2 * Resizable virtual memory filesystem for Linux.
4 * Copyright (C) 2000 Linus Torvalds.
6 * 2000-2001 Christoph Rohland
9 * Copyright (C) 2002-2005 Hugh Dickins.
10 * Copyright (C) 2002-2005 VERITAS Software Corporation.
11 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 * Extended attribute support for tmpfs:
14 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
15 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 * This file is released under the GPL.
21 * This virtual memory filesystem is heavily based on the ramfs. It
22 * extends ramfs by the ability to use swap and honor resource limits
23 * which makes it a completely usable filesystem.
26 #include <linux/module.h>
27 #include <linux/init.h>
29 #include <linux/xattr.h>
30 #include <linux/exportfs.h>
31 #include <linux/generic_acl.h>
33 #include <linux/mman.h>
34 #include <linux/file.h>
35 #include <linux/swap.h>
36 #include <linux/pagemap.h>
37 #include <linux/string.h>
38 #include <linux/slab.h>
39 #include <linux/backing-dev.h>
40 #include <linux/shmem_fs.h>
41 #include <linux/mount.h>
42 #include <linux/writeback.h>
43 #include <linux/vfs.h>
44 #include <linux/blkdev.h>
45 #include <linux/security.h>
46 #include <linux/swapops.h>
47 #include <linux/mempolicy.h>
48 #include <linux/namei.h>
49 #include <linux/ctype.h>
50 #include <linux/migrate.h>
51 #include <linux/highmem.h>
52 #include <linux/seq_file.h>
54 #include <asm/uaccess.h>
55 #include <asm/div64.h>
56 #include <asm/pgtable.h>
58 /* This magic number is used in glibc for posix shared memory */
59 #define TMPFS_MAGIC 0x01021994
61 #define ENTRIES_PER_PAGE (PAGE_CACHE_SIZE/sizeof(unsigned long))
62 #define ENTRIES_PER_PAGEPAGE (ENTRIES_PER_PAGE*ENTRIES_PER_PAGE)
63 #define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512)
65 #define SHMEM_MAX_INDEX (SHMEM_NR_DIRECT + (ENTRIES_PER_PAGEPAGE/2) * (ENTRIES_PER_PAGE+1))
66 #define SHMEM_MAX_BYTES ((unsigned long long)SHMEM_MAX_INDEX << PAGE_CACHE_SHIFT)
68 #define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
70 /* info->flags needs VM_flags to handle pagein/truncate races efficiently */
71 #define SHMEM_PAGEIN VM_READ
72 #define SHMEM_TRUNCATE VM_WRITE
74 /* Definition to limit shmem_truncate's steps between cond_rescheds */
75 #define LATENCY_LIMIT 64
77 /* Pretend that each entry is of this size in directory's i_size */
78 #define BOGO_DIRENT_SIZE 20
80 /* Flag allocation requirements to shmem_getpage and shmem_swp_alloc */
82 SGP_READ
, /* don't exceed i_size, don't allocate page */
83 SGP_CACHE
, /* don't exceed i_size, may allocate page */
84 SGP_DIRTY
, /* like SGP_CACHE, but set new page dirty */
85 SGP_WRITE
, /* may exceed i_size, may allocate page */
89 static unsigned long shmem_default_max_blocks(void)
91 return totalram_pages
/ 2;
94 static unsigned long shmem_default_max_inodes(void)
96 return min(totalram_pages
- totalhigh_pages
, totalram_pages
/ 2);
100 static int shmem_getpage(struct inode
*inode
, unsigned long idx
,
101 struct page
**pagep
, enum sgp_type sgp
, int *type
);
103 static inline struct page
*shmem_dir_alloc(gfp_t gfp_mask
)
106 * The above definition of ENTRIES_PER_PAGE, and the use of
107 * BLOCKS_PER_PAGE on indirect pages, assume PAGE_CACHE_SIZE:
108 * might be reconsidered if it ever diverges from PAGE_SIZE.
110 * Mobility flags are masked out as swap vectors cannot move
112 return alloc_pages((gfp_mask
& ~GFP_MOVABLE_MASK
) | __GFP_ZERO
,
113 PAGE_CACHE_SHIFT
-PAGE_SHIFT
);
116 static inline void shmem_dir_free(struct page
*page
)
118 __free_pages(page
, PAGE_CACHE_SHIFT
-PAGE_SHIFT
);
121 static struct page
**shmem_dir_map(struct page
*page
)
123 return (struct page
**)kmap_atomic(page
, KM_USER0
);
126 static inline void shmem_dir_unmap(struct page
**dir
)
128 kunmap_atomic(dir
, KM_USER0
);
131 static swp_entry_t
*shmem_swp_map(struct page
*page
)
133 return (swp_entry_t
*)kmap_atomic(page
, KM_USER1
);
136 static inline void shmem_swp_balance_unmap(void)
139 * When passing a pointer to an i_direct entry, to code which
140 * also handles indirect entries and so will shmem_swp_unmap,
141 * we must arrange for the preempt count to remain in balance.
142 * What kmap_atomic of a lowmem page does depends on config
143 * and architecture, so pretend to kmap_atomic some lowmem page.
145 (void) kmap_atomic(ZERO_PAGE(0), KM_USER1
);
148 static inline void shmem_swp_unmap(swp_entry_t
*entry
)
150 kunmap_atomic(entry
, KM_USER1
);
153 static inline struct shmem_sb_info
*SHMEM_SB(struct super_block
*sb
)
155 return sb
->s_fs_info
;
159 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
160 * for shared memory and for shared anonymous (/dev/zero) mappings
161 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
162 * consistent with the pre-accounting of private mappings ...
164 static inline int shmem_acct_size(unsigned long flags
, loff_t size
)
166 return (flags
& VM_ACCOUNT
)?
167 security_vm_enough_memory(VM_ACCT(size
)): 0;
170 static inline void shmem_unacct_size(unsigned long flags
, loff_t size
)
172 if (flags
& VM_ACCOUNT
)
173 vm_unacct_memory(VM_ACCT(size
));
177 * ... whereas tmpfs objects are accounted incrementally as
178 * pages are allocated, in order to allow huge sparse files.
179 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
180 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
182 static inline int shmem_acct_block(unsigned long flags
)
184 return (flags
& VM_ACCOUNT
)?
185 0: security_vm_enough_memory(VM_ACCT(PAGE_CACHE_SIZE
));
188 static inline void shmem_unacct_blocks(unsigned long flags
, long pages
)
190 if (!(flags
& VM_ACCOUNT
))
191 vm_unacct_memory(pages
* VM_ACCT(PAGE_CACHE_SIZE
));
194 static const struct super_operations shmem_ops
;
195 static const struct address_space_operations shmem_aops
;
196 static const struct file_operations shmem_file_operations
;
197 static const struct inode_operations shmem_inode_operations
;
198 static const struct inode_operations shmem_dir_inode_operations
;
199 static const struct inode_operations shmem_special_inode_operations
;
200 static struct vm_operations_struct shmem_vm_ops
;
202 static struct backing_dev_info shmem_backing_dev_info __read_mostly
= {
203 .ra_pages
= 0, /* No readahead */
204 .capabilities
= BDI_CAP_NO_ACCT_DIRTY
| BDI_CAP_NO_WRITEBACK
,
205 .unplug_io_fn
= default_unplug_io_fn
,
208 static LIST_HEAD(shmem_swaplist
);
209 static DEFINE_MUTEX(shmem_swaplist_mutex
);
211 static void shmem_free_blocks(struct inode
*inode
, long pages
)
213 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
214 if (sbinfo
->max_blocks
) {
215 spin_lock(&sbinfo
->stat_lock
);
216 sbinfo
->free_blocks
+= pages
;
217 inode
->i_blocks
-= pages
*BLOCKS_PER_PAGE
;
218 spin_unlock(&sbinfo
->stat_lock
);
222 static int shmem_reserve_inode(struct super_block
*sb
)
224 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
225 if (sbinfo
->max_inodes
) {
226 spin_lock(&sbinfo
->stat_lock
);
227 if (!sbinfo
->free_inodes
) {
228 spin_unlock(&sbinfo
->stat_lock
);
231 sbinfo
->free_inodes
--;
232 spin_unlock(&sbinfo
->stat_lock
);
237 static void shmem_free_inode(struct super_block
*sb
)
239 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
240 if (sbinfo
->max_inodes
) {
241 spin_lock(&sbinfo
->stat_lock
);
242 sbinfo
->free_inodes
++;
243 spin_unlock(&sbinfo
->stat_lock
);
248 * shmem_recalc_inode - recalculate the size of an inode
250 * @inode: inode to recalc
252 * We have to calculate the free blocks since the mm can drop
253 * undirtied hole pages behind our back.
255 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
256 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
258 * It has to be called with the spinlock held.
260 static void shmem_recalc_inode(struct inode
*inode
)
262 struct shmem_inode_info
*info
= SHMEM_I(inode
);
265 freed
= info
->alloced
- info
->swapped
- inode
->i_mapping
->nrpages
;
267 info
->alloced
-= freed
;
268 shmem_unacct_blocks(info
->flags
, freed
);
269 shmem_free_blocks(inode
, freed
);
274 * shmem_swp_entry - find the swap vector position in the info structure
276 * @info: info structure for the inode
277 * @index: index of the page to find
278 * @page: optional page to add to the structure. Has to be preset to
281 * If there is no space allocated yet it will return NULL when
282 * page is NULL, else it will use the page for the needed block,
283 * setting it to NULL on return to indicate that it has been used.
