child
= sd_ctl_dir
,
5683 static struct ctl_table
*sd_alloc_ctl_entry(int n
)
5685 struct ctl_table
*entry
=
5686 kcalloc(n
, sizeof(struct ctl_table
), GFP_KERNEL
);
5691 static void sd_free_ctl_entry(struct ctl_table
**tablep
)
5693 struct ctl_table
*entry
;
5696 * In the intermediate directories, both the child directory and
5697 * procname are dynamically allocated and could fail but the mode
5698 * will always be set. In the lowest directory the names are
5699 * static strings and all have proc handlers.
5701 for (entry
= *tablep
; entry
->mode
; entry
++) {
5703 sd_free_ctl_entry(&entry
->child
);
5704 if (entry
->proc_handler
== NULL
)
5705 kfree(entry
->procname
);
5713 set_table_entry(struct ctl_table
*entry
,
5714 const char *procname
, void *data
, int maxlen
,
5715 mode_t mode
, proc_handler
*proc_handler
)
5717 entry
->procname
= procname
;
5719 entry
->maxlen
= maxlen
;
5721 entry
->proc_handler
= proc_handler
;
5724 static struct ctl_table
*
5725 sd_alloc_ctl_domain_table(struct sched_domain
*sd
)
5727 struct ctl_table
*table
= sd_alloc_ctl_entry(12);
5732 set_table_entry(&table
[0], "min_interval", &sd
->min_interval
,
5733 sizeof(long), 0644, proc_doulongvec_minmax
);
5734 set_table_entry(&table
[1], "max_interval", &sd
->max_interval
,
5735 sizeof(long), 0644, proc_doulongvec_minmax
);
5736 set_table_entry(&table
[2], "busy_idx", &sd
->busy_idx
,
5737 sizeof(int), 0644, proc_dointvec_minmax
);
5738 set_table_entry(&table
[3], "idle_idx", &sd
->idle_idx
,
5739 sizeof(int), 0644, proc_dointvec_minmax
);
5740 set_table_entry(&table
[4], "newidle_idx", &sd
->newidle_idx
,
5741 sizeof(int), 0644, proc_dointvec_minmax
);
5742 set_table_entry(&table
[5], "wake_idx", &sd
->wake_idx
,
5743 sizeof(int), 0644, proc_dointvec_minmax
);
5744 set_table_entry(&table
[6], "forkexec_idx", &sd
->forkexec_idx
,
5745 sizeof(int), 0644, proc_dointvec_minmax
);
5746 set_table_entry(&table
[7], "busy_factor", &sd
->busy_factor
,
5747 sizeof(int), 0644, proc_dointvec_minmax
);
5748 set_table_entry(&table
[8], "imbalance_pct", &sd
->imbalance_pct
,
5749 sizeof(int), 0644, proc_dointvec_minmax
);
5750 set_table_entry(&table
[9], "cache_nice_tries",
5751 &sd
->cache_nice_tries
,
5752 sizeof(int), 0644, proc_dointvec_minmax
);
5753 set_table_entry(&table
[10], "flags", &sd
->flags
,
5754 sizeof(int), 0644, proc_dointvec_minmax
);
5755 /* &table[11] is terminator */
5760 static ctl_table
*sd_alloc_ctl_cpu_table(int cpu
)
5762 struct ctl_table
*entry
, *table
;
5763 struct sched_domain
*sd
;
5764 int domain_num
= 0, i
;
5767 for_each_domain(cpu
, sd
)
5769 entry
= table
= sd_alloc_ctl_entry(domain_num
+ 1);
5774 for_each_domain(cpu
, sd
) {
5775 snprintf(buf
, 32, "domain%d", i
);
5776 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
5778 entry
->child
= sd_alloc_ctl_domain_table(sd
);
5785 static struct ctl_table_header
*sd_sysctl_header
;
5786 static void register_sched_domain_sysctl(void)
5788 int i
, cpu_num
= num_online_cpus();
5789 struct ctl_table
*entry
= sd_alloc_ctl_entry(cpu_num
+ 1);
5792 WARN_ON(sd_ctl_dir
[0].child
);
5793 sd_ctl_dir
[0].child
= entry
;
5798 for_each_online_cpu(i
) {
5799 snprintf(buf
, 32, "cpu%d", i
);
5800 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
5802 entry
->child
= sd_alloc_ctl_cpu_table(i
);
5806 WARN_ON(sd_sysctl_header
);
5807 sd_sysctl_header
= register_sysctl_table(sd_ctl_root
);
5810 /* may be called multiple times per register */
5811 static void unregister_sched_domain_sysctl(void)
5813 if (sd_sysctl_header
)
5814 unregister_sysctl_table(sd_sysctl_header
);
5815 sd_sysctl_header
= NULL
;
5816 if (sd_ctl_dir
[0].child
)
5817 sd_free_ctl_entry(&sd_ctl_dir
[0].child
);
5820 static void register_sched_domain_sysctl(void)
5823 static void unregister_sched_domain_sysctl(void)
5829 * migration_call - callback that gets triggered when a CPU is added.
5830 * Here we can start up the necessary migration thread for the new CPU.
5832 static int __cpuinit
5833 migration_call(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
)
5835 struct task_struct
*p
;
5836 int cpu
= (long)hcpu
;
5837 unsigned long flags
;
5842 case CPU_UP_PREPARE
:
5843 case CPU_UP_PREPARE_FROZEN
:
5844 p
= kthread_create(migration_thread
, hcpu
, "migration/%d", cpu
);
5847 kthread_bind(p
, cpu
);
5848 /* Must be high prio: stop_machine expects to yield to it. */
5849 rq
= task_rq_lock(p
, &flags
);
5850 __setscheduler(rq
, p
, SCHED_FIFO
, MAX_RT_PRIO
-1);
5851 task_rq_unlock(rq
, &flags
);
5852 cpu_rq(cpu
)->migration_thread
= p
;
5856 case CPU_ONLINE_FROZEN
:
5857 /* Strictly unnecessary, as first user will wake it. */
5858 wake_up_process(cpu_rq(cpu
)->migration_thread
);
5860 /* Update our root-domain */
5862 spin_lock_irqsave(&rq
->lock
, flags
);
5864 BUG_ON(!cpu_isset(cpu
, rq
->rd
->span
));
5865 cpu_set(cpu
, rq
->rd
->online
);
5867 spin_unlock_irqrestore(&rq
->lock
, flags
);
5870 #ifdef CONFIG_HOTPLUG_CPU
5871 case CPU_UP_CANCELED
:
5872 case CPU_UP_CANCELED_FROZEN
:
5873 if (!cpu_rq(cpu
)->migration_thread
)
5875 /* Unbind it from offline cpu so it can run. Fall thru. */
5876 kthread_bind(cpu_rq(cpu
)->migration_thread
,
5877 any_online_cpu(cpu_online_map
));
5878 kthread_stop(cpu_rq(cpu
)->migration_thread
);
5879 cpu_rq(cpu
)->migration_thread
= NULL
;
5883 case CPU_DEAD_FROZEN
:
5884 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
5885 migrate_live_tasks(cpu
);
5887 kthread_stop(rq
->migration_thread
);
5888 rq
->migration_thread
= NULL
;
5889 /* Idle task back to normal (off runqueue, low prio) */
5890 spin_lock_irq(&rq
->lock
);
5891 update_rq_clock(rq
);
5892 deactivate_task(rq
, rq
->idle
, 0);
5893 rq
->idle
->static_prio
= MAX_PRIO
;
5894 __setscheduler(rq
, rq
->idle
, SCHED_NORMAL
, 0);
5895 rq
->idle
->sched_class
= &idle_sched_class
;
5896 migrate_dead_tasks(cpu
);
5897 spin_unlock_irq(&rq
->lock
);
5899 migrate_nr_uninterruptible(rq
);
5900 BUG_ON(rq
->nr_running
!= 0);
5903 * No need to migrate the tasks: it was best-effort if
5904 * they didn't take sched_hotcpu_mutex. Just wake up
5907 spin_lock_irq(&rq
->lock
);
5908 while (!list_empty(&rq
->migration_queue
)) {
5909 struct migration_req
*req
;
5911 req
= list_entry(rq
->migration_queue
.next
,
5912 struct migration_req
, list
);
5913 list_del_init(&req
->list
);
5914 complete(&req
->done
);
5916 spin_unlock_irq(&rq
->lock
);
5919 case CPU_DOWN_PREPARE
:
5920 /* Update our root-domain */
5922 spin_lock_irqsave(&rq
->lock
, flags
);
5924 BUG_ON(!cpu_isset(cpu
, rq
->rd
->span
));
5925 cpu_clear(cpu
, rq
->rd
->online
);
5927 spin_unlock_irqrestore(&rq
->lock
, flags
);
5934 /* Register at highest priority so that task migration (migrate_all_tasks)
5935 * happens before everything else.
