[PATCH] i386: fix stack dump loglevel
[linux-2.6/sactl.git] / arch / i386 / kernel / traps.c
blob0aaebf3e1cfa321a6b20f6ade450063f3554e0f7
1 /*
2 * linux/arch/i386/traps.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
6 * Pentium III FXSR, SSE support
7 * Gareth Hughes <gareth@valinux.com>, May 2000
8 */
11 * 'Traps.c' handles hardware traps and faults after we have saved some
12 * state in 'asm.s'.
14 #include <linux/config.h>
15 #include <linux/sched.h>
16 #include <linux/kernel.h>
17 #include <linux/string.h>
18 #include <linux/errno.h>
19 #include <linux/timer.h>
20 #include <linux/mm.h>
21 #include <linux/init.h>
22 #include <linux/delay.h>
23 #include <linux/spinlock.h>
24 #include <linux/interrupt.h>
25 #include <linux/highmem.h>
26 #include <linux/kallsyms.h>
27 #include <linux/ptrace.h>
28 #include <linux/utsname.h>
29 #include <linux/kprobes.h>
30 #include <linux/kexec.h>
32 #ifdef CONFIG_EISA
33 #include <linux/ioport.h>
34 #include <linux/eisa.h>
35 #endif
37 #ifdef CONFIG_MCA
38 #include <linux/mca.h>
39 #endif
41 #include <asm/processor.h>
42 #include <asm/system.h>
43 #include <asm/uaccess.h>
44 #include <asm/io.h>
45 #include <asm/atomic.h>
46 #include <asm/debugreg.h>
47 #include <asm/desc.h>
48 #include <asm/i387.h>
49 #include <asm/nmi.h>
51 #include <asm/smp.h>
52 #include <asm/arch_hooks.h>
53 #include <asm/kdebug.h>
55 #include <linux/module.h>
57 #include "mach_traps.h"
59 asmlinkage int system_call(void);
61 struct desc_struct default_ldt[] = { { 0, 0 }, { 0, 0 }, { 0, 0 },
62 { 0, 0 }, { 0, 0 } };
64 /* Do we ignore FPU interrupts ? */
65 char ignore_fpu_irq = 0;
68 * The IDT has to be page-aligned to simplify the Pentium
69 * F0 0F bug workaround.. We have a special link segment
70 * for this.
72 struct desc_struct idt_table[256] __attribute__((__section__(".data.idt"))) = { {0, 0}, };
74 asmlinkage void divide_error(void);
75 asmlinkage void debug(void);
76 asmlinkage void nmi(void);
77 asmlinkage void int3(void);
78 asmlinkage void overflow(void);
79 asmlinkage void bounds(void);
80 asmlinkage void invalid_op(void);
81 asmlinkage void device_not_available(void);
82 asmlinkage void coprocessor_segment_overrun(void);
83 asmlinkage void invalid_TSS(void);
84 asmlinkage void segment_not_present(void);
85 asmlinkage void stack_segment(void);
86 asmlinkage void general_protection(void);
87 asmlinkage void page_fault(void);
88 asmlinkage void coprocessor_error(void);
89 asmlinkage void simd_coprocessor_error(void);
90 asmlinkage void alignment_check(void);
91 asmlinkage void spurious_interrupt_bug(void);
92 asmlinkage void machine_check(void);
94 static int kstack_depth_to_print = 24;
95 struct notifier_block *i386die_chain;
96 static DEFINE_SPINLOCK(die_notifier_lock);
98 int register_die_notifier(struct notifier_block *nb)
100 int err = 0;
101 unsigned long flags;
102 spin_lock_irqsave(&die_notifier_lock, flags);
103 err = notifier_chain_register(&i386die_chain, nb);
104 spin_unlock_irqrestore(&die_notifier_lock, flags);
105 return err;
107 EXPORT_SYMBOL(register_die_notifier);
109 static inline int valid_stack_ptr(struct thread_info *tinfo, void *p)
111 return p > (void *)tinfo &&
112 p < (void *)tinfo + THREAD_SIZE - 3;
115 static void print_addr_and_symbol(unsigned long addr, char *log_lvl)
117 printk(log_lvl);
118 printk(" [<%08lx>] ", addr);
119 print_symbol("%s", addr);
120 printk("\n");
123 static inline unsigned long print_context_stack(struct thread_info *tinfo,
124 unsigned long *stack, unsigned long ebp,
125 char *log_lvl)
127 unsigned long addr;
129 #ifdef CONFIG_FRAME_POINTER
130 while (valid_stack_ptr(tinfo, (void *)ebp)) {
131 addr = *(unsigned long *)(ebp + 4);
132 print_addr_and_symbol(addr, log_lvl);
133 ebp = *(unsigned long *)ebp;
135 #else
136 while (valid_stack_ptr(tinfo, stack)) {
137 addr = *stack++;
138 if (__kernel_text_address(addr))
139 print_addr_and_symbol(addr, log_lvl);
141 #endif
142 return ebp;
145 static void show_trace_log_lvl(struct task_struct *task,
146 unsigned long *stack, char *log_lvl)
148 unsigned long ebp;
150 if (!task)
151 task = current;
