2 * mm/rmap.c - physical to virtual reverse mappings
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins <hugh@veritas.com> 2003, 2004
21 * Lock ordering in mm:
23 * inode->i_mutex (while writing or truncating, not reading or faulting)
24 * inode->i_alloc_sem (vmtruncate_range)
26 * page->flags PG_locked (lock_page)
27 * mapping->i_mmap_lock
29 * mm->page_table_lock or pte_lock
30 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
31 * swap_lock (in swap_duplicate, swap_info_get)
32 * mmlist_lock (in mmput, drain_mmlist and others)
33 * mapping->private_lock (in __set_page_dirty_buffers)
34 * inode_lock (in set_page_dirty's __mark_inode_dirty)
35 * sb_lock (within inode_lock in fs/fs-writeback.c)
36 * mapping->tree_lock (widely used, in set_page_dirty,
37 * in arch-dependent flush_dcache_mmap_lock,
38 * within inode_lock in __sync_single_inode)
42 #include <linux/pagemap.h>
43 #include <linux/swap.h>
44 #include <linux/swapops.h>
45 #include <linux/slab.h>
46 #include <linux/init.h>
47 #include <linux/rmap.h>
48 #include <linux/rcupdate.h>
49 #include <linux/module.h>
50 #include <linux/kallsyms.h>
51 #include <linux/memcontrol.h>
53 #include <asm/tlbflush.h>
55 struct kmem_cache
*anon_vma_cachep
;
57 /* This must be called under the mmap_sem. */
58 int anon_vma_prepare(struct vm_area_struct
*vma
)
60 struct anon_vma
*anon_vma
= vma
->anon_vma
;
63 if (unlikely(!anon_vma
)) {
64 struct mm_struct
*mm
= vma
->vm_mm
;
65 struct anon_vma
*allocated
, *locked
;
67 anon_vma
= find_mergeable_anon_vma(vma
);
71 spin_lock(&locked
->lock
);
73 anon_vma
= anon_vma_alloc();
74 if (unlikely(!anon_vma
))
80 /* page_table_lock to protect against threads */
81 spin_lock(&mm
->page_table_lock
);
82 if (likely(!vma
->anon_vma
)) {
83 vma
->anon_vma
= anon_vma
;
84 list_add_tail(&vma
->anon_vma_node
, &anon_vma
->head
);
87 spin_unlock(&mm
->page_table_lock
);
90 spin_unlock(&locked
->lock
);
91 if (unlikely(allocated
))
92 anon_vma_free(allocated
);
97 void __anon_vma_merge(struct vm_area_struct
*vma
, struct vm_area_struct
*next
)
99 BUG_ON(vma
->anon_vma
!= next
->anon_vma
);
100 list_del(&next
->anon_vma_node
);
103 void __anon_vma_link(struct vm_area_struct
*vma
)
105 struct anon_vma
*anon_vma
= vma
->anon_vma
;
108 list_add_tail(&vma
->anon_vma_node
, &anon_vma
->head
);
111 void anon_vma_link(struct vm_area_struct
*vma
)
113 struct anon_vma
*anon_vma
= vma
->anon_vma
;
116 spin_lock(&anon_vma
->lock
);
117 list_add_tail(&vma
->anon_vma_node
, &anon_vma
->head
);
118 spin_unlock(&anon_vma
->lock
);
122 void anon_vma_unlink(struct vm_area_struct
*vma
)
124 struct anon_vma
*anon_vma
= vma
->anon_vma
;
130 spin_lock(&anon_vma
->lock
);
131 list_del(&vma
->anon_vma_node
);
133 /* We must garbage collect the anon_vma if it's empty */
134 empty
= list_empty(&anon_vma
->head
);
135 spin_unlock(&anon_vma
->lock
);
138 anon_vma_free(anon_vma
);
141 static void anon_vma_ctor(struct kmem_cache
*cachep
, void *data
)
143 struct anon_vma
*anon_vma
= data
;
145 spin_lock_init(&anon_vma
->lock
);
146 INIT_LIST_HEAD(&anon_vma
->head
);
149 void __init
anon_vma_init(void)
151 anon_vma_cachep
= kmem_cache_create("anon_vma", sizeof(struct anon_vma
),
152 0, SLAB_DESTROY_BY_RCU
|SLAB_PANIC
, anon_vma_ctor
);
156 * Getting a lock on a stable anon_vma from a page off the LRU is
157 * tricky: page_lock_anon_vma rely on RCU to guard against the races.