5937 static struct notifier_block __cpuinitdata migration_notifier
= {
5938 .notifier_call
= migration_call
,
5942 void __init
migration_init(void)
5944 void *cpu
= (void *)(long)smp_processor_id();
5947 /* Start one for the boot CPU: */
5948 err
= migration_call(&migration_notifier
, CPU_UP_PREPARE
, cpu
);
5949 BUG_ON(err
== NOTIFY_BAD
);
5950 migration_call(&migration_notifier
, CPU_ONLINE
, cpu
);
5951 register_cpu_notifier(&migration_notifier
);
5957 /* Number of possible processor ids */
5958 int nr_cpu_ids __read_mostly
= NR_CPUS
;
5959 EXPORT_SYMBOL(nr_cpu_ids
);
5961 #ifdef CONFIG_SCHED_DEBUG
5963 static int sched_domain_debug_one(struct sched_domain
*sd
, int cpu
, int level
)
5965 struct sched_group
*group
= sd
->groups
;
5966 cpumask_t groupmask
;
5969 cpumask_scnprintf(str
, NR_CPUS
, sd
->span
);
5970 cpus_clear(groupmask
);
5972 printk(KERN_DEBUG
"%*s domain %d: ", level
, "", level
);
5974 if (!(sd
->flags
& SD_LOAD_BALANCE
)) {
5975 printk("does not load-balance\n");
5977 printk(KERN_ERR
"ERROR: !SD_LOAD_BALANCE domain"
5982 printk(KERN_CONT
"span %s\n", str
);
5984 if (!cpu_isset(cpu
, sd
->span
)) {
5985 printk(KERN_ERR
"ERROR: domain->span does not contain "
5988 if (!cpu_isset(cpu
, group
->cpumask
)) {
5989 printk(KERN_ERR
"ERROR: domain->groups does not contain"
5993 printk(KERN_DEBUG
"%*s groups:", level
+ 1, "");
5997 printk(KERN_ERR
"ERROR: group is NULL\n");
6001 if (!group
->__cpu_power
) {
6002 printk(KERN_CONT
"\n");
6003 printk(KERN_ERR
"ERROR: domain->cpu_power not "
6008 if (!cpus_weight(group
->cpumask
)) {
6009 printk(KERN_CONT
"\n");
6010 printk(KERN_ERR
"ERROR: empty group\n");
6014 if (cpus_intersects(groupmask
, group
->cpumask
)) {
6015 printk(KERN_CONT
"\n");
6016 printk(KERN_ERR
"ERROR: repeated CPUs\n");
6020 cpus_or(groupmask
, groupmask
, group
->cpumask
);
6022 cpumask_scnprintf(str
, NR_CPUS
, group
->cpumask
);
6023 printk(KERN_CONT
" %s", str
);
6025 group
= group
->next
;
6026 } while (group
!= sd
->groups
);
6027 printk(KERN_CONT
"\n");
6029 if (!cpus_equal(sd
->span
, groupmask
))
6030 printk(KERN_ERR
"ERROR: groups don't span domain->span\n");
6032 if (sd
->parent
&& !cpus_subset(groupmask
, sd
->parent
->span
))
6033 printk(KERN_ERR
"ERROR: parent span is not a superset "
6034 "of domain->span\n");
6038 static void sched_domain_debug(struct sched_domain
*sd
, int cpu
)
6043 printk(KERN_DEBUG
"CPU%d attaching NULL sched-domain.\n", cpu
);
6047 printk(KERN_DEBUG
"CPU%d attaching sched-domain:\n", cpu
);
6050 if (sched_domain_debug_one(sd
, cpu
, level
))
6059 # define sched_domain_debug(sd, cpu) do { } while (0)
6062 static int sd_degenerate(struct sched_domain
*sd
)
6064 if (cpus_weight(sd
->span
) == 1)
6067 /* Following flags need at least 2 groups */
6068 if (sd
->flags
& (SD_LOAD_BALANCE
|
6069 SD_BALANCE_NEWIDLE
|
6073 SD_SHARE_PKG_RESOURCES
)) {
6074 if (sd
->groups
!= sd
->groups
->next
)
6078 /* Following flags don't use groups */
6079 if (sd
->flags
& (SD_WAKE_IDLE
|
6088 sd_parent_degenerate(struct sched_domain
*sd
, struct sched_domain
*parent
)
6090 unsigned long cflags
= sd
->flags
, pflags
= parent
->flags
;
6092 if (sd_degenerate(parent
))
6095 if (!cpus_equal(sd
->span
, parent
->span
))
6098 /* Does parent contain flags not in child? */
6099 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6100 if (cflags
& SD_WAKE_AFFINE
)
6101 pflags
&= ~SD_WAKE_BALANCE
;
6102 /* Flags needing groups don't count if only 1 group in parent */
6103 if (parent
->groups
== parent
->groups
->next
) {
6104 pflags
&= ~(SD_LOAD_BALANCE
|
6105 SD_BALANCE_NEWIDLE
|
6109 SD_SHARE_PKG_RESOURCES
);
6111 if (~cflags
& pflags
)
6117 static void rq_attach_root(struct rq
*rq
, struct root_domain
*rd
)
6119 unsigned long flags
;
6120 const struct sched_class
*class;
6122 spin_lock_irqsave(&rq
->lock
, flags
);
6125 struct root_domain
*old_rd
= rq
->rd
;
6127 for (class = sched_class_highest
; class; class = class->next
) {
6128 if (class->leave_domain
)
6129 class->leave_domain(rq
);
6132 cpu_clear(rq
->cpu
, old_rd
->span
);
6133 cpu_clear(rq
->cpu
, old_rd
->online
);
6135 if (atomic_dec_and_test(&old_rd
->refcount
))
6139 atomic_inc(&rd
->refcount
);
6142 cpu_set(rq
->cpu
, rd
->span
);
6143 if (cpu_isset(rq
->cpu
, cpu_online_map
))
6144 cpu_set(rq
->cpu
, rd
->online
);
6146 for (class = sched_class_highest
; class; class = class->next
) {
6147 if (class->join_domain
)
6148 class->join_domain(rq
);
6151 spin_unlock_irqrestore(&rq
->lock
, flags
);
6154 static void init_rootdomain(struct root_domain
*rd
)
6156 memset(rd
, 0, sizeof(*rd
));
6158 cpus_clear(rd
->span
);
6159 cpus_clear(rd
->online
);
6162 static void init_defrootdomain(void)
6164 init_rootdomain(&def_root_domain
);
6165 atomic_set(&def_root_domain
.refcount
, 1);
6168 static struct root_domain
*alloc_rootdomain(void)
6170 struct root_domain
*rd
;
6172 rd
= kmalloc(sizeof(*rd
), GFP_KERNEL
);
6176 init_rootdomain(rd
);
6182 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6183 * hold the hotplug lock.
6186 cpu_attach_domain(struct sched_domain
*sd
, struct root_domain
*rd
, int cpu
)
6188 struct rq
*rq
= cpu_rq(cpu
);
6189 struct sched_domain
*tmp
;
6191 /* Remove the sched domains which do not contribute to scheduling. */
6192 for (tmp
= sd
; tmp
; tmp
= tmp
->parent
) {
6193 struct sched_domain
*parent
= tmp
->parent
;
6196 if (sd_parent_degenerate(tmp
, parent
)) {
6197 tmp
->parent
= parent
->parent
;
6199 parent
->parent
->child
= tmp
;
6203 if (sd
&& sd_degenerate(sd
)) {
6209 sched_domain_debug(sd
, cpu
);
6211 rq_attach_root(rq
, rd
);
6212 rcu_assign_pointer(rq
->sd
, sd
);
6215 /* cpus with isolated domains */
6216 static cpumask_t cpu_isolated_map
= CPU_MASK_NONE
;
6218 /* Setup the mask of cpus configured for isolated domains */
6219 static int __init
isolated_cpu_setup(char *str
)
6221 int ints
[NR_CPUS
], i
;
6223 str
= get_options(str
, ARRAY_SIZE(ints
), ints
);
6224 cpus_clear(cpu_isolated_map
);
6225 for (i
= 1; i
<= ints
[0]; i
++)
6226 if (ints
[i
] < NR_CPUS
)
6227 cpu_set(ints
[i
], cpu_isolated_map
);
6231 __setup("isolcpus=", isolated_cpu_setup
);
6234 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6235 * to a function which identifies what group(along with sched group) a CPU
6236 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
6237 * (due to the fact that we keep track of groups covered with a cpumask_t).
6239 * init_sched_build_groups will build a circular linked list of the groups
6240 * covered by the given span, and will set each group's ->cpumask correctly,
6241 * and ->cpu_power to 0.
6244 init_sched_build_groups(cpumask_t span
, const cpumask_t
*cpu_map
,
6245 int (*group_fn
)(int cpu
, const cpumask_t
*cpu_map
,
6246 struct sched_group
**sg
))
6248 struct sched_group
*first
= NULL
, *last
= NULL
;
6249 cpumask_t covered
= CPU_MASK_NONE
;
6252 for_each_cpu_mask(i
, span
) {
6253 struct sched_group
*sg
;
6254 int group
= group_fn(i
, cpu_map
, &sg
);
6257 if (cpu_isset(i
, covered
))
6260 sg
->cpumask
= CPU_MASK_NONE
;
6261 sg
->__cpu_power
= 0;
6263 for_each_cpu_mask(j
, span
) {
6264 if (group_fn(j
, cpu_map
, NULL
) != group
)
6267 cpu_set(j
, covered
);
6268 cpu_set(j
, sg
->cpumask
);
6279 #define SD_NODES_PER_DOMAIN 16
6284 * find_next_best_node - find the next node to include in a sched_domain
6285 * @node: node whose sched_domain we're building
6286 * @used_nodes: nodes already in the sched_domain
6288 * Find the next node to include in a given scheduling domain. Simply
6289 * finds the closest node not already in the @used_nodes map.
6291 * Should use nodemask_t.
