4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
9 #include <linux/hugetlb.h>
10 #include <linux/mman.h>
11 #include <linux/slab.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pagemap.h>
16 #include <linux/namei.h>
17 #include <linux/shm.h>
18 #include <linux/blkdev.h>
19 #include <linux/writeback.h>
20 #include <linux/proc_fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/init.h>
23 #include <linux/module.h>
24 #include <linux/rmap.h>
25 #include <linux/security.h>
26 #include <linux/backing-dev.h>
27 #include <linux/mutex.h>
28 #include <linux/capability.h>
29 #include <linux/syscalls.h>
30 #include <linux/memcontrol.h>
32 #include <asm/pgtable.h>
33 #include <asm/tlbflush.h>
34 #include <linux/swapops.h>
36 DEFINE_SPINLOCK(swap_lock
);
37 unsigned int nr_swapfiles
;
38 long total_swap_pages
;
39 static int swap_overflow
;
41 static const char Bad_file
[] = "Bad swap file entry ";
42 static const char Unused_file
[] = "Unused swap file entry ";
43 static const char Bad_offset
[] = "Bad swap offset entry ";
44 static const char Unused_offset
[] = "Unused swap offset entry ";
46 struct swap_list_t swap_list
= {-1, -1};
48 static struct swap_info_struct swap_info
[MAX_SWAPFILES
];
50 static DEFINE_MUTEX(swapon_mutex
);
53 * We need this because the bdev->unplug_fn can sleep and we cannot
54 * hold swap_lock while calling the unplug_fn. And swap_lock
55 * cannot be turned into a mutex.
57 static DECLARE_RWSEM(swap_unplug_sem
);
59 void swap_unplug_io_fn(struct backing_dev_info
*unused_bdi
, struct page
*page
)
63 down_read(&swap_unplug_sem
);
64 entry
.val
= page_private(page
);
65 if (PageSwapCache(page
)) {
66 struct block_device
*bdev
= swap_info
[swp_type(entry
)].bdev
;
67 struct backing_dev_info
*bdi
;
70 * If the page is removed from swapcache from under us (with a
71 * racy try_to_unuse/swapoff) we need an additional reference
72 * count to avoid reading garbage from page_private(page) above.
73 * If the WARN_ON triggers during a swapoff it maybe the race
74 * condition and it's harmless. However if it triggers without
75 * swapoff it signals a problem.
77 WARN_ON(page_count(page
) <= 1);
79 bdi
= bdev
->bd_inode
->i_mapping
->backing_dev_info
;
80 blk_run_backing_dev(bdi
, page
);
82 up_read(&swap_unplug_sem
);
85 #define SWAPFILE_CLUSTER 256
86 #define LATENCY_LIMIT 256
88 static inline unsigned long scan_swap_map(struct swap_info_struct
*si
)
90 unsigned long offset
, last_in_cluster
;
91 int latency_ration
= LATENCY_LIMIT
;
94 * We try to cluster swap pages by allocating them sequentially
95 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
96 * way, however, we resort to first-free allocation, starting
97 * a new cluster. This prevents us from scattering swap pages
98 * all over the entire swap partition, so that we reduce
99 * overall disk seek times between swap pages. -- sct
100 * But we do now try to find an empty cluster. -Andrea
103 si
->flags
+= SWP_SCANNING
;
104 if (unlikely(!si
->cluster_nr
)) {
105 si
->cluster_nr
= SWAPFILE_CLUSTER
- 1;
106 if (si
->pages
- si
->inuse_pages
< SWAPFILE_CLUSTER
)
108 spin_unlock(&swap_lock
);
110 offset
= si
->lowest_bit
;
111 last_in_cluster
= offset
+ SWAPFILE_CLUSTER
- 1;
113 /* Locate the first empty (unaligned) cluster */
114 for (; last_in_cluster
<= si
->highest_bit
; offset
++) {
115 if (si
->swap_map
[offset
])
116 last_in_cluster
= offset
+ SWAPFILE_CLUSTER
;
117 else if (offset
== last_in_cluster
) {
118 spin_lock(&swap_lock
);
119 si
->cluster_next
= offset
-SWAPFILE_CLUSTER
+1;
122 if (unlikely(--latency_ration
< 0)) {
124 latency_ration
= LATENCY_LIMIT
;
127 spin_lock(&swap_lock
);
133 offset
= si
->cluster_next
;
134 if (offset
> si
->highest_bit
)
135 lowest
: offset
= si