159 static struct anon_vma
*page_lock_anon_vma(struct page
*page
)
161 struct anon_vma
*anon_vma
;
162 unsigned long anon_mapping
;
165 anon_mapping
= (unsigned long) page
->mapping
;
166 if (!(anon_mapping
& PAGE_MAPPING_ANON
))
168 if (!page_mapped(page
))
171 anon_vma
= (struct anon_vma
*) (anon_mapping
- PAGE_MAPPING_ANON
);
172 spin_lock(&anon_vma
->lock
);
179 static void page_unlock_anon_vma(struct anon_vma
*anon_vma
)
181 spin_unlock(&anon_vma
->lock
);
186 * At what user virtual address is page expected in @vma?
187 * Returns virtual address or -EFAULT if page's index/offset is not
188 * within the range mapped the @vma.
190 static inline unsigned long
191 vma_address(struct page
*page
, struct vm_area_struct
*vma
)
193 pgoff_t pgoff
= page
->index
<< (PAGE_CACHE_SHIFT
- PAGE_SHIFT
);
194 unsigned long address
;
196 address
= vma
->vm_start
+ ((pgoff
- vma
->vm_pgoff
) << PAGE_SHIFT
);
197 if (unlikely(address
< vma
->vm_start
|| address
>= vma
->vm_end
)) {
198 /* page should be within @vma mapping range */
205 * At what user virtual address is page expected in vma? checking that the
206 * page matches the vma: currently only used on anon pages, by unuse_vma;
208 unsigned long page_address_in_vma(struct page
*page
, struct vm_area_struct
*vma
)
210 if (PageAnon(page
)) {
211 if ((void *)vma
->anon_vma
!=
212 (void *)page
->mapping
- PAGE_MAPPING_ANON
)
214 } else if (page
->mapping
&& !(vma
->vm_flags
& VM_NONLINEAR
)) {
216 vma
->vm_file
->f_mapping
!= page
->mapping
)
220 return vma_address(page
, vma
);
224 * Check that @page is mapped at @address into @mm.
226 * On success returns with pte mapped and locked.
228 pte_t
*page_check_address(struct page
*page
, struct mm_struct
*mm
,
229 unsigned long address
, spinlock_t
**ptlp
)
237 pgd
= pgd_offset(mm
, address
);
238 if (!pgd_present(*pgd
))
241 pud
= pud_offset(pgd
, address
);
242 if (!pud_present(*pud
))
245 pmd
= pmd_offset(pud
, address
);
246 if (!pmd_present(*pmd
))
249 pte
= pte_offset_map(pmd
, address
);
250 /* Make a quick check before getting the lock */
251 if (!pte_present(*pte
)) {
256 ptl
= pte_lockptr(mm
, pmd
);
258 if (pte_present(*pte
) && page_to_pfn(page
) == pte_pfn(*pte
)) {
262 pte_unmap_unlock(pte
, ptl
);
267 * Subfunctions of page_referenced: page_referenced_one called
268 * repeatedly from either page_referenced_anon or page_referenced_file.