6293 static int find_next_best_node(int node
, unsigned long *used_nodes
)
6295 int i
, n
, val
, min_val
, best_node
= 0;
6299 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
6300 /* Start at @node */
6301 n
= (node
+ i
) % MAX_NUMNODES
;
6303 if (!nr_cpus_node(n
))
6306 /* Skip already used nodes */
6307 if (test_bit(n
, used_nodes
))
6310 /* Simple min distance search */
6311 val
= node_distance(node
, n
);
6313 if (val
< min_val
) {
6319 set_bit(best_node
, used_nodes
);
6324 * sched_domain_node_span - get a cpumask for a node's sched_domain
6325 * @node: node whose cpumask we're constructing
6326 * @size: number of nodes to include in this span
6328 * Given a node, construct a good cpumask for its sched_domain to span. It
6329 * should be one that prevents unnecessary balancing, but also spreads tasks
6332 static cpumask_t
sched_domain_node_span(int node
)
6334 DECLARE_BITMAP(used_nodes
, MAX_NUMNODES
);
6335 cpumask_t span
, nodemask
;
6339 bitmap_zero(used_nodes
, MAX_NUMNODES
);
6341 nodemask
= node_to_cpumask(node
);
6342 cpus_or(span
, span
, nodemask
);
6343 set_bit(node
, used_nodes
);
6345 for (i
= 1; i
< SD_NODES_PER_DOMAIN
; i
++) {
6346 int next_node
= find_next_best_node(node
, used_nodes
);
6348 nodemask
= node_to_cpumask(next_node
);
6349 cpus_or(span
, span
, nodemask
);
6356 int sched_smt_power_savings
= 0, sched_mc_power_savings
= 0;
6359 * SMT sched-domains:
6361 #ifdef CONFIG_SCHED_SMT
6362 static DEFINE_PER_CPU(struct sched_domain
, cpu_domains
);
6363 static DEFINE_PER_CPU(struct sched_group
, sched_group_cpus
);
6366 cpu_to_cpu_group(int cpu
, const cpumask_t
*cpu_map
, struct sched_group
**sg
)
6369 *sg
= &per_cpu(sched_group_cpus
, cpu
);
6375 * multi-core sched-domains:
6377 #ifdef CONFIG_SCHED_MC
6378 static DEFINE_PER_CPU(struct sched_domain
, core_domains
);
6379 static DEFINE_PER_CPU(struct sched_group
, sched_group_core
);
6382 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6384 cpu_to_core_group(int cpu
, const cpumask_t
*cpu_map
, struct sched_group
**sg
)
6387 cpumask_t mask
= per_cpu(cpu_sibling_map
, cpu
);
6388 cpus_and(mask
, mask
, *cpu_map
);
6389 group
= first_cpu(mask
);
6391 *sg
= &per_cpu(sched_group_core
, group
);
6394 #elif defined(CONFIG_SCHED_MC)
6396 cpu_to_core_group(int cpu
, const cpumask_t
*cpu_map
, struct sched_group
**sg
)
6399 *sg
= &per_cpu(sched_group_core
, cpu
);
6404 static DEFINE_PER_CPU(struct sched_domain
, phys_domains
);
6405 static DEFINE_PER_CPU(struct sched_group
, sched_group_phys
);
6408 cpu_to_phys_group(int cpu
, const cpumask_t
*cpu_map
, struct sched_group
**sg
)
6411 #ifdef CONFIG_SCHED_MC
6412 cpumask_t mask
= cpu_coregroup_map(cpu
);
6413 cpus_and(mask
, mask
, *cpu_map
);
6414 group
= first_cpu(mask
);
6415 #elif defined(CONFIG_SCHED_SMT)
6416 cpumask_t mask
= per_cpu(cpu_sibling_map
, cpu
);
6417 cpus_and(mask
, mask
, *cpu_map
);
6418 group
= first_cpu(mask
);
6423 *sg
= &per_cpu(sched_group_phys
, group
);
6429 * The init_sched_build_groups can't handle what we want to do with node
6430 * groups, so roll our own. Now each node has its own list of groups which
6431 * gets dynamically allocated.
6433 static DEFINE_PER_CPU(struct sched_domain
, node_domains
);
6434 static struct sched_group
**sched_group_nodes_bycpu
[NR_CPUS
];
6436 static DEFINE_PER_CPU(struct sched_domain
, allnodes_domains
);
6437 static DEFINE_PER_CPU(struct sched_group
, sched_group_allnodes
);
6439 static int cpu_to_allnodes_group(int cpu
, const cpumask_t
*cpu_map
,
6440 struct sched_group
**sg
)
6442 cpumask_t nodemask
= node_to_cpumask(cpu_to_node(cpu
));
6445 cpus_and(nodemask
, nodemask
, *cpu_map
);
6446 group
= first_cpu(nodemask
);
6449 *sg
= &per_cpu(sched_group_allnodes
, group
);
6453 static void init_numa_sched_groups_power(struct sched_group
*group_head
)
6455 struct sched_group
*sg
= group_head
;
6461 for_each_cpu_mask(j
, sg
->cpumask
) {
6462 struct sched_domain
*sd
;
6464 sd
= &per_cpu(phys_domains
, j
);
6465 if (j
!= first_cpu(sd
->groups
->cpumask
)) {
6467 * Only add "power" once for each
6473 sg_inc_cpu_power(sg
, sd
->groups
->__cpu_power
);
6476 } while (sg
!= group_head
);
6481 /* Free memory allocated for various sched_group structures */
6482 static void free_sched_groups(const cpumask_t
*cpu_map
)
6486 for_each_cpu_mask(cpu
, *cpu_map
) {
6487 struct sched_group
**sched_group_nodes
6488 = sched_group_nodes_bycpu
[cpu
];
6490 if (!sched_group_nodes
)
6493 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
6494 cpumask_t nodemask
= node_to_cpumask(i
);
6495 struct sched_group
*oldsg
, *sg
= sched_group_nodes
[i
];
6497 cpus_and(nodemask
, nodemask
, *cpu_map
);
6498 if (cpus_empty(nodemask
))
6508 if (oldsg
!= sched_group_nodes
[i
])
6511 kfree(sched_group_nodes
);
6512 sched_group_nodes_bycpu
[cpu
] = NULL
;
6516 static void free_sched_groups(const cpumask_t
*cpu_map
)
6522 * Initialize sched groups cpu_power.
6524 * cpu_power indicates the capacity of sched group, which is used while
6525 * distributing the load between different sched groups in a sched domain.
6526 * Typically cpu_power for all the groups in a sched domain will be same unless
6527 * there are asymmetries in the topology. If there are asymmetries, group
6528 * having more cpu_power will pickup more load compared to the group having
6531 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
6532 * the maximum number of tasks a group can handle in the presence of other idle
6533 * or lightly loaded groups in the same sched domain.
6535 static void init_sched_groups_power(int cpu
, struct sched_domain
*sd
)
6537 struct sched_domain
*child
;
6538 struct sched_group
*group
;
6540 WARN_ON(!sd
|| !sd
->groups
);
6542 if (cpu
!= first_cpu(sd
->groups
->cpumask
))
6547 sd
->groups
->__cpu_power
= 0;
6550 * For perf policy, if the groups in child domain share resources
6551 * (for example cores sharing some portions of the cache hierarchy
6552 * or SMT), then set this domain groups cpu_power such that each group
6553 * can handle only one task, when there are other idle groups in the
6554 * same sched domain.
6556 if (!child
|| (!(sd
->flags
& SD_POWERSAVINGS_BALANCE
) &&
6558 (SD_SHARE_CPUPOWER
| SD_SHARE_PKG_RESOURCES
)))) {
6559 sg_inc_cpu_power(sd
->groups
, SCHED_LOAD_SCALE
);
6564 * add cpu_power of each child group to this groups cpu_power
6566 group
= child
->groups
;
6568 sg_inc_cpu_power(sd
->groups
, group
->__cpu_power
);
6569 group
= group
->next
;
6570 } while (group
!= child
->groups
);
6574 * Build sched domains for a given set of cpus and attach the sched domains
6575 * to the individual cpus
6577 static int build_sched_domains(const cpumask_t
*cpu_map
)
6580 struct root_domain
*rd
;
6582 struct sched_group
**sched_group_nodes
= NULL
;
6583 int sd_allnodes
= 0;
6586 * Allocate the per-node list of sched groups
6588 sched_group_nodes
= kcalloc(MAX_NUMNODES
, sizeof(struct sched_group
*),
6590 if (!sched_group_nodes
) {
6591 printk(KERN_WARNING
"Can not alloc sched group node list\n");
6594 sched_group_nodes_bycpu
[first_cpu(*cpu_map
)] = sched_group_nodes
;
6597 rd
= alloc_rootdomain();
6599 printk(KERN_WARNING
"Cannot alloc root domain\n");
6604 * Set up domains for cpus specified by the cpu_map.
