[PATCH] Kconfig fix (PHYLIB vs. s390)
[linux-2.6/sactl.git] / drivers / net / via-rhine.c
blobfc7738ffbfffeb1ffd17c7724426169b65531372
1 /* via-rhine.c: A Linux Ethernet device driver for VIA Rhine family chips. */
2 /*
3 Written 1998-2001 by Donald Becker.
5 Current Maintainer: Roger Luethi <rl@hellgate.ch>
7 This software may be used and distributed according to the terms of
8 the GNU General Public License (GPL), incorporated herein by reference.
9 Drivers based on or derived from this code fall under the GPL and must
10 retain the authorship, copyright and license notice. This file is not
11 a complete program and may only be used when the entire operating
12 system is licensed under the GPL.
14 This driver is designed for the VIA VT86C100A Rhine-I.
15 It also works with the Rhine-II (6102) and Rhine-III (6105/6105L/6105LOM
16 and management NIC 6105M).
18 The author may be reached as becker@scyld.com, or C/O
19 Scyld Computing Corporation
20 410 Severn Ave., Suite 210
21 Annapolis MD 21403
24 This driver contains some changes from the original Donald Becker
25 version. He may or may not be interested in bug reports on this
26 code. You can find his versions at:
27 http://www.scyld.com/network/via-rhine.html
30 Linux kernel version history:
32 LK1.1.0:
33 - Jeff Garzik: softnet 'n stuff
35 LK1.1.1:
36 - Justin Guyett: softnet and locking fixes
37 - Jeff Garzik: use PCI interface
39 LK1.1.2:
40 - Urban Widmark: minor cleanups, merges from Becker 1.03a/1.04 versions
42 LK1.1.3:
43 - Urban Widmark: use PCI DMA interface (with thanks to the eepro100.c
44 code) update "Theory of Operation" with
45 softnet/locking changes
46 - Dave Miller: PCI DMA and endian fixups
47 - Jeff Garzik: MOD_xxx race fixes, updated PCI resource allocation
49 LK1.1.4:
50 - Urban Widmark: fix gcc 2.95.2 problem and
51 remove writel's to fixed address 0x7c
53 LK1.1.5:
54 - Urban Widmark: mdio locking, bounce buffer changes
55 merges from Beckers 1.05 version
56 added netif_running_on/off support
58 LK1.1.6:
59 - Urban Widmark: merges from Beckers 1.08b version (VT6102 + mdio)
60 set netif_running_on/off on startup, del_timer_sync
62 LK1.1.7:
63 - Manfred Spraul: added reset into tx_timeout
65 LK1.1.9:
66 - Urban Widmark: merges from Beckers 1.10 version
67 (media selection + eeprom reload)
68 - David Vrabel: merges from D-Link "1.11" version
69 (disable WOL and PME on startup)
71 LK1.1.10:
72 - Manfred Spraul: use "singlecopy" for unaligned buffers
73 don't allocate bounce buffers for !ReqTxAlign cards
75 LK1.1.11:
76 - David Woodhouse: Set dev->base_addr before the first time we call
77 wait_for_reset(). It's a lot happier that way.
78 Free np->tx_bufs only if we actually allocated it.
80 LK1.1.12:
81 - Martin Eriksson: Allow Memory-Mapped IO to be enabled.
83 LK1.1.13 (jgarzik):
84 - Add ethtool support
85 - Replace some MII-related magic numbers with constants
87 LK1.1.14 (Ivan G.):
88 - fixes comments for Rhine-III
89 - removes W_MAX_TIMEOUT (unused)
90 - adds HasDavicomPhy for Rhine-I (basis: linuxfet driver; my card
91 is R-I and has Davicom chip, flag is referenced in kernel driver)
92 - sends chip_id as a parameter to wait_for_reset since np is not
93 initialized on first call
94 - changes mmio "else if (chip_id==VT6102)" to "else" so it will work
95 for Rhine-III's (documentation says same bit is correct)
96 - transmit frame queue message is off by one - fixed
97 - adds IntrNormalSummary to "Something Wicked" exclusion list
98 so normal interrupts will not trigger the message (src: Donald Becker)
99 (Roger Luethi)
100 - show confused chip where to continue after Tx error
101 - location of collision counter is chip specific
102 - allow selecting backoff algorithm (module parameter)
104 LK1.1.15 (jgarzik):
105 - Use new MII lib helper generic_mii_ioctl
107 LK1.1.16 (Roger Luethi)
108 - Etherleak fix
109 - Handle Tx buffer underrun
110 - Fix bugs in full duplex handling
111 - New reset code uses "force reset" cmd on Rhine-II
112 - Various clean ups
114 LK1.1.17 (Roger Luethi)
115 - Fix race in via_rhine_start_tx()
116 - On errors, wait for Tx engine to turn off before scavenging
117 - Handle Tx descriptor write-back race on Rhine-II
118 - Force flushing for PCI posted writes
119 - More reset code changes
121 LK1.1.18 (Roger Luethi)
122 - No filtering multicast in promisc mode (Edward Peng)
123 - Fix for Rhine-I Tx timeouts
125 LK1.1.19 (Roger Luethi)
126 - Increase Tx threshold for unspecified errors
128 LK1.2.0-2.6 (Roger Luethi)
129 - Massive clean-up
130 - Rewrite PHY, media handling (remove options, full_duplex, backoff)
131 - Fix Tx engine race for good
135 #define DRV_NAME "via-rhine"
136 #define DRV_VERSION "1.2.0-2.6"
137 #define DRV_RELDATE "June-10-2004"
140 /* A few user-configurable values.
141 These may be modified when a driver module is loaded. */
143 static int debug = 1; /* 1 normal messages, 0 quiet .. 7 verbose. */
144 static int max_interrupt_work = 20;
146 /* Set the copy breakpoint for the copy-only-tiny-frames scheme.
147 Setting to > 1518 effectively disables this feature. */
148 static int rx_copybreak;
151 * In case you are looking for 'options[]' or 'full_duplex[]', they
152 * are gone. Use ethtool(8) instead.
155 /* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
156 The Rhine has a 64 element 8390-like hash table. */
157 static const int multicast_filter_limit = 32;
160 /* Operational parameters that are set at compile time. */
162 /* Keep the ring sizes a power of two for compile efficiency.
163 The compiler will convert <unsigned>'%'<2^N> into a bit mask.
164 Making the Tx ring too large decreases the effectiveness of channel
165 bonding and packet priority.
166 There are no ill effects from too-large receive rings. */
167 #define TX_RING_SIZE 16
168 #define TX_QUEUE_LEN 10 /* Limit ring entries actually used. */
169 #define RX_RING_SIZE 16
172 /* Operational parameters that usually are not changed. */
174 /* Time in jiffies before concluding the transmitter is hung. */
175 #define TX_TIMEOUT (2*HZ)
177 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
179 #include <linux/module.h>
180 #include <linux/moduleparam.h>
181 #include <linux/kernel.h>
182 #include <linux/string.h>
183 #include <linux/timer.h>
184 #include <linux/errno.h>
185 #include <linux/ioport.h>
186 #include <linux/slab.h>
187 #include <linux/interrupt.h>
188 #include <linux/pci.h>
189 #include <linux/dma-mapping.h>
190 #include <linux/netdevice.h>
191 #include <linux/etherdevice.h>
192 #include <linux/skbuff.h>
193 #include <linux/init.h>
194 #include <linux/delay.h>
195 #include <linux/mii.h>
196 #include <linux/ethtool.h>
197 #include <linux/crc32.h>
198 #include <linux/bitops.h>
199 #include <asm/processor.h> /* Processor type for cache alignment. */
200 #include <asm/io.h>
201 #include <asm/irq.h>
202 #include <asm/uaccess.h>
204 /* These identify the driver base version and may not be removed. */
205 static char version[] __devinitdata =
206 KERN_INFO DRV_NAME ".c:v1.10-LK" DRV_VERSION " " DRV_RELDATE " Written by Donald Becker\n";
208 /* This driver was written to use PCI memory space. Some early versions
209 of the Rhine may only work correctly with I/O space accesses. */
210 #ifdef CONFIG_VIA_RHINE_MMIO
211 #define USE_MMIO
212 #else
213 #endif
215 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
216 MODULE_DESCRIPTION("VIA Rhine PCI Fast Ethernet driver");
217 MODULE_LICENSE("GPL");
219 module_param(max_interrupt_work, int, 0);
220 module_param(debug, int, 0);
221 module_param(rx_copybreak, int, 0);
222 MODULE_PARM_DESC(max_interrupt_work, "VIA Rhine maximum events handled per interrupt");
223 MODULE_PARM_DESC(debug, "VIA Rhine debug level (0-7)");
224 MODULE_PARM_DESC(rx_copybreak, "VIA Rhine copy breakpoint for copy-only-tiny-frames");
227 Theory of Operation
229 I. Board Compatibility
231 This driver is designed for the VIA 86c100A Rhine-II PCI Fast Ethernet
232 controller.
234 II. Board-specific settings
236 Boards with this chip are functional only in a bus-master PCI slot.
238 Many operational settings are loaded from the EEPROM to the Config word at
239 offset 0x78. For most of these settings, this driver assumes that they are
240 correct.
241 If this driver is compiled to use PCI memory space operations the EEPROM
242 must be configured to enable memory ops.
244 III. Driver operation
246 IIIa. Ring buffers
248 This driver uses two statically allocated fixed-size descriptor lists
249 formed into rings by a branch from the final descriptor to the beginning of
250 the list. The ring sizes are set at compile time by RX/TX_RING_SIZE.
252 IIIb/c. Transmit/Receive Structure
254 This driver attempts to use a zero-copy receive and transmit scheme.
256 Alas, all data buffers are required to start on a 32 bit boundary, so
257 the driver must often copy transmit packets into bounce buffers.