285 * The swap vector is organized the following way:
287 * There are SHMEM_NR_DIRECT entries directly stored in the
288 * shmem_inode_info structure. So small files do not need an addional
291 * For pages with index > SHMEM_NR_DIRECT there is the pointer
292 * i_indirect which points to a page which holds in the first half
293 * doubly indirect blocks, in the second half triple indirect blocks:
295 * For an artificial ENTRIES_PER_PAGE = 4 this would lead to the
296 * following layout (for SHMEM_NR_DIRECT == 16):
298 * i_indirect -> dir --> 16-19
311 static swp_entry_t
*shmem_swp_entry(struct shmem_inode_info
*info
, unsigned long index
, struct page
**page
)
313 unsigned long offset
;
317 if (index
< SHMEM_NR_DIRECT
) {
318 shmem_swp_balance_unmap();
319 return info
->i_direct
+index
;
321 if (!info
->i_indirect
) {
323 info
->i_indirect
= *page
;
326 return NULL
; /* need another page */
329 index
-= SHMEM_NR_DIRECT
;
330 offset
= index
% ENTRIES_PER_PAGE
;
331 index
/= ENTRIES_PER_PAGE
;
332 dir
= shmem_dir_map(info
->i_indirect
);
334 if (index
>= ENTRIES_PER_PAGE
/2) {
335 index
-= ENTRIES_PER_PAGE
/2;
336 dir
+= ENTRIES_PER_PAGE
/2 + index
/ENTRIES_PER_PAGE
;
337 index
%= ENTRIES_PER_PAGE
;
344 shmem_dir_unmap(dir
);
345 return NULL
; /* need another page */
347 shmem_dir_unmap(dir
);
348 dir
= shmem_dir_map(subdir
);
354 if (!page
|| !(subdir
= *page
)) {
355 shmem_dir_unmap(dir
);
356 return NULL
; /* need a page */
361 shmem_dir_unmap(dir
);
362 return shmem_swp_map(subdir
) + offset
;
365 static void shmem_swp_set(struct shmem_inode_info
*info
, swp_entry_t
*entry
, unsigned long value
)
367 long incdec
= value
? 1: -1;
370 info
->swapped
+= incdec
;
371 if ((unsigned long)(entry
- info
->i_direct
) >= SHMEM_NR_DIRECT
) {
372 struct page
*page
= kmap_atomic_to_page(entry
);
373 set_page_private(page
, page_private(page
) + incdec
);
378 * shmem_swp_alloc - get the position of the swap entry for the page.
379 * If it does not exist allocate the entry.
381 * @info: info structure for the inode
382 * @index: index of the page to find
383 * @sgp: check and recheck i_size? skip allocation?
385 static swp_entry_t
*shmem_swp_alloc(struct shmem_inode_info
*info
, unsigned long index
, enum sgp_type sgp
)
387 struct inode
*inode
= &info
->vfs_inode
;
388 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
389 struct page
*page
= NULL
;
392 if (sgp
!= SGP_WRITE
&&
393 ((loff_t
) index
<< PAGE_CACHE_SHIFT
) >= i_size_read(inode
))
394 return ERR_PTR(-EINVAL
);
396 while (!(entry
= shmem_swp_entry(info
, index
, &page
))) {
398 return shmem_swp_map(ZERO_PAGE(0));
400 * Test free_blocks against 1 not 0, since we have 1 data
401 * page (and perhaps indirect index pages) yet to allocate:
402 * a waste to allocate index if we cannot allocate data.
404 if (sbinfo
->max_blocks
) {
405 spin_lock(&sbinfo
->stat_lock
);
406 if (sbinfo
->free_blocks
<= 1) {
407 spin_unlock(&sbinfo
->stat_lock
);
408 return ERR_PTR(-ENOSPC
);
410 sbinfo
->free_blocks
--;
411 inode
->i_blocks
+= BLOCKS_PER_PAGE
;
412 spin_unlock(&sbinfo
->stat_lock
);
415 spin_unlock(&info
->lock
);
416 page
= shmem_dir_alloc(mapping_gfp_mask(inode
->i_mapping
));
418 set_page_private(page
, 0);
419 spin_lock(&info
->lock
);
422 shmem_free_blocks(inode
, 1);
423 return ERR_PTR(-ENOMEM
);
425 if (sgp
!= SGP_WRITE
&&
426 ((loff_t
) index
<< PAGE_CACHE_SHIFT
) >= i_size_read(inode
)) {
427 entry
= ERR_PTR(-EINVAL
);
430 if (info
->next_index
<= index
)
431 info
->next_index
= index
+ 1;
434 /* another task gave its page, or truncated the file */
435 shmem_free_blocks(inode
, 1);
436 shmem_dir_free(page
);
438 if (info
->next_index
<= index
&& !IS_ERR(entry
))
439 info
->next_index
= index
+ 1;
444 * shmem_free_swp - free some swap entries in a directory
446 * @dir: pointer to the directory
447 * @edir: pointer after last entry of the directory
448 * @punch_lock: pointer to spinlock when needed for the holepunch case
450 static int shmem_free_swp(swp_entry_t
*dir
, swp_entry_t
*edir
,
451 spinlock_t
*punch_lock
)
453 spinlock_t
*punch_unlock
= NULL
;
457 for (ptr
= dir
; ptr
< edir
; ptr
++) {
459 if (unlikely(punch_lock
)) {
460 punch_unlock
= punch_lock
;
462 spin_lock(punch_unlock
);
466 free_swap_and_cache(*ptr
);
467 *ptr
= (swp_entry_t
){0};
472 spin_unlock(punch_unlock
);
476 static int shmem_map_and_free_swp(struct page
*subdir
, int offset
,
477 int limit
, struct page
***dir
, spinlock_t
*punch_lock
)
482 ptr
= shmem_swp_map(subdir
);
483 for (; offset
< limit
; offset
+= LATENCY_LIMIT
) {
484 int size
= limit
- offset
;
485 if (size
> LATENCY_LIMIT
)
486 size
= LATENCY_LIMIT
;
487 freed
+= shmem_free_swp(ptr
+offset
, ptr
+offset
+size
,
489 if (need_resched()) {
490 shmem_swp_unmap(ptr
);
492 shmem_dir_unmap(*dir
);
496 ptr
= shmem_swp_map(subdir
);
499 shmem_swp_unmap(ptr
);
503 static void shmem_free_pages(struct list_head
*next
)
509 page
= container_of(next
, struct page
, lru
);
511 shmem_dir_free(page
);
513 if (freed
>= LATENCY_LIMIT
) {
520 static void shmem_truncate_range(struct inode
*inode
, loff_t start
, loff_t end
)
522 struct shmem_inode_info
*info
= SHMEM_I(inode
);
527 unsigned long diroff
;
533 LIST_HEAD(pages_to_free
);
534 long nr_pages_to_free
= 0;
535 long nr_swaps_freed
= 0;
539 spinlock_t
*needs_lock
;
540 spinlock_t
*punch_lock
;
541 unsigned long upper_limit
;
543 inode
->i_ctime
= inode
->i_mtime
= CURRENT_TIME
;
544 idx
= (start
+ PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
545 if (idx
>= info
->next_index
)
548 spin_lock(&info
->lock
);
549 info
->flags
|= SHMEM_TRUNCATE
;
550 if (likely(end
== (loff_t
) -1)) {
551 limit
= info
->next_index
;
552 upper_limit
= SHMEM_MAX_INDEX
;
553 info
->next_index
= idx
;
557 if (end
+ 1 >= inode
->i_size
) { /* we may free a little more */
558 limit
= (inode
->i_size
+ PAGE_CACHE_SIZE
- 1) >>
560 upper_limit
= SHMEM_MAX_INDEX
;
562 limit
= (end
+ 1) >> PAGE_CACHE_SHIFT
;
565 needs_lock
= &info
->lock
;
569 topdir
= info
->i_indirect
;
570 if (topdir
&& idx
<= SHMEM_NR_DIRECT
&& !punch_hole
) {
571 info
->i_indirect
= NULL
;
573 list_add(&topdir
->lru
, &pages_to_free
);
575 spin_unlock(&info
->lock
);
577 if (info
->swapped
&& idx
< SHMEM_NR_DIRECT
) {
578 ptr
= info
->i_direct
;
580 if (size
> SHMEM_NR_DIRECT
)
581 size
= SHMEM_NR_DIRECT
;
582 nr_swaps_freed
= shmem_free_swp(ptr
+idx
, ptr
+size
, needs_lock
);
586 * If there are no indirect blocks or we are punching a hole
587 * below indirect blocks, nothing to be done.
589 if (!topdir
|| limit
<= SHMEM_NR_DIRECT
)
593 * The truncation case has already dropped info->lock, and we're safe
594 * because i_size and next_index have already been lowered, preventing
595 * access beyond. But in the punch_hole case, we still need to take
596 * the lock when updating the swap directory, because there might be
597 * racing accesses by shmem_getpage(SGP_CACHE), shmem_unuse_inode or
598 * shmem_writepage. However, whenever we find we can remove a whole
599 * directory page (not at the misaligned start or end of the range),
600 * we first NULLify its pointer in the level above, and then have no
601 * need to take the lock when updating its contents: needs_lock and
602 * punch_lock (either pointing to info->lock or NULL) manage this.
605 upper_limit
-= SHMEM_NR_DIRECT
;
606 limit
-= SHMEM_NR_DIRECT
;
607 idx
= (idx
> SHMEM_NR_DIRECT
)? (idx
- SHMEM_NR_DIRECT
): 0;
608 offset
= idx
% ENTRIES_PER_PAGE
;
611 dir
= shmem_dir_map(topdir
);
612 stage
= ENTRIES_PER_PAGEPAGE
/2;
613 if (idx
< ENTRIES_PER_PAGEPAGE
/2) {
615 diroff
= idx
/ENTRIES_PER_PAGE
;
617 dir
+= ENTRIES_PER_PAGE
/2;
618 dir
+= (idx
- ENTRIES_PER_PAGEPAGE
/2)/ENTRIES_PER_PAGEPAGE
;
620 stage
+= ENTRIES_PER_PAGEPAGE
;
623 diroff
= ((idx
- ENTRIES_PER_PAGEPAGE
/2) %
624 ENTRIES_PER_PAGEPAGE
) / ENTRIES_PER_PAGE
;
625 if (!diroff
&& !offset
&& upper_limit
>= stage
) {
627 spin_lock(needs_lock
);
629 spin_unlock(needs_lock
);
634 list_add(&middir
->lru
, &pages_to_free
);
636 shmem_dir_unmap(dir
);
637 dir
= shmem_dir_map(middir
);
645 for (; idx
< limit
; idx
+= ENTRIES_PER_PAGE
, diroff
++) {
646 if (unlikely(idx
== stage
)) {
647 shmem_dir_unmap(dir
);
648 dir
= shmem_dir_map(topdir
) +
649 ENTRIES_PER_PAGE
/2 + idx
/ENTRIES_PER_PAGEPAGE
;
652 idx
+= ENTRIES_PER_PAGEPAGE
;
656 stage
= idx
+ ENTRIES_PER_PAGEPAGE
;
659 needs_lock
= &info
->lock
;
660 if (upper_limit
>= stage
) {
662 spin_lock(needs_lock
);
664 spin_unlock(needs_lock
);
669 list_add(&middir
->lru
, &pages_to_free
);
671 shmem_dir_unmap(dir
);
673 dir
= shmem_dir_map(middir
);
676 punch_lock
= needs_lock
;
677 subdir
= dir
[diroff
];
678 if (subdir
&& !offset
&& upper_limit
-idx
>= ENTRIES_PER_PAGE
) {
680 spin_lock(needs_lock
);
682 spin_unlock(needs_lock
);
687 list_add(&subdir
->lru
, &pages_to_free
);
689 if (subdir
&& page_private(subdir
) /* has swap entries */) {
691 if (size
> ENTRIES_PER_PAGE
)
692 size
= ENTRIES_PER_PAGE
;
693 freed
= shmem_map_and_free_swp(subdir
,
694 offset
, size
, &dir
, punch_lock
);
696 dir
= shmem_dir_map(middir
);
697 nr_swaps_freed
+= freed
;
698 if (offset
|| punch_lock
) {
699 spin_lock(&info
->lock
);
700 set_page_private(subdir
,
701 page_private(subdir
) - freed
);
702 spin_unlock(&info
->lock
);
704 BUG_ON(page_private(subdir
) != freed
);
709 shmem_dir_unmap(dir
);
711 if (inode
->i_mapping
->nrpages
&& (info
->flags
& SHMEM_PAGEIN
)) {
713 * Call truncate_inode_pages again: racing shmem_unuse_inode
714 * may have swizzled a page in from swap since vmtruncate or
715 * generic_delete_inode did it, before we lowered next_index.