6606 for_each_cpu_mask(i
, *cpu_map
) {
6607 struct sched_domain
*sd
= NULL
, *p
;
6608 cpumask_t nodemask
= node_to_cpumask(cpu_to_node(i
));
6610 cpus_and(nodemask
, nodemask
, *cpu_map
);
6613 if (cpus_weight(*cpu_map
) >
6614 SD_NODES_PER_DOMAIN
*cpus_weight(nodemask
)) {
6615 sd
= &per_cpu(allnodes_domains
, i
);
6616 *sd
= SD_ALLNODES_INIT
;
6617 sd
->span
= *cpu_map
;
6618 cpu_to_allnodes_group(i
, cpu_map
, &sd
->groups
);
6624 sd
= &per_cpu(node_domains
, i
);
6626 sd
->span
= sched_domain_node_span(cpu_to_node(i
));
6630 cpus_and(sd
->span
, sd
->span
, *cpu_map
);
6634 sd
= &per_cpu(phys_domains
, i
);
6636 sd
->span
= nodemask
;
6640 cpu_to_phys_group(i
, cpu_map
, &sd
->groups
);
6642 #ifdef CONFIG_SCHED_MC
6644 sd
= &per_cpu(core_domains
, i
);
6646 sd
->span
= cpu_coregroup_map(i
);
6647 cpus_and(sd
->span
, sd
->span
, *cpu_map
);
6650 cpu_to_core_group(i
, cpu_map
, &sd
->groups
);
6653 #ifdef CONFIG_SCHED_SMT
6655 sd
= &per_cpu(cpu_domains
, i
);
6656 *sd
= SD_SIBLING_INIT
;
6657 sd
->span
= per_cpu(cpu_sibling_map
, i
);
6658 cpus_and(sd
->span
, sd
->span
, *cpu_map
);
6661 cpu_to_cpu_group(i
, cpu_map
, &sd
->groups
);
6665 #ifdef CONFIG_SCHED_SMT
6666 /* Set up CPU (sibling) groups */
6667 for_each_cpu_mask(i
, *cpu_map
) {
6668 cpumask_t this_sibling_map
= per_cpu(cpu_sibling_map
, i
);
6669 cpus_and(this_sibling_map
, this_sibling_map
, *cpu_map
);
6670 if (i
!= first_cpu(this_sibling_map
))
6673 init_sched_build_groups(this_sibling_map
, cpu_map
,
6678 #ifdef CONFIG_SCHED_MC
6679 /* Set up multi-core groups */
6680 for_each_cpu_mask(i
, *cpu_map
) {
6681 cpumask_t this_core_map
= cpu_coregroup_map(i
);
6682 cpus_and(this_core_map
, this_core_map
, *cpu_map
);
6683 if (i
!= first_cpu(this_core_map
))
6685 init_sched_build_groups(this_core_map
, cpu_map
,
6686 &cpu_to_core_group
);
6690 /* Set up physical groups */
6691 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
6692 cpumask_t nodemask
= node_to_cpumask(i
);
6694 cpus_and(nodemask
, nodemask
, *cpu_map
);
6695 if (cpus_empty(nodemask
))
6698 init_sched_build_groups(nodemask
, cpu_map
, &cpu_to_phys_group
);
6702 /* Set up node groups */
6704 init_sched_build_groups(*cpu_map
, cpu_map
,
6705 &cpu_to_allnodes_group
);
6707 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
6708 /* Set up node groups */
6709 struct sched_group
*sg
, *prev
;
6710 cpumask_t nodemask
= node_to_cpumask(i
);
6711 cpumask_t domainspan
;
6712 cpumask_t covered
= CPU_MASK_NONE
;
6715 cpus_and(nodemask
, nodemask
, *cpu_map
);
6716 if (cpus_empty(nodemask
)) {
6717 sched_group_nodes
[i
] = NULL
;
6721 domainspan
= sched_domain_node_span(i
);
6722 cpus_and(domainspan
, domainspan
, *cpu_map
);
6724 sg
= kmalloc_node(sizeof(struct sched_group
), GFP_KERNEL
, i
);
6726 printk(KERN_WARNING
"Can not alloc domain group for "
6730 sched_group_nodes
[i
] = sg
;
6731 for_each_cpu_mask(j
, nodemask
) {
6732 struct sched_domain
*sd
;
6734 sd
= &per_cpu(node_domains
, j
);
6737 sg
->__cpu_power
= 0;
6738 sg
->cpumask
= nodemask
;
6740 cpus_or(covered
, covered
, nodemask
);
6743 for (j
= 0; j
< MAX_NUMNODES
; j
++) {
6744 cpumask_t tmp
, notcovered
;
6745 int n
= (i
+ j
) % MAX_NUMNODES
;
6747 cpus_complement(notcovered
, covered
);
6748 cpus_and(tmp
, notcovered
, *cpu_map
);
6749 cpus_and(tmp
, tmp
, domainspan
);
6750 if (cpus_empty(tmp
))
6753 nodemask
= node_to_cpumask(n
);
6754 cpus_and(tmp
, tmp
, nodemask
);
6755 if (cpus_empty(tmp
))
6758 sg
= kmalloc_node(sizeof(struct sched_group
),
6762 "Can not alloc domain group for node %d\n", j
);
6765 sg
->__cpu_power
= 0;
6767 sg
->next
= prev
->next
;
6768 cpus_or(covered
, covered
, tmp
);
6775 /* Calculate CPU power for physical packages and nodes */
6776 #ifdef CONFIG_SCHED_SMT
6777 for_each_cpu_mask(i
, *cpu_map
) {
6778 struct sched_domain
*sd
= &per_cpu(cpu_domains
, i
);
6780 init_sched_groups_power(i
, sd
);
6783 #ifdef CONFIG_SCHED_MC
6784 for_each_cpu_mask(i
, *cpu_map
) {
6785 struct sched_domain
*sd
= &per_cpu(core_domains
, i
);
6787 init_sched_groups_power(i
, sd
);
6791 for_each_cpu_mask(i
, *cpu_map
) {
6792 struct sched_domain
*sd
= &per_cpu(phys_domains
, i
);
6794 init_sched_groups_power(i
, sd
);
6798 for (i
= 0; i
< MAX_NUMNODES
; i
++)
6799 init_numa_sched_groups_power(sched_group_nodes
[i
]);
6802 struct sched_group
*sg
;
6804 cpu_to_allnodes_group(first_cpu(*cpu_map
), cpu_map
, &sg
);
6805 init_numa_sched_groups_power(sg
);
6809 /* Attach the domains */
6810 for_each_cpu_mask(i
, *cpu_map
) {
6811 struct sched_domain
*sd
;
6812 #ifdef CONFIG_SCHED_SMT
6813 sd
= &per_cpu(cpu_domains
, i
);
6814 #elif defined(CONFIG_SCHED_MC)
6815 sd
= &per_cpu(core_domains
, i
);
6817 sd
= &per_cpu(phys_domains
, i
);
6819 cpu_attach_domain(sd
, rd
, i
);
6826 free_sched_groups(cpu_map
);
6831 static cpumask_t
*doms_cur
; /* current sched domains */
6832 static int ndoms_cur
; /* number of sched domains in 'doms_cur' */
6835 * Special case: If a kmalloc of a doms_cur partition (array of
6836 * cpumask_t) fails, then fallback to a single sched domain,
6837 * as determined by the single cpumask_t fallback_doms.
6839 static cpumask_t fallback_doms
;
6842 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6843 * For now this just excludes isolated cpus, but could be used to
6844 * exclude other special cases in the future.
6846 static int arch_init_sched_domains(const cpumask_t
*cpu_map
)
6851 doms_cur
= kmalloc(sizeof(cpumask_t
), GFP_KERNEL
);
6853 doms_cur
= &fallback_doms
;
6854 cpus_andnot(*doms_cur
, *cpu_map
, cpu_isolated_map
);
6855 err
= build_sched_domains(doms_cur
);
6856 register_sched_domain_sysctl();
6861 static void arch_destroy_sched_domains(const cpumask_t
*cpu_map
)
6863 free_sched_groups(cpu_map
);
6867 * Detach sched domains from a group of cpus specified in cpu_map
6868 * These cpus will now be attached to the NULL domain
6870 static void detach_destroy_domains(const cpumask_t
*cpu_map
)
6874 unregister_sched_domain_sysctl();
6876 for_each_cpu_mask(i
, *cpu_map
)
6877 cpu_attach_domain(NULL
, &def_root_domain
, i
);
6878 synchronize_sched();
6879 arch_destroy_sched_domains(cpu_map
);
6883 * Partition sched domains as specified by the 'ndoms_new'
6884 * cpumasks in the array doms_new[] of cpumasks. This compares
6885 * doms_new[] to the current sched domain partitioning, doms_cur[].
6886 * It destroys each deleted domain and builds each new domain.