259 The driver allocates full frame size skbuffs for the Rx ring buffers at
260 open() time and passes the skb->data field to the chip as receive data
261 buffers. When an incoming frame is less than RX_COPYBREAK bytes long,
262 a fresh skbuff is allocated and the frame is copied to the new skbuff.
263 When the incoming frame is larger, the skbuff is passed directly up the
264 protocol stack. Buffers consumed this way are replaced by newly allocated
265 skbuffs in the last phase of rhine_rx().
267 The RX_COPYBREAK value is chosen to trade-off the memory wasted by
268 using a full-sized skbuff for small frames vs. the copying costs of larger
269 frames. New boards are typically used in generously configured machines
270 and the underfilled buffers have negligible impact compared to the benefit of
271 a single allocation size, so the default value of zero results in never
272 copying packets. When copying is done, the cost is usually mitigated by using
273 a combined copy/checksum routine. Copying also preloads the cache, which is
274 most useful with small frames.
276 Since the VIA chips are only able to transfer data to buffers on 32 bit
277 boundaries, the IP header at offset 14 in an ethernet frame isn't
278 longword aligned for further processing. Copying these unaligned buffers
279 has the beneficial effect of 16-byte aligning the IP header.
281 IIId. Synchronization
283 The driver runs as two independent, single-threaded flows of control. One
284 is the send-packet routine, which enforces single-threaded use by the
285 dev->priv->lock spinlock. The other thread is the interrupt handler, which
286 is single threaded by the hardware and interrupt handling software.
288 The send packet thread has partial control over the Tx ring. It locks the
289 dev->priv->lock whenever it's queuing a Tx packet. If the next slot in the ring
290 is not available it stops the transmit queue by calling netif_stop_queue.
292 The interrupt handler has exclusive control over the Rx ring and records stats
293 from the Tx ring. After reaping the stats, it marks the Tx queue entry as
294 empty by incrementing the dirty_tx mark. If at least half of the entries in
295 the Rx ring are available the transmit queue is woken up if it was stopped.
297 IV. Notes
299 IVb. References
301 Preliminary VT86C100A manual from http://www.via.com.tw/
302 http://www.scyld.com/expert/100mbps.html
303 http://www.scyld.com/expert/NWay.html
304 ftp://ftp.via.com.tw/public/lan/Products/NIC/VT86C100A/Datasheet/VT86C100A03.pdf
305 ftp://ftp.via.com.tw/public/lan/Products/NIC/VT6102/Datasheet/VT6102_021.PDF
308 IVc. Errata
310 The VT86C100A manual is not reliable information.
311 The 3043 chip does not handle unaligned transmit or receive buffers, resulting
312 in significant performance degradation for bounce buffer copies on transmit
313 and unaligned IP headers on receive.
314 The chip does not pad to minimum transmit length.
319 /* This table drives the PCI probe routines. It's mostly boilerplate in all
320 of the drivers, and will likely be provided by some future kernel.
321 Note the matching code -- the first table entry matchs all 56** cards but
322 second only the 1234 card.
325 enum rhine_revs {
326 VT86C100A = 0x00,
327 VTunknown0 = 0x20,
328 VT6102 = 0x40,
329 VT8231 = 0x50, /* Integrated MAC */
330 VT8233 = 0x60, /* Integrated MAC */
331 VT8235 = 0x74, /* Integrated MAC */
332 VT8237 = 0x78, /* Integrated MAC */
333 VTunknown1 = 0x7C,
334 VT6105 = 0x80,
335 VT6105_B0 = 0x83,
336 VT6105L = 0x8A,
337 VT6107 = 0x8C,
338 VTunknown2 = 0x8E,
339 VT6105M = 0x90, /* Management adapter */
342 enum rhine_quirks {
343 rqWOL = 0x0001, /* Wake-On-LAN support */
344 rqForceReset = 0x0002,
345 rq6patterns = 0x0040, /* 6 instead of 4 patterns for WOL */
346 rqStatusWBRace = 0x0080, /* Tx Status Writeback Error possible */
347 rqRhineI = 0x0100, /* See comment below */
350 * rqRhineI: VT86C100A (aka Rhine-I) uses different bits to enable
351 * MMIO as well as for the collision counter and the Tx FIFO underflow
352 * indicator. In addition, Tx and Rx buffers need to 4 byte aligned.
355 /* Beware of PCI posted writes */
356 #define IOSYNC do { ioread8(ioaddr + StationAddr); } while (0)
358 static struct pci_device_id rhine_pci_tbl[] =
360 {0x1106, 0x3043, PCI_ANY_ID, PCI_ANY_ID, 0, 0, }, /* VT86C100A */
361 {0x1106, 0x3065, PCI_ANY_ID, PCI_ANY_ID, 0, 0, }, /* VT6102 */
362 {0x1106, 0x3106, PCI_ANY_ID, PCI_ANY_ID, 0, 0, }, /* 6105{,L,LOM} */
363 {0x1106, 0x3053, PCI_ANY_ID, PCI_ANY_ID, 0, 0, }, /* VT6105M */
364 { } /* terminate list */
366 MODULE_DEVICE_TABLE(pci, rhine_pci_tbl);
369 /* Offsets to the device registers. */
370 enum register_offsets {
371 StationAddr=0x00, RxConfig=0x06, TxConfig=0x07, ChipCmd=0x08,
372 ChipCmd1=0x09,
373 IntrStatus=0x0C, IntrEnable=0x0E,
374 MulticastFilter0=0x10, MulticastFilter1=0x14,
375 RxRingPtr=0x18, TxRingPtr=0x1C, GFIFOTest=0x54,
376 MIIPhyAddr=0x6C, MIIStatus=0x6D, PCIBusConfig=0x6E,
377 MIICmd=0x70, MIIRegAddr=0x71, MIIData=0x72, MACRegEEcsr=0x74,
378 ConfigA=0x78, ConfigB=0x79, ConfigC=0x7A, ConfigD=0x7B,
379 RxMissed=0x7C, RxCRCErrs=0x7E, MiscCmd=0x81,
380 StickyHW=0x83, IntrStatus2=0x84,
381 WOLcrSet=0xA0, PwcfgSet=0xA1, WOLcgSet=0xA3, WOLcrClr=0xA4,
382 WOLcrClr1=0xA6, WOLcgClr=0xA7,
383 PwrcsrSet=0xA8, PwrcsrSet1=0xA9, PwrcsrClr=0xAC, PwrcsrClr1=0xAD,
386 /* Bits in ConfigD */
387 enum backoff_bits {
388 BackOptional=0x01, BackModify=0x02,
389 BackCaptureEffect=0x04, BackRandom=0x08
392 #ifdef USE_MMIO
393 /* Registers we check that mmio and reg are the same. */
394 static const int mmio_verify_registers[] = {
395 RxConfig, TxConfig, IntrEnable, ConfigA, ConfigB, ConfigC, ConfigD,
398 #endif
400 /* Bits in the interrupt status/mask registers. */
401 enum intr_status_bits {
402 IntrRxDone=0x0001, IntrRxErr=0x0004, IntrRxEmpty=0x0020,
403 IntrTxDone=0x0002, IntrTxError=0x0008, IntrTxUnderrun=0x0210,
404 IntrPCIErr=0x0040,
405 IntrStatsMax=0x0080, IntrRxEarly=0x0100,
406 IntrRxOverflow=0x0400, IntrRxDropped=0x0800, IntrRxNoBuf=0x1000,
407 IntrTxAborted=0x2000, IntrLinkChange=0x4000,
408 IntrRxWakeUp=0x8000,
409 IntrNormalSummary=0x0003, IntrAbnormalSummary=0xC260,
410 IntrTxDescRace=0x080000, /* mapped from IntrStatus2 */
411 IntrTxErrSummary=0x082218,
414 /* Bits in WOLcrSet/WOLcrClr and PwrcsrSet/PwrcsrClr */
415 enum wol_bits {
416 WOLucast = 0x10,
417 WOLmagic = 0x20,
418 WOLbmcast = 0x30,
419 WOLlnkon = 0x40,
420 WOLlnkoff = 0x80,
423 /* The Rx and Tx buffer descriptors. */
424 struct rx_desc {
425 s32 rx_status;
426 u32 desc_length; /* Chain flag, Buffer/frame length */
427 u32 addr;
428 u32 next_desc;
430 struct tx_desc {
431 s32 tx_status;
432 u32 desc_length; /* Chain flag, Tx Config, Frame length */
433 u32 addr;
434 u32 next_desc;
437 /* Initial value for tx_desc.desc_length, Buffer size goes to bits 0-10 */
438 #define TXDESC 0x00e08000
440 enum rx_status_bits {
441 RxOK=0x8000, RxWholePkt=0x0300, RxErr=0x008F
444 /* Bits in *_desc.*_status */
445 enum desc_status_bits {
446 DescOwn=0x80000000
449 /* Bits in ChipCmd. */
450 enum chip_cmd_bits {
451 CmdInit=0x01, CmdStart=0x02, CmdStop=0x04, CmdRxOn=0x08,
452 CmdTxOn=0x10, Cmd1TxDemand=0x20, CmdRxDemand=0x40,
453 Cmd1EarlyRx=0x01, Cmd1EarlyTx=0x02, Cmd1FDuplex=0x04,
454 Cmd1NoTxPoll=0x08, Cmd1Reset=0x80,
457 struct rhine_private {
458 /* Descriptor rings */
459 struct rx_desc *rx_ring;
460 struct tx_desc *tx_ring;
461 dma_addr_t rx_ring_dma;
462 dma_addr_t tx_ring_dma;
464 /* The addresses of receive-in-place skbuffs. */
465 struct sk_buff *rx_skbuff[RX_RING_SIZE];
466 dma_addr_t rx_skbuff_dma[RX_RING_SIZE];
468 /* The saved address of a sent-in-place packet/buffer, for later free(). */
469 struct sk_buff *tx_skbuff[TX_RING_SIZE];
470 dma_addr_t tx_skbuff_dma[TX_RING_SIZE];
472 /* Tx bounce buffers */
473 unsigned char *tx_buf[TX_RING_SIZE];
474 unsigned char *tx_bufs;
475 dma_addr_t tx_bufs_dma;
477 struct pci_dev *pdev;
478 long pioaddr;
479 struct net_device_stats stats;
480 spinlock_t lock;
482 /* Frequently used values: keep some adjacent for cache effect. */
483 u32 quirks;
484 struct rx_desc *rx_head_desc;
485 unsigned int cur_rx, dirty_rx; /* Producer/consumer ring indices */
486 unsigned int cur_tx, dirty_tx;
487 unsigned int rx_buf_sz; /* Based on MTU+slack. */
488 u8 wolopts;
490 u8 tx_thresh, rx_thresh;
492 struct mii_if_info mii_if;
493 void __iomem *base;
496 static int mdio_read(struct net_device *dev, int phy_id, int location);
497 static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
498 static int rhine_open(struct net_device *dev);
499 static void rhine_tx_timeout(struct net_device *dev);
500 static int rhine_start_tx(struct sk_buff *skb, struct net_device *dev);
501 static irqreturn_t rhine_interrupt(int irq, void *dev_instance, struct pt_regs *regs);
502 static void rhine_tx(struct net_device *dev);
503 static void rhine_rx(struct net_device *dev);
504 static void rhine_error(struct net_device *dev, int intr_status);
505 static void rhine_set_rx_mode(struct net_device *dev);
506 static struct net_device_stats *rhine_get_stats(struct net_device *dev);
507 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
508 static struct ethtool_ops netdev_ethtool_ops;
509 static int rhine_close(struct net_device *dev);
510 static void rhine_shutdown (struct pci_dev *pdev);
512 #define RHINE_WAIT_FOR(condition) do { \
513 int i=1024; \
514 while (!(condition) && --i) \
516 if (debug > 1 && i < 512) \
517 printk(KERN_INFO "%s: %4d cycles used @ %s:%d\n", \
518 DRV_NAME, 1024-i, __func__, __LINE__); \
519 } while(0)
521 static inline u32 get_intr_status(struct net_device *dev)
523 struct rhine_private *rp = netdev_priv(dev);
524 void __iomem *ioaddr = rp->base;
525 u32 intr_status;
527 intr_status = ioread16(ioaddr + IntrStatus);
528 /* On Rhine-II, Bit 3 indicates Tx descriptor write-back race. */
529 if (rp->quirks & rqStatusWBRace)
530 intr_status |= ioread8(ioaddr + IntrStatus2) << 16;
531 return intr_status;
535 * Get power related registers into sane state.