716 * Also, though shmem_getpage checks i_size before adding to
717 * cache, no recheck after: so fix the narrow window there too.
719 * Recalling truncate_inode_pages_range and unmap_mapping_range
720 * every time for punch_hole (which never got a chance to clear
721 * SHMEM_PAGEIN at the start of vmtruncate_range) is expensive,
722 * yet hardly ever necessary: try to optimize them out later.
724 truncate_inode_pages_range(inode
->i_mapping
, start
, end
);
726 unmap_mapping_range(inode
->i_mapping
, start
,
730 spin_lock(&info
->lock
);
731 info
->flags
&= ~SHMEM_TRUNCATE
;
732 info
->swapped
-= nr_swaps_freed
;
733 if (nr_pages_to_free
)
734 shmem_free_blocks(inode
, nr_pages_to_free
);
735 shmem_recalc_inode(inode
);
736 spin_unlock(&info
->lock
);
739 * Empty swap vector directory pages to be freed?
741 if (!list_empty(&pages_to_free
)) {
742 pages_to_free
.prev
->next
= NULL
;
743 shmem_free_pages(pages_to_free
.next
);
747 static void shmem_truncate(struct inode
*inode
)
749 shmem_truncate_range(inode
, inode
->i_size
, (loff_t
)-1);
752 static int shmem_notify_change(struct dentry
*dentry
, struct iattr
*attr
)
754 struct inode
*inode
= dentry
->d_inode
;
755 struct page
*page
= NULL
;
758 if (S_ISREG(inode
->i_mode
) && (attr
->ia_valid
& ATTR_SIZE
)) {
759 if (attr
->ia_size
< inode
->i_size
) {
761 * If truncating down to a partial page, then
762 * if that page is already allocated, hold it
763 * in memory until the truncation is over, so
764 * truncate_partial_page cannnot miss it were
765 * it assigned to swap.
767 if (attr
->ia_size
& (PAGE_CACHE_SIZE
-1)) {
768 (void) shmem_getpage(inode
,
769 attr
->ia_size
>>PAGE_CACHE_SHIFT
,
770 &page
, SGP_READ
, NULL
);
775 * Reset SHMEM_PAGEIN flag so that shmem_truncate can
776 * detect if any pages might have been added to cache
777 * after truncate_inode_pages. But we needn't bother
778 * if it's being fully truncated to zero-length: the
779 * nrpages check is efficient enough in that case.
782 struct shmem_inode_info
*info
= SHMEM_I(inode
);
783 spin_lock(&info
->lock
);
784 info
->flags
&= ~SHMEM_PAGEIN
;
785 spin_unlock(&info
->lock
);
790 error
= inode_change_ok(inode
, attr
);
792 error
= inode_setattr(inode
, attr
);
793 #ifdef CONFIG_TMPFS_POSIX_ACL
794 if (!error
&& (attr
->ia_valid
& ATTR_MODE
))
795 error
= generic_acl_chmod(inode
, &shmem_acl_ops
);
798 page_cache_release(page
);
802 static void shmem_delete_inode(struct inode
*inode
)
804 struct shmem_inode_info
*info
= SHMEM_I(inode
);
806 if (inode
->i_op
->truncate
== shmem_truncate
) {
807 truncate_inode_pages(inode
->i_mapping
, 0);
808 shmem_unacct_size(info
->flags
, inode
->i_size
);
810 shmem_truncate(inode
);
811 if (!list_empty(&info
->swaplist
)) {
812 mutex_lock(&shmem_swaplist_mutex
);
813 list_del_init(&info
->swaplist
);
814 mutex_unlock(&shmem_swaplist_mutex
);
817 BUG_ON(inode
->i_blocks
);
818 shmem_free_inode(inode
->i_sb
);
822 static inline int shmem_find_swp(swp_entry_t entry
, swp_entry_t
*dir
, swp_entry_t
*edir
)
826 for (ptr
= dir
; ptr
< edir
; ptr
++) {
827 if (ptr
->val
== entry
.val
)
833 static int shmem_unuse_inode(struct shmem_inode_info
*info
, swp_entry_t entry
, struct page
*page
)
847 ptr
= info
->i_direct
;
848 spin_lock(&info
->lock
);
849 if (!info
->swapped
) {
850 list_del_init(&info
->swaplist
);
853 limit
= info
->next_index
;
855 if (size
> SHMEM_NR_DIRECT
)
856 size
= SHMEM_NR_DIRECT
;
857 offset
= shmem_find_swp(entry
, ptr
, ptr
+size
);
860 if (!info
->i_indirect
)
863 dir
= shmem_dir_map(info
->i_indirect
);
864 stage
= SHMEM_NR_DIRECT
+ ENTRIES_PER_PAGEPAGE
/2;
866 for (idx
= SHMEM_NR_DIRECT
; idx
< limit
; idx
+= ENTRIES_PER_PAGE
, dir
++) {
867 if (unlikely(idx
== stage
)) {
868 shmem_dir_unmap(dir
-1);
869 if (cond_resched_lock(&info
->lock
)) {
870 /* check it has not been truncated */
871 if (limit
> info
->next_index
) {
872 limit
= info
->next_index
;
877 dir
= shmem_dir_map(info
->i_indirect
) +
878 ENTRIES_PER_PAGE
/2 + idx
/ENTRIES_PER_PAGEPAGE
;
881 idx
+= ENTRIES_PER_PAGEPAGE
;
885 stage
= idx
+ ENTRIES_PER_PAGEPAGE
;
887 shmem_dir_unmap(dir
);
888 dir
= shmem_dir_map(subdir
);
891 if (subdir
&& page_private(subdir
)) {
892 ptr
= shmem_swp_map(subdir
);
894 if (size
> ENTRIES_PER_PAGE
)
895 size
= ENTRIES_PER_PAGE
;
896 offset
= shmem_find_swp(entry
, ptr
, ptr
+size
);
897 shmem_swp_unmap(ptr
);
899 shmem_dir_unmap(dir
);
905 shmem_dir_unmap(dir
-1);
907 spin_unlock(&info
->lock
);
911 inode
= igrab(&info
->vfs_inode
);
912 spin_unlock(&info
->lock
);
915 * Move _head_ to start search for next from here.
916 * But be careful: shmem_delete_inode checks list_empty without taking
917 * mutex, and there's an instant in list_move_tail when info->swaplist
918 * would appear empty, if it were the only one on shmem_swaplist. We
919 * could avoid doing it if inode NULL; or use this minor optimization.
921 if (shmem_swaplist
.next
!= &info
->swaplist
)
922 list_move_tail(&shmem_swaplist
, &info
->swaplist
);
923 mutex_unlock(&shmem_swaplist_mutex
);
928 /* Precharge page while we can wait, compensate afterwards */
929 error
= mem_cgroup_cache_charge(page
, current
->mm
, GFP_KERNEL
);
932 error
= radix_tree_preload(GFP_KERNEL
);
937 spin_lock(&info
->lock
);
938 ptr
= shmem_swp_entry(info
, idx
, NULL
);
939 if (ptr
&& ptr
->val
== entry
.val
)
940 error
= add_to_page_cache(page
, inode
->i_mapping
,
942 if (error
== -EEXIST
) {
943 struct page
*filepage
= find_get_page(inode
->i_mapping
, idx
);
947 * There might be a more uptodate page coming down
948 * from a stacked writepage: forget our swappage if so.
950 if (PageUptodate(filepage
))
952 page_cache_release(filepage
);
956 delete_from_swap_cache(page
);
957 set_page_dirty(page
);
958 info
->flags
|= SHMEM_PAGEIN
;
959 shmem_swp_set(info
, ptr
, 0);
961 error
= 1; /* not an error, but entry was found */
964 shmem_swp_unmap(ptr
);
965 spin_unlock(&info
->lock
);
966 radix_tree_preload_end();
968 mem_cgroup_uncharge_page(page
);
971 page_cache_release(page
);
972 iput(inode
); /* allows for NULL */
977 * shmem_unuse() search for an eventually swapped out shmem page.
979 int shmem_unuse(swp_entry_t entry
, struct page
*page
)
981 struct list_head
*p
, *next
;
982 struct shmem_inode_info
*info
;
985 mutex_lock(&shmem_swaplist_mutex
);
986 list_for_each_safe(p
, next
, &shmem_swaplist
) {
987 info
= list_entry(p
, struct shmem_inode_info
, swaplist
);
988 found
= shmem_unuse_inode(info
, entry
, page
);
993 mutex_unlock(&shmem_swaplist_mutex
);
994 out
: return found
; /* 0 or 1 or -ENOMEM */
998 * Move the page from the page cache to the swap cache.