6888 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
6889 * The masks don't intersect (don't overlap.) We should setup one
6890 * sched domain for each mask. CPUs not in any of the cpumasks will
6891 * not be load balanced. If the same cpumask appears both in the
6892 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6895 * The passed in 'doms_new' should be kmalloc'd. This routine takes
6896 * ownership of it and will kfree it when done with it. If the caller
6897 * failed the kmalloc call, then it can pass in doms_new == NULL,
6898 * and partition_sched_domains() will fallback to the single partition
6901 * Call with hotplug lock held
6903 void partition_sched_domains(int ndoms_new
, cpumask_t
*doms_new
)
6909 /* always unregister in case we don't destroy any domains */
6910 unregister_sched_domain_sysctl();
6912 if (doms_new
== NULL
) {
6914 doms_new
= &fallback_doms
;
6915 cpus_andnot(doms_new
[0], cpu_online_map
, cpu_isolated_map
);
6918 /* Destroy deleted domains */
6919 for (i
= 0; i
< ndoms_cur
; i
++) {
6920 for (j
= 0; j
< ndoms_new
; j
++) {
6921 if (cpus_equal(doms_cur
[i
], doms_new
[j
]))
6924 /* no match - a current sched domain not in new doms_new[] */
6925 detach_destroy_domains(doms_cur
+ i
);
6930 /* Build new domains */
6931 for (i
= 0; i
< ndoms_new
; i
++) {
6932 for (j
= 0; j
< ndoms_cur
; j
++) {
6933 if (cpus_equal(doms_new
[i
], doms_cur
[j
]))
6936 /* no match - add a new doms_new */
6937 build_sched_domains(doms_new
+ i
);
6942 /* Remember the new sched domains */
6943 if (doms_cur
!= &fallback_doms
)
6945 doms_cur
= doms_new
;
6946 ndoms_cur
= ndoms_new
;
6948 register_sched_domain_sysctl();
6953 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6954 static int arch_reinit_sched_domains(void)
6959 detach_destroy_domains(&cpu_online_map
);
6960 err
= arch_init_sched_domains(&cpu_online_map
);
6966 static ssize_t
sched_power_savings_store(const char *buf
, size_t count
, int smt
)
6970 if (buf
[0] != '0' && buf
[0] != '1')
6974 sched_smt_power_savings
= (buf
[0] == '1');
6976 sched_mc_power_savings
= (buf
[0] == '1');
6978 ret
= arch_reinit_sched_domains();
6980 return ret
? ret
: count
;
6983 #ifdef CONFIG_SCHED_MC
6984 static ssize_t
sched_mc_power_savings_show(struct sys_device
*dev
, char *page
)
6986 return sprintf(page
, "%u\n", sched_mc_power_savings
);
6988 static ssize_t
sched_mc_power_savings_store(struct sys_device
*dev
,
6989 const char *buf
, size_t count
)
6991 return sched_power_savings_store(buf
, count
, 0);
6993 static SYSDEV_ATTR(sched_mc_power_savings
, 0644, sched_mc_power_savings_show
,
6994 sched_mc_power_savings_store
);
6997 #ifdef CONFIG_SCHED_SMT
6998 static ssize_t
sched_smt_power_savings_show(struct sys_device
*dev
, char *page
)
7000 return sprintf(page
, "%u\n", sched_smt_power_savings
);
7002 static ssize_t
sched_smt_power_savings_store(struct sys_device
*dev
,
7003 const char *buf
, size_t count
)
7005 return sched_power_savings_store(buf
, count
, 1);
7007 static SYSDEV_ATTR(sched_smt_power_savings
, 0644, sched_smt_power_savings_show
,
7008 sched_smt_power_savings_store
);
7011 int sched_create_sysfs_power_savings_entries(struct sysdev_class
*cls
)
7015 #ifdef CONFIG_SCHED_SMT
7017 err
= sysfs_create_file(&cls
->kset
.kobj
,
7018 &attr_sched_smt_power_savings
.attr
);
7020 #ifdef CONFIG_SCHED_MC
7021 if (!err
&& mc_capable())
7022 err
= sysfs_create_file(&cls
->kset
.kobj
,
7023 &attr_sched_mc_power_savings
.attr
);
7030 * Force a reinitialization of the sched domains hierarchy. The domains
7031 * and groups cannot be updated in place without racing with the balancing
7032 * code, so we temporarily attach all running cpus to the NULL domain
7033 * which will prevent rebalancing while the sched domains are recalculated.
7035 static int update_sched_domains(struct notifier_block
*nfb
,
7036 unsigned long action
, void *hcpu
)
7039 case CPU_UP_PREPARE
:
7040 case CPU_UP_PREPARE_FROZEN
:
7041 case CPU_DOWN_PREPARE
:
7042 case CPU_DOWN_PREPARE_FROZEN
:
7043 detach_destroy_domains(&cpu_online_map
);
7046 case CPU_UP_CANCELED
:
7047 case CPU_UP_CANCELED_FROZEN
:
7048 case CPU_DOWN_FAILED
:
7049 case CPU_DOWN_FAILED_FROZEN
:
7051 case CPU_ONLINE_FROZEN
:
7053 case CPU_DEAD_FROZEN
:
7055 * Fall through and re-initialise the domains.
7062 /* The hotplug lock is already held by cpu_up/cpu_down */
7063 arch_init_sched_domains(&cpu_online_map
);
7068 void __init
sched_init_smp(void)
7070 cpumask_t non_isolated_cpus
;
7073 arch_init_sched_domains(&cpu_online_map
);
7074 cpus_andnot(non_isolated_cpus
, cpu_possible_map
, cpu_isolated_map
);
7075 if (cpus_empty(non_isolated_cpus
))
7076 cpu_set(smp_processor_id(), non_isolated_cpus
);
7078 /* XXX: Theoretical race here - CPU may be hotplugged now */
7079 hotcpu_notifier(update_sched_domains
, 0);
7081 /* Move init over to a non-isolated CPU */
7082 if (set_cpus_allowed(current
, non_isolated_cpus
) < 0)
7084 sched_init_granularity();
7086 #ifdef CONFIG_FAIR_GROUP_SCHED
7087 if (nr_cpu_ids
== 1)
7090 lb_monitor_task
= kthread_create(load_balance_monitor
, NULL
,
7092 if (!IS_ERR(lb_monitor_task
)) {
7093 lb_monitor_task
->flags
|= PF_NOFREEZE
;
7094 wake_up_process(lb_monitor_task
);
7096 printk(KERN_ERR
"Could not create load balance monitor thread"
7097 "(error = %ld) \n", PTR_ERR(lb_monitor_task
));
7102 void __init
sched_init_smp(void)
7104 sched_init_granularity();
7106 #endif /* CONFIG_SMP */
7108 int in_sched_functions(unsigned long addr
)
7110 return in_lock_functions(addr
) ||
7111 (addr
>= (unsigned long)__sched_text_start
7112 && addr
< (unsigned long)__sched_text_end
);
7115 static void init_cfs_rq(struct cfs_rq
*cfs_rq
, struct rq
*rq
)
7117 cfs_rq
->tasks_timeline
= RB_ROOT
;
7118 #ifdef CONFIG_FAIR_GROUP_SCHED
7121 cfs_rq
->min_vruntime
= (u64
)(-(1LL << 20));
7124 static void init_rt_rq(struct rt_rq
*rt_rq
, struct rq
*rq
)
7126 struct rt_prio_array
*array
;
7129 array
= &rt_rq
->active
;
7130 for (i
= 0; i
< MAX_RT_PRIO
; i
++) {
7131 INIT_LIST_HEAD(array
->queue
+ i
);
7132 __clear_bit(i
, array
->bitmap
);
7134 /* delimiter for bitsearch: */
7135 __set_bit(MAX_RT_PRIO
, array
->bitmap
);
7137 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
7138 rt_rq
->highest_prio
= MAX_RT_PRIO
;
7141 rt_rq
->rt_nr_migratory
= 0;
7142 rt_rq
->overloaded
= 0;
7146 rt_rq
->rt_throttled
= 0;
7148 #ifdef CONFIG_RT_GROUP_SCHED
7149 rt_rq
->rt_nr_boosted
= 0;
7154 #ifdef CONFIG_FAIR_GROUP_SCHED
7155 static void init_tg_cfs_entry(struct rq
*rq
, struct task_group
*tg
,
7156 struct cfs_rq
*cfs_rq
, struct sched_entity
*se
,
7159 tg
->cfs_rq
[cpu
] = cfs_rq
;
7160 init_cfs_rq(cfs_rq
, rq
);
7163 list_add(&cfs_rq
->leaf_cfs_rq_list
, &rq
->leaf_cfs_rq_list
);
7166 se
->cfs_rq
= &rq
->cfs
;
7168 se
->load
.weight
= tg
->shares
;
7169 se
->load
.inv_weight
= div64_64(1ULL<<32, se
->load
.weight
);
7174 #ifdef CONFIG_RT_GROUP_SCHED
7175 static void init_tg_rt_entry(struct rq
*rq
, struct task_group
*tg
,
7176 struct rt_rq
*rt_rq
, struct sched_rt_entity
*rt_se
,
7179 tg
->rt_rq
[cpu
] = rt_rq
;
7180 init_rt_rq(rt_rq
, rq
);
7182 rt_rq
->rt_se
= rt_se
;
7184 list_add(&rt_rq
->leaf_rt_rq_list
, &rq
->leaf_rt_rq_list
);
7186 tg
->rt_se
[cpu
] = rt_se
;
7187 rt_se
->rt_rq
= &rq
->rt
;
7188 rt_se
->my_q
= rt_rq
;
7189 rt_se
->parent
= NULL
;
7190 INIT_LIST_HEAD(&rt_se
->run_list
);
7194 void __init
sched_init(void)
7196 int highest_cpu
= 0;
7200 init_defrootdomain();
7203 #ifdef CONFIG_GROUP_SCHED
7204 list_add(&init_task_group
.list
, &task_groups
);
7207 for_each_possible_cpu(i
) {
7211 spin_lock_init(&rq
->lock
);
7212 lockdep_set_class(&rq
->lock
, &rq
->rq_lock_key
);
7215 init_cfs_rq(&rq
->cfs
, rq
);
7216 init_rt_rq(&rq
->rt
, rq
);
7217 #ifdef CONFIG_FAIR_GROUP_SCHED
7218 init_task_group
.shares
= init_task_group_load
;
7219 INIT_LIST_HEAD(&rq
->leaf_cfs_rq_list
);
7220 init_tg_cfs_entry(rq
, &init_task_group
,
7221 &per_cpu(init_cfs_rq
, i
),
7222 &per_cpu(init_sched_entity
, i
), i
, 1);
7225 #ifdef CONFIG_RT_GROUP_SCHED
7226 init_task_group
.rt_runtime
=
7227 sysctl_sched_rt_runtime
* NSEC_PER_USEC
;
7228 INIT_LIST_HEAD(&rq
->leaf_rt_rq_list
);
7229 init_tg_rt_entry(rq
, &init_task_group
,
7230 &per_cpu(init_rt_rq
, i
),
7231 &per_cpu(init_sched_rt_entity
, i
), i
, 1);
7233 rq
->rt_period_expire
= 0;
7234 rq
->rt_throttled
= 0;
7236 for (j
= 0; j
< CPU_LOAD_IDX_MAX
; j
++)
7237 rq
->cpu_load
[j
] = 0;
7241 rq
->active_balance
= 0;
7242 rq
->next_balance
= jiffies
;
7245 rq
->migration_thread
= NULL
;
7246 INIT_LIST_HEAD(&rq
->migration_queue
);
7247 rq_attach_root(rq
, &def_root_domain
);
7250 atomic_set(&rq
->nr_iowait
, 0);
7254 set_load_weight(&init_task
);
7256 #ifdef CONFIG_PREEMPT_NOTIFIERS
7257 INIT_HLIST_HEAD(&init_task
.preempt_notifiers
);
7261 nr_cpu_ids
= highest_cpu
+ 1;
7262 open_softirq(SCHED_SOFTIRQ
, run_rebalance_domains
, NULL
);
7265 #ifdef CONFIG_RT_MUTEXES
7266 plist_head_init(&init_task
.pi_waiters
, &init_task
.pi_lock
);
7270 * The boot idle thread does lazy MMU switching as well:
7272 atomic_inc(&init_mm
.mm_count
);
7273 enter_lazy_tlb(&init_mm
, current
);
7276 * Make us the idle thread. Technically, schedule() should not be
7277 * called from this thread, however somewhere below it might be,
7278 * but because we are the idle thread, we just pick up running again
7279 * when this runqueue becomes "idle".