153 if (task == current) {
154 /* Grab ebp right from our regs */
155 asm ("movl %%ebp, %0" : "=r" (ebp) : );
156 } else {
157 /* ebp is the last reg pushed by switch_to */
158 ebp = *(unsigned long *) task->thread.esp;
161 while (1) {
162 struct thread_info *context;
163 context = (struct thread_info *)
164 ((unsigned long)stack & (~(THREAD_SIZE - 1)));
165 ebp = print_context_stack(context, stack, ebp, log_lvl);
166 stack = (unsigned long*)context->previous_esp;
167 if (!stack)
168 break;
169 printk(KERN_EMERG " =======================\n");
173 void show_trace(struct task_struct *task, unsigned long * stack)
175 show_trace_log_lvl(task, stack, "");
178 static void show_stack_log_lvl(struct task_struct *task, unsigned long *esp,
179 char *log_lvl)
181 unsigned long *stack;
182 int i;
184 if (esp == NULL) {
185 if (task)
186 esp = (unsigned long*)task->thread.esp;
187 else
188 esp = (unsigned long *)&esp;
191 stack = esp;
192 printk(log_lvl);
193 for(i = 0; i < kstack_depth_to_print; i++) {
194 if (kstack_end(stack))
195 break;
196 if (i && ((i % 8) == 0)) {
197 printk("\n");
198 printk(log_lvl);
199 printk(" ");
201 printk("%08lx ", *stack++);
203 printk("\n");
204 printk(log_lvl);
205 printk("Call Trace:\n");
206 show_trace_log_lvl(task, esp, log_lvl);
209 void show_stack(struct task_struct *task, unsigned long *esp)
211 show_stack_log_lvl(task, esp, "");
215 * The architecture-independent dump_stack generator
217 void dump_stack(void)
219 unsigned long stack;
221 show_trace(current, &stack);
224 EXPORT_SYMBOL(dump_stack);
226 void show_registers(struct pt_regs *regs)
228 int i;
229 int in_kernel = 1;
230 unsigned long esp;
231 unsigned short ss;
233 esp = (unsigned long) (&regs->esp);
234 savesegment(ss, ss);
235 if (user_mode(regs)) {
236 in_kernel = 0;
237 esp = regs->esp;
238 ss = regs->xss & 0xffff;
240 print_modules();
241 printk(KERN_EMERG "CPU: %d\nEIP: %04x:[<%08lx>] %s VLI\n"
242 "EFLAGS: %08lx (%s) \n",
243 smp_processor_id(), 0xffff & regs->xcs, regs->eip,
244 print_tainted(), regs->eflags, system_utsname.release);
245 print_symbol(KERN_EMERG "EIP is at %s\n", regs->eip);
246 printk(KERN_EMERG "eax: %08lx ebx: %08lx ecx: %08lx edx: %08lx\n",
247 regs->eax, regs->ebx, regs->ecx, regs->edx);
248 printk(KERN_EMERG "esi: %08lx edi: %08lx ebp: %08lx esp: %08lx\n",
249 regs->esi, regs->edi, regs->ebp, esp);
250 printk(KERN_EMERG "ds: %04x es: %04x ss: %04x\n",
251 regs->xds & 0xffff, regs->xes & 0xffff, ss);
252 printk(KERN_EMERG "Process %s (pid: %d, threadinfo=%p task=%p)",
253 current->comm, current->pid, current_thread_info(), current);
255 * When in-kernel, we also print out the stack and code at the
256 * time of the fault..
258 if (in_kernel) {
259 u8 __user *eip;
261 printk("\n" KERN_EMERG "Stack: ");
262 show_stack_log_lvl(NULL, (unsigned long *)esp, KERN_EMERG);
264 printk(KERN_EMERG "Code: ");
266 eip = (u8 __user *)regs->eip - 43;
267 for (i = 0; i < 64; i++, eip++) {
268 unsigned char c;
270 if (eip < (u8 __user *)PAGE_OFFSET || __get_user(c, eip)) {
271 printk(" Bad EIP value.");
272 break;
274 if (eip == (u8 __user *)regs->eip)
275 printk("<%02x> ", c);
276 else
277 printk("%02x ", c);
280 printk("\n");
283 static void handle_BUG(struct pt_regs *regs)
285 unsigned short ud2;
286 unsigned short line;
287 char *file;
288 char c;
289 unsigned long eip;
291 eip = regs->eip;
293 if (eip < PAGE_OFFSET)
294 goto no_bug;
295 if (__get_user(ud2, (unsigned short __user *)eip))
296 goto no_bug;
297 if (ud2 != 0x0b0f)
298 goto no_bug;
299 if (__get_user(line, (unsigned short __user *)(eip + 2)))
300 goto bug;
301 if (__get_user(file, (char * __user *)(eip + 4)) ||
302 (unsigned long)file < PAGE_OFFSET || __get_user(c, file))
303 file = "<bad filename>";
305 printk(KERN_EMERG "------------[ cut here ]------------\n");
306 printk(KERN_EMERG "kernel BUG at %s:%d!\n", file, line);
308 no_bug:
309 return;
311 /* Here we know it was a BUG but file-n-line is unavailable */
312 bug:
313 printk(KERN_EMERG "Kernel BUG\n");
316 /* This is gone through when something in the kernel
317 * has done something bad and is about to be terminated.