270 static int page_referenced_one(struct page
*page
,
271 struct vm_area_struct
*vma
, unsigned int *mapcount
)
273 struct mm_struct
*mm
= vma
->vm_mm
;
274 unsigned long address
;
279 address
= vma_address(page
, vma
);
280 if (address
== -EFAULT
)
283 pte
= page_check_address(page
, mm
, address
, &ptl
);
287 if (vma
->vm_flags
& VM_LOCKED
) {
289 *mapcount
= 1; /* break early from loop */
290 } else if (ptep_clear_flush_young(vma
, address
, pte
))
293 /* Pretend the page is referenced if the task has the
294 swap token and is in the middle of a page fault. */
295 if (mm
!= current
->mm
&& has_swap_token(mm
) &&
296 rwsem_is_locked(&mm
->mmap_sem
))
300 pte_unmap_unlock(pte
, ptl
);
305 static int page_referenced_anon(struct page
*page
,
306 struct mem_cgroup
*mem_cont
)
308 unsigned int mapcount
;
309 struct anon_vma
*anon_vma
;
310 struct vm_area_struct
*vma
;
313 anon_vma
= page_lock_anon_vma(page
);
317 mapcount
= page_mapcount(page
);
318 list_for_each_entry(vma
, &anon_vma
->head
, anon_vma_node
) {
320 * If we are reclaiming on behalf of a cgroup, skip
321 * counting on behalf of references from different
324 if (mem_cont
&& !mm_match_cgroup(vma
->vm_mm
, mem_cont
))
326 referenced
+= page_referenced_one(page
, vma
, &mapcount
);
331 page_unlock_anon_vma(anon_vma
);
336 * page_referenced_file - referenced check for object-based rmap
337 * @page: the page we're checking references on.
339 * For an object-based mapped page, find all the places it is mapped and
340 * check/clear the referenced flag. This is done by following the page->mapping
341 * pointer, then walking the chain of vmas it holds. It returns the number
342 * of references it found.
344 * This function is only called from page_referenced for object-based pages.
346 static int page_referenced_file(struct page
*page
,
347 struct mem_cgroup
*mem_cont
)
349 unsigned int mapcount
;
350 struct address_space
*mapping
= page
->mapping
;
351 pgoff_t pgoff
= page
->index
<< (PAGE_CACHE_SHIFT
- PAGE_SHIFT
);
352 struct vm_area_struct
*vma
;
353 struct prio_tree_iter iter
;
357 * The caller's checks on page->mapping and !PageAnon have made
358 * sure that this is a file page: the check for page->mapping
359 * excludes the case just before it gets set on an anon page.
361 BUG_ON(PageAnon(page
));
364 * The page lock not only makes sure that page->mapping cannot
365 * suddenly be NULLified by truncation, it makes sure that the
366 * structure at mapping cannot be freed and reused yet,
367 * so we can safely take mapping->i_mmap_lock.
369 BUG_ON(!PageLocked(page
));
371 spin_lock(&mapping
->i_mmap_lock
);
374 * i_mmap_lock does not stabilize mapcount at all, but mapcount
375 * is more likely to be accurate if we note it after spinning.
377 mapcount
= page_mapcount(page
);
379 vma_prio_tree_foreach(vma
, &iter
, &mapping
->i_mmap
, pgoff
, pgoff
) {
381 * If we are reclaiming on behalf of a cgroup, skip
382 * counting on behalf of references from different
385 if (mem_cont
&& !mm_match_cgroup(vma
->vm_mm
, mem_cont
))
387 if ((vma
->vm_flags
& (VM_LOCKED
|VM_MAYSHARE
))
388 == (VM_LOCKED
|VM_MAYSHARE
)) {
392 referenced
+= page_referenced_one(page
, vma
, &mapcount
);
397 spin_unlock(&mapping
->i_mmap_lock
);
402 * page_referenced - test if the page was referenced
403 * @page: the page to test
404 * @is_locked: caller holds lock on the page
406 * Quick test_and_clear_referenced for all mappings to a page,
407 * returns the number of ptes which referenced the page.