->lowest_bit
;
136 checks
: if (!(si
->flags
& SWP_WRITEOK
))
138 if (!si
->highest_bit
)
140 if (!si
->swap_map
[offset
]) {
141 if (offset
== si
->lowest_bit
)
143 if (offset
== si
->highest_bit
)
146 if (si
->inuse_pages
== si
->pages
) {
147 si
->lowest_bit
= si
->max
;
150 si
->swap_map
[offset
] = 1;
151 si
->cluster_next
= offset
+ 1;
152 si
->flags
-= SWP_SCANNING
;
156 spin_unlock(&swap_lock
);
157 while (++offset
<= si
->highest_bit
) {
158 if (!si
->swap_map
[offset
]) {
159 spin_lock(&swap_lock
);
162 if (unlikely(--latency_ration
< 0)) {
164 latency_ration
= LATENCY_LIMIT
;
167 spin_lock(&swap_lock
);
171 si
->flags
-= SWP_SCANNING
;
175 swp_entry_t
get_swap_page(void)
177 struct swap_info_struct
*si
;
182 spin_lock(&swap_lock
);
183 if (nr_swap_pages
<= 0)
187 for (type
= swap_list
.next
; type
>= 0 && wrapped
< 2; type
= next
) {
188 si
= swap_info
+ type
;
191 (!wrapped
&& si
->prio
!= swap_info
[next
].prio
)) {
192 next
= swap_list
.head
;
196 if (!si
->highest_bit
)
198 if (!(si
->flags
& SWP_WRITEOK
))
201 swap_list
.next
= next
;
202 offset
= scan_swap_map(si
);
204 spin_unlock(&swap_lock
);
205 return swp_entry(type
, offset
);
207 next
= swap_list
.next
;
212 spin_unlock(&swap_lock
);
213 return (swp_entry_t
) {0};
216 swp_entry_t
get_swap_page_of_type(int type
)
218 struct swap_info_struct
*si
;
221 spin_lock(&swap_lock
);
222 si
= swap_info
+ type
;
223 if (si
->flags
& SWP_WRITEOK
) {
225 offset
= scan_swap_map(si
);
227 spin_unlock(&swap_lock
);
228 return swp_entry(type
, offset
);
232 spin_unlock(&swap_lock
);
233 return (swp_entry_t
) {0};
236 static struct swap_info_struct
* swap_info_get(swp_entry_t entry
)
238 struct swap_info_struct
* p
;
239 unsigned long offset
, type
;
243 type
= swp_type(entry
);
244 if (type
>= nr_swapfiles
)
246 p
= & swap_info
[type
];
247 if (!(p
->flags
& SWP_USED
))
249 offset
= swp_offset(entry
);
250 if (offset
>= p
->max
)
252 if (!p
->swap_map
[offset
])
254 spin_lock(&swap_lock
);
258 printk(KERN_ERR
"swap_free: %s%08lx\n", Unused_offset
, entry
.val
);
261 printk(KERN_ERR
"swap_free: %s%08lx\n", Bad_offset
, entry
.val
);
264 printk(KERN_ERR
"swap_free: %s%08lx\n", Unused_file
, entry
.val
);
267 printk(KERN_ERR
"swap_free: %s%08lx\n", Bad_file
, entry
.val
);
272 static int swap_entry_free(struct swap_info_struct
*p
, unsigned long offset
)
274 int count
= p
->swap_map
[offset
];
276 if (count
< SWAP_MAP_MAX
) {
278 p
->swap_map
[offset
] = count
;
280 if (offset
< p
->lowest_bit
)
281 p
->lowest_bit
= offset
;
282 if (offset
> p
->highest_bit
)
283 p
->highest_bit
= offset
;
284 if (p
->prio
> swap_info
[swap_list
.next
].prio
)
285 swap_list
.next
= p
- swap_info
;
294 * Caller has made sure that the swapdevice corresponding to entry
295 * is still around or has not been recycled.
297 void swap_free(swp_entry_t entry
)
299 struct swap_info_struct
* p
;
301 p
= swap_info_get(entry
);
303 swap_entry_free(p
, swp_offset(entry
));
304 spin_unlock(&swap_lock
);
309 * How many references to page are currently swapped out?
311 static inline int page_swapcount(struct page
*page
)
314 struct swap_info_struct
*p
;
317 entry
.val
= page_private(page
);
318 p
= swap_info_get(entry
);
320 /* Subtract the 1 for the swap cache itself */
321 count
= p
->swap_map
[swp_offset(entry
)] - 1;
322 spin_unlock(&swap_lock
);
328 * We can use this swap cache entry directly
329 * if there are no other references to it.
331 int can_share_swap_page(struct page
*page
)
335 BUG_ON(!PageLocked(page
));
336 count
= page_mapcount(page
);
337 if (count
<= 1 && PageSwapCache(page
))
338 count
+= page_swapcount(page
);
343 * Work out if there are any other processes sharing this
344 * swap cache page. Free it if you can. Return success.