319 void die(const char * str, struct pt_regs * regs, long err)
321 static struct {
322 spinlock_t lock;
323 u32 lock_owner;
324 int lock_owner_depth;
325 } die = {
326 .lock = SPIN_LOCK_UNLOCKED,
327 .lock_owner = -1,
328 .lock_owner_depth = 0
330 static int die_counter;
331 unsigned long flags;
333 if (die.lock_owner != raw_smp_processor_id()) {
334 console_verbose();
335 spin_lock_irqsave(&die.lock, flags);
336 die.lock_owner = smp_processor_id();
337 die.lock_owner_depth = 0;
338 bust_spinlocks(1);
340 else
341 local_save_flags(flags);
343 if (++die.lock_owner_depth < 3) {
344 int nl = 0;
345 handle_BUG(regs);
346 printk(KERN_EMERG "%s: %04lx [#%d]\n", str, err & 0xffff, ++die_counter);
347 #ifdef CONFIG_PREEMPT
348 printk(KERN_EMERG "PREEMPT ");
349 nl = 1;
350 #endif
351 #ifdef CONFIG_SMP
352 if (!nl)
353 printk(KERN_EMERG);
354 printk("SMP ");
355 nl = 1;
356 #endif
357 #ifdef CONFIG_DEBUG_PAGEALLOC
358 if (!nl)
359 printk(KERN_EMERG);
360 printk("DEBUG_PAGEALLOC");
361 nl = 1;
362 #endif
363 if (nl)
364 printk("\n");
365 notify_die(DIE_OOPS, (char *)str, regs, err, 255, SIGSEGV);
366 show_registers(regs);
367 } else
368 printk(KERN_EMERG "Recursive die() failure, output suppressed\n");
370 bust_spinlocks(0);
371 die.lock_owner = -1;
372 spin_unlock_irqrestore(&die.lock, flags);
374 if (kexec_should_crash(current))
375 crash_kexec(regs);
377 if (in_interrupt())
378 panic("Fatal exception in interrupt");
380 if (panic_on_oops) {
381 printk(KERN_EMERG "Fatal exception: panic in 5 seconds\n");
382 ssleep(5);
383 panic("Fatal exception");
385 do_exit(SIGSEGV);
388 static inline void die_if_kernel(const char * str, struct pt_regs * regs, long err)
390 if (!user_mode_vm(regs))
391 die(str, regs, err);
394 static void __kprobes do_trap(int trapnr, int signr, char *str, int vm86,
395 struct pt_regs * regs, long error_code,
396 siginfo_t *info)
398 struct task_struct *tsk = current;
399 tsk->thread.error_code = error_code;
400 tsk->thread.trap_no = trapnr;
402 if (regs->eflags & VM_MASK) {
403 if (vm86)
404 goto vm86_trap;
405 goto trap_signal;
408 if (!user_mode(regs))
409 goto kernel_trap;
411 trap_signal: {
412 if (info)
413 force_sig_info(signr, info, tsk);
414 else
415 force_sig(signr, tsk);
416 return;
419 kernel_trap: {
420 if (!fixup_exception(regs))
421 die(str, regs, error_code);
422 return;
425 vm86_trap: {
426 int ret = handle_vm86_trap((struct kernel_vm86_regs *) regs, error_code, trapnr);
427 if (ret) goto trap_signal;
428 return;
432 #define DO_ERROR(trapnr, signr, str, name) \
433 fastcall void do_##name(struct pt_regs * regs, long error_code) \
435 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
436 == NOTIFY_STOP) \
437 return; \
438 do_trap(trapnr, signr, str, 0, regs, error_code, NULL); \
441 #define DO_ERROR_INFO(trapnr, signr, str, name, sicode, siaddr) \
442 fastcall void do_##name(struct pt_regs * regs, long error_code) \
444 siginfo_t info; \
445 info.si_signo = signr; \
446 info.si_errno = 0; \
447 info.si_code = sicode; \
448 info.si_addr = (void __user *)siaddr; \
449 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
450 == NOTIFY_STOP) \
451 return; \
452 do_trap(trapnr, signr, str, 0, regs, error_code, &info); \
455 #define DO_VM86_ERROR(trapnr, signr, str, name) \
456 fastcall void do_##name(struct pt_regs * regs, long error_code) \
458 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
459 == NOTIFY_STOP) \
460 return; \
461 do_trap(trapnr, signr, str, 1, regs, error_code, NULL); \
464 #define DO_VM86_ERROR_INFO(trapnr, signr, str, name, sicode, siaddr) \
465 fastcall void do_##name(struct pt_regs * regs, long error_code) \
467 siginfo_t info; \
468 info.si_signo = signr; \
469 info.si_errno = 0; \
470 info.si_code = sicode; \
471 info.si_addr = (void __user *)siaddr; \
472 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
473 == NOTIFY_STOP) \
474 return; \
475 do_trap(trapnr, signr, str, 1, regs, error_code, &info); \
478 DO_VM86_ERROR_INFO( 0, SIGFPE, "divide error", divide_error, FPE_INTDIV, regs->eip)