409 int page_referenced(struct page
*page
, int is_locked
,
410 struct mem_cgroup
*mem_cont
)
414 if (page_test_and_clear_young(page
))
417 if (TestClearPageReferenced(page
))
420 if (page_mapped(page
) && page
->mapping
) {
422 referenced
+= page_referenced_anon(page
, mem_cont
);
424 referenced
+= page_referenced_file(page
, mem_cont
);
425 else if (TestSetPageLocked(page
))
430 page_referenced_file(page
, mem_cont
);
437 static int page_mkclean_one(struct page
*page
, struct vm_area_struct
*vma
)
439 struct mm_struct
*mm
= vma
->vm_mm
;
440 unsigned long address
;
445 address
= vma_address(page
, vma
);
446 if (address
== -EFAULT
)
449 pte
= page_check_address(page
, mm
, address
, &ptl
);
453 if (pte_dirty(*pte
) || pte_write(*pte
)) {
456 flush_cache_page(vma
, address
, pte_pfn(*pte
));
457 entry
= ptep_clear_flush(vma
, address
, pte
);
458 entry
= pte_wrprotect(entry
);
459 entry
= pte_mkclean(entry
);
460 set_pte_at(mm
, address
, pte
, entry
);
464 pte_unmap_unlock(pte
, ptl
);
469 static int page_mkclean_file(struct address_space
*mapping
, struct page
*page
)
471 pgoff_t pgoff
= page
->index
<< (PAGE_CACHE_SHIFT
- PAGE_SHIFT
);
472 struct vm_area_struct
*vma
;
473 struct prio_tree_iter iter
;
476 BUG_ON(PageAnon(page
));
478 spin_lock(&mapping
->i_mmap_lock
);
479 vma_prio_tree_foreach(vma
, &iter
, &mapping
->i_mmap
, pgoff
, pgoff
) {
480 if (vma
->vm_flags
& VM_SHARED
)
481 ret
+= page_mkclean_one(page
, vma
);
483 spin_unlock(&mapping
->i_mmap_lock
);
487 int page_mkclean(struct page
*page
)
491 BUG_ON(!PageLocked(page
));
493 if (page_mapped(page
)) {
494 struct address_space
*mapping
= page_mapping(page
);
496 ret
= page_mkclean_file(mapping
, page
);
497 if (page_test_dirty(page
)) {
498 page_clear_dirty(page
);
506 EXPORT_SYMBOL_GPL(page_mkclean
);
509 * page_set_anon_rmap - setup new anonymous rmap
510 * @page: the page to add the mapping to
511 * @vma: the vm area in which the mapping is added
512 * @address: the user virtual address mapped
514 static void __page_set_anon_rmap(struct page
*page
,
515 struct vm_area_struct
*vma
, unsigned long address
)
517 struct anon_vma
*anon_vma
= vma
->anon_vma
;
520 anon_vma
= (void *) anon_vma
+ PAGE_MAPPING_ANON
;
521 page
->mapping
= (struct address_space
*) anon_vma
;
523 page
->index
= linear_page_index(vma
, address
);
526 * nr_mapped state can be updated without turning off
527 * interrupts because it is not modified via interrupt.
529 __inc_zone_page_state(page
, NR_ANON_PAGES
);
533 * page_set_anon_rmap - sanity check anonymous rmap addition
534 * @page: the page to add the mapping to
535 * @vma: the vm area in which the mapping is added
536 * @address: the user virtual address mapped
538 static void __page_check_anon_rmap(struct page
*page
,
539 struct vm_area_struct
*vma
, unsigned long address
)
541 #ifdef CONFIG_DEBUG_VM
543 * The page's anon-rmap details (mapping and index) are guaranteed to
544 * be set up correctly at this point.
546 * We have exclusion against page_add_anon_rmap because the caller
547 * always holds the page locked, except if called from page_dup_rmap,
548 * in which case the page is already known to be setup.
550 * We have exclusion against page_add_new_anon_rmap because those pages
551 * are initially only visible via the pagetables, and the pte is locked
552 * over the call to page_add_new_anon_rmap.