1000 static int shmem_writepage(struct page
*page
, struct writeback_control
*wbc
)
1002 struct shmem_inode_info
*info
;
1003 swp_entry_t
*entry
, swap
;
1004 struct address_space
*mapping
;
1005 unsigned long index
;
1006 struct inode
*inode
;
1008 BUG_ON(!PageLocked(page
));
1009 mapping
= page
->mapping
;
1010 index
= page
->index
;
1011 inode
= mapping
->host
;
1012 info
= SHMEM_I(inode
);
1013 if (info
->flags
& VM_LOCKED
)
1015 if (!total_swap_pages
)
1019 * shmem_backing_dev_info's capabilities prevent regular writeback or
1020 * sync from ever calling shmem_writepage; but a stacking filesystem
1021 * may use the ->writepage of its underlying filesystem, in which case
1022 * tmpfs should write out to swap only in response to memory pressure,
1023 * and not for pdflush or sync. However, in those cases, we do still
1024 * want to check if there's a redundant swappage to be discarded.
1026 if (wbc
->for_reclaim
)
1027 swap
= get_swap_page();
1031 spin_lock(&info
->lock
);
1032 if (index
>= info
->next_index
) {
1033 BUG_ON(!(info
->flags
& SHMEM_TRUNCATE
));
1036 entry
= shmem_swp_entry(info
, index
, NULL
);
1039 * The more uptodate page coming down from a stacked
1040 * writepage should replace our old swappage.
1042 free_swap_and_cache(*entry
);
1043 shmem_swp_set(info
, entry
, 0);
1045 shmem_recalc_inode(inode
);
1047 if (swap
.val
&& add_to_swap_cache(page
, swap
, GFP_ATOMIC
) == 0) {
1048 remove_from_page_cache(page
);
1049 shmem_swp_set(info
, entry
, swap
.val
);
1050 shmem_swp_unmap(entry
);
1051 if (list_empty(&info
->swaplist
))
1052 inode
= igrab(inode
);
1055 spin_unlock(&info
->lock
);
1056 swap_duplicate(swap
);
1057 BUG_ON(page_mapped(page
));
1058 page_cache_release(page
); /* pagecache ref */
1059 set_page_dirty(page
);
1062 mutex_lock(&shmem_swaplist_mutex
);
1063 /* move instead of add in case we're racing */
1064 list_move_tail(&info
->swaplist
, &shmem_swaplist
);
1065 mutex_unlock(&shmem_swaplist_mutex
);
1071 shmem_swp_unmap(entry
);
1073 spin_unlock(&info
->lock
);
1076 set_page_dirty(page
);
1077 if (wbc
->for_reclaim
)
1078 return AOP_WRITEPAGE_ACTIVATE
; /* Return with page locked */
1085 static int shmem_parse_mpol(char *value
, int *policy
, nodemask_t
*policy_nodes
)
1087 char *nodelist
= strchr(value
, ':');
1091 /* NUL-terminate policy string */
1093 if (nodelist_parse(nodelist
, *policy_nodes
))
1095 if (!nodes_subset(*policy_nodes
, node_states
[N_HIGH_MEMORY
]))
1098 if (!strcmp(value
, "default")) {
1099 *policy
= MPOL_DEFAULT
;
1100 /* Don't allow a nodelist */
1103 } else if (!strcmp(value
, "prefer")) {
1104 *policy
= MPOL_PREFERRED
;
1105 /* Insist on a nodelist of one node only */
1107 char *rest
= nodelist
;
1108 while (isdigit(*rest
))
1113 } else if (!strcmp(value
, "bind")) {
1114 *policy
= MPOL_BIND
;
1115 /* Insist on a nodelist */
1118 } else if (!strcmp(value
, "interleave")) {
1119 *policy
= MPOL_INTERLEAVE
;
1121 * Default to online nodes with memory if no nodelist
1124 *policy_nodes
= node_states
[N_HIGH_MEMORY
];
1128 /* Restore string for error message */
1134 static void shmem_show_mpol(struct seq_file
*seq
, int policy
,
1135 const nodemask_t policy_nodes
)
1137 char *policy_string
;
1140 case MPOL_PREFERRED
:
1141 policy_string
= "prefer";
1144 policy_string
= "bind";
1146 case MPOL_INTERLEAVE
:
1147 policy_string
= "interleave";
1154 seq_printf(seq
, ",mpol=%s", policy_string
);
1156 if (policy
!= MPOL_INTERLEAVE
||
1157 !nodes_equal(policy_nodes
, node_states
[N_HIGH_MEMORY
])) {
1161 len
= nodelist_scnprintf(buffer
, sizeof(buffer
), policy_nodes
);
1162 if (len
< sizeof(buffer
))
1163 seq_printf(seq
, ":%s", buffer
);
1165 seq_printf(seq
, ":?");
1168 #endif /* CONFIG_TMPFS */
1170 static struct page
*shmem_swapin(swp_entry_t entry
, gfp_t gfp
,
1171 struct shmem_inode_info
*info
, unsigned long idx
)
1173 struct vm_area_struct pvma
;
1176 /* Create a pseudo vma that just contains the policy */
1178 pvma
.vm_pgoff
= idx
;
1180 pvma
.vm_policy
= mpol_shared_policy_lookup(&info
->policy
, idx
);
1181 page
= swapin_readahead(entry
, gfp
, &pvma
, 0);
1182 mpol_free(pvma
.vm_policy
);
1186 static struct page
*shmem_alloc_page(gfp_t gfp
,
1187 struct shmem_inode_info
*info
, unsigned long idx
)
1189 struct vm_area_struct pvma
;
1192 /* Create a pseudo vma that just contains the policy */
1194 pvma
.vm_pgoff
= idx
;
1196 pvma
.vm_policy
= mpol_shared_policy_lookup(&info
->policy
, idx
);
1197 page
= alloc_page_vma(gfp
, &pvma
, 0);
1198 mpol_free(pvma
.vm_policy
);
1201 #else /* !CONFIG_NUMA */
1203 static inline int shmem_parse_mpol(char *value
, int *policy
,
1204 nodemask_t
*policy_nodes
)
1209 static inline void shmem_show_mpol(struct seq_file
*seq
, int policy
,
1210 const nodemask_t policy_nodes
)
1213 #endif /* CONFIG_TMPFS */
1215 static inline struct page
*shmem_swapin(swp_entry_t entry
, gfp_t gfp
,
1216 struct shmem_inode_info
*info
, unsigned long idx
)
1218 return swapin_readahead(entry
, gfp
, NULL
, 0);
1221 static inline struct page
*shmem_alloc_page(gfp_t gfp
,
1222 struct shmem_inode_info
*info
, unsigned long idx
)
1224 return alloc_page(gfp
);
1226 #endif /* CONFIG_NUMA */
1229 * shmem_getpage - either get the page from swap or allocate a new one
1231 * If we allocate a new one we do not mark it dirty. That's up to the
1232 * vm. If we swap it in we mark it dirty since we also free the swap
1233 * entry since a page cannot live in both the swap and page cache
1235 static int shmem_getpage(struct inode
*inode
, unsigned long idx
,
1236 struct page
**pagep
, enum sgp_type sgp
, int *type
)
1238 struct address_space
*mapping
= inode
->i_mapping
;
1239 struct shmem_inode_info
*info
= SHMEM_I(inode
);
1240 struct shmem_sb_info
*sbinfo
;
1241 struct page
*filepage
= *pagep
;
1242 struct page
*swappage
;
1248 if (idx
>= SHMEM_MAX_INDEX
)
1255 * Normally, filepage is NULL on entry, and either found
1256 * uptodate immediately, or allocated and zeroed, or read
1257 * in under swappage, which is then assigned to filepage.
1258 * But shmem_readpage (required for splice) passes in a locked
1259 * filepage, which may be found not uptodate by other callers
1260 * too, and may need to be copied from the swappage read in.
1264 filepage
= find_lock_page(mapping
, idx
);
1265 if (filepage
&& PageUptodate(filepage
))
1268 gfp
= mapping_gfp_mask(mapping
);
1271 * Try to preload while we can wait, to not make a habit of
1272 * draining atomic reserves; but don't latch on to this cpu.