479 #ifndef CONFIG_KPROBES
480 DO_VM86_ERROR( 3, SIGTRAP, "int3", int3)
481 #endif
482 DO_VM86_ERROR( 4, SIGSEGV, "overflow", overflow)
483 DO_VM86_ERROR( 5, SIGSEGV, "bounds", bounds)
484 DO_ERROR_INFO( 6, SIGILL, "invalid opcode", invalid_op, ILL_ILLOPN, regs->eip)
485 DO_ERROR( 9, SIGFPE, "coprocessor segment overrun", coprocessor_segment_overrun)
486 DO_ERROR(10, SIGSEGV, "invalid TSS", invalid_TSS)
487 DO_ERROR(11, SIGBUS, "segment not present", segment_not_present)
488 DO_ERROR(12, SIGBUS, "stack segment", stack_segment)
489 DO_ERROR_INFO(17, SIGBUS, "alignment check", alignment_check, BUS_ADRALN, 0)
490 DO_ERROR_INFO(32, SIGSEGV, "iret exception", iret_error, ILL_BADSTK, 0)
492 fastcall void __kprobes do_general_protection(struct pt_regs * regs,
493 long error_code)
495 int cpu = get_cpu();
496 struct tss_struct *tss = &per_cpu(init_tss, cpu);
497 struct thread_struct *thread = &current->thread;
500 * Perform the lazy TSS's I/O bitmap copy. If the TSS has an
501 * invalid offset set (the LAZY one) and the faulting thread has
502 * a valid I/O bitmap pointer, we copy the I/O bitmap in the TSS
503 * and we set the offset field correctly. Then we let the CPU to
504 * restart the faulting instruction.
506 if (tss->io_bitmap_base == INVALID_IO_BITMAP_OFFSET_LAZY &&
507 thread->io_bitmap_ptr) {
508 memcpy(tss->io_bitmap, thread->io_bitmap_ptr,
509 thread->io_bitmap_max);
511 * If the previously set map was extending to higher ports
512 * than the current one, pad extra space with 0xff (no access).
514 if (thread->io_bitmap_max < tss->io_bitmap_max)
515 memset((char *) tss->io_bitmap +
516 thread->io_bitmap_max, 0xff,
517 tss->io_bitmap_max - thread->io_bitmap_max);
518 tss->io_bitmap_max = thread->io_bitmap_max;
519 tss->io_bitmap_base = IO_BITMAP_OFFSET;
520 tss->io_bitmap_owner = thread;
521 put_cpu();
522 return;
524 put_cpu();
526 current->thread.error_code = error_code;
527 current->thread.trap_no = 13;
529 if (regs->eflags & VM_MASK)
530 goto gp_in_vm86;
532 if (!user_mode(regs))
533 goto gp_in_kernel;
535 current->thread.error_code = error_code;
536 current->thread.trap_no = 13;
537 force_sig(SIGSEGV, current);
538 return;
540 gp_in_vm86:
541 local_irq_enable();
542 handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code);
543 return;
545 gp_in_kernel:
546 if (!fixup_exception(regs)) {
547 if (notify_die(DIE_GPF, "general protection fault", regs,
548 error_code, 13, SIGSEGV) == NOTIFY_STOP)
549 return;
550 die("general protection fault", regs, error_code);
554 static void mem_parity_error(unsigned char reason, struct pt_regs * regs)
556 printk(KERN_EMERG "Uhhuh. NMI received. Dazed and confused, but trying "
557 "to continue\n");
558 printk(KERN_EMERG "You probably have a hardware problem with your RAM "
559 "chips\n");
561 /* Clear and disable the memory parity error line. */
562 clear_mem_error(reason);
565 static void io_check_error(unsigned char reason, struct pt_regs * regs)
567 unsigned long i;
569 printk(KERN_EMERG "NMI: IOCK error (debug interrupt?)\n");
570 show_registers(regs);
572 /* Re-enable the IOCK line, wait for a few seconds */
573 reason = (reason & 0xf) | 8;
574 outb(reason, 0x61);
575 i = 2000;
576 while (--i) udelay(1000);
577 reason &= ~8;
578 outb(reason, 0x61);
581 static void unknown_nmi_error(unsigned char reason, struct pt_regs * regs)
583 #ifdef CONFIG_MCA
584 /* Might actually be able to figure out what the guilty party
585 * is. */
586 if( MCA_bus ) {
587 mca_handle_nmi();
588 return;
590 #endif
591 printk("Uhhuh. NMI received for unknown reason %02x on CPU %d.\n",
592 reason, smp_processor_id());
593 printk("Dazed and confused, but trying to continue\n");
594 printk("Do you have a strange power saving mode enabled?\n");
597 static DEFINE_SPINLOCK(nmi_print_lock);
599 void die_nmi (struct pt_regs *regs, const char *msg)
601 if (notify_die(DIE_NMIWATCHDOG, msg, regs, 0, 0, SIGINT) ==
602 NOTIFY_STOP)
603 return;
605 spin_lock(&nmi_print_lock);
607 * We are in trouble anyway, lets at least try
608 * to get a message out.