536 * Notify user about past WOL event.
538 static void rhine_power_init(struct net_device *dev)
540 struct rhine_private *rp = netdev_priv(dev);
541 void __iomem *ioaddr = rp->base;
542 u16 wolstat;
544 if (rp->quirks & rqWOL) {
545 /* Make sure chip is in power state D0 */
546 iowrite8(ioread8(ioaddr + StickyHW) & 0xFC, ioaddr + StickyHW);
548 /* Disable "force PME-enable" */
549 iowrite8(0x80, ioaddr + WOLcgClr);
551 /* Clear power-event config bits (WOL) */
552 iowrite8(0xFF, ioaddr + WOLcrClr);
553 /* More recent cards can manage two additional patterns */
554 if (rp->quirks & rq6patterns)
555 iowrite8(0x03, ioaddr + WOLcrClr1);
557 /* Save power-event status bits */
558 wolstat = ioread8(ioaddr + PwrcsrSet);
559 if (rp->quirks & rq6patterns)
560 wolstat |= (ioread8(ioaddr + PwrcsrSet1) & 0x03) << 8;
562 /* Clear power-event status bits */
563 iowrite8(0xFF, ioaddr + PwrcsrClr);
564 if (rp->quirks & rq6patterns)
565 iowrite8(0x03, ioaddr + PwrcsrClr1);
567 if (wolstat) {
568 char *reason;
569 switch (wolstat) {
570 case WOLmagic:
571 reason = "Magic packet";
572 break;
573 case WOLlnkon:
574 reason = "Link went up";
575 break;
576 case WOLlnkoff:
577 reason = "Link went down";
578 break;
579 case WOLucast:
580 reason = "Unicast packet";
581 break;
582 case WOLbmcast:
583 reason = "Multicast/broadcast packet";
584 break;
585 default:
586 reason = "Unknown";
588 printk(KERN_INFO "%s: Woke system up. Reason: %s.\n",
589 DRV_NAME, reason);
594 static void rhine_chip_reset(struct net_device *dev)
596 struct rhine_private *rp = netdev_priv(dev);
597 void __iomem *ioaddr = rp->base;
599 iowrite8(Cmd1Reset, ioaddr + ChipCmd1);
600 IOSYNC;
602 if (ioread8(ioaddr + ChipCmd1) & Cmd1Reset) {
603 printk(KERN_INFO "%s: Reset not complete yet. "
604 "Trying harder.\n", DRV_NAME);
606 /* Force reset */
607 if (rp->quirks & rqForceReset)
608 iowrite8(0x40, ioaddr + MiscCmd);
610 /* Reset can take somewhat longer (rare) */
611 RHINE_WAIT_FOR(!(ioread8(ioaddr + ChipCmd1) & Cmd1Reset));
614 if (debug > 1)
615 printk(KERN_INFO "%s: Reset %s.\n", dev->name,
616 (ioread8(ioaddr + ChipCmd1) & Cmd1Reset) ?
617 "failed" : "succeeded");
620 #ifdef USE_MMIO
621 static void enable_mmio(long pioaddr, u32 quirks)
623 int n;
624 if (quirks & rqRhineI) {
625 /* More recent docs say that this bit is reserved ... */
626 n = inb(pioaddr + ConfigA) | 0x20;
627 outb(n, pioaddr + ConfigA);
628 } else {
629 n = inb(pioaddr + ConfigD) | 0x80;
630 outb(n, pioaddr + ConfigD);
633 #endif
636 * Loads bytes 0x00-0x05, 0x6E-0x6F, 0x78-0x7B from EEPROM
637 * (plus 0x6C for Rhine-I/II)
639 static void __devinit rhine_reload_eeprom(long pioaddr, struct net_device *dev)
641 struct rhine_private *rp = netdev_priv(dev);
642 void __iomem *ioaddr = rp->base;
644 outb(0x20, pioaddr + MACRegEEcsr);
645 RHINE_WAIT_FOR(!(inb(pioaddr + MACRegEEcsr) & 0x20));
647 #ifdef USE_MMIO
649 * Reloading from EEPROM overwrites ConfigA-D, so we must re-enable
650 * MMIO. If reloading EEPROM was done first this could be avoided, but
651 * it is not known if that still works with the "win98-reboot" problem.
653 enable_mmio(pioaddr, rp->quirks);
654 #endif
656 /* Turn off EEPROM-controlled wake-up (magic packet) */
657 if (rp->quirks & rqWOL)
658 iowrite8(ioread8(ioaddr + ConfigA) & 0xFC, ioaddr + ConfigA);
662 #ifdef CONFIG_NET_POLL_CONTROLLER
663 static void rhine_poll(struct net_device *dev)
665 disable_irq(dev->irq);
666 rhine_interrupt(dev->irq, (void *)dev, NULL);
667 enable_irq(dev->irq);
669 #endif
671 static void rhine_hw_init(struct net_device *dev, long pioaddr)
673 struct rhine_private *rp = netdev_priv(dev);
675 /* Reset the chip to erase previous misconfiguration. */
676 rhine_chip_reset(dev);
678 /* Rhine-I needs extra time to recuperate before EEPROM reload */
679 if (rp->quirks & rqRhineI)
680 msleep(5);
682 /* Reload EEPROM controlled bytes cleared by soft reset */
683 rhine_reload_eeprom(pioaddr, dev);
686 static int __devinit rhine_init_one(struct pci_dev *pdev,
687 const struct pci_device_id *ent)
689 struct net_device *dev;
690 struct rhine_private *rp;
691 int i, rc;
692 u8 pci_rev;
693 u32 quirks;
694 long pioaddr;
695 long memaddr;
696 void __iomem *ioaddr;
697 int io_size, phy_id;
698 const char *name;
699 #ifdef USE_MMIO
700 int bar = 1;
701 #else
702 int bar = 0;
703 #endif
705 /* when built into the kernel, we only print version if device is found */
706 #ifndef MODULE
707 static int printed_version;
708 if (!printed_version++)
709 printk(version);
710 #endif
712 pci_read_config_byte(pdev, PCI_REVISION_ID, &pci_rev);
714 io_size = 256;
715 phy_id = 0;
716 quirks = 0;
717 name = "Rhine";
718 if (pci_rev < VTunknown0) {
719 quirks = rqRhineI;
720 io_size = 128;
722 else if (pci_rev >= VT6102) {
723 quirks = rqWOL | rqForceReset;
724 if (pci_rev < VT6105) {
725 name = "Rhine II";
726 quirks |= rqStatusWBRace; /* Rhine-II exclusive */
728 else {
729 phy_id = 1; /* Integrated PHY, phy_id fixed to 1 */
730 if (pci_rev >= VT6105_B0)
731 quirks |= rq6patterns;
732 if (pci_rev < VT6105M)
733 name = "Rhine III";
734 else
735 name = "Rhine III (Management Adapter)";
739 rc = pci_enable_device(pdev);
740 if (rc)
741 goto err_out;
743 /* this should always be supported */
744 rc = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
745 if (rc) {
746 printk(KERN_ERR "32-bit PCI DMA addresses not supported by "
747 "the card!?\n");
748 goto err_out;
751 /* sanity check */
752 if ((pci_resource_len(pdev, 0) < io_size) ||
753 (pci_resource_len(pdev, 1) < io_size)) {
754 rc = -EIO;
755 printk(KERN_ERR "Insufficient PCI resources, aborting\n");
756 goto err_out;
759 pioaddr = pci_resource_start(pdev, 0);
760 memaddr = pci_resource_start(pdev, 1);
762 pci_set_master(pdev);
764 dev = alloc_etherdev(sizeof(struct rhine_private));
765 if (!dev) {
766 rc = -ENOMEM;
767 printk(KERN_ERR "alloc_etherdev failed\n");
768 goto err_out;
770 SET_MODULE_OWNER(dev);
771 SET_NETDEV_DEV(dev, &pdev->dev);
773 rp = netdev_priv(dev);
774 rp->quirks = quirks;
775 rp->pioaddr = pioaddr;
776 rp->pdev = pdev;
778 rc = pci_request_regions(pdev, DRV_NAME);
779 if (rc)
780 goto err_out_free_netdev;
782 ioaddr = pci_iomap(pdev, bar, io_size);
783 if (!ioaddr) {
784 rc = -EIO;
785 printk(KERN_ERR "ioremap failed for device %s, region 0x%X "
786 "@ 0x%lX\n", pci_name(pdev), io_size, memaddr);
787 goto err_out_free_res;
790 #ifdef USE_MMIO
791 enable_mmio(pioaddr, quirks);
793 /* Check that selected MMIO registers match the PIO ones */
794 i = 0;
795 while (mmio_verify_registers[i]) {
796 int reg = mmio_verify_registers[i++];
797 unsigned char a = inb(pioaddr+reg);
798 unsigned char b = readb(ioaddr+reg);
799 if (a != b) {
800 rc = -EIO;
801 printk(KERN_ERR "MMIO do not match PIO [%02x] "
802 "(%02x != %02x)\n", reg, a, b);
803 goto err_out_unmap;
806 #endif /* USE_MMIO */
808 dev->base_addr = (unsigned long)ioaddr;
809 rp->base = ioaddr;
811 /* Get chip registers into a sane state */