1274 error
= radix_tree_preload(gfp
& ~__GFP_HIGHMEM
);
1277 radix_tree_preload_end();
1280 spin_lock(&info
->lock
);
1281 shmem_recalc_inode(inode
);
1282 entry
= shmem_swp_alloc(info
, idx
, sgp
);
1283 if (IS_ERR(entry
)) {
1284 spin_unlock(&info
->lock
);
1285 error
= PTR_ERR(entry
);
1291 /* Look it up and read it in.. */
1292 swappage
= lookup_swap_cache(swap
);
1294 shmem_swp_unmap(entry
);
1295 /* here we actually do the io */
1296 if (type
&& !(*type
& VM_FAULT_MAJOR
)) {
1297 __count_vm_event(PGMAJFAULT
);
1298 *type
|= VM_FAULT_MAJOR
;
1300 spin_unlock(&info
->lock
);
1301 swappage
= shmem_swapin(swap
, gfp
, info
, idx
);
1303 spin_lock(&info
->lock
);
1304 entry
= shmem_swp_alloc(info
, idx
, sgp
);
1306 error
= PTR_ERR(entry
);
1308 if (entry
->val
== swap
.val
)
1310 shmem_swp_unmap(entry
);
1312 spin_unlock(&info
->lock
);
1317 wait_on_page_locked(swappage
);
1318 page_cache_release(swappage
);
1322 /* We have to do this with page locked to prevent races */
1323 if (TestSetPageLocked(swappage
)) {
1324 shmem_swp_unmap(entry
);
1325 spin_unlock(&info
->lock
);
1326 wait_on_page_locked(swappage
);
1327 page_cache_release(swappage
);
1330 if (PageWriteback(swappage
)) {
1331 shmem_swp_unmap(entry
);
1332 spin_unlock(&info
->lock
);
1333 wait_on_page_writeback(swappage
);
1334 unlock_page(swappage
);
1335 page_cache_release(swappage
);
1338 if (!PageUptodate(swappage
)) {
1339 shmem_swp_unmap(entry
);
1340 spin_unlock(&info
->lock
);
1341 unlock_page(swappage
);
1342 page_cache_release(swappage
);
1348 shmem_swp_set(info
, entry
, 0);
1349 shmem_swp_unmap(entry
);
1350 delete_from_swap_cache(swappage
);
1351 spin_unlock(&info
->lock
);
1352 copy_highpage(filepage
, swappage
);
1353 unlock_page(swappage
);
1354 page_cache_release(swappage
);
1355 flush_dcache_page(filepage
);
1356 SetPageUptodate(filepage
);
1357 set_page_dirty(filepage
);
1359 } else if (!(error
= add_to_page_cache(
1360 swappage
, mapping
, idx
, GFP_NOWAIT
))) {
1361 info
->flags
|= SHMEM_PAGEIN
;
1362 shmem_swp_set(info
, entry
, 0);
1363 shmem_swp_unmap(entry
);
1364 delete_from_swap_cache(swappage
);
1365 spin_unlock(&info
->lock
);
1366 filepage
= swappage
;
1367 set_page_dirty(filepage
);
1370 shmem_swp_unmap(entry
);
1371 spin_unlock(&info
->lock
);
1372 unlock_page(swappage
);
1373 if (error
== -ENOMEM
) {
1374 /* allow reclaim from this memory cgroup */
1375 error
= mem_cgroup_cache_charge(swappage
,
1376 current
->mm
, gfp
& ~__GFP_HIGHMEM
);
1378 page_cache_release(swappage
);
1381 mem_cgroup_uncharge_page(swappage
);
1383 page_cache_release(swappage
);
1386 } else if (sgp
== SGP_READ
&& !filepage
) {
1387 shmem_swp_unmap(entry
);
1388 filepage
= find_get_page(mapping
, idx
);
1390 (!PageUptodate(filepage
) || TestSetPageLocked(filepage
))) {
1391 spin_unlock(&info
->lock
);
1392 wait_on_page_locked(filepage
);
1393 page_cache_release(filepage
);
1397 spin_unlock(&info
->lock
);
1399 shmem_swp_unmap(entry
);
1400 sbinfo
= SHMEM_SB(inode
->i_sb
);
1401 if (sbinfo
->max_blocks
) {
1402 spin_lock(&sbinfo
->stat_lock
);
1403 if (sbinfo
->free_blocks
== 0 ||
1404 shmem_acct_block(info
->flags
)) {
1405 spin_unlock(&sbinfo
->stat_lock
);
1406 spin_unlock(&info
->lock
);
1410 sbinfo
->free_blocks
--;
1411 inode
->i_blocks
+= BLOCKS_PER_PAGE
;
1412 spin_unlock(&sbinfo
->stat_lock
);
1413 } else if (shmem_acct_block(info
->flags
)) {
1414 spin_unlock(&info
->lock
);
1420 spin_unlock(&info
->lock
);
1421 filepage
= shmem_alloc_page(gfp
, info
, idx
);
1423 shmem_unacct_blocks(info
->flags
, 1);
1424 shmem_free_blocks(inode
, 1);
1429 /* Precharge page while we can wait, compensate after */
1430 error
= mem_cgroup_cache_charge(filepage
, current
->mm
,
1431 gfp
& ~__GFP_HIGHMEM
);
1433 page_cache_release(filepage
);
1434 shmem_unacct_blocks(info
->flags
, 1);
1435 shmem_free_blocks(inode
, 1);
1440 spin_lock(&info
->lock
);
1441 entry
= shmem_swp_alloc(info
, idx
, sgp
);
1443 error
= PTR_ERR(entry
);
1446 shmem_swp_unmap(entry
);
1448 if (error
|| swap
.val
|| 0 != add_to_page_cache_lru(
1449 filepage
, mapping
, idx
, GFP_NOWAIT
)) {
1450 spin_unlock(&info
->lock
);
1451 mem_cgroup_uncharge_page(filepage
);
1452 page_cache_release(filepage
);
1453 shmem_unacct_blocks(info
->flags
, 1);
1454 shmem_free_blocks(inode
, 1);
1460 mem_cgroup_uncharge_page(filepage
);
1461 info
->flags
|= SHMEM_PAGEIN
;
1465 spin_unlock(&info
->lock
);
1466 clear_highpage(filepage
);
1467 flush_dcache_page(filepage
);
1468 SetPageUptodate(filepage
);
1469 if (sgp
== SGP_DIRTY
)
1470 set_page_dirty(filepage
);
1477 if (*pagep
!= filepage
) {
1478 unlock_page(filepage
);
1479 page_cache_release(filepage
);
1484 static int shmem_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
1486 struct inode
*inode
= vma
->vm_file
->f_path
.dentry
->d_inode
;
1490 if (((loff_t
)vmf
->pgoff
<< PAGE_CACHE_SHIFT
) >= i_size_read(inode
))
1491 return VM_FAULT_SIGBUS
;
1493 error
= shmem_getpage(inode
, vmf
->pgoff
, &vmf
->page
, SGP_CACHE
, &ret
);
1495 return ((error
== -ENOMEM
) ? VM_FAULT_OOM
: VM_FAULT_SIGBUS
);
1497 mark_page_accessed(vmf
->page
);
1498 return ret
| VM_FAULT_LOCKED
;
1502 static int shmem_set_policy(struct vm_area_struct
*vma
, struct mempolicy
*new)
1504 struct inode
*i
= vma
->vm_file
->f_path
.dentry
->d_inode
;
1505 return mpol_set_shared_policy(&SHMEM_I(i
)->policy
, vma
, new);
1508 static struct mempolicy
*shmem_get_policy(struct vm_area_struct
*vma
,
1511 struct inode
*i
= vma
->vm_file
->f_path
.dentry
->d_inode
;
1514 idx
= ((addr
- vma
->vm_start
) >> PAGE_SHIFT
) + vma
->vm_pgoff
;
1515 return mpol_shared_policy_lookup(&SHMEM_I(i
)->policy
, idx
);
1519 int shmem_lock(struct file
*file
, int lock
, struct user_struct
*user
)
1521 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
1522 struct shmem_inode_info
*info
= SHMEM_I(inode
);
1523 int retval
= -ENOMEM
;
1525 spin_lock(&info
->lock
);
1526 if (lock
&& !(info
->flags
& VM_LOCKED
)) {
1527 if (!user_shm_lock(inode
->i_size
, user
))
1529 info
->flags
|= VM_LOCKED
;
1531 if (!lock
&& (info
->flags
& VM_LOCKED
) && user
) {
1532 user_shm_unlock(inode
->i_size
, user
);
1533 info
->flags
&= ~VM_LOCKED
;
1537 spin_unlock(&info
->lock
);
1541 static int shmem_mmap(struct file
*file
, struct vm_area_struct
*vma
)
1543 file_accessed(file
);
1544 vma
->vm_ops
= &shmem_vm_ops
;
1545 vma
->vm_flags
|= VM_CAN_NONLINEAR
;
1549 static struct inode
*
1550 shmem_get_inode(struct super_block
*sb
, int mode
, dev_t dev
)
1552 struct inode
*inode
;
1553 struct shmem_inode_info
*info
;
1554 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
1556 if (shmem_reserve_inode(sb
))
1559 inode
= new_inode(sb
);
1561 inode
->i_mode
= mode
;
1562 inode
->i_uid
= current
->fsuid
;
1563 inode
->i_gid
= current
->fsgid
;
1564 inode
->i_blocks
= 0;
1565 inode
->i_mapping
->a_ops
= &shmem_aops
;
1566 inode
->i_mapping
->backing_dev_info
= &shmem_backing_dev_info
;
1567 inode
->i_atime
= inode
->i_mtime
= inode
->i_ctime
= CURRENT_TIME
;
1568 inode
->i_generation
= get_seconds();
1569 info
= SHMEM_I(inode
);
1570 memset(info
, 0, (char *)inode
- (char *)info
);
1571 spin_lock_init(&info
->lock
);
1572 INIT_LIST_HEAD(&info
->swaplist
);
1574 switch (mode
& S_IFMT
) {
1576 inode
->i_op
= &shmem_special_inode_operations
;
1577 init_special_inode(inode
, mode
, dev
);
1580 inode
->i_op
= &shmem_inode_operations
;
1581 inode
->i_fop
= &shmem_file_operations
;
1582 mpol_shared_policy_init(&info
->policy
, sbinfo
->policy
,
1583 &sbinfo
->policy_nodes
);
1587 /* Some things misbehave if size == 0 on a directory */
1588 inode
->i_size
= 2 * BOGO_DIRENT_SIZE
;
1589 inode
->i_op
= &shmem_dir_inode_operations
;
1590 inode
->i_fop
= &simple_dir_operations
;
1594 * Must not load anything in the rbtree,
1595 * mpol_free_shared_policy will not be called.
1597 mpol_shared_policy_init(&info
->policy
, MPOL_DEFAULT
,
1602 shmem_free_inode(sb
);
1607 static const struct inode_operations shmem_symlink_inode_operations
;
1608 static const struct inode_operations shmem_symlink_inline_operations
;
1611 * Normally tmpfs avoids the use of shmem_readpage and shmem_write_begin;
1612 * but providing them allows a tmpfs file to be used for splice, sendfile, and
1613 * below the loop driver, in the generic fashion that many filesystems support.