554 struct anon_vma
*anon_vma
= vma
->anon_vma
;
555 anon_vma
= (void *) anon_vma
+ PAGE_MAPPING_ANON
;
556 BUG_ON(page
->mapping
!= (struct address_space
*)anon_vma
);
557 BUG_ON(page
->index
!= linear_page_index(vma
, address
));
562 * page_add_anon_rmap - add pte mapping to an anonymous page
563 * @page: the page to add the mapping to
564 * @vma: the vm area in which the mapping is added
565 * @address: the user virtual address mapped
567 * The caller needs to hold the pte lock and the page must be locked.
569 void page_add_anon_rmap(struct page
*page
,
570 struct vm_area_struct
*vma
, unsigned long address
)
572 VM_BUG_ON(!PageLocked(page
));
573 VM_BUG_ON(address
< vma
->vm_start
|| address
>= vma
->vm_end
);
574 if (atomic_inc_and_test(&page
->_mapcount
))
575 __page_set_anon_rmap(page
, vma
, address
);
577 __page_check_anon_rmap(page
, vma
, address
);
579 * We unconditionally charged during prepare, we uncharge here
580 * This takes care of balancing the reference counts
582 mem_cgroup_uncharge_page(page
);
587 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
588 * @page: the page to add the mapping to
589 * @vma: the vm area in which the mapping is added
590 * @address: the user virtual address mapped
592 * Same as page_add_anon_rmap but must only be called on *new* pages.
593 * This means the inc-and-test can be bypassed.
594 * Page does not have to be locked.
596 void page_add_new_anon_rmap(struct page
*page
,
597 struct vm_area_struct
*vma
, unsigned long address
)
599 BUG_ON(address
< vma
->vm_start
|| address
>= vma
->vm_end
);
600 atomic_set(&page
->_mapcount
, 0); /* elevate count by 1 (starts at -1) */
601 __page_set_anon_rmap(page
, vma
, address
);
605 * page_add_file_rmap - add pte mapping to a file page
606 * @page: the page to add the mapping to
608 * The caller needs to hold the pte lock.
610 void page_add_file_rmap(struct page
*page
)
612 if (atomic_inc_and_test(&page
->_mapcount
))
613 __inc_zone_page_state(page
, NR_FILE_MAPPED
);
616 * We unconditionally charged during prepare, we uncharge here
617 * This takes care of balancing the reference counts
619 mem_cgroup_uncharge_page(page
);
622 #ifdef CONFIG_DEBUG_VM
624 * page_dup_rmap - duplicate pte mapping to a page
625 * @page: the page to add the mapping to
627 * For copy_page_range only: minimal extract from page_add_file_rmap /
628 * page_add_anon_rmap, avoiding unnecessary tests (already checked) so it's
631 * The caller needs to hold the pte lock.
633 void page_dup_rmap(struct page
*page
, struct vm_area_struct
*vma
, unsigned long address
)
635 BUG_ON(page_mapcount(page
) == 0);
637 __page_check_anon_rmap(page
, vma
, address
);
638 atomic_inc(&page
->_mapcount
);
643 * page_remove_rmap - take down pte mapping from a page
644 * @page: page to remove mapping from
646 * The caller needs to hold the pte lock.
648 void page_remove_rmap(struct page
*page
, struct vm_area_struct
*vma
)
650 if (atomic_add_negative(-1, &page
->_mapcount
)) {
651 if (unlikely(page_mapcount(page
) < 0)) {
652 printk (KERN_EMERG
"Eeek! page_mapcount(page) went negative! (%d)\n", page_mapcount(page
));
653 printk (KERN_EMERG
" page pfn = %lx\n", page_to_pfn(page
));
654 printk (KERN_EMERG
" page->flags = %lx\n", page
->flags
);
655 printk (KERN_EMERG
" page->count = %x\n", page_count(page
));
656 printk (KERN_EMERG
" page->mapping = %p\n", page
->mapping
);
657 print_symbol (KERN_EMERG
" vma->vm_ops = %s\n", (unsigned long)vma
->vm_ops
);
659 print_symbol (KERN_EMERG
" vma->vm_ops->nopage = %s\n", (unsigned long)vma
->vm_ops
->nopage
);
660 print_symbol (KERN_EMERG
" vma->vm_ops->fault = %s\n", (unsigned long)vma
->vm_ops
->fault
);
662 if (vma
->vm_file
&& vma
->vm_file
->f_op
)
663 print_symbol (KERN_EMERG
" vma->vm_file->f_op->mmap = %s\n", (unsigned long)vma
->vm_file
->f_op
->mmap
);
668 * It would be tidy to reset the PageAnon mapping here,
669 * but that might overwrite a racing page_add_anon_rmap
670 * which increments mapcount after us but sets mapping
671 * before us: so leave the reset to free_hot_cold_page,
672 * and remember that it's only reliable while mapped.