610 bust_spinlocks(1);
611 printk(KERN_EMERG "%s", msg);
612 printk(" on CPU%d, eip %08lx, registers:\n",
613 smp_processor_id(), regs->eip);
614 show_registers(regs);
615 printk(KERN_EMERG "console shuts up ...\n");
616 console_silent();
617 spin_unlock(&nmi_print_lock);
618 bust_spinlocks(0);
620 /* If we are in kernel we are probably nested up pretty bad
621 * and might aswell get out now while we still can.
623 if (!user_mode(regs)) {
624 current->thread.trap_no = 2;
625 crash_kexec(regs);
628 do_exit(SIGSEGV);
631 static void default_do_nmi(struct pt_regs * regs)
633 unsigned char reason = 0;
635 /* Only the BSP gets external NMIs from the system. */
636 if (!smp_processor_id())
637 reason = get_nmi_reason();
639 if (!(reason & 0xc0)) {
640 if (notify_die(DIE_NMI_IPI, "nmi_ipi", regs, reason, 0, SIGINT)
641 == NOTIFY_STOP)
642 return;
643 #ifdef CONFIG_X86_LOCAL_APIC
645 * Ok, so this is none of the documented NMI sources,
646 * so it must be the NMI watchdog.
648 if (nmi_watchdog) {
649 nmi_watchdog_tick(regs);
650 return;
652 #endif
653 unknown_nmi_error(reason, regs);
654 return;
656 if (notify_die(DIE_NMI, "nmi", regs, reason, 0, SIGINT) == NOTIFY_STOP)
657 return;
658 if (reason & 0x80)
659 mem_parity_error(reason, regs);
660 if (reason & 0x40)
661 io_check_error(reason, regs);
663 * Reassert NMI in case it became active meanwhile
664 * as it's edge-triggered.
666 reassert_nmi();
669 static int dummy_nmi_callback(struct pt_regs * regs, int cpu)
671 return 0;
674 static nmi_callback_t nmi_callback = dummy_nmi_callback;
676 fastcall void do_nmi(struct pt_regs * regs, long error_code)
678 int cpu;
680 nmi_enter();
682 cpu = smp_processor_id();
684 ++nmi_count(cpu);
686 if (!rcu_dereference(nmi_callback)(regs, cpu))
687 default_do_nmi(regs);
689 nmi_exit();
692 void set_nmi_callback(nmi_callback_t callback)
694 rcu_assign_pointer(nmi_callback, callback);
696 EXPORT_SYMBOL_GPL(set_nmi_callback);
698 void unset_nmi_callback(void)
700 nmi_callback = dummy_nmi_callback;
702 EXPORT_SYMBOL_GPL(unset_nmi_callback);
704 #ifdef CONFIG_KPROBES
705 fastcall void __kprobes do_int3(struct pt_regs *regs, long error_code)
707 if (notify_die(DIE_INT3, "int3", regs, error_code, 3, SIGTRAP)
708 == NOTIFY_STOP)
709 return;
710 /* This is an interrupt gate, because kprobes wants interrupts
711 disabled. Normal trap handlers don't. */
712 restore_interrupts(regs);
713 do_trap(3, SIGTRAP, "int3", 1, regs, error_code, NULL);
715 #endif
718 * Our handling of the processor debug registers is non-trivial.
719 * We do not clear them on entry and exit from the kernel. Therefore
720 * it is possible to get a watchpoint trap here from inside the kernel.
721 * However, the code in ./ptrace.c has ensured that the user can
722 * only set watchpoints on userspace addresses. Therefore the in-kernel
723 * watchpoint trap can only occur in code which is reading/writing
724 * from user space. Such code must not hold kernel locks (since it
725 * can equally take a page fault), therefore it is safe to call
726 * force_sig_info even though that claims and releases locks.
728 * Code in ./signal.c ensures that the debug control register
729 * is restored before we deliver any signal, and therefore that
730 * user code runs with the correct debug control register even though
731 * we clear it here.
733 * Being careful here means that we don't have to be as careful in a
734 * lot of more complicated places (task switching can be a bit lazy
735 * about restoring all the debug state, and ptrace doesn't have to
736 * find every occurrence of the TF bit that could be saved away even
737 * by user code)
739 fastcall void __kprobes do_debug(struct pt_regs * regs, long error_code)
741 unsigned int condition;
742 struct task_struct *tsk = current;
744 get_debugreg(condition, 6);
746 if (notify_die(DIE_DEBUG, "debug", regs, condition, error_code,
747 SIGTRAP) == NOTIFY_STOP)
748 return;
749 /* It's safe to allow irq's after DR6 has been saved */
750 if (regs->eflags & X86_EFLAGS_IF)
751 local_irq_enable();
753 /* Mask out spurious debug traps due to lazy DR7 setting */
754 if (condition & (DR_TRAP0|DR_TRAP1|DR_TRAP2|DR_TRAP3)) {
755 if (!tsk->thread.debugreg[7])
756 goto clear_dr7;
759 if (regs->eflags & VM_MASK)
760 goto debug_vm86;
762 /* Save debug status register where ptrace can see it */
763 tsk->thread.debugreg[6] = condition;
766 * Single-stepping through TF: make sure we ignore any events in
767 * kernel space (but re-enable TF when returning to user mode).