812 rhine_power_init(dev);
813 rhine_hw_init(dev, pioaddr);
815 for (i = 0; i < 6; i++)
816 dev->dev_addr[i] = ioread8(ioaddr + StationAddr + i);
818 if (!is_valid_ether_addr(dev->dev_addr)) {
819 rc = -EIO;
820 printk(KERN_ERR "Invalid MAC address\n");
821 goto err_out_unmap;
824 /* For Rhine-I/II, phy_id is loaded from EEPROM */
825 if (!phy_id)
826 phy_id = ioread8(ioaddr + 0x6C);
828 dev->irq = pdev->irq;
830 spin_lock_init(&rp->lock);
831 rp->mii_if.dev = dev;
832 rp->mii_if.mdio_read = mdio_read;
833 rp->mii_if.mdio_write = mdio_write;
834 rp->mii_if.phy_id_mask = 0x1f;
835 rp->mii_if.reg_num_mask = 0x1f;
837 /* The chip-specific entries in the device structure. */
838 dev->open = rhine_open;
839 dev->hard_start_xmit = rhine_start_tx;
840 dev->stop = rhine_close;
841 dev->get_stats = rhine_get_stats;
842 dev->set_multicast_list = rhine_set_rx_mode;
843 dev->do_ioctl = netdev_ioctl;
844 dev->ethtool_ops = &netdev_ethtool_ops;
845 dev->tx_timeout = rhine_tx_timeout;
846 dev->watchdog_timeo = TX_TIMEOUT;
847 #ifdef CONFIG_NET_POLL_CONTROLLER
848 dev->poll_controller = rhine_poll;
849 #endif
850 if (rp->quirks & rqRhineI)
851 dev->features |= NETIF_F_SG|NETIF_F_HW_CSUM;
853 /* dev->name not defined before register_netdev()! */
854 rc = register_netdev(dev);
855 if (rc)
856 goto err_out_unmap;
858 printk(KERN_INFO "%s: VIA %s at 0x%lx, ",
859 dev->name, name,
860 #ifdef USE_MMIO
861 memaddr
862 #else
863 (long)ioaddr
864 #endif
867 for (i = 0; i < 5; i++)
868 printk("%2.2x:", dev->dev_addr[i]);
869 printk("%2.2x, IRQ %d.\n", dev->dev_addr[i], pdev->irq);
871 pci_set_drvdata(pdev, dev);
874 u16 mii_cmd;
875 int mii_status = mdio_read(dev, phy_id, 1);
876 mii_cmd = mdio_read(dev, phy_id, MII_BMCR) & ~BMCR_ISOLATE;
877 mdio_write(dev, phy_id, MII_BMCR, mii_cmd);
878 if (mii_status != 0xffff && mii_status != 0x0000) {
879 rp->mii_if.advertising = mdio_read(dev, phy_id, 4);
880 printk(KERN_INFO "%s: MII PHY found at address "
881 "%d, status 0x%4.4x advertising %4.4x "
882 "Link %4.4x.\n", dev->name, phy_id,
883 mii_status, rp->mii_if.advertising,
884 mdio_read(dev, phy_id, 5));
886 /* set IFF_RUNNING */
887 if (mii_status & BMSR_LSTATUS)
888 netif_carrier_on(dev);
889 else
890 netif_carrier_off(dev);
894 rp->mii_if.phy_id = phy_id;
896 return 0;
898 err_out_unmap:
899 pci_iounmap(pdev, ioaddr);
900 err_out_free_res:
901 pci_release_regions(pdev);
902 err_out_free_netdev:
903 free_netdev(dev);
904 err_out:
905 return rc;
908 static int alloc_ring(struct net_device* dev)
910 struct rhine_private *rp = netdev_priv(dev);
911 void *ring;
912 dma_addr_t ring_dma;
914 ring = pci_alloc_consistent(rp->pdev,
915 RX_RING_SIZE * sizeof(struct rx_desc) +
916 TX_RING_SIZE * sizeof(struct tx_desc),
917 &ring_dma);
918 if (!ring) {
919 printk(KERN_ERR "Could not allocate DMA memory.\n");
920 return -ENOMEM;
922 if (rp->quirks & rqRhineI) {
923 rp->tx_bufs = pci_alloc_consistent(rp->pdev,
924 PKT_BUF_SZ * TX_RING_SIZE,
925 &rp->tx_bufs_dma);
926 if (rp->tx_bufs == NULL) {
927 pci_free_consistent(rp->pdev,
928 RX_RING_SIZE * sizeof(struct rx_desc) +
929 TX_RING_SIZE * sizeof(struct tx_desc),
930 ring, ring_dma);
931 return -ENOMEM;
935 rp->rx_ring = ring;
936 rp->tx_ring = ring + RX_RING_SIZE * sizeof(struct rx_desc);
937 rp->rx_ring_dma = ring_dma;
938 rp->tx_ring_dma = ring_dma + RX_RING_SIZE * sizeof(struct rx_desc);
940 return 0;
943 static void free_ring(struct net_device* dev)
945 struct rhine_private *rp = netdev_priv(dev);
947 pci_free_consistent(rp->pdev,
948 RX_RING_SIZE * sizeof(struct rx_desc) +
949 TX_RING_SIZE * sizeof(struct tx_desc),
950 rp->rx_ring, rp->rx_ring_dma);
951 rp->tx_ring = NULL;
953 if (rp->tx_bufs)
954 pci_free_consistent(rp->pdev, PKT_BUF_SZ * TX_RING_SIZE,
955 rp->tx_bufs, rp->tx_bufs_dma);
957 rp->tx_bufs = NULL;
961 static void alloc_rbufs(struct net_device *dev)
963 struct rhine_private *rp = netdev_priv(dev);
964 dma_addr_t next;
965 int i;
967 rp->dirty_rx = rp->cur_rx = 0;
969 rp->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
970 rp->rx_head_desc = &rp->rx_ring[0];
971 next = rp->rx_ring_dma;
973 /* Init the ring entries */
974 for (i = 0; i < RX_RING_SIZE; i++) {
975 rp->rx_ring[i].rx_status = 0;
976 rp->rx_ring[i].desc_length = cpu_to_le32(rp->rx_buf_sz);
977 next += sizeof(struct rx_desc);
978 rp->rx_ring[i].next_desc = cpu_to_le32(next);
979 rp->rx_skbuff[i] = NULL;
981 /* Mark the last entry as wrapping the ring. */
982 rp->rx_ring[i-1].next_desc = cpu_to_le32(rp->rx_ring_dma);
984 /* Fill in the Rx buffers. Handle allocation failure gracefully. */
985 for (i = 0; i < RX_RING_SIZE; i++) {
986 struct sk_buff *skb = dev_alloc_skb(rp->rx_buf_sz);
987 rp->rx_skbuff[i] = skb;
988 if (skb == NULL)
989 break;
990 skb->dev = dev; /* Mark as being used by this device. */
992 rp->rx_skbuff_dma[i] =
993 pci_map_single(rp->pdev, skb->data, rp->rx_buf_sz,
994 PCI_DMA_FROMDEVICE);
996 rp->rx_ring[i].addr = cpu_to_le32(rp->rx_skbuff_dma[i]);
997 rp->rx_ring[i].rx_status = cpu_to_le32(DescOwn);
999 rp->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
1002 static void free_rbufs(struct net_device* dev)
1004 struct rhine_private *rp = netdev_priv(dev);
1005 int i;
1007 /* Free all the skbuffs in the Rx queue. */
1008 for (i = 0; i < RX_RING_SIZE; i++) {
1009 rp->rx_ring[i].rx_status = 0;
1010 rp->rx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
1011 if (rp->rx_skbuff[i]) {
1012 pci_unmap_single(rp->pdev,
1013 rp->rx_skbuff_dma[i],
1014 rp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1015 dev_kfree_skb(rp->rx_skbuff[i]);
1017 rp->rx_skbuff[i] = NULL;
1021 static void alloc_tbufs(struct net_device* dev)
1023 struct rhine_private *rp = netdev_priv(dev);
1024 dma_addr_t next;
1025 int i;
1027 rp->dirty_tx = rp->cur_tx = 0;
1028 next = rp->tx_ring_dma;
1029 for (i = 0; i < TX_RING_SIZE; i++) {
1030 rp->tx_skbuff[i] = NULL;
1031 rp->tx_ring[i].tx_status = 0;
1032 rp->tx_ring[i].desc_length = cpu_to_le32(TXDESC);
1033 next += sizeof(struct tx_desc);
1034 rp->tx_ring[i].next_desc = cpu_to_le32(next);
1035 rp->tx_buf[i] = &rp->tx_bufs[i * PKT_BUF_SZ];
1037 rp->tx_ring[i-1].next_desc = cpu_to_le32(rp->tx_ring_dma);
1041 static void free_tbufs(struct net_device* dev)
1043 struct rhine_private *rp = netdev_priv(dev);
1044 int i;
1046 for (i = 0; i < TX_RING_SIZE; i++) {
1047 rp->tx_ring[i].tx_status = 0;
1048 rp->tx_ring[i].desc_length = cpu_to_le32(TXDESC);
1049 rp->tx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
1050 if (rp->tx_skbuff[i]) {
1051 if (rp->tx_skbuff_dma[i]) {
1052 pci_unmap_single(rp->pdev,
1053 rp->tx_skbuff_dma[i],
1054 rp->tx_skbuff[i]->len,
1055 PCI_DMA_TODEVICE);
1057 dev_kfree_skb(rp->tx_skbuff[i]);
1059 rp->tx_skbuff[i] = NULL;
1060 rp->tx_buf[i] = NULL;
1064 static void rhine_check_media(struct net_device *dev, unsigned int init_media)
1066 struct rhine_private *rp = netdev_priv(dev);
1067 void __iomem *ioaddr = rp->base;