1615 static int shmem_readpage(struct file
*file
, struct page
*page
)
1617 struct inode
*inode
= page
->mapping
->host
;
1618 int error
= shmem_getpage(inode
, page
->index
, &page
, SGP_CACHE
, NULL
);
1624 shmem_write_begin(struct file
*file
, struct address_space
*mapping
,
1625 loff_t pos
, unsigned len
, unsigned flags
,
1626 struct page
**pagep
, void **fsdata
)
1628 struct inode
*inode
= mapping
->host
;
1629 pgoff_t index
= pos
>> PAGE_CACHE_SHIFT
;
1631 return shmem_getpage(inode
, index
, pagep
, SGP_WRITE
, NULL
);
1635 shmem_write_end(struct file
*file
, struct address_space
*mapping
,
1636 loff_t pos
, unsigned len
, unsigned copied
,
1637 struct page
*page
, void *fsdata
)
1639 struct inode
*inode
= mapping
->host
;
1641 if (pos
+ copied
> inode
->i_size
)
1642 i_size_write(inode
, pos
+ copied
);
1645 set_page_dirty(page
);
1646 page_cache_release(page
);
1651 static void do_shmem_file_read(struct file
*filp
, loff_t
*ppos
, read_descriptor_t
*desc
, read_actor_t actor
)
1653 struct inode
*inode
= filp
->f_path
.dentry
->d_inode
;
1654 struct address_space
*mapping
= inode
->i_mapping
;
1655 unsigned long index
, offset
;
1656 enum sgp_type sgp
= SGP_READ
;
1659 * Might this read be for a stacking filesystem? Then when reading
1660 * holes of a sparse file, we actually need to allocate those pages,
1661 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1663 if (segment_eq(get_fs(), KERNEL_DS
))
1666 index
= *ppos
>> PAGE_CACHE_SHIFT
;
1667 offset
= *ppos
& ~PAGE_CACHE_MASK
;
1670 struct page
*page
= NULL
;
1671 unsigned long end_index
, nr
, ret
;
1672 loff_t i_size
= i_size_read(inode
);
1674 end_index
= i_size
>> PAGE_CACHE_SHIFT
;
1675 if (index
> end_index
)
1677 if (index
== end_index
) {
1678 nr
= i_size
& ~PAGE_CACHE_MASK
;
1683 desc
->error
= shmem_getpage(inode
, index
, &page
, sgp
, NULL
);
1685 if (desc
->error
== -EINVAL
)
1693 * We must evaluate after, since reads (unlike writes)
1694 * are called without i_mutex protection against truncate
1696 nr
= PAGE_CACHE_SIZE
;
1697 i_size
= i_size_read(inode
);
1698 end_index
= i_size
>> PAGE_CACHE_SHIFT
;
1699 if (index
== end_index
) {
1700 nr
= i_size
& ~PAGE_CACHE_MASK
;
1703 page_cache_release(page
);
1711 * If users can be writing to this page using arbitrary
1712 * virtual addresses, take care about potential aliasing
1713 * before reading the page on the kernel side.
1715 if (mapping_writably_mapped(mapping
))
1716 flush_dcache_page(page
);
1718 * Mark the page accessed if we read the beginning.
1721 mark_page_accessed(page
);
1723 page
= ZERO_PAGE(0);
1724 page_cache_get(page
);
1728 * Ok, we have the page, and it's up-to-date, so
1729 * now we can copy it to user space...
1731 * The actor routine returns how many bytes were actually used..
1732 * NOTE! This may not be the same as how much of a user buffer
1733 * we filled up (we may be padding etc), so we can only update
1734 * "pos" here (the actor routine has to update the user buffer
1735 * pointers and the remaining count).
1737 ret
= actor(desc
, page
, offset
, nr
);
1739 index
+= offset
>> PAGE_CACHE_SHIFT
;
1740 offset
&= ~PAGE_CACHE_MASK
;
1742 page_cache_release(page
);
1743 if (ret
!= nr
|| !desc
->count
)
1749 *ppos
= ((loff_t
) index
<< PAGE_CACHE_SHIFT
) + offset
;
1750 file_accessed(filp
);
1753 static ssize_t
shmem_file_read(struct file
*filp
, char __user
*buf
, size_t count
, loff_t
*ppos
)
1755 read_descriptor_t desc
;
1757 if ((ssize_t
) count
< 0)
1759 if (!access_ok(VERIFY_WRITE
, buf
, count
))
1769 do_shmem_file_read(filp
, ppos
, &desc
, file_read_actor
);
1771 return desc
.written
;
1775 static int shmem_statfs(struct dentry
*dentry
, struct kstatfs
*buf
)
1777 struct shmem_sb_info
*sbinfo
= SHMEM_SB(dentry
->d_sb
);
1779 buf
->f_type
= TMPFS_MAGIC
;
1780 buf
->f_bsize
= PAGE_CACHE_SIZE
;
1781 buf
->f_namelen
= NAME_MAX
;
1782 spin_lock(&sbinfo
->stat_lock
);
1783 if (sbinfo
->max_blocks
) {
1784 buf
->f_blocks
= sbinfo
->max_blocks
;
1785 buf
->f_bavail
= buf
->f_bfree
= sbinfo
->free_blocks
;
1787 if (sbinfo
->max_inodes
) {
1788 buf
->f_files
= sbinfo
->max_inodes
;
1789 buf
->f_ffree
= sbinfo
->free_inodes
;
1791 /* else leave those fields 0 like simple_statfs */
1792 spin_unlock(&sbinfo
->stat_lock
);
1797 * File creation. Allocate an inode, and we're done..
1800 shmem_mknod(struct inode
*dir
, struct dentry
*dentry
, int mode
, dev_t dev
)
1802 struct inode
*inode
= shmem_get_inode(dir
->i_sb
, mode
, dev
);
1803 int error
= -ENOSPC
;
1806 error
= security_inode_init_security(inode
, dir
, NULL
, NULL
,
1809 if (error
!= -EOPNOTSUPP
) {
1814 error
= shmem_acl_init(inode
, dir
);
1819 if (dir
->i_mode
& S_ISGID
) {
1820 inode
->i_gid
= dir
->i_gid
;
1822 inode
->i_mode
|= S_ISGID
;
1824 dir
->i_size
+= BOGO_DIRENT_SIZE
;
1825 dir
->i_ctime
= dir
->i_mtime
= CURRENT_TIME
;
1826 d_instantiate(dentry
, inode
);
1827 dget(dentry
); /* Extra count - pin the dentry in core */
1832 static int shmem_mkdir(struct inode
*dir
, struct dentry
*dentry
, int mode
)
1836 if ((error
= shmem_mknod(dir
, dentry
, mode
| S_IFDIR
, 0)))
1842 static int shmem_create(struct inode
*dir
, struct dentry
*dentry
, int mode
,
1843 struct nameidata
*nd
)
1845 return shmem_mknod(dir
, dentry
, mode
| S_IFREG
, 0);
1851 static int shmem_link(struct dentry
*old_dentry
, struct inode
*dir
, struct dentry
*dentry
)
1853 struct inode
*inode
= old_dentry
->d_inode
;
1857 * No ordinary (disk based) filesystem counts links as inodes;
1858 * but each new link needs a new dentry, pinning lowmem, and
1859 * tmpfs dentries cannot be pruned until they are unlinked.
1861 ret
= shmem_reserve_inode(inode
->i_sb
);
1865 dir
->i_size
+= BOGO_DIRENT_SIZE
;
1866 inode
->i_ctime
= dir
->i_ctime
= dir
->i_mtime
= CURRENT_TIME
;
1868 atomic_inc(&inode
->i_count
); /* New dentry reference */
1869 dget(dentry
); /* Extra pinning count for the created dentry */
1870 d_instantiate(dentry
, inode
);
1875 static int shmem_unlink(struct inode
*dir
, struct dentry
*dentry
)
1877 struct inode
*inode
= dentry
->d_inode
;
1879 if (inode
->i_nlink
> 1 && !S_ISDIR(inode
->i_mode
))
1880 shmem_free_inode(inode
->i_sb
);
1882 dir
->i_size
-= BOGO_DIRENT_SIZE
;
1883 inode
->i_ctime
= dir
->i_ctime
= dir
->i_mtime
= CURRENT_TIME
;
1885 dput(dentry
); /* Undo the count from "create" - this does all the work */
1889 static int shmem_rmdir(struct inode
*dir
, struct dentry
*dentry
)
1891 if (!simple_empty(dentry
))
1894 drop_nlink(dentry
->d_inode
);
1896 return shmem_unlink(dir
, dentry
);
1900 * The VFS layer already does all the dentry stuff for rename,
1901 * we just have to decrement the usage count for the target if
1902 * it exists so that the VFS layer correctly free's it when it
1905 static int shmem_rename(struct inode
*old_dir
, struct dentry
*old_dentry
, struct inode
*new_dir
, struct dentry
*new_dentry
)
1907 struct inode
*inode
= old_dentry
->d_inode
;
1908 int they_are_dirs
= S_ISDIR(inode
->i_mode
);
1910 if (!simple_empty(new_dentry
))
1913 if (new_dentry
->d_inode
) {
1914 (void) shmem_unlink(new_dir
, new_dentry
);
1916 drop_nlink(old_dir
);
1917 } else if (they_are_dirs
) {
1918 drop_nlink(old_dir
);
1922 old_dir
->i_size
-= BOGO_DIRENT_SIZE
;
1923 new_dir
->i_size
+= BOGO_DIRENT_SIZE
;
1924 old_dir
->i_ctime
= old_dir
->i_mtime
=
1925 new_dir
->i_ctime
= new_dir
->i_mtime
=
1926 inode
->i_ctime
= CURRENT_TIME
;
1930 static int shmem_symlink(struct inode
*dir
, struct dentry
*dentry
, const char *symname
)
1934 struct inode
*inode
;
1935 struct page
*page
= NULL
;
1937 struct shmem_inode_info
*info
;
1939 len
= strlen(symname
) + 1;
1940 if (len
> PAGE_CACHE_SIZE
)
1941 return -ENAMETOOLONG
;
1943 inode
= shmem_get_inode(dir
->i_sb
, S_IFLNK
|S_IRWXUGO
, 0);
1947 error
= security_inode_init_security(inode
, dir
, NULL
, NULL
,
1950 if (error
!= -EOPNOTSUPP
) {
1957 info
= SHMEM_I(inode
);
1958 inode
->i_size
= len
-1;
1959 if (len
<= (char *)inode
- (char *)info
) {
1961 memcpy(info
, symname
, len
);
1962 inode
->i_op
= &shmem_symlink_inline_operations
;
1964 error
= shmem_getpage(inode
, 0, &page
, SGP_WRITE
, NULL
);
1970 inode
->i_op
= &shmem_symlink_inode_operations
;
1971 kaddr
= kmap_atomic(page
, KM_USER0
);
1972 memcpy(kaddr
, symname
, len
);
1973 kunmap_atomic(kaddr
, KM_USER0
);
1974 set_page_dirty(page
);
1975 page_cache_release(page
);
1977 if (dir
->i_mode
& S_ISGID
)
1978 inode
->i_gid
= dir
->i_gid
;
1979 dir
->i_size
+= BOGO_DIRENT_SIZE
;
1980 dir
->i_ctime
= dir
->i_mtime
= CURRENT_TIME
;
1981 d_instantiate(dentry
, inode
);
1986 static void *shmem_follow_link_inline(struct dentry
*dentry
, struct nameidata
*nd
)
1988 nd_set_link(nd
, (char *)SHMEM_I(dentry
->d_inode
));
1992 static void *shmem_follow_link(struct dentry
*dentry
, struct nameidata
*nd
)
1994 struct page
*page
= NULL
;
1995 int res
= shmem_getpage(dentry
->d_inode
, 0, &page
, SGP_READ
, NULL
);
1996 nd_set_link(nd
, res
? ERR_PTR(res
) : kmap(page
));
2002 static void shmem_put_link(struct dentry
*dentry
, struct nameidata
*nd
, void *cookie
)
2004 if (!IS_ERR(nd_get_link(nd
))) {
2005 struct page
*page
= cookie
;
2007 mark_page_accessed(page
);
2008 page_cache_release(page
);
2012 static const struct inode_operations shmem_symlink_inline_operations
= {
2013 .readlink
= generic_readlink
,
2014 .follow_link
= shmem_follow_link_inline
,
2017 static const struct inode_operations shmem_symlink_inode_operations
= {
2018 .truncate
= shmem_truncate
,
2019 .readlink
= generic_readlink
,
2020 .follow_link
= shmem_follow_link
,
2021 .put_link
= shmem_put_link
,
2024 #ifdef CONFIG_TMPFS_POSIX_ACL
2026 * Superblocks without xattr inode operations will get security.* xattr
2027 * support from the VFS "for free". As soon as we have any other xattrs
2028 * like ACLs, we also need to implement the security.* handlers at
2029 * filesystem level, though.