7281 init_idle(current
, smp_processor_id());
7283 * During early bootup we pretend to be a normal task:
7285 current
->sched_class
= &fair_sched_class
;
7288 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
7289 void __might_sleep(char *file
, int line
)
7292 static unsigned long prev_jiffy
; /* ratelimiting */
7294 if ((in_atomic() || irqs_disabled()) &&
7295 system_state
== SYSTEM_RUNNING
&& !oops_in_progress
) {
7296 if (time_before(jiffies
, prev_jiffy
+ HZ
) && prev_jiffy
)
7298 prev_jiffy
= jiffies
;
7299 printk(KERN_ERR
"BUG: sleeping function called from invalid"
7300 " context at %s:%d\n", file
, line
);
7301 printk("in_atomic():%d, irqs_disabled():%d\n",
7302 in_atomic(), irqs_disabled());
7303 debug_show_held_locks(current
);
7304 if (irqs_disabled())
7305 print_irqtrace_events(current
);
7310 EXPORT_SYMBOL(__might_sleep
);
7313 #ifdef CONFIG_MAGIC_SYSRQ
7314 static void normalize_task(struct rq
*rq
, struct task_struct
*p
)
7317 update_rq_clock(rq
);
7318 on_rq
= p
->se
.on_rq
;
7320 deactivate_task(rq
, p
, 0);
7321 __setscheduler(rq
, p
, SCHED_NORMAL
, 0);
7323 activate_task(rq
, p
, 0);
7324 resched_task(rq
->curr
);
7328 void normalize_rt_tasks(void)
7330 struct task_struct
*g
, *p
;
7331 unsigned long flags
;
7334 read_lock_irqsave(&tasklist_lock
, flags
);
7335 do_each_thread(g
, p
) {
7337 * Only normalize user tasks:
7342 p
->se
.exec_start
= 0;
7343 #ifdef CONFIG_SCHEDSTATS
7344 p
->se
.wait_start
= 0;
7345 p
->se
.sleep_start
= 0;
7346 p
->se
.block_start
= 0;
7348 task_rq(p
)->clock
= 0;
7352 * Renice negative nice level userspace
7355 if (TASK_NICE(p
) < 0 && p
->mm
)
7356 set_user_nice(p
, 0);
7360 spin_lock(&p
->pi_lock
);
7361 rq
= __task_rq_lock(p
);
7363 normalize_task(rq
, p
);
7365 __task_rq_unlock(rq
);
7366 spin_unlock(&p
->pi_lock
);
7367 } while_each_thread(g
, p
);
7369 read_unlock_irqrestore(&tasklist_lock
, flags
);
7372 #endif /* CONFIG_MAGIC_SYSRQ */
7376 * These functions are only useful for the IA64 MCA handling.
7378 * They can only be called when the whole system has been
7379 * stopped - every CPU needs to be quiescent, and no scheduling
7380 * activity can take place. Using them for anything else would
7381 * be a serious bug, and as a result, they aren't even visible
7382 * under any other configuration.
7386 * curr_task - return the current task for a given cpu.
7387 * @cpu: the processor in question.
7389 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7391 struct task_struct
*curr_task(int cpu
)
7393 return cpu_curr(cpu
);
7397 * set_curr_task - set the current task for a given cpu.
7398 * @cpu: the processor in question.
7399 * @p: the task pointer to set.
7401 * Description: This function must only be used when non-maskable interrupts
7402 * are serviced on a separate stack. It allows the architecture to switch the
7403 * notion of the current task on a cpu in a non-blocking manner. This function
7404 * must be called with all CPU's synchronized, and interrupts disabled, the
7405 * and caller must save the original value of the current task (see
7406 * curr_task() above) and restore that value before reenabling interrupts and
7407 * re-starting the system.
7409 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7411 void set_curr_task(int cpu
, struct task_struct
*p
)
7418 #ifdef CONFIG_GROUP_SCHED
7420 #if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
7422 * distribute shares of all task groups among their schedulable entities,
7423 * to reflect load distribution across cpus.
7425 static int rebalance_shares(struct sched_domain
*sd
, int this_cpu
)
7427 struct cfs_rq
*cfs_rq
;
7428 struct rq
*rq
= cpu_rq(this_cpu
);
7429 cpumask_t sdspan
= sd
->span
;
7432 /* Walk thr' all the task groups that we have */
7433 for_each_leaf_cfs_rq(rq
, cfs_rq
) {
7435 unsigned long total_load
= 0, total_shares
;
7436 struct task_group
*tg
= cfs_rq
->tg
;
7438 /* Gather total task load of this group across cpus */
7439 for_each_cpu_mask(i
, sdspan
)
7440 total_load
+= tg
->cfs_rq
[i
]->load
.weight
;
7442 /* Nothing to do if this group has no load */
7447 * tg->shares represents the number of cpu shares the task group
7448 * is eligible to hold on a single cpu. On N cpus, it is
7449 * eligible to hold (N * tg->shares) number of cpu shares.
7451 total_shares
= tg
->shares
* cpus_weight(sdspan
);
7454 * redistribute total_shares across cpus as per the task load
7457 for_each_cpu_mask(i
, sdspan
) {
7458 unsigned long local_load
, local_shares
;
7460 local_load
= tg
->cfs_rq
[i
]->load
.weight
;
7461 local_shares
= (local_load
* total_shares
) / total_load
;
7463 local_shares
= MIN_GROUP_SHARES
;
7464 if (local_shares
== tg
->se
[i
]->load
.weight
)
7467 spin_lock_irq(&cpu_rq(i
)->lock
);
7468 set_se_shares(tg
->se
[i
], local_shares
);
7469 spin_unlock_irq(&cpu_rq(i
)->lock
);
7478 * How frequently should we rebalance_shares() across cpus?
7480 * The more frequently we rebalance shares, the more accurate is the fairness
7481 * of cpu bandwidth distribution between task groups. However higher frequency
7482 * also implies increased scheduling overhead.
7484 * sysctl_sched_min_bal_int_shares represents the minimum interval between
7485 * consecutive calls to rebalance_shares() in the same sched domain.
7487 * sysctl_sched_max_bal_int_shares represents the maximum interval between
7488 * consecutive calls to rebalance_shares() in the same sched domain.
7490 * These settings allows for the appropriate trade-off between accuracy of
7491 * fairness and the associated overhead.
7495 /* default: 8ms, units: milliseconds */
7496 const_debug
unsigned int sysctl_sched_min_bal_int_shares
= 8;
7498 /* default: 128ms, units: milliseconds */
7499 const_debug
unsigned int sysctl_sched_max_bal_int_shares
= 128;
7501 /* kernel thread that runs rebalance_shares() periodically */
7502 static int load_balance_monitor(void *unused
)
7504 unsigned int timeout
= sysctl_sched_min_bal_int_shares
;
7505 struct sched_param schedparm
;
7509 * We don't want this thread's execution to be limited by the shares
7510 * assigned to default group (init_task_group). Hence make it run
7511 * as a SCHED_RR RT task at the lowest priority.
7513 schedparm
.sched_priority
= 1;
7514 ret
= sched_setscheduler(current
, SCHED_RR
, &schedparm
);
7516 printk(KERN_ERR
"Couldn't set SCHED_RR policy for load balance"
7517 " monitor thread (error = %d) \n", ret
);
7519 while (!kthread_should_stop()) {
7520 int i
, cpu
, balanced
= 1;
7522 /* Prevent cpus going down or coming up */
7524 /* lockout changes to doms_cur[] array */
7527 * Enter a rcu read-side critical section to safely walk rq->sd
7528 * chain on various cpus and to walk task group list
7529 * (rq->leaf_cfs_rq_list) in rebalance_shares().