1069 mii_check_media(&rp->mii_if, debug, init_media);
1071 if (rp->mii_if.full_duplex)
1072 iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1FDuplex,
1073 ioaddr + ChipCmd1);
1074 else
1075 iowrite8(ioread8(ioaddr + ChipCmd1) & ~Cmd1FDuplex,
1076 ioaddr + ChipCmd1);
1079 static void init_registers(struct net_device *dev)
1081 struct rhine_private *rp = netdev_priv(dev);
1082 void __iomem *ioaddr = rp->base;
1083 int i;
1085 for (i = 0; i < 6; i++)
1086 iowrite8(dev->dev_addr[i], ioaddr + StationAddr + i);
1088 /* Initialize other registers. */
1089 iowrite16(0x0006, ioaddr + PCIBusConfig); /* Tune configuration??? */
1090 /* Configure initial FIFO thresholds. */
1091 iowrite8(0x20, ioaddr + TxConfig);
1092 rp->tx_thresh = 0x20;
1093 rp->rx_thresh = 0x60; /* Written in rhine_set_rx_mode(). */
1095 iowrite32(rp->rx_ring_dma, ioaddr + RxRingPtr);
1096 iowrite32(rp->tx_ring_dma, ioaddr + TxRingPtr);
1098 rhine_set_rx_mode(dev);
1100 /* Enable interrupts by setting the interrupt mask. */
1101 iowrite16(IntrRxDone | IntrRxErr | IntrRxEmpty| IntrRxOverflow |
1102 IntrRxDropped | IntrRxNoBuf | IntrTxAborted |
1103 IntrTxDone | IntrTxError | IntrTxUnderrun |
1104 IntrPCIErr | IntrStatsMax | IntrLinkChange,
1105 ioaddr + IntrEnable);
1107 iowrite16(CmdStart | CmdTxOn | CmdRxOn | (Cmd1NoTxPoll << 8),
1108 ioaddr + ChipCmd);
1109 rhine_check_media(dev, 1);
1112 /* Enable MII link status auto-polling (required for IntrLinkChange) */
1113 static void rhine_enable_linkmon(void __iomem *ioaddr)
1115 iowrite8(0, ioaddr + MIICmd);
1116 iowrite8(MII_BMSR, ioaddr + MIIRegAddr);
1117 iowrite8(0x80, ioaddr + MIICmd);
1119 RHINE_WAIT_FOR((ioread8(ioaddr + MIIRegAddr) & 0x20));
1121 iowrite8(MII_BMSR | 0x40, ioaddr + MIIRegAddr);
1124 /* Disable MII link status auto-polling (required for MDIO access) */
1125 static void rhine_disable_linkmon(void __iomem *ioaddr, u32 quirks)
1127 iowrite8(0, ioaddr + MIICmd);
1129 if (quirks & rqRhineI) {
1130 iowrite8(0x01, ioaddr + MIIRegAddr); // MII_BMSR
1132 /* Can be called from ISR. Evil. */
1133 mdelay(1);
1135 /* 0x80 must be set immediately before turning it off */
1136 iowrite8(0x80, ioaddr + MIICmd);
1138 RHINE_WAIT_FOR(ioread8(ioaddr + MIIRegAddr) & 0x20);
1140 /* Heh. Now clear 0x80 again. */
1141 iowrite8(0, ioaddr + MIICmd);
1143 else
1144 RHINE_WAIT_FOR(ioread8(ioaddr + MIIRegAddr) & 0x80);
1147 /* Read and write over the MII Management Data I/O (MDIO) interface. */
1149 static int mdio_read(struct net_device *dev, int phy_id, int regnum)
1151 struct rhine_private *rp = netdev_priv(dev);
1152 void __iomem *ioaddr = rp->base;
1153 int result;
1155 rhine_disable_linkmon(ioaddr, rp->quirks);
1157 /* rhine_disable_linkmon already cleared MIICmd */
1158 iowrite8(phy_id, ioaddr + MIIPhyAddr);
1159 iowrite8(regnum, ioaddr + MIIRegAddr);
1160 iowrite8(0x40, ioaddr + MIICmd); /* Trigger read */
1161 RHINE_WAIT_FOR(!(ioread8(ioaddr + MIICmd) & 0x40));
1162 result = ioread16(ioaddr + MIIData);
1164 rhine_enable_linkmon(ioaddr);
1165 return result;
1168 static void mdio_write(struct net_device *dev, int phy_id, int regnum, int value)
1170 struct rhine_private *rp = netdev_priv(dev);
1171 void __iomem *ioaddr = rp->base;
1173 rhine_disable_linkmon(ioaddr, rp->quirks);
1175 /* rhine_disable_linkmon already cleared MIICmd */
1176 iowrite8(phy_id, ioaddr + MIIPhyAddr);
1177 iowrite8(regnum, ioaddr + MIIRegAddr);
1178 iowrite16(value, ioaddr + MIIData);
1179 iowrite8(0x20, ioaddr + MIICmd); /* Trigger write */
1180 RHINE_WAIT_FOR(!(ioread8(ioaddr + MIICmd) & 0x20));
1182 rhine_enable_linkmon(ioaddr);
1185 static int rhine_open(struct net_device *dev)
1187 struct rhine_private *rp = netdev_priv(dev);
1188 void __iomem *ioaddr = rp->base;
1189 int rc;
1191 rc = request_irq(rp->pdev->irq, &rhine_interrupt, SA_SHIRQ, dev->name,
1192 dev);
1193 if (rc)
1194 return rc;
1196 if (debug > 1)
1197 printk(KERN_DEBUG "%s: rhine_open() irq %d.\n",
1198 dev->name, rp->pdev->irq);
1200 rc = alloc_ring(dev);
1201 if (rc) {
1202 free_irq(rp->pdev->irq, dev);
1203 return rc;
1205 alloc_rbufs(dev);
1206 alloc_tbufs(dev);
1207 rhine_chip_reset(dev);
1208 init_registers(dev);
1209 if (debug > 2)
1210 printk(KERN_DEBUG "%s: Done rhine_open(), status %4.4x "
1211 "MII status: %4.4x.\n",
1212 dev->name, ioread16(ioaddr + ChipCmd),
1213 mdio_read(dev, rp->mii_if.phy_id, MII_BMSR));
1215 netif_start_queue(dev);
1217 return 0;
1220 static void rhine_tx_timeout(struct net_device *dev)
1222 struct rhine_private *rp = netdev_priv(dev);
1223 void __iomem *ioaddr = rp->base;
1225 printk(KERN_WARNING "%s: Transmit timed out, status %4.4x, PHY status "
1226 "%4.4x, resetting...\n",
1227 dev->name, ioread16(ioaddr + IntrStatus),
1228 mdio_read(dev, rp->mii_if.phy_id, MII_BMSR));
1230 /* protect against concurrent rx interrupts */
1231 disable_irq(rp->pdev->irq);
1233 spin_lock(&rp->lock);
1235 /* clear all descriptors */
1236 free_tbufs(dev);
1237 free_rbufs(dev);
1238 alloc_tbufs(dev);
1239 alloc_rbufs(dev);
1241 /* Reinitialize the hardware. */
1242 rhine_chip_reset(dev);
1243 init_registers(dev);
1245 spin_unlock(&rp->lock);
1246 enable_irq(rp->pdev->irq);
1248 dev->trans_start = jiffies;
1249 rp->stats.tx_errors++;
1250 netif_wake_queue(dev);
1253 static int rhine_start_tx(struct sk_buff *skb, struct net_device *dev)
1255 struct rhine_private *rp = netdev_priv(dev);
1256 void __iomem *ioaddr = rp->base;
1257 unsigned entry;
1259 /* Caution: the write order is important here, set the field
1260 with the "ownership" bits last. */
1262 /* Calculate the next Tx descriptor entry. */
1263 entry = rp->cur_tx % TX_RING_SIZE;
1265 if (skb->len < ETH_ZLEN) {
1266 skb = skb_padto(skb, ETH_ZLEN);
1267 if (skb == NULL)
1268 return 0;
1271 rp->tx_skbuff[entry] = skb;
1273 if ((rp->quirks & rqRhineI) &&
1274 (((unsigned long)skb->data & 3) || skb_shinfo(skb)->nr_frags != 0 || skb->ip_summed == CHECKSUM_HW)) {
1275 /* Must use alignment buffer. */
1276 if (skb->len > PKT_BUF_SZ) {
1277 /* packet too long, drop it */
1278 dev_kfree_skb(skb);
1279 rp->tx_skbuff[entry] = NULL;
1280 rp->stats.tx_dropped++;
1281 return 0;
1283 skb_copy_and_csum_dev(skb, rp->tx_buf[entry]);
1284 rp->tx_skbuff_dma[entry] = 0;
1285 rp->tx_ring[entry].addr = cpu_to_le32(rp->tx_bufs_dma +
1286 (rp->tx_buf[entry] -
1287 rp->tx_bufs));
1288 } else {
1289 rp->tx_skbuff_dma[entry] =
1290 pci_map_single(rp->pdev, skb->data, skb->len,
1291 PCI_DMA_TODEVICE);
1292 rp->tx_ring[entry].addr = cpu_to_le32(rp->tx_skbuff_dma[entry]);
1295 rp->tx_ring[entry].desc_length =
1296 cpu_to_le32(TXDESC | (skb->len >= ETH_ZLEN ? skb->len : ETH_ZLEN));
1298 /* lock eth irq */
1299 spin_lock_irq(&rp->lock);
1300 wmb();
1301 rp->tx_ring[entry].tx_status = cpu_to_le32(DescOwn);
1302 wmb();
1304 rp->cur_tx++;
1306 /* Non-x86 Todo: explicitly flush cache lines here. */
1308 /* Wake the potentially-idle transmit channel */
1309 iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1TxDemand,