2032 static size_t shmem_xattr_security_list(struct inode
*inode
, char *list
,
2033 size_t list_len
, const char *name
,
2036 return security_inode_listsecurity(inode
, list
, list_len
);
2039 static int shmem_xattr_security_get(struct inode
*inode
, const char *name
,
2040 void *buffer
, size_t size
)
2042 if (strcmp(name
, "") == 0)
2044 return xattr_getsecurity(inode
, name
, buffer
, size
);
2047 static int shmem_xattr_security_set(struct inode
*inode
, const char *name
,
2048 const void *value
, size_t size
, int flags
)
2050 if (strcmp(name
, "") == 0)
2052 return security_inode_setsecurity(inode
, name
, value
, size
, flags
);
2055 static struct xattr_handler shmem_xattr_security_handler
= {
2056 .prefix
= XATTR_SECURITY_PREFIX
,
2057 .list
= shmem_xattr_security_list
,
2058 .get
= shmem_xattr_security_get
,
2059 .set
= shmem_xattr_security_set
,
2062 static struct xattr_handler
*shmem_xattr_handlers
[] = {
2063 &shmem_xattr_acl_access_handler
,
2064 &shmem_xattr_acl_default_handler
,
2065 &shmem_xattr_security_handler
,
2070 static struct dentry
*shmem_get_parent(struct dentry
*child
)
2072 return ERR_PTR(-ESTALE
);
2075 static int shmem_match(struct inode
*ino
, void *vfh
)
2079 inum
= (inum
<< 32) | fh
[1];
2080 return ino
->i_ino
== inum
&& fh
[0] == ino
->i_generation
;
2083 static struct dentry
*shmem_fh_to_dentry(struct super_block
*sb
,
2084 struct fid
*fid
, int fh_len
, int fh_type
)
2086 struct inode
*inode
;
2087 struct dentry
*dentry
= NULL
;
2088 u64 inum
= fid
->raw
[2];
2089 inum
= (inum
<< 32) | fid
->raw
[1];
2094 inode
= ilookup5(sb
, (unsigned long)(inum
+ fid
->raw
[0]),
2095 shmem_match
, fid
->raw
);
2097 dentry
= d_find_alias(inode
);
2104 static int shmem_encode_fh(struct dentry
*dentry
, __u32
*fh
, int *len
,
2107 struct inode
*inode
= dentry
->d_inode
;
2112 if (hlist_unhashed(&inode
->i_hash
)) {
2113 /* Unfortunately insert_inode_hash is not idempotent,
2114 * so as we hash inodes here rather than at creation
2115 * time, we need a lock to ensure we only try
2118 static DEFINE_SPINLOCK(lock
);
2120 if (hlist_unhashed(&inode
->i_hash
))
2121 __insert_inode_hash(inode
,
2122 inode
->i_ino
+ inode
->i_generation
);
2126 fh
[0] = inode
->i_generation
;
2127 fh
[1] = inode
->i_ino
;
2128 fh
[2] = ((__u64
)inode
->i_ino
) >> 32;
2134 static const struct export_operations shmem_export_ops
= {
2135 .get_parent
= shmem_get_parent
,
2136 .encode_fh
= shmem_encode_fh
,
2137 .fh_to_dentry
= shmem_fh_to_dentry
,
2140 static int shmem_parse_options(char *options
, struct shmem_sb_info
*sbinfo
,
2143 char *this_char
, *value
, *rest
;
2145 while (options
!= NULL
) {
2146 this_char
= options
;
2149 * NUL-terminate this option: unfortunately,
2150 * mount options form a comma-separated list,
2151 * but mpol's nodelist may also contain commas.
2153 options
= strchr(options
, ',');
2154 if (options
== NULL
)
2157 if (!isdigit(*options
)) {
2164 if ((value
= strchr(this_char
,'=')) != NULL
) {
2168 "tmpfs: No value for mount option '%s'\n",
2173 if (!strcmp(this_char
,"size")) {
2174 unsigned long long size
;
2175 size
= memparse(value
,&rest
);
2177 size
<<= PAGE_SHIFT
;
2178 size
*= totalram_pages
;
2184 sbinfo
->max_blocks
=
2185 DIV_ROUND_UP(size
, PAGE_CACHE_SIZE
);
2186 } else if (!strcmp(this_char
,"nr_blocks")) {
2187 sbinfo
->max_blocks
= memparse(value
, &rest
);
2190 } else if (!strcmp(this_char
,"nr_inodes")) {
2191 sbinfo
->max_inodes
= memparse(value
, &rest
);
2194 } else if (!strcmp(this_char
,"mode")) {
2197 sbinfo
->mode
= simple_strtoul(value
, &rest
, 8) & 07777;
2200 } else if (!strcmp(this_char
,"uid")) {
2203 sbinfo
->uid
= simple_strtoul(value
, &rest
, 0);
2206 } else if (!strcmp(this_char
,"gid")) {
2209 sbinfo
->gid
= simple_strtoul(value
, &rest
, 0);
2212 } else if (!strcmp(this_char
,"mpol")) {
2213 if (shmem_parse_mpol(value
, &sbinfo
->policy
,
2214 &sbinfo
->policy_nodes
))
2217 printk(KERN_ERR
"tmpfs: Bad mount option %s\n",
2225 printk(KERN_ERR
"tmpfs: Bad value '%s' for mount option '%s'\n",
2231 static int shmem_remount_fs(struct super_block
*sb
, int *flags
, char *data
)
2233 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
2234 struct shmem_sb_info config
= *sbinfo
;
2235 unsigned long blocks
;
2236 unsigned long inodes
;
2237 int error
= -EINVAL
;
2239 if (shmem_parse_options(data
, &config
, true))
2242 spin_lock(&sbinfo
->stat_lock
);
2243 blocks
= sbinfo
->max_blocks
- sbinfo
->free_blocks
;
2244 inodes
= sbinfo
->max_inodes
- sbinfo
->free_inodes
;
2245 if (config
.max_blocks
< blocks
)
2247 if (config
.max_inodes
< inodes
)
2250 * Those tests also disallow limited->unlimited while any are in
2251 * use, so i_blocks will always be zero when max_blocks is zero;
2252 * but we must separately disallow unlimited->limited, because
2253 * in that case we have no record of how much is already in use.
2255 if (config
.max_blocks
&& !sbinfo
->max_blocks
)
2257 if (config
.max_inodes
&& !sbinfo
->max_inodes
)
2261 sbinfo
->max_blocks
= config
.max_blocks
;
2262 sbinfo
->free_blocks
= config
.max_blocks
- blocks
;
2263 sbinfo
->max_inodes
= config
.max_inodes
;
2264 sbinfo
->free_inodes
= config
.max_inodes
- inodes
;
2265 sbinfo
->policy
= config
.policy
;
2266 sbinfo
->policy_nodes
= config
.policy_nodes
;
2268 spin_unlock(&sbinfo
->stat_lock
);
2272 static int shmem_show_options(struct seq_file
*seq
, struct vfsmount
*vfs
)
2274 struct shmem_sb_info
*sbinfo
= SHMEM_SB(vfs
->mnt_sb
);
2276 if (sbinfo
->max_blocks
!= shmem_default_max_blocks())
2277 seq_printf(seq
, ",size=%luk",
2278 sbinfo
->max_blocks
<< (PAGE_CACHE_SHIFT
- 10));
2279 if (sbinfo
->max_inodes
!= shmem_default_max_inodes())
2280 seq_printf(seq
, ",nr_inodes=%lu", sbinfo
->max_inodes
);
2281 if (sbinfo
->mode
!= (S_IRWXUGO
| S_ISVTX
))
2282 seq_printf(seq
, ",mode=%03o", sbinfo
->mode
);
2283 if (sbinfo
->uid
!= 0)
2284 seq_printf(seq
, ",uid=%u", sbinfo
->uid
);
2285 if (sbinfo
->gid
!= 0)
2286 seq_printf(seq
, ",gid=%u", sbinfo
->gid
);
2287 shmem_show_mpol(seq
, sbinfo
->policy
, sbinfo
->policy_nodes
);
2290 #endif /* CONFIG_TMPFS */
2292 static void shmem_put_super(struct super_block
*sb
)
2294 kfree(sb
->s_fs_info
);
2295 sb
->s_fs_info
= NULL
;
2298 static int shmem_fill_super(struct super_block
*sb
,
2299 void *data
, int silent
)
2301 struct inode
*inode
;
2302 struct dentry
*root
;
2303 struct shmem_sb_info
*sbinfo
;
2306 /* Round up to L1_CACHE_BYTES to resist false sharing */
2307 sbinfo
= kmalloc(max((int)sizeof(struct shmem_sb_info
),
2308 L1_CACHE_BYTES
), GFP_KERNEL
);
2312 sbinfo
->max_blocks
= 0;
2313 sbinfo
->max_inodes
= 0;
2314 sbinfo
->mode
= S_IRWXUGO
| S_ISVTX
;
2315 sbinfo
->uid
= current
->fsuid
;
2316 sbinfo
->gid
= current
->fsgid
;
2317 sbinfo
->policy
= MPOL_DEFAULT
;
2318 sbinfo
->policy_nodes
= node_states
[N_HIGH_MEMORY
];
2319 sb
->s_fs_info
= sbinfo
;
2323 * Per default we only allow half of the physical ram per
2324 * tmpfs instance, limiting inodes to one per page of lowmem;
2325 * but the internal instance is left unlimited.