769 if (condition & DR_STEP) {
771 * We already checked v86 mode above, so we can
772 * check for kernel mode by just checking the CPL
773 * of CS.
775 if (!user_mode(regs))
776 goto clear_TF_reenable;
779 /* Ok, finally something we can handle */
780 send_sigtrap(tsk, regs, error_code);
782 /* Disable additional traps. They'll be re-enabled when
783 * the signal is delivered.
785 clear_dr7:
786 set_debugreg(0, 7);
787 return;
789 debug_vm86:
790 handle_vm86_trap((struct kernel_vm86_regs *) regs, error_code, 1);
791 return;
793 clear_TF_reenable:
794 set_tsk_thread_flag(tsk, TIF_SINGLESTEP);
795 regs->eflags &= ~TF_MASK;
796 return;
800 * Note that we play around with the 'TS' bit in an attempt to get
801 * the correct behaviour even in the presence of the asynchronous
802 * IRQ13 behaviour
804 void math_error(void __user *eip)
806 struct task_struct * task;
807 siginfo_t info;
808 unsigned short cwd, swd;
811 * Save the info for the exception handler and clear the error.
813 task = current;
814 save_init_fpu(task);
815 task->thread.trap_no = 16;
816 task->thread.error_code = 0;
817 info.si_signo = SIGFPE;
818 info.si_errno = 0;
819 info.si_code = __SI_FAULT;
820 info.si_addr = eip;
822 * (~cwd & swd) will mask out exceptions that are not set to unmasked
823 * status. 0x3f is the exception bits in these regs, 0x200 is the
824 * C1 reg you need in case of a stack fault, 0x040 is the stack
825 * fault bit. We should only be taking one exception at a time,
826 * so if this combination doesn't produce any single exception,
827 * then we have a bad program that isn't syncronizing its FPU usage
828 * and it will suffer the consequences since we won't be able to
829 * fully reproduce the context of the exception
831 cwd = get_fpu_cwd(task);
832 swd = get_fpu_swd(task);
833 switch (swd & ~cwd & 0x3f) {
834 case 0x000: /* No unmasked exception */
835 return;
836 default: /* Multiple exceptions */
837 break;
838 case 0x001: /* Invalid Op */
840 * swd & 0x240 == 0x040: Stack Underflow
841 * swd & 0x240 == 0x240: Stack Overflow
842 * User must clear the SF bit (0x40) if set
844 info.si_code = FPE_FLTINV;
845 break;
846 case 0x002: /* Denormalize */
847 case 0x010: /* Underflow */
848 info.si_code = FPE_FLTUND;
849 break;
850 case 0x004: /* Zero Divide */
851 info.si_code = FPE_FLTDIV;
852 break;
853 case 0x008: /* Overflow */
854 info.si_code = FPE_FLTOVF;
855 break;
856 case 0x020: /* Precision */
857 info.si_code = FPE_FLTRES;
858 break;
860 force_sig_info(SIGFPE, &info, task);
863 fastcall void do_coprocessor_error(struct pt_regs * regs, long error_code)
865 ignore_fpu_irq = 1;
866 math_error((void __user *)regs->eip);
869 static void simd_math_error(void __user *eip)
871 struct task_struct * task;
872 siginfo_t info;
873 unsigned short mxcsr;
876 * Save the info for the exception handler and clear the error.
878 task = current;
879 save_init_fpu(task);
880 task->thread.trap_no = 19;
881 task->thread.error_code = 0;
882 info.si_signo = SIGFPE;
883 info.si_errno = 0;
884 info.si_code = __SI_FAULT;
885 info.si_addr = eip;
887 * The SIMD FPU exceptions are handled a little differently, as there
888 * is only a single status/control register. Thus, to determine which
889 * unmasked exception was caught we must mask the exception mask bits
890 * at 0x1f80, and then use these to mask the exception bits at 0x3f.