673 * Leaving it set also helps swapoff to reinstate ptes
674 * faster for those pages still in swapcache.
676 if (page_test_dirty(page
)) {
677 page_clear_dirty(page
);
678 set_page_dirty(page
);
680 mem_cgroup_uncharge_page(page
);
682 __dec_zone_page_state(page
,
683 PageAnon(page
) ? NR_ANON_PAGES
: NR_FILE_MAPPED
);
688 * Subfunctions of try_to_unmap: try_to_unmap_one called
689 * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
691 static int try_to_unmap_one(struct page
*page
, struct vm_area_struct
*vma
,
694 struct mm_struct
*mm
= vma
->vm_mm
;
695 unsigned long address
;
699 int ret
= SWAP_AGAIN
;
701 address
= vma_address(page
, vma
);
702 if (address
== -EFAULT
)
705 pte
= page_check_address(page
, mm
, address
, &ptl
);
710 * If the page is mlock()d, we cannot swap it out.
711 * If it's recently referenced (perhaps page_referenced
712 * skipped over this mm) then we should reactivate it.
714 if (!migration
&& ((vma
->vm_flags
& VM_LOCKED
) ||
715 (ptep_clear_flush_young(vma
, address
, pte
)))) {
720 /* Nuke the page table entry. */
721 flush_cache_page(vma
, address
, page_to_pfn(page
));
722 pteval
= ptep_clear_flush(vma
, address
, pte
);
724 /* Move the dirty bit to the physical page now the pte is gone. */
725 if (pte_dirty(pteval
))
726 set_page_dirty(page
);
728 /* Update high watermark before we lower rss */
729 update_hiwater_rss(mm
);
731 if (PageAnon(page
)) {
732 swp_entry_t entry
= { .val
= page_private(page
) };
734 if (PageSwapCache(page
)) {
736 * Store the swap location in the pte.
737 * See handle_pte_fault() ...
739 swap_duplicate(entry
);
740 if (list_empty(&mm
->mmlist
)) {
741 spin_lock(&mmlist_lock
);
742 if (list_empty(&mm
->mmlist
))
743 list_add(&mm
->mmlist
, &init_mm
.mmlist
);
744 spin_unlock(&mmlist_lock
);
746 dec_mm_counter(mm
, anon_rss
);
747 #ifdef CONFIG_MIGRATION
750 * Store the pfn of the page in a special migration
751 * pte. do_swap_page() will wait until the migration
752 * pte is removed and then restart fault handling.
755 entry
= make_migration_entry(page
, pte_write(pteval
));
758 set_pte_at(mm
, address
, pte
, swp_entry_to_pte(entry
));
759 BUG_ON(pte_file(*pte
));
761 #ifdef CONFIG_MIGRATION
763 /* Establish migration entry for a file page */
765 entry
= make_migration_entry(page
, pte_write(pteval
));
766 set_pte_at(mm
, address
, pte
, swp_entry_to_pte(entry
));
769 dec_mm_counter(mm
, file_rss
);
772 page_remove_rmap(page
, vma
);
773 page_cache_release(page
);
776 pte_unmap_unlock(pte
, ptl
);
782 * objrmap doesn't work for nonlinear VMAs because the assumption that
783 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
784 * Consequently, given a particular page and its ->index, we cannot locate the
785 * ptes which are mapping that page without an exhaustive linear search.