1310 ioaddr + ChipCmd1);
1311 IOSYNC;
1313 if (rp->cur_tx == rp->dirty_tx + TX_QUEUE_LEN)
1314 netif_stop_queue(dev);
1316 dev->trans_start = jiffies;
1318 spin_unlock_irq(&rp->lock);
1320 if (debug > 4) {
1321 printk(KERN_DEBUG "%s: Transmit frame #%d queued in slot %d.\n",
1322 dev->name, rp->cur_tx-1, entry);
1324 return 0;
1327 /* The interrupt handler does all of the Rx thread work and cleans up
1328 after the Tx thread. */
1329 static irqreturn_t rhine_interrupt(int irq, void *dev_instance, struct pt_regs *rgs)
1331 struct net_device *dev = dev_instance;
1332 struct rhine_private *rp = netdev_priv(dev);
1333 void __iomem *ioaddr = rp->base;
1334 u32 intr_status;
1335 int boguscnt = max_interrupt_work;
1336 int handled = 0;
1338 while ((intr_status = get_intr_status(dev))) {
1339 handled = 1;
1341 /* Acknowledge all of the current interrupt sources ASAP. */
1342 if (intr_status & IntrTxDescRace)
1343 iowrite8(0x08, ioaddr + IntrStatus2);
1344 iowrite16(intr_status & 0xffff, ioaddr + IntrStatus);
1345 IOSYNC;
1347 if (debug > 4)
1348 printk(KERN_DEBUG "%s: Interrupt, status %8.8x.\n",
1349 dev->name, intr_status);
1351 if (intr_status & (IntrRxDone | IntrRxErr | IntrRxDropped |
1352 IntrRxWakeUp | IntrRxEmpty | IntrRxNoBuf))
1353 rhine_rx(dev);
1355 if (intr_status & (IntrTxErrSummary | IntrTxDone)) {
1356 if (intr_status & IntrTxErrSummary) {
1357 /* Avoid scavenging before Tx engine turned off */
1358 RHINE_WAIT_FOR(!(ioread8(ioaddr+ChipCmd) & CmdTxOn));
1359 if (debug > 2 &&
1360 ioread8(ioaddr+ChipCmd) & CmdTxOn)
1361 printk(KERN_WARNING "%s: "
1362 "rhine_interrupt() Tx engine"
1363 "still on.\n", dev->name);
1365 rhine_tx(dev);
1368 /* Abnormal error summary/uncommon events handlers. */
1369 if (intr_status & (IntrPCIErr | IntrLinkChange |
1370 IntrStatsMax | IntrTxError | IntrTxAborted |
1371 IntrTxUnderrun | IntrTxDescRace))
1372 rhine_error(dev, intr_status);
1374 if (--boguscnt < 0) {
1375 printk(KERN_WARNING "%s: Too much work at interrupt, "
1376 "status=%#8.8x.\n",
1377 dev->name, intr_status);
1378 break;
1382 if (debug > 3)
1383 printk(KERN_DEBUG "%s: exiting interrupt, status=%8.8x.\n",
1384 dev->name, ioread16(ioaddr + IntrStatus));
1385 return IRQ_RETVAL(handled);
1388 /* This routine is logically part of the interrupt handler, but isolated
1389 for clarity. */
1390 static void rhine_tx(struct net_device *dev)
1392 struct rhine_private *rp = netdev_priv(dev);
1393 int txstatus = 0, entry = rp->dirty_tx % TX_RING_SIZE;
1395 spin_lock(&rp->lock);
1397 /* find and cleanup dirty tx descriptors */
1398 while (rp->dirty_tx != rp->cur_tx) {
1399 txstatus = le32_to_cpu(rp->tx_ring[entry].tx_status);
1400 if (debug > 6)
1401 printk(KERN_DEBUG "Tx scavenge %d status %8.8x.\n",
1402 entry, txstatus);
1403 if (txstatus & DescOwn)
1404 break;
1405 if (txstatus & 0x8000) {
1406 if (debug > 1)
1407 printk(KERN_DEBUG "%s: Transmit error, "
1408 "Tx status %8.8x.\n",
1409 dev->name, txstatus);
1410 rp->stats.tx_errors++;
1411 if (txstatus & 0x0400) rp->stats.tx_carrier_errors++;
1412 if (txstatus & 0x0200) rp->stats.tx_window_errors++;
1413 if (txstatus & 0x0100) rp->stats.tx_aborted_errors++;
1414 if (txstatus & 0x0080) rp->stats.tx_heartbeat_errors++;
1415 if (((rp->quirks & rqRhineI) && txstatus & 0x0002) ||
1416 (txstatus & 0x0800) || (txstatus & 0x1000)) {
1417 rp->stats.tx_fifo_errors++;
1418 rp->tx_ring[entry].tx_status = cpu_to_le32(DescOwn);
1419 break; /* Keep the skb - we try again */
1421 /* Transmitter restarted in 'abnormal' handler. */
1422 } else {
1423 if (rp->quirks & rqRhineI)
1424 rp->stats.collisions += (txstatus >> 3) & 0x0F;
1425 else
1426 rp->stats.collisions += txstatus & 0x0F;
1427 if (debug > 6)
1428 printk(KERN_DEBUG "collisions: %1.1x:%1.1x\n",
1429 (txstatus >> 3) & 0xF,
1430 txstatus & 0xF);
1431 rp->stats.tx_bytes += rp->tx_skbuff[entry]->len;
1432 rp->stats.tx_packets++;
1434 /* Free the original skb. */
1435 if (rp->tx_skbuff_dma[entry]) {
1436 pci_unmap_single(rp->pdev,
1437 rp->tx_skbuff_dma[entry],
1438 rp->tx_skbuff[entry]->len,
1439 PCI_DMA_TODEVICE);
1441 dev_kfree_skb_irq(rp->tx_skbuff[entry]);
1442 rp->tx_skbuff[entry] = NULL;
1443 entry = (++rp->dirty_tx) % TX_RING_SIZE;
1445 if ((rp->cur_tx - rp->dirty_tx) < TX_QUEUE_LEN - 4)
1446 netif_wake_queue(dev);
1448 spin_unlock(&rp->lock);
1451 /* This routine is logically part of the interrupt handler, but isolated
1452 for clarity and better register allocation. */
1453 static void rhine_rx(struct net_device *dev)
1455 struct rhine_private *rp = netdev_priv(dev);
1456 int entry = rp->cur_rx % RX_RING_SIZE;
1457 int boguscnt = rp->dirty_rx + RX_RING_SIZE - rp->cur_rx;
1459 if (debug > 4) {
1460 printk(KERN_DEBUG "%s: rhine_rx(), entry %d status %8.8x.\n",
1461 dev->name, entry,
1462 le32_to_cpu(rp->rx_head_desc->rx_status));
1465 /* If EOP is set on the next entry, it's a new packet. Send it up. */
1466 while (!(rp->rx_head_desc->rx_status & cpu_to_le32(DescOwn))) {
1467 struct rx_desc *desc = rp->rx_head_desc;
1468 u32 desc_status = le32_to_cpu(desc->rx_status);
1469 int data_size = desc_status >> 16;
1471 if (debug > 4)
1472 printk(KERN_DEBUG "rhine_rx() status is %8.8x.\n",
1473 desc_status);
1474 if (--boguscnt < 0)
1475 break;
1476 if ((desc_status & (RxWholePkt | RxErr)) != RxWholePkt) {
1477 if ((desc_status & RxWholePkt) != RxWholePkt) {
1478 printk(KERN_WARNING "%s: Oversized Ethernet "
1479 "frame spanned multiple buffers, entry "
1480 "%#x length %d status %8.8x!\n",
1481 dev->name, entry, data_size,
1482 desc_status);
1483 printk(KERN_WARNING "%s: Oversized Ethernet "
1484 "frame %p vs %p.\n", dev->name,
1485 rp->rx_head_desc, &rp->rx_ring[entry]);
1486 rp->stats.rx_length_errors++;
1487 } else if (desc_status & RxErr) {
1488 /* There was a error. */
1489 if (debug > 2)
1490 printk(KERN_DEBUG "rhine_rx() Rx "
1491 "error was %8.8x.\n",
1492 desc_status);
1493 rp->stats.rx_errors++;
1494 if (desc_status & 0x0030) rp->stats.rx_length_errors++;
1495 if (desc_status & 0x0048) rp->stats.rx_fifo_errors++;
1496 if (desc_status & 0x0004) rp->stats.rx_frame_errors++;
1497 if (desc_status & 0x0002) {
1498 /* this can also be updated outside the interrupt handler */
1499 spin_lock(&rp->lock);
1500 rp->stats.rx_crc_errors++;
1501 spin_unlock(&rp->lock);
1504 } else {
1505 struct sk_buff *skb;
1506 /* Length should omit the CRC */
1507 int pkt_len = data_size - 4;
1509 /* Check if the packet is long enough to accept without
1510 copying to a minimally-sized skbuff. */
1511 if (pkt_len < rx_copybreak &&
1512 (skb = dev_alloc_skb(pkt_len + 2)) != NULL) {
1513 skb->dev = dev;
1514 skb_reserve(skb, 2); /* 16 byte align the IP header */
1515 pci_dma_sync_single_for_cpu(rp->pdev,
1516 rp->rx_skbuff_dma[entry],
1517 rp->rx_buf_sz,
1518 PCI_DMA_FROMDEVICE);
1520 eth_copy_and_sum(skb,
1521 rp->rx_skbuff[entry]->data,
1522 pkt_len, 0);
1523 skb_put(skb, pkt_len);
1524 pci_dma_sync_single_for_device(rp->pdev,