892 mxcsr = get_fpu_mxcsr(task);
893 switch (~((mxcsr & 0x1f80) >> 7) & (mxcsr & 0x3f)) {
894 case 0x000:
895 default:
896 break;
897 case 0x001: /* Invalid Op */
898 info.si_code = FPE_FLTINV;
899 break;
900 case 0x002: /* Denormalize */
901 case 0x010: /* Underflow */
902 info.si_code = FPE_FLTUND;
903 break;
904 case 0x004: /* Zero Divide */
905 info.si_code = FPE_FLTDIV;
906 break;
907 case 0x008: /* Overflow */
908 info.si_code = FPE_FLTOVF;
909 break;
910 case 0x020: /* Precision */
911 info.si_code = FPE_FLTRES;
912 break;
914 force_sig_info(SIGFPE, &info, task);
917 fastcall void do_simd_coprocessor_error(struct pt_regs * regs,
918 long error_code)
920 if (cpu_has_xmm) {
921 /* Handle SIMD FPU exceptions on PIII+ processors. */
922 ignore_fpu_irq = 1;
923 simd_math_error((void __user *)regs->eip);
924 } else {
926 * Handle strange cache flush from user space exception
927 * in all other cases. This is undocumented behaviour.
929 if (regs->eflags & VM_MASK) {
930 handle_vm86_fault((struct kernel_vm86_regs *)regs,
931 error_code);
932 return;
934 current->thread.trap_no = 19;
935 current->thread.error_code = error_code;
936 die_if_kernel("cache flush denied", regs, error_code);
937 force_sig(SIGSEGV, current);
941 fastcall void do_spurious_interrupt_bug(struct pt_regs * regs,
942 long error_code)
944 #if 0
945 /* No need to warn about this any longer. */
946 printk("Ignoring P6 Local APIC Spurious Interrupt Bug...\n");
947 #endif
950 fastcall void setup_x86_bogus_stack(unsigned char * stk)
952 unsigned long *switch16_ptr, *switch32_ptr;
953 struct pt_regs *regs;
954 unsigned long stack_top, stack_bot;
955 unsigned short iret_frame16_off;
956 int cpu = smp_processor_id();
957 /* reserve the space on 32bit stack for the magic switch16 pointer */
958 memmove(stk, stk + 8, sizeof(struct pt_regs));
959 switch16_ptr = (unsigned long *)(stk + sizeof(struct pt_regs));
960 regs = (struct pt_regs *)stk;
961 /* now the switch32 on 16bit stack */
962 stack_bot = (unsigned long)&per_cpu(cpu_16bit_stack, cpu);
963 stack_top = stack_bot + CPU_16BIT_STACK_SIZE;
964 switch32_ptr = (unsigned long *)(stack_top - 8);
965 iret_frame16_off = CPU_16BIT_STACK_SIZE - 8 - 20;
966 /* copy iret frame on 16bit stack */
967 memcpy((void *)(stack_bot + iret_frame16_off), &regs->eip, 20);
968 /* fill in the switch pointers */
969 switch16_ptr[0] = (regs->esp & 0xffff0000) | iret_frame16_off;
970 switch16_ptr[1] = __ESPFIX_SS;
971 switch32_ptr[0] = (unsigned long)stk + sizeof(struct pt_regs) +
972 8 - CPU_16BIT_STACK_SIZE;
973 switch32_ptr[1] = __KERNEL_DS;
976 fastcall unsigned char * fixup_x86_bogus_stack(unsigned short sp)
978 unsigned long *switch32_ptr;
979 unsigned char *stack16, *stack32;
980 unsigned long stack_top, stack_bot;
981 int len;
982 int cpu = smp_processor_id();
983 stack_bot = (unsigned long)&per_cpu(cpu_16bit_stack, cpu);
984 stack_top = stack_bot + CPU_16BIT_STACK_SIZE;
985 switch32_ptr = (unsigned long *)(stack_top - 8);
986 /* copy the data from 16bit stack to 32bit stack */
987 len = CPU_16BIT_STACK_SIZE - 8 - sp;
988 stack16 = (unsigned char *)(stack_bot + sp);
989 stack32 = (unsigned char *)
990 (switch32_ptr[0] + CPU_16BIT_STACK_SIZE - 8 - len);
991 memcpy(stack32, stack16, len);
992 return stack32;
996 * 'math_state_restore()' saves the current math information in the
997 * old math state array, and gets the new ones from the current task
999 * Careful.. There are problems with IBM-designed IRQ13 behaviour.
1000 * Don't touch unless you *really* know how it works.
1002 * Must be called with kernel preemption disabled (in this case,
1003 * local interrupts are disabled at the call-site in entry.S).
1005 asmlinkage void math_state_restore(struct pt_regs regs)
1007 struct thread_info *thread = current_thread_info();
1008 struct task_struct *tsk = thread->task;
1010 clts(); /* Allow maths ops (or we recurse) */
1011 if (!tsk_used_math(tsk))
1012 init_fpu(tsk);
1013 restore_fpu(tsk);
1014 thread->status |= TS_USEDFPU; /* So we fnsave on switch_to() */
1017 #ifndef CONFIG_MATH_EMULATION
1019 asmlinkage void math_emulate(long arg)
1021 printk(KERN_EMERG "math-emulation not enabled and no coprocessor found.\n");
1022 printk(KERN_EMERG "killing %s.\n",current->comm);
1023 force_sig(SIGFPE,current);
1024 schedule();
1027 #endif /* CONFIG_MATH_EMULATION */
1029 #ifdef CONFIG_X86_F00F_BUG
1030 void __init trap_init_f00f_bug(void)
1032 __set_fixmap(FIX_F00F_IDT, __pa(&idt_table), PAGE_KERNEL_RO);
1035 * Update the IDT descriptor and reload the IDT so that
1036 * it uses the read-only mapped virtual address.