787 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
788 * maps the file to which the target page belongs. The ->vm_private_data field
789 * holds the current cursor into that scan. Successive searches will circulate
790 * around the vma's virtual address space.
792 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
793 * more scanning pressure is placed against them as well. Eventually pages
794 * will become fully unmapped and are eligible for eviction.
796 * For very sparsely populated VMAs this is a little inefficient - chances are
797 * there there won't be many ptes located within the scan cluster. In this case
798 * maybe we could scan further - to the end of the pte page, perhaps.
800 #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
801 #define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
803 static void try_to_unmap_cluster(unsigned long cursor
,
804 unsigned int *mapcount
, struct vm_area_struct
*vma
)
806 struct mm_struct
*mm
= vma
->vm_mm
;
814 unsigned long address
;
817 address
= (vma
->vm_start
+ cursor
) & CLUSTER_MASK
;
818 end
= address
+ CLUSTER_SIZE
;
819 if (address
< vma
->vm_start
)
820 address
= vma
->vm_start
;
821 if (end
> vma
->vm_end
)
824 pgd
= pgd_offset(mm
, address
);
825 if (!pgd_present(*pgd
))
828 pud
= pud_offset(pgd
, address
);
829 if (!pud_present(*pud
))
832 pmd
= pmd_offset(pud
, address
);
833 if (!pmd_present(*pmd
))
836 pte
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
838 /* Update high watermark before we lower rss */
839 update_hiwater_rss(mm
);
841 for (; address
< end
; pte
++, address
+= PAGE_SIZE
) {
842 if (!pte_present(*pte
))
844 page
= vm_normal_page(vma
, address
, *pte
);
845 BUG_ON(!page
|| PageAnon(page
));
847 if (ptep_clear_flush_young(vma
, address
, pte
))
850 /* Nuke the page table entry. */
851 flush_cache_page(vma
, address
, pte_pfn(*pte
));
852 pteval
= ptep_clear_flush(vma
, address
, pte
);
854 /* If nonlinear, store the file page offset in the pte. */
855 if (page
->index
!= linear_page_index(vma
, address
))
856 set_pte_at(mm
, address
, pte
, pgoff_to_pte(page
->index
));
858 /* Move the dirty bit to the physical page now the pte is gone. */
859 if (pte_dirty(pteval
))
860 set_page_dirty(page
);
862 page_remove_rmap(page
, vma
);
863 page_cache_release(page
);
864 dec_mm_counter(mm
, file_rss
);
867 pte_unmap_unlock(pte
- 1, ptl
);
870 static int try_to_unmap_anon(struct page
*page
, int migration
)
872 struct anon_vma
*anon_vma
;
873 struct vm_area_struct
*vma
;
874 int ret
= SWAP_AGAIN
;
876 anon_vma
= page_lock_anon_vma(page
);
880 list_for_each_entry(vma
, &anon_vma
->head
, anon_vma_node
) {
881 ret
= try_to_unmap_one(page
, vma
, migration
);
882 if (ret
== SWAP_FAIL
|| !page_mapped(page
))
886 page_unlock_anon_vma(anon_vma
);
891 * try_to_unmap_file - unmap file page using the object-based rmap method
892 * @page: the page to unmap
894 * Find all the mappings of a page using the mapping pointer and the vma chains
895 * contained in the address_space struct it points to.
897 * This function is only called from try_to_unmap for object-based pages.