1525 rp->rx_skbuff_dma[entry],
1526 rp->rx_buf_sz,
1527 PCI_DMA_FROMDEVICE);
1528 } else {
1529 skb = rp->rx_skbuff[entry];
1530 if (skb == NULL) {
1531 printk(KERN_ERR "%s: Inconsistent Rx "
1532 "descriptor chain.\n",
1533 dev->name);
1534 break;
1536 rp->rx_skbuff[entry] = NULL;
1537 skb_put(skb, pkt_len);
1538 pci_unmap_single(rp->pdev,
1539 rp->rx_skbuff_dma[entry],
1540 rp->rx_buf_sz,
1541 PCI_DMA_FROMDEVICE);
1543 skb->protocol = eth_type_trans(skb, dev);
1544 netif_rx(skb);
1545 dev->last_rx = jiffies;
1546 rp->stats.rx_bytes += pkt_len;
1547 rp->stats.rx_packets++;
1549 entry = (++rp->cur_rx) % RX_RING_SIZE;
1550 rp->rx_head_desc = &rp->rx_ring[entry];
1553 /* Refill the Rx ring buffers. */
1554 for (; rp->cur_rx - rp->dirty_rx > 0; rp->dirty_rx++) {
1555 struct sk_buff *skb;
1556 entry = rp->dirty_rx % RX_RING_SIZE;
1557 if (rp->rx_skbuff[entry] == NULL) {
1558 skb = dev_alloc_skb(rp->rx_buf_sz);
1559 rp->rx_skbuff[entry] = skb;
1560 if (skb == NULL)
1561 break; /* Better luck next round. */
1562 skb->dev = dev; /* Mark as being used by this device. */
1563 rp->rx_skbuff_dma[entry] =
1564 pci_map_single(rp->pdev, skb->data,
1565 rp->rx_buf_sz,
1566 PCI_DMA_FROMDEVICE);
1567 rp->rx_ring[entry].addr = cpu_to_le32(rp->rx_skbuff_dma[entry]);
1569 rp->rx_ring[entry].rx_status = cpu_to_le32(DescOwn);
1574 * Clears the "tally counters" for CRC errors and missed frames(?).
1575 * It has been reported that some chips need a write of 0 to clear
1576 * these, for others the counters are set to 1 when written to and
1577 * instead cleared when read. So we clear them both ways ...
1579 static inline void clear_tally_counters(void __iomem *ioaddr)
1581 iowrite32(0, ioaddr + RxMissed);
1582 ioread16(ioaddr + RxCRCErrs);
1583 ioread16(ioaddr + RxMissed);
1586 static void rhine_restart_tx(struct net_device *dev) {
1587 struct rhine_private *rp = netdev_priv(dev);
1588 void __iomem *ioaddr = rp->base;
1589 int entry = rp->dirty_tx % TX_RING_SIZE;
1590 u32 intr_status;
1593 * If new errors occured, we need to sort them out before doing Tx.
1594 * In that case the ISR will be back here RSN anyway.
1596 intr_status = get_intr_status(dev);
1598 if ((intr_status & IntrTxErrSummary) == 0) {
1600 /* We know better than the chip where it should continue. */
1601 iowrite32(rp->tx_ring_dma + entry * sizeof(struct tx_desc),
1602 ioaddr + TxRingPtr);
1604 iowrite8(ioread8(ioaddr + ChipCmd) | CmdTxOn,
1605 ioaddr + ChipCmd);
1606 iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1TxDemand,
1607 ioaddr + ChipCmd1);
1608 IOSYNC;
1610 else {
1611 /* This should never happen */
1612 if (debug > 1)
1613 printk(KERN_WARNING "%s: rhine_restart_tx() "
1614 "Another error occured %8.8x.\n",
1615 dev->name, intr_status);
1620 static void rhine_error(struct net_device *dev, int intr_status)
1622 struct rhine_private *rp = netdev_priv(dev);
1623 void __iomem *ioaddr = rp->base;
1625 spin_lock(&rp->lock);
1627 if (intr_status & IntrLinkChange)
1628 rhine_check_media(dev, 0);
1629 if (intr_status & IntrStatsMax) {
1630 rp->stats.rx_crc_errors += ioread16(ioaddr + RxCRCErrs);
1631 rp->stats.rx_missed_errors += ioread16(ioaddr + RxMissed);
1632 clear_tally_counters(ioaddr);
1634 if (intr_status & IntrTxAborted) {
1635 if (debug > 1)
1636 printk(KERN_INFO "%s: Abort %8.8x, frame dropped.\n",
1637 dev->name, intr_status);
1639 if (intr_status & IntrTxUnderrun) {
1640 if (rp->tx_thresh < 0xE0)
1641 iowrite8(rp->tx_thresh += 0x20, ioaddr + TxConfig);
1642 if (debug > 1)
1643 printk(KERN_INFO "%s: Transmitter underrun, Tx "
1644 "threshold now %2.2x.\n",
1645 dev->name, rp->tx_thresh);
1647 if (intr_status & IntrTxDescRace) {
1648 if (debug > 2)
1649 printk(KERN_INFO "%s: Tx descriptor write-back race.\n",
1650 dev->name);
1652 if ((intr_status & IntrTxError) &&
1653 (intr_status & (IntrTxAborted |
1654 IntrTxUnderrun | IntrTxDescRace)) == 0) {
1655 if (rp->tx_thresh < 0xE0) {
1656 iowrite8(rp->tx_thresh += 0x20, ioaddr + TxConfig);
1658 if (debug > 1)
1659 printk(KERN_INFO "%s: Unspecified error. Tx "
1660 "threshold now %2.2x.\n",
1661 dev->name, rp->tx_thresh);
1663 if (intr_status & (IntrTxAborted | IntrTxUnderrun | IntrTxDescRace |
1664 IntrTxError))
1665 rhine_restart_tx(dev);
1667 if (intr_status & ~(IntrLinkChange | IntrStatsMax | IntrTxUnderrun |
1668 IntrTxError | IntrTxAborted | IntrNormalSummary |
1669 IntrTxDescRace)) {
1670 if (debug > 1)
1671 printk(KERN_ERR "%s: Something Wicked happened! "
1672 "%8.8x.\n", dev->name, intr_status);
1675 spin_unlock(&rp->lock);
1678 static struct net_device_stats *rhine_get_stats(struct net_device *dev)
1680 struct rhine_private *rp = netdev_priv(dev);
1681 void __iomem *ioaddr = rp->base;
1682 unsigned long flags;
1684 spin_lock_irqsave(&rp->lock, flags);
1685 rp->stats.rx_crc_errors += ioread16(ioaddr + RxCRCErrs);
1686 rp->stats.rx_missed_errors += ioread16(ioaddr + RxMissed);
1687 clear_tally_counters(ioaddr);
1688 spin_unlock_irqrestore(&rp->lock, flags);
1690 return &rp->stats;
1693 static void rhine_set_rx_mode(struct net_device *dev)
1695 struct rhine_private *rp = netdev_priv(dev);
1696 void __iomem *ioaddr = rp->base;
1697 u32 mc_filter[2]; /* Multicast hash filter */
1698 u8 rx_mode; /* Note: 0x02=accept runt, 0x01=accept errs */
1700 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1701 /* Unconditionally log net taps. */
1702 printk(KERN_NOTICE "%s: Promiscuous mode enabled.\n",
1703 dev->name);
1704 rx_mode = 0x1C;
1705 iowrite32(0xffffffff, ioaddr + MulticastFilter0);
1706 iowrite32(0xffffffff, ioaddr + MulticastFilter1);
1707 } else if ((dev->mc_count > multicast_filter_limit)
1708 || (dev->flags & IFF_ALLMULTI)) {
1709 /* Too many to match, or accept all multicasts. */
1710 iowrite32(0xffffffff, ioaddr + MulticastFilter0);
1711 iowrite32(0xffffffff, ioaddr + MulticastFilter1);
1712 rx_mode = 0x0C;
1713 } else {
1714 struct dev_mc_list *mclist;
1715 int i;
1716 memset(mc_filter, 0, sizeof(mc_filter));
1717 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
1718 i++, mclist = mclist->next) {
1719 int bit_nr = ether_crc(ETH_ALEN, mclist->dmi_addr) >> 26;
1721 mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31);
1723 iowrite32(mc_filter[0], ioaddr + MulticastFilter0);
1724 iowrite32(mc_filter[1], ioaddr + MulticastFilter1);
1725 rx_mode = 0x0C;
1727 iowrite8(rp->rx_thresh | rx_mode, ioaddr + RxConfig);
1730 static void netdev_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1732 struct rhine_private *rp = netdev_priv(dev);
1734 strcpy(info->driver, DRV_NAME);
1735 strcpy(info->version, DRV_VERSION);
1736 strcpy(info->bus_info, pci_name(rp->pdev));
1739 static int netdev_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1741 struct rhine_private *rp = netdev_priv(dev);
1742 int rc;
1744 spin_lock_irq(&rp->lock);
1745 rc = mii_ethtool_gset(&rp->mii_if, cmd);
1746 spin_unlock_irq(&rp->lock);
1748 return rc;