7533 for (i
= 0; i
< ndoms_cur
; i
++) {
7534 cpumask_t cpumap
= doms_cur
[i
];
7535 struct sched_domain
*sd
= NULL
, *sd_prev
= NULL
;
7537 cpu
= first_cpu(cpumap
);
7539 /* Find the highest domain at which to balance shares */
7540 for_each_domain(cpu
, sd
) {
7541 if (!(sd
->flags
& SD_LOAD_BALANCE
))
7547 /* sd == NULL? No load balance reqd in this domain */
7551 balanced
&= rebalance_shares(sd
, cpu
);
7560 timeout
= sysctl_sched_min_bal_int_shares
;
7561 else if (timeout
< sysctl_sched_max_bal_int_shares
)
7564 msleep_interruptible(timeout
);
7569 #endif /* CONFIG_SMP */
7571 #ifdef CONFIG_FAIR_GROUP_SCHED
7572 static void free_fair_sched_group(struct task_group
*tg
)
7576 for_each_possible_cpu(i
) {
7578 kfree(tg
->cfs_rq
[i
]);
7587 static int alloc_fair_sched_group(struct task_group
*tg
)
7589 struct cfs_rq
*cfs_rq
;
7590 struct sched_entity
*se
;
7594 tg
->cfs_rq
= kzalloc(sizeof(cfs_rq
) * NR_CPUS
, GFP_KERNEL
);
7597 tg
->se
= kzalloc(sizeof(se
) * NR_CPUS
, GFP_KERNEL
);
7601 tg
->shares
= NICE_0_LOAD
;
7603 for_each_possible_cpu(i
) {
7606 cfs_rq
= kmalloc_node(sizeof(struct cfs_rq
),
7607 GFP_KERNEL
|__GFP_ZERO
, cpu_to_node(i
));
7611 se
= kmalloc_node(sizeof(struct sched_entity
),
7612 GFP_KERNEL
|__GFP_ZERO
, cpu_to_node(i
));
7616 init_tg_cfs_entry(rq
, tg
, cfs_rq
, se
, i
, 0);
7625 static inline void register_fair_sched_group(struct task_group
*tg
, int cpu
)
7627 list_add_rcu(&tg
->cfs_rq
[cpu
]->leaf_cfs_rq_list
,
7628 &cpu_rq(cpu
)->leaf_cfs_rq_list
);
7631 static inline void unregister_fair_sched_group(struct task_group
*tg
, int cpu
)
7633 list_del_rcu(&tg
->cfs_rq
[cpu
]->leaf_cfs_rq_list
);
7636 static inline void free_fair_sched_group(struct task_group
*tg
)
7640 static inline int alloc_fair_sched_group(struct task_group
*tg
)
7645 static inline void register_fair_sched_group(struct task_group
*tg
, int cpu
)
7649 static inline void unregister_fair_sched_group(struct task_group
*tg
, int cpu
)
7654 #ifdef CONFIG_RT_GROUP_SCHED
7655 static void free_rt_sched_group(struct task_group
*tg
)
7659 for_each_possible_cpu(i
) {
7661 kfree(tg
->rt_rq
[i
]);
7663 kfree(tg
->rt_se
[i
]);
7670 static int alloc_rt_sched_group(struct task_group
*tg
)
7672 struct rt_rq
*rt_rq
;
7673 struct sched_rt_entity
*rt_se
;
7677 tg
->rt_rq
= kzalloc(sizeof(rt_rq
) * NR_CPUS
, GFP_KERNEL
);
7680 tg
->rt_se
= kzalloc(sizeof(rt_se
) * NR_CPUS
, GFP_KERNEL
);
7686 for_each_possible_cpu(i
) {
7689 rt_rq
= kmalloc_node(sizeof(struct rt_rq
),
7690 GFP_KERNEL
|__GFP_ZERO
, cpu_to_node(i
));
7694 rt_se
= kmalloc_node(sizeof(struct sched_rt_entity
),
7695 GFP_KERNEL
|__GFP_ZERO
, cpu_to_node(i
));
7699 init_tg_rt_entry(rq
, tg
, rt_rq
, rt_se
, i
, 0);
7708 static inline void register_rt_sched_group(struct task_group
*tg
, int cpu
)
7710 list_add_rcu(&tg
->rt_rq
[cpu
]->leaf_rt_rq_list
,
7711 &cpu_rq(cpu
)->leaf_rt_rq_list
);
7714 static inline void unregister_rt_sched_group(struct task_group
*tg
, int cpu
)
7716 list_del_rcu(&tg
->rt_rq
[cpu
]->leaf_rt_rq_list
);
7719 static inline void free_rt_sched_group(struct task_group
*tg
)
7723 static inline int alloc_rt_sched_group(struct task_group
*tg
)
7728 static inline void register_rt_sched_group(struct task_group
*tg
, int cpu
)
7732 static inline void unregister_rt_sched_group(struct task_group
*tg
, int cpu
)
7737 static void free_sched_group(struct task_group
*tg
)
7739 free_fair_sched_group(tg
);
7740 free_rt_sched_group(tg
);
7744 /* allocate runqueue etc for a new task group */
7745 struct task_group
*sched_create_group(void)
7747 struct task_group
*tg
;
7748 unsigned long flags
;
7751 tg
= kzalloc(sizeof(*tg
), GFP_KERNEL
);
7753 return ERR_PTR(-ENOMEM
);
7755 if (!alloc_fair_sched_group(tg
))
7758 if (!alloc_rt_sched_group(tg
))
7761 spin_lock_irqsave(&task_group_lock
, flags
);
7762 for_each_possible_cpu(i
) {
7763 register_fair_sched_group(tg
, i
);
7764 register_rt_sched_group(tg
, i
);
7766 list_add_rcu(&tg
->list
, &task_groups
);
7767 spin_unlock_irqrestore(&task_group_lock
, flags
);
7772 free_sched_group(tg
);
7773 return ERR_PTR(-ENOMEM
);
7776 /* rcu callback to free various structures associated with a task group */
7777 static void free_sched_group_rcu(struct rcu_head
*rhp
)
7779 /* now it should be safe to free those cfs_rqs */
7780 free_sched_group(container_of(rhp
, struct task_group
, rcu
));
7783 /* Destroy runqueue etc associated with a task group */
7784 void sched_destroy_group(struct task_group
*tg
)
7786 unsigned long flags
;
7789 spin_lock_irqsave(&task_group_lock
, flags
);
7790 for_each_possible_cpu(i
) {
7791 unregister_fair_sched_group(tg
, i
);
7792 unregister_rt_sched_group(tg
, i
);
7794 list_del_rcu(&tg
->list
);
7795 spin_unlock_irqrestore(&task_group_lock
, flags
);
7797 /* wait for possible concurrent references to cfs_rqs complete */
7798 call_rcu(&tg
->rcu
, free_sched_group_rcu
);
7801 /* change task's runqueue when it moves between groups.
7802 * The caller of this function should have put the task in its new group
7803 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7804 * reflect its new group.
7806 void sched_move_task(struct task_struct
*tsk
)
7809 unsigned long flags
;
7812 rq
= task_rq_lock(tsk
, &flags
);
7814 update_rq_clock(rq
);
7816 running
= task_current(rq
, tsk
);
7817 on_rq
= tsk
->se
.on_rq
;
7820 dequeue_task(rq
, tsk
, 0);
7821 if (unlikely(running
))
7822 tsk
->sched_class
->put_prev_task(rq
, tsk
);
7825 set_task_rq(tsk
, task_cpu(tsk
));
7828 if (unlikely(running
))
7829 tsk
->sched_class
->set_curr_task(rq
);
7830 enqueue_task(rq
, tsk
, 0);
7833 task_rq_unlock(rq
, &flags
);
7836 #ifdef CONFIG_FAIR_GROUP_SCHED
7837 /* rq->lock to be locked by caller */
7838 static void set_se_shares(struct sched_entity
*se
, unsigned long shares
)
7840 struct cfs_rq
*cfs_rq
= se
->cfs_rq
;
7841 struct rq
*rq
= cfs_rq
->rq
;
7845 shares
= MIN_GROUP_SHARES
;
7849 dequeue_entity(cfs_rq
, se
, 0);
7850 dec_cpu_load(rq
, se
->load
.weight
);
7853 se
->load
.weight
= shares
;
7854 se
->load
.inv_weight
= div64_64((1ULL<<32), shares
);
7857 enqueue_entity(cfs_rq
, se
, 0);
7858 inc_cpu_load(rq
, se
->load
.weight
);
7862 static DEFINE_MUTEX(shares_mutex
);
7864 int sched_group_set_shares(struct task_group
*tg
, unsigned long shares
)
7867 unsigned long flags
;
7869 mutex_lock(&shares_mutex
);
7870 if (tg
->shares
== shares
)
7873 if (shares
< MIN_GROUP_SHARES
)
7874 shares
= MIN_GROUP_SHARES
;
7877 * Prevent any load balance activity (rebalance_shares,
7878 * load_balance_fair) from referring to this group first,
7879 * by taking it off the rq->leaf_cfs_rq_list on each cpu.
7881 spin_lock_irqsave(&task_group_lock
, flags
);
7882 for_each_possible_cpu(i
)
7883 unregister_fair_sched_group(tg
, i
);
7884 spin_unlock_irqrestore(&task_group_lock
, flags
);
7886 /* wait for any ongoing reference to this group to finish */
7887 synchronize_sched();
7890 * Now we are free to modify the group's share on each cpu
7891 * w/o tripping rebalance_share or load_balance_fair.
7893 tg
->shares
= shares
;
7894 for_each_possible_cpu(i
) {
7895 spin_lock_irq(&cpu_rq(i
)->lock
);
7896 set_se_shares(tg
->se
[i
], shares
);
7897 spin_unlock_irq(&cpu_rq(i
)->lock
);
7901 * Enable load balance activity on this group, by inserting it back on
7902 * each cpu's rq->leaf_cfs_rq_list.
7904 spin_lock_irqsave(&task_group_lock
, flags
);
7905 for_each_possible_cpu(i
)
7906 register_fair_sched_group(tg
, i
);
7907 spin_unlock_irqrestore(&task_group_lock
, flags
);
7909 mutex_unlock(&shares_mutex
);
7913 unsigned long sched_group_shares(struct task_group
*tg
)
7919 #ifdef CONFIG_RT_GROUP_SCHED
7921 * Ensure that the real time constraints are schedulable.
7923 static DEFINE_MUTEX(rt_constraints_mutex
);
7925 static unsigned long to_ratio(u64 period
, u64 runtime
)
7927 if (runtime
== RUNTIME_INF
)
7930 runtime
*= (1ULL << 16);
7931 div64_64(runtime
, period
);
7935 static int __rt_schedulable(struct task_group
*tg
, u64 period
, u64 runtime
)
7937 struct task_group
*tgi
;
7938 unsigned long total
= 0;
7939 unsigned long global_ratio
=
7940 to_ratio(sysctl_sched_rt_period
,
7941 sysctl_sched_rt_runtime
< 0 ?