899 static int try_to_unmap_file(struct page
*page
, int migration
)
901 struct address_space
*mapping
= page
->mapping
;
902 pgoff_t pgoff
= page
->index
<< (PAGE_CACHE_SHIFT
- PAGE_SHIFT
);
903 struct vm_area_struct
*vma
;
904 struct prio_tree_iter iter
;
905 int ret
= SWAP_AGAIN
;
906 unsigned long cursor
;
907 unsigned long max_nl_cursor
= 0;
908 unsigned long max_nl_size
= 0;
909 unsigned int mapcount
;
911 spin_lock(&mapping
->i_mmap_lock
);
912 vma_prio_tree_foreach(vma
, &iter
, &mapping
->i_mmap
, pgoff
, pgoff
) {
913 ret
= try_to_unmap_one(page
, vma
, migration
);
914 if (ret
== SWAP_FAIL
|| !page_mapped(page
))
918 if (list_empty(&mapping
->i_mmap_nonlinear
))
921 list_for_each_entry(vma
, &mapping
->i_mmap_nonlinear
,
922 shared
.vm_set
.list
) {
923 if ((vma
->vm_flags
& VM_LOCKED
) && !migration
)
925 cursor
= (unsigned long) vma
->vm_private_data
;
926 if (cursor
> max_nl_cursor
)
927 max_nl_cursor
= cursor
;
928 cursor
= vma
->vm_end
- vma
->vm_start
;
929 if (cursor
> max_nl_size
)
930 max_nl_size
= cursor
;
933 if (max_nl_size
== 0) { /* any nonlinears locked or reserved */
939 * We don't try to search for this page in the nonlinear vmas,
940 * and page_referenced wouldn't have found it anyway. Instead
941 * just walk the nonlinear vmas trying to age and unmap some.
942 * The mapcount of the page we came in with is irrelevant,
943 * but even so use it as a guide to how hard we should try?
945 mapcount
= page_mapcount(page
);
948 cond_resched_lock(&mapping
->i_mmap_lock
);
950 max_nl_size
= (max_nl_size
+ CLUSTER_SIZE
- 1) & CLUSTER_MASK
;
951 if (max_nl_cursor
== 0)
952 max_nl_cursor
= CLUSTER_SIZE
;
955 list_for_each_entry(vma
, &mapping
->i_mmap_nonlinear
,
956 shared
.vm_set
.list
) {
957 if ((vma
->vm_flags
& VM_LOCKED
) && !migration
)
959 cursor
= (unsigned long) vma
->vm_private_data
;
960 while ( cursor
< max_nl_cursor
&&
961 cursor
< vma
->vm_end
- vma
->vm_start
) {
962 try_to_unmap_cluster(cursor
, &mapcount
, vma
);
963 cursor
+= CLUSTER_SIZE
;
964 vma
->vm_private_data
= (void *) cursor
;
965 if ((int)mapcount
<= 0)
968 vma
->vm_private_data
= (void *) max_nl_cursor
;
970 cond_resched_lock(&mapping
->i_mmap_lock
);
971 max_nl_cursor
+= CLUSTER_SIZE
;
972 } while (max_nl_cursor
<= max_nl_size
);
975 * Don't loop forever (perhaps all the remaining pages are
976 * in locked vmas). Reset cursor on all unreserved nonlinear
977 * vmas, now forgetting on which ones it had fallen behind.
979 list_for_each_entry(vma
, &mapping
->i_mmap_nonlinear
, shared
.vm_set
.list
)
980 vma
->vm_private_data
= NULL
;
982 spin_unlock(&mapping
->i_mmap_lock
);
987 * try_to_unmap - try to remove all page table mappings to a page
988 * @page: the page to get unmapped
990 * Tries to remove all the page table entries which are mapping this
991 * page, used in the pageout path. Caller must hold the page lock.
994 * SWAP_SUCCESS - we succeeded in removing all mappings
995 * SWAP_AGAIN - we missed a mapping, try again later
996 * SWAP_FAIL - the page is unswappable
998 int try_to_unmap(struct page
*page
, int migration
)
1002 BUG_ON(!PageLocked(page
));
1005 ret
= try_to_unmap_anon(page
, migration
);
1007 ret
= try_to_unmap_file(page
, migration
);
1009 if (!page_mapped(page
))