2327 if (!(sb
->s_flags
& MS_NOUSER
)) {
2328 sbinfo
->max_blocks
= shmem_default_max_blocks();
2329 sbinfo
->max_inodes
= shmem_default_max_inodes();
2330 if (shmem_parse_options(data
, sbinfo
, false)) {
2335 sb
->s_export_op
= &shmem_export_ops
;
2337 sb
->s_flags
|= MS_NOUSER
;
2340 spin_lock_init(&sbinfo
->stat_lock
);
2341 sbinfo
->free_blocks
= sbinfo
->max_blocks
;
2342 sbinfo
->free_inodes
= sbinfo
->max_inodes
;
2344 sb
->s_maxbytes
= SHMEM_MAX_BYTES
;
2345 sb
->s_blocksize
= PAGE_CACHE_SIZE
;
2346 sb
->s_blocksize_bits
= PAGE_CACHE_SHIFT
;
2347 sb
->s_magic
= TMPFS_MAGIC
;
2348 sb
->s_op
= &shmem_ops
;
2349 sb
->s_time_gran
= 1;
2350 #ifdef CONFIG_TMPFS_POSIX_ACL
2351 sb
->s_xattr
= shmem_xattr_handlers
;
2352 sb
->s_flags
|= MS_POSIXACL
;
2355 inode
= shmem_get_inode(sb
, S_IFDIR
| sbinfo
->mode
, 0);
2358 inode
->i_uid
= sbinfo
->uid
;
2359 inode
->i_gid
= sbinfo
->gid
;
2360 root
= d_alloc_root(inode
);
2369 shmem_put_super(sb
);
2373 static struct kmem_cache
*shmem_inode_cachep
;
2375 static struct inode
*shmem_alloc_inode(struct super_block
*sb
)
2377 struct shmem_inode_info
*p
;
2378 p
= (struct shmem_inode_info
*)kmem_cache_alloc(shmem_inode_cachep
, GFP_KERNEL
);
2381 return &p
->vfs_inode
;
2384 static void shmem_destroy_inode(struct inode
*inode
)
2386 if ((inode
->i_mode
& S_IFMT
) == S_IFREG
) {
2387 /* only struct inode is valid if it's an inline symlink */
2388 mpol_free_shared_policy(&SHMEM_I(inode
)->policy
);
2390 shmem_acl_destroy_inode(inode
);
2391 kmem_cache_free(shmem_inode_cachep
, SHMEM_I(inode
));
2394 static void init_once(struct kmem_cache
*cachep
, void *foo
)
2396 struct shmem_inode_info
*p
= (struct shmem_inode_info
*) foo
;
2398 inode_init_once(&p
->vfs_inode
);
2399 #ifdef CONFIG_TMPFS_POSIX_ACL
2401 p
->i_default_acl
= NULL
;
2405 static int init_inodecache(void)
2407 shmem_inode_cachep
= kmem_cache_create("shmem_inode_cache",
2408 sizeof(struct shmem_inode_info
),
2409 0, SLAB_PANIC
, init_once
);
2413 static void destroy_inodecache(void)
2415 kmem_cache_destroy(shmem_inode_cachep
);
2418 static const struct address_space_operations shmem_aops
= {
2419 .writepage
= shmem_writepage
,
2420 .set_page_dirty
= __set_page_dirty_no_writeback
,
2422 .readpage
= shmem_readpage
,
2423 .write_begin
= shmem_write_begin
,
2424 .write_end
= shmem_write_end
,
2426 .migratepage
= migrate_page
,
2429 static const struct file_operations shmem_file_operations
= {
2432 .llseek
= generic_file_llseek
,
2433 .read
= shmem_file_read
,
2434 .write
= do_sync_write
,
2435 .aio_write
= generic_file_aio_write
,
2436 .fsync
= simple_sync_file
,
2437 .splice_read
= generic_file_splice_read
,
2438 .splice_write
= generic_file_splice_write
,
2442 static const struct inode_operations shmem_inode_operations
= {
2443 .truncate
= shmem_truncate
,
2444 .setattr
= shmem_notify_change
,
2445 .truncate_range
= shmem_truncate_range
,
2446 #ifdef CONFIG_TMPFS_POSIX_ACL
2447 .setxattr
= generic_setxattr
,
2448 .getxattr
= generic_getxattr
,
2449 .listxattr
= generic_listxattr
,
2450 .removexattr
= generic_removexattr
,
2451 .permission
= shmem_permission
,
2456 static const struct inode_operations shmem_dir_inode_operations
= {
2458 .create
= shmem_create
,
2459 .lookup
= simple_lookup
,
2461 .unlink
= shmem_unlink
,
2462 .symlink
= shmem_symlink
,
2463 .mkdir
= shmem_mkdir
,
2464 .rmdir
= shmem_rmdir
,
2465 .mknod
= shmem_mknod
,
2466 .rename
= shmem_rename
,
2468 #ifdef CONFIG_TMPFS_POSIX_ACL
2469 .setattr
= shmem_notify_change
,
2470 .setxattr
= generic_setxattr
,
2471 .getxattr
= generic_getxattr
,
2472 .listxattr
= generic_listxattr
,
2473 .removexattr
= generic_removexattr
,
2474 .permission
= shmem_permission
,
2478 static const struct inode_operations shmem_special_inode_operations
= {
2479 #ifdef CONFIG_TMPFS_POSIX_ACL
2480 .setattr
= shmem_notify_change
,
2481 .setxattr
= generic_setxattr
,
2482 .getxattr
= generic_getxattr
,
2483 .listxattr
= generic_listxattr
,
2484 .removexattr
= generic_removexattr
,
2485 .permission
= shmem_permission
,
2489 static const struct super_operations shmem_ops
= {
2490 .alloc_inode
= shmem_alloc_inode
,
2491 .destroy_inode
= shmem_destroy_inode
,
2493 .statfs
= shmem_statfs
,
2494 .remount_fs
= shmem_remount_fs
,
2495 .show_options
= shmem_show_options
,
2497 .delete_inode
= shmem_delete_inode
,
2498 .drop_inode
= generic_delete_inode
,
2499 .put_super
= shmem_put_super
,
2502 static struct vm_operations_struct shmem_vm_ops
= {
2503 .fault
= shmem_fault
,
2505 .set_policy
= shmem_set_policy
,
2506 .get_policy
= shmem_get_policy
,
2511 static int shmem_get_sb(struct file_system_type
*fs_type
,
2512 int flags
, const char *dev_name
, void *data
, struct vfsmount
*mnt
)
2514 return get_sb_nodev(fs_type
, flags
, data
, shmem_fill_super
, mnt
);
2517 static struct file_system_type tmpfs_fs_type
= {
2518 .owner
= THIS_MODULE
,
2520 .get_sb
= shmem_get_sb
,
2521 .kill_sb
= kill_litter_super
,
2523 static struct vfsmount
*shm_mnt
;
2525 static int __init
init_tmpfs(void)
2529 error
= bdi_init(&shmem_backing_dev_info
);
2533 error
= init_inodecache();
2537 error
= register_filesystem(&tmpfs_fs_type
);
2539 printk(KERN_ERR
"Could not register tmpfs\n");
2543 shm_mnt
= vfs_kern_mount(&tmpfs_fs_type
, MS_NOUSER
,
2544 tmpfs_fs_type
.name
, NULL
);
2545 if (IS_ERR(shm_mnt
)) {
2546 error
= PTR_ERR(shm_mnt
);
2547 printk(KERN_ERR
"Could not kern_mount tmpfs\n");
2553 unregister_filesystem(&tmpfs_fs_type
);
2555 destroy_inodecache();
2557 bdi_destroy(&shmem_backing_dev_info
);
2559 shm_mnt
= ERR_PTR(error
);
2562 module_init(init_tmpfs
)
2565 * shmem_file_setup - get an unlinked file living in tmpfs
2567 * @name: name for dentry (to be seen in /proc/<pid>/maps
2568 * @size: size to be set for the file
2571 struct file
*shmem_file_setup(char *name
, loff_t size
, unsigned long flags
)
2575 struct inode
*inode
;
2576 struct dentry
*dentry
, *root
;
2579 if (IS_ERR(shm_mnt
))
2580 return (void *)shm_mnt
;
2582 if (size
< 0 || size
> SHMEM_MAX_BYTES
)
2583 return ERR_PTR(-EINVAL
);
2585 if (shmem_acct_size(flags
, size
))
2586 return ERR_PTR(-ENOMEM
);
2590 this.len
= strlen(name
);
2591 this.hash
= 0; /* will go */
2592 root
= shm_mnt
->mnt_root
;
2593 dentry
= d_alloc(root
, &this);
2598 file
= get_empty_filp();
2603 inode
= shmem_get_inode(root
->d_sb
, S_IFREG
| S_IRWXUGO
, 0);
2607 SHMEM_I(inode
)->flags
= flags
& VM_ACCOUNT
;
2608 d_instantiate(dentry
, inode
);
2609 inode
->i_size
= size
;
2610 inode
->i_nlink
= 0; /* It is unlinked */
2611 init_file(file
, shm_mnt
, dentry
, FMODE_WRITE
| FMODE_READ
,
2612 &shmem_file_operations
);
2620 shmem_unacct_size(flags
, size
);
2621 return ERR_PTR(error
);
2625 * shmem_zero_setup - setup a shared anonymous mapping
2627 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2629 int shmem_zero_setup(struct vm_area_struct
*vma
)
2632 loff_t size
= vma
->vm_end
- vma
->vm_start
;
2634 file
= shmem_file_setup("dev/zero", size
, vma
->vm_flags
);
2636 return PTR_ERR(file
);
2640 vma
->vm_file
= file
;
2641 vma
->vm_ops
= &shmem_vm_ops
;