1038 idt_descr.address = fix_to_virt(FIX_F00F_IDT);
1039 load_idt(&idt_descr);
1041 #endif
1043 #define _set_gate(gate_addr,type,dpl,addr,seg) \
1044 do { \
1045 int __d0, __d1; \
1046 __asm__ __volatile__ ("movw %%dx,%%ax\n\t" \
1047 "movw %4,%%dx\n\t" \
1048 "movl %%eax,%0\n\t" \
1049 "movl %%edx,%1" \
1050 :"=m" (*((long *) (gate_addr))), \
1051 "=m" (*(1+(long *) (gate_addr))), "=&a" (__d0), "=&d" (__d1) \
1052 :"i" ((short) (0x8000+(dpl<<13)+(type<<8))), \
1053 "3" ((char *) (addr)),"2" ((seg) << 16)); \
1054 } while (0)
1058 * This needs to use 'idt_table' rather than 'idt', and
1059 * thus use the _nonmapped_ version of the IDT, as the
1060 * Pentium F0 0F bugfix can have resulted in the mapped
1061 * IDT being write-protected.
1063 void set_intr_gate(unsigned int n, void *addr)
1065 _set_gate(idt_table+n,14,0,addr,__KERNEL_CS);
1069 * This routine sets up an interrupt gate at directory privilege level 3.
1071 static inline void set_system_intr_gate(unsigned int n, void *addr)
1073 _set_gate(idt_table+n, 14, 3, addr, __KERNEL_CS);
1076 static void __init set_trap_gate(unsigned int n, void *addr)
1078 _set_gate(idt_table+n,15,0,addr,__KERNEL_CS);
1081 static void __init set_system_gate(unsigned int n, void *addr)
1083 _set_gate(idt_table+n,15,3,addr,__KERNEL_CS);
1086 static void __init set_task_gate(unsigned int n, unsigned int gdt_entry)
1088 _set_gate(idt_table+n,5,0,0,(gdt_entry<<3));
1092 void __init trap_init(void)
1094 #ifdef CONFIG_EISA
1095 void __iomem *p = ioremap(0x0FFFD9, 4);
1096 if (readl(p) == 'E'+('I'<<8)+('S'<<16)+('A'<<24)) {
1097 EISA_bus = 1;
1099 iounmap(p);
1100 #endif
1102 #ifdef CONFIG_X86_LOCAL_APIC
1103 init_apic_mappings();
1104 #endif
1106 set_trap_gate(0,&divide_error);
1107 set_intr_gate(1,&debug);
1108 set_intr_gate(2,&nmi);
1109 set_system_intr_gate(3, &int3); /* int3/4 can be called from all */
1110 set_system_gate(4,&overflow);
1111 set_trap_gate(5,&bounds);
1112 set_trap_gate(6,&invalid_op);
1113 set_trap_gate(7,&device_not_available);
1114 set_task_gate(8,GDT_ENTRY_DOUBLEFAULT_TSS);
1115 set_trap_gate(9,&coprocessor_segment_overrun);
1116 set_trap_gate(10,&invalid_TSS);
1117 set_trap_gate(11,&segment_not_present);
1118 set_trap_gate(12,&stack_segment);
1119 set_trap_gate(13,&general_protection);
1120 set_intr_gate(14,&page_fault);
1121 set_trap_gate(15,&spurious_interrupt_bug);
1122 set_trap_gate(16,&coprocessor_error);
1123 set_trap_gate(17,&alignment_check);
1124 #ifdef CONFIG_X86_MCE
1125 set_trap_gate(18,&machine_check);
1126 #endif
1127 set_trap_gate(19,&simd_coprocessor_error);
1129 if (cpu_has_fxsr) {
1131 * Verify that the FXSAVE/FXRSTOR data will be 16-byte aligned.
1132 * Generates a compile-time "error: zero width for bit-field" if
1133 * the alignment is wrong.
1135 struct fxsrAlignAssert {
1136 int _:!(offsetof(struct task_struct,
1137 thread.i387.fxsave) & 15);
1140 printk(KERN_INFO "Enabling fast FPU save and restore... ");
1141 set_in_cr4(X86_CR4_OSFXSR);
1142 printk("done.\n");
1144 if (cpu_has_xmm) {
1145 printk(KERN_INFO "Enabling unmasked SIMD FPU exception "
1146 "support... ");
1147 set_in_cr4(X86_CR4_OSXMMEXCPT);
1148 printk("done.\n");
1151 set_system_gate(SYSCALL_VECTOR,&system_call);
1154 * Should be a barrier for any external CPU state.
1156 cpu_init();
1158 trap_init_hook();
1161 static int __init kstack_setup(char *s)
1163 kstack_depth_to_print = simple_strtoul(s, NULL, 0);
1164 return 0;
1166 __setup("kstack=", kstack_setup);