7942 RUNTIME_INF
: sysctl_sched_rt_runtime
);
7945 list_for_each_entry_rcu(tgi
, &task_groups
, list
) {
7949 total
+= to_ratio(period
, tgi
->rt_runtime
);
7953 return total
+ to_ratio(period
, runtime
) < global_ratio
;
7956 int sched_group_set_rt_runtime(struct task_group
*tg
, long rt_runtime_us
)
7958 u64 rt_runtime
, rt_period
;
7961 rt_period
= sysctl_sched_rt_period
* NSEC_PER_USEC
;
7962 rt_runtime
= (u64
)rt_runtime_us
* NSEC_PER_USEC
;
7963 if (rt_runtime_us
== -1)
7964 rt_runtime
= rt_period
;
7966 mutex_lock(&rt_constraints_mutex
);
7967 if (!__rt_schedulable(tg
, rt_period
, rt_runtime
)) {
7971 if (rt_runtime_us
== -1)
7972 rt_runtime
= RUNTIME_INF
;
7973 tg
->rt_runtime
= rt_runtime
;
7975 mutex_unlock(&rt_constraints_mutex
);
7980 long sched_group_rt_runtime(struct task_group
*tg
)
7984 if (tg
->rt_runtime
== RUNTIME_INF
)
7987 rt_runtime_us
= tg
->rt_runtime
;
7988 do_div(rt_runtime_us
, NSEC_PER_USEC
);
7989 return rt_runtime_us
;
7992 #endif /* CONFIG_GROUP_SCHED */
7994 #ifdef CONFIG_CGROUP_SCHED
7996 /* return corresponding task_group object of a cgroup */
7997 static inline struct task_group
*cgroup_tg(struct cgroup
*cgrp
)
7999 return container_of(cgroup_subsys_state(cgrp
, cpu_cgroup_subsys_id
),
8000 struct task_group
, css
);
8003 static struct cgroup_subsys_state
*
8004 cpu_cgroup_create(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
8006 struct task_group
*tg
;
8008 if (!cgrp
->parent
) {
8009 /* This is early initialization for the top cgroup */
8010 init_task_group
.css
.cgroup
= cgrp
;
8011 return &init_task_group
.css
;
8014 /* we support only 1-level deep hierarchical scheduler atm */
8015 if (cgrp
->parent
->parent
)
8016 return ERR_PTR(-EINVAL
);
8018 tg
= sched_create_group();
8020 return ERR_PTR(-ENOMEM
);
8022 /* Bind the cgroup to task_group object we just created */
8023 tg
->css
.cgroup
= cgrp
;
8029 cpu_cgroup_destroy(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
8031 struct task_group
*tg
= cgroup_tg(cgrp
);
8033 sched_destroy_group(tg
);
8037 cpu_cgroup_can_attach(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
,
8038 struct task_struct
*tsk
)
8040 #ifdef CONFIG_RT_GROUP_SCHED
8041 /* Don't accept realtime tasks when there is no way for them to run */
8042 if (rt_task(tsk
) && cgroup_tg(cgrp
)->rt_runtime
== 0)
8045 /* We don't support RT-tasks being in separate groups */
8046 if (tsk
->sched_class
!= &fair_sched_class
)
8054 cpu_cgroup_attach(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
,
8055 struct cgroup
*old_cont
, struct task_struct
*tsk
)
8057 sched_move_task(tsk
);
8060 #ifdef CONFIG_FAIR_GROUP_SCHED
8061 static int cpu_shares_write_uint(struct cgroup
*cgrp
, struct cftype
*cftype
,
8064 return sched_group_set_shares(cgroup_tg(cgrp
), shareval
);
8067 static u64
cpu_shares_read_uint(struct cgroup
*cgrp
, struct cftype
*cft
)
8069 struct task_group
*tg
= cgroup_tg(cgrp
);
8071 return (u64
) tg
->shares
;
8075 #ifdef CONFIG_RT_GROUP_SCHED
8076 static int cpu_rt_runtime_write(struct cgroup
*cgrp
, struct cftype
*cft
,
8078 const char __user
*userbuf
,
8079 size_t nbytes
, loff_t
*unused_ppos
)
8088 if (nbytes
>= sizeof(buffer
))
8090 if (copy_from_user(buffer
, userbuf
, nbytes
))
8093 buffer
[nbytes
] = 0; /* nul-terminate */
8095 /* strip newline if necessary */
8096 if (nbytes
&& (buffer
[nbytes
-1] == '\n'))
8097 buffer
[nbytes
-1] = 0;
8098 val
= simple_strtoll(buffer
, &end
, 0);
8102 /* Pass to subsystem */
8103 retval
= sched_group_set_rt_runtime(cgroup_tg(cgrp
), val
);
8109 static ssize_t
cpu_rt_runtime_read(struct cgroup
*cgrp
, struct cftype
*cft
,
8111 char __user
*buf
, size_t nbytes
,
8115 long val
= sched_group_rt_runtime(cgroup_tg(cgrp
));
8116 int len
= sprintf(tmp
, "%ld\n", val
);
8118 return simple_read_from_buffer(buf
, nbytes
, ppos
, tmp
, len
);
8122 static struct cftype cpu_files
[] = {
8123 #ifdef CONFIG_FAIR_GROUP_SCHED
8126 .read_uint
= cpu_shares_read_uint
,
8127 .write_uint
= cpu_shares_write_uint
,
8130 #ifdef CONFIG_RT_GROUP_SCHED
8132 .name
= "rt_runtime_us",
8133 .read
= cpu_rt_runtime_read
,
8134 .write
= cpu_rt_runtime_write
,
8139 static int cpu_cgroup_populate(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
8141 return cgroup_add_files(cont
, ss
, cpu_files
, ARRAY_SIZE(cpu_files
));
8144 struct cgroup_subsys cpu_cgroup_subsys
= {
8146 .create
= cpu_cgroup_create
,
8147 .destroy
= cpu_cgroup_destroy
,
8148 .can_attach
= cpu_cgroup_can_attach
,
8149 .attach
= cpu_cgroup_attach
,
8150 .populate
= cpu_cgroup_populate
,
8151 .subsys_id
= cpu_cgroup_subsys_id
,
8155 #endif /* CONFIG_CGROUP_SCHED */
8157 #ifdef CONFIG_CGROUP_CPUACCT
8160 * CPU accounting code for task groups.
8162 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8163 * (balbir@in.ibm.com).
8166 /* track cpu usage of a group of tasks */
8168 struct cgroup_subsys_state css
;
8169 /* cpuusage holds pointer to a u64-type object on every cpu */
8173 struct cgroup_subsys cpuacct_subsys
;
8175 /* return cpu accounting group corresponding to this container */
8176 static inline struct cpuacct
*cgroup_ca(struct cgroup
*cont
)
8178 return container_of(cgroup_subsys_state(cont
, cpuacct_subsys_id
),
8179 struct cpuacct
, css
);
8182 /* return cpu accounting group to which this task belongs */
8183 static inline struct cpuacct
*task_ca(struct task_struct
*tsk
)
8185 return container_of(task_subsys_state(tsk
, cpuacct_subsys_id
),
8186 struct cpuacct
, css
);
8189 /* create a new cpu accounting group */
8190 static struct cgroup_subsys_state
*cpuacct_create(
8191 struct cgroup_subsys
*ss
, struct cgroup
*cont
)
8193 struct cpuacct
*ca
= kzalloc(sizeof(*ca
), GFP_KERNEL
);
8196 return ERR_PTR(-ENOMEM
);
8198 ca
->cpuusage
= alloc_percpu(u64
);
8199 if (!ca
->cpuusage
) {
8201 return ERR_PTR(-ENOMEM
);
8207 /* destroy an existing cpu accounting group */
8209 cpuacct_destroy(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
8211 struct cpuacct
*ca
= cgroup_ca(cont
);
8213 free_percpu(ca
->cpuusage
);
8217 /* return total cpu usage (in nanoseconds) of a group */
8218 static u64
cpuusage_read(struct cgroup
*cont
, struct cftype
*cft
)
8220 struct cpuacct
*ca
= cgroup_ca(cont
);
8221 u64 totalcpuusage
= 0;
8224 for_each_possible_cpu(i
) {
8225 u64
*cpuusage
= percpu_ptr(ca
->cpuusage
, i
);
8228 * Take rq->lock to make 64-bit addition safe on 32-bit
8231 spin_lock_irq(&cpu_rq(i
)->lock
);
8232 totalcpuusage
+= *cpuusage
;
8233 spin_unlock_irq(&cpu_rq(i
)->lock
);
8236 return totalcpuusage
;
8239 static struct cftype files
[] = {
8242 .read_uint
= cpuusage_read
,
8246 static int cpuacct_populate(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
8248 return cgroup_add_files(cont
, ss
, files
, ARRAY_SIZE(files
));
8252 * charge this task's execution time to its accounting group.
8254 * called with rq->lock held.
8256 static void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
)
8260 if (!cpuacct_subsys
.active
)
8265 u64
*cpuusage
= percpu_ptr(ca
->cpuusage
, task_cpu(tsk
));
8267 *cpuusage
+= cputime
;
8271 struct cgroup_subsys cpuacct_subsys
= {
8273 .create
= cpuacct_create
,
8274 .destroy
= cpuacct_destroy
,
8275 .populate
= cpuacct_populate
,
8276 .subsys_id
= cpuacct_subsys_id
,
8278 #endif /* CONFIG_CGROUP_CPUACCT */