1751 static int netdev_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1753 struct rhine_private *rp = netdev_priv(dev);
1754 int rc;
1756 spin_lock_irq(&rp->lock);
1757 rc = mii_ethtool_sset(&rp->mii_if, cmd);
1758 spin_unlock_irq(&rp->lock);
1760 return rc;
1763 static int netdev_nway_reset(struct net_device *dev)
1765 struct rhine_private *rp = netdev_priv(dev);
1767 return mii_nway_restart(&rp->mii_if);
1770 static u32 netdev_get_link(struct net_device *dev)
1772 struct rhine_private *rp = netdev_priv(dev);
1774 return mii_link_ok(&rp->mii_if);
1777 static u32 netdev_get_msglevel(struct net_device *dev)
1779 return debug;
1782 static void netdev_set_msglevel(struct net_device *dev, u32 value)
1784 debug = value;
1787 static void rhine_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
1789 struct rhine_private *rp = netdev_priv(dev);
1791 if (!(rp->quirks & rqWOL))
1792 return;
1794 spin_lock_irq(&rp->lock);
1795 wol->supported = WAKE_PHY | WAKE_MAGIC |
1796 WAKE_UCAST | WAKE_MCAST | WAKE_BCAST; /* Untested */
1797 wol->wolopts = rp->wolopts;
1798 spin_unlock_irq(&rp->lock);
1801 static int rhine_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
1803 struct rhine_private *rp = netdev_priv(dev);
1804 u32 support = WAKE_PHY | WAKE_MAGIC |
1805 WAKE_UCAST | WAKE_MCAST | WAKE_BCAST; /* Untested */
1807 if (!(rp->quirks & rqWOL))
1808 return -EINVAL;
1810 if (wol->wolopts & ~support)
1811 return -EINVAL;
1813 spin_lock_irq(&rp->lock);
1814 rp->wolopts = wol->wolopts;
1815 spin_unlock_irq(&rp->lock);
1817 return 0;
1820 static struct ethtool_ops netdev_ethtool_ops = {
1821 .get_drvinfo = netdev_get_drvinfo,
1822 .get_settings = netdev_get_settings,
1823 .set_settings = netdev_set_settings,
1824 .nway_reset = netdev_nway_reset,
1825 .get_link = netdev_get_link,
1826 .get_msglevel = netdev_get_msglevel,
1827 .set_msglevel = netdev_set_msglevel,
1828 .get_wol = rhine_get_wol,
1829 .set_wol = rhine_set_wol,
1830 .get_sg = ethtool_op_get_sg,
1831 .get_tx_csum = ethtool_op_get_tx_csum,
1834 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1836 struct rhine_private *rp = netdev_priv(dev);
1837 int rc;
1839 if (!netif_running(dev))
1840 return -EINVAL;
1842 spin_lock_irq(&rp->lock);
1843 rc = generic_mii_ioctl(&rp->mii_if, if_mii(rq), cmd, NULL);
1844 spin_unlock_irq(&rp->lock);
1846 return rc;
1849 static int rhine_close(struct net_device *dev)
1851 struct rhine_private *rp = netdev_priv(dev);
1852 void __iomem *ioaddr = rp->base;
1854 spin_lock_irq(&rp->lock);
1856 netif_stop_queue(dev);
1858 if (debug > 1)
1859 printk(KERN_DEBUG "%s: Shutting down ethercard, "
1860 "status was %4.4x.\n",
1861 dev->name, ioread16(ioaddr + ChipCmd));
1863 /* Switch to loopback mode to avoid hardware races. */
1864 iowrite8(rp->tx_thresh | 0x02, ioaddr + TxConfig);
1866 /* Disable interrupts by clearing the interrupt mask. */
1867 iowrite16(0x0000, ioaddr + IntrEnable);
1869 /* Stop the chip's Tx and Rx processes. */
1870 iowrite16(CmdStop, ioaddr + ChipCmd);
1872 spin_unlock_irq(&rp->lock);
1874 free_irq(rp->pdev->irq, dev);
1875 free_rbufs(dev);
1876 free_tbufs(dev);
1877 free_ring(dev);
1879 return 0;
1883 static void __devexit rhine_remove_one(struct pci_dev *pdev)
1885 struct net_device *dev = pci_get_drvdata(pdev);
1886 struct rhine_private *rp = netdev_priv(dev);
1888 unregister_netdev(dev);
1890 pci_iounmap(pdev, rp->base);
1891 pci_release_regions(pdev);
1893 free_netdev(dev);
1894 pci_disable_device(pdev);
1895 pci_set_drvdata(pdev, NULL);
1898 static void rhine_shutdown (struct pci_dev *pdev)
1900 struct net_device *dev = pci_get_drvdata(pdev);
1901 struct rhine_private *rp = netdev_priv(dev);
1902 void __iomem *ioaddr = rp->base;
1904 if (!(rp->quirks & rqWOL))
1905 return; /* Nothing to do for non-WOL adapters */
1907 rhine_power_init(dev);
1909 /* Make sure we use pattern 0, 1 and not 4, 5 */
1910 if (rp->quirks & rq6patterns)
1911 iowrite8(0x04, ioaddr + 0xA7);
1913 if (rp->wolopts & WAKE_MAGIC) {
1914 iowrite8(WOLmagic, ioaddr + WOLcrSet);
1916 * Turn EEPROM-controlled wake-up back on -- some hardware may
1917 * not cooperate otherwise.
1919 iowrite8(ioread8(ioaddr + ConfigA) | 0x03, ioaddr + ConfigA);
1922 if (rp->wolopts & (WAKE_BCAST|WAKE_MCAST))
1923 iowrite8(WOLbmcast, ioaddr + WOLcgSet);
1925 if (rp->wolopts & WAKE_PHY)
1926 iowrite8(WOLlnkon | WOLlnkoff, ioaddr + WOLcrSet);
1928 if (rp->wolopts & WAKE_UCAST)
1929 iowrite8(WOLucast, ioaddr + WOLcrSet);
1931 if (rp->wolopts) {
1932 /* Enable legacy WOL (for old motherboards) */
1933 iowrite8(0x01, ioaddr + PwcfgSet);
1934 iowrite8(ioread8(ioaddr + StickyHW) | 0x04, ioaddr + StickyHW);
1937 /* Hit power state D3 (sleep) */
1938 iowrite8(ioread8(ioaddr + StickyHW) | 0x03, ioaddr + StickyHW);
1940 /* TODO: Check use of pci_enable_wake() */
1944 #ifdef CONFIG_PM
1945 static int rhine_suspend(struct pci_dev *pdev, pm_message_t state)
1947 struct net_device *dev = pci_get_drvdata(pdev);
1948 struct rhine_private *rp = netdev_priv(dev);
1949 unsigned long flags;
1951 if (!netif_running(dev))
1952 return 0;
1954 netif_device_detach(dev);
1955 pci_save_state(pdev);
1957 spin_lock_irqsave(&rp->lock, flags);
1958 rhine_shutdown(pdev);
1959 spin_unlock_irqrestore(&rp->lock, flags);
1961 free_irq(dev->irq, dev);
1962 return 0;
1965 static int rhine_resume(struct pci_dev *pdev)
1967 struct net_device *dev = pci_get_drvdata(pdev);
1968 struct rhine_private *rp = netdev_priv(dev);
1969 unsigned long flags;
1970 int ret;
1972 if (!netif_running(dev))
1973 return 0;
1975 if (request_irq(dev->irq, rhine_interrupt, SA_SHIRQ, dev->name, dev))
1976 printk(KERN_ERR "via-rhine %s: request_irq failed\n", dev->name);
1978 ret = pci_set_power_state(pdev, PCI_D0);
1979 if (debug > 1)
1980 printk(KERN_INFO "%s: Entering power state D0 %s (%d).\n",
1981 dev->name, ret ? "failed" : "succeeded", ret);
1983 pci_restore_state(pdev);
1985 spin_lock_irqsave(&rp->lock, flags);
1986 #ifdef USE_MMIO
1987 enable_mmio(rp->pioaddr, rp->quirks);
1988 #endif
1989 rhine_power_init(dev);
1990 free_tbufs(dev);
1991 free_rbufs(dev);
1992 alloc_tbufs(dev);
1993 alloc_rbufs(dev);
1994 init_registers(dev);
1995 spin_unlock_irqrestore(&rp->lock, flags);
1997 netif_device_attach(dev);
1999 return 0;
2001 #endif /* CONFIG_PM */
2003 static struct pci_driver rhine_driver = {
2004 .name = DRV_NAME,
2005 .id_table = rhine_pci_tbl,
2006 .probe = rhine_init_one,
2007 .remove = __devexit_p(rhine_remove_one),
2008 #ifdef CONFIG_PM
2009 .suspend = rhine_suspend,
2010 .resume = rhine_resume,
2011 #endif /* CONFIG_PM */
2012 .shutdown = rhine_shutdown,
2016 static int __init rhine_init(void)
2018 /* when a module, this is printed whether or not devices are found in probe */
2019 #ifdef MODULE
2020 printk(version);
2021 #endif
2022 return pci_module_init(&rhine_driver);
2026 static void __exit rhine_cleanup(void)
2028 pci_unregister_driver(&rhine_driver);
2032 module_init(rhine_init);
2033 module_exit(rhine_cleanup);