346 int remove_exclusive_swap_page(struct page
*page
)
349 struct swap_info_struct
* p
;
352 BUG_ON(PagePrivate(page
));
353 BUG_ON(!PageLocked(page
));
355 if (!PageSwapCache(page
))
357 if (PageWriteback(page
))
359 if (page_count(page
) != 2) /* 2: us + cache */
362 entry
.val
= page_private(page
);
363 p
= swap_info_get(entry
);
367 /* Is the only swap cache user the cache itself? */
369 if (p
->swap_map
[swp_offset(entry
)] == 1) {
370 /* Recheck the page count with the swapcache lock held.. */
371 write_lock_irq(&swapper_space
.tree_lock
);
372 if ((page_count(page
) == 2) && !PageWriteback(page
)) {
373 __delete_from_swap_cache(page
);
377 write_unlock_irq(&swapper_space
.tree_lock
);
379 spin_unlock(&swap_lock
);
383 page_cache_release(page
);
390 * Free the swap entry like above, but also try to
391 * free the page cache entry if it is the last user.
393 void free_swap_and_cache(swp_entry_t entry
)
395 struct swap_info_struct
* p
;
396 struct page
*page
= NULL
;
398 if (is_migration_entry(entry
))
401 p
= swap_info_get(entry
);
403 if (swap_entry_free(p
, swp_offset(entry
)) == 1) {
404 page
= find_get_page(&swapper_space
, entry
.val
);
405 if (page
&& unlikely(TestSetPageLocked(page
))) {
406 page_cache_release(page
);
410 spin_unlock(&swap_lock
);
415 BUG_ON(PagePrivate(page
));
416 one_user
= (page_count(page
) == 2);
417 /* Only cache user (+us), or swap space full? Free it! */
418 /* Also recheck PageSwapCache after page is locked (above) */
419 if (PageSwapCache(page
) && !PageWriteback(page
) &&
420 (one_user
|| vm_swap_full())) {
421 delete_from_swap_cache(page
);
425 page_cache_release(page
);
429 #ifdef CONFIG_HIBERNATION
431 * Find the swap type that corresponds to given device (if any).
433 * @offset - number of the PAGE_SIZE-sized block of the device, starting
434 * from 0, in which the swap header is expected to be located.
436 * This is needed for the suspend to disk (aka swsusp).
438 int swap_type_of(dev_t device
, sector_t offset
, struct block_device
**bdev_p
)
440 struct block_device
*bdev
= NULL
;
444 bdev
= bdget(device
);
446 spin_lock(&swap_lock
);
447 for (i
= 0; i
< nr_swapfiles
; i
++) {
448 struct swap_info_struct
*sis
= swap_info
+ i
;
450 if (!(sis
->flags
& SWP_WRITEOK
))
457 spin_unlock(&swap_lock
);
460 if (bdev
== sis
->bdev
) {
461 struct swap_extent
*se
;
463 se
= list_entry(sis
->extent_list
.next
,
464 struct swap_extent
, list
);
465 if (se
->start_block
== offset
) {
469 spin_unlock(&swap_lock
);
475 spin_unlock(&swap_lock
);
483 * Return either the total number of swap pages of given type, or the number
484 * of free pages of that type (depending on @free)
486 * This is needed for software suspend
488 unsigned int count_swap_pages(int type
, int free
)
492 if (type
< nr_swapfiles
) {
493 spin_lock(&swap_lock
);
494 if (swap_info
[type
].flags
& SWP_WRITEOK
) {
495 n
= swap_info
[type
].pages
;
497 n
-= swap_info
[type
].inuse_pages
;
499 spin_unlock(&swap_lock
);
506 * No need to decide whether this PTE shares the swap entry with others,
507 * just let do_wp_page work it out if a write is requested later - to
508 * force COW, vm_page_prot omits write permission from any private vma.
510 static int unuse_pte(struct vm_area_struct
*vma
, pmd_t
*pmd
,
511 unsigned long addr
, swp_entry_t entry
, struct page
*page
)
517 if (mem_cgroup_charge(page
, vma
->vm_mm
, GFP_KERNEL
))
520 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
521 if (unlikely(!pte_same(*pte
, swp_entry_to_pte(entry
)))) {
523 mem_cgroup_uncharge_page(page
);
528 inc_mm_counter(vma
->vm_mm
, anon_rss
);
530 set_pte_at(vma
->vm_mm
, addr
, pte
,
531 pte_mkold(mk_pte(page
, vma
->vm_page_prot
)));
532 page_add_anon_rmap(page
, vma
, addr
);
535 * Move the page to the active list so it is not
536 * immediately swapped out again after swapon.
540 pte_unmap_unlock(pte
, ptl
);
544 static int unuse_pte_range(struct vm_area_struct
*vma
, pmd_t
*pmd
,
545 unsigned long addr
, unsigned long end
,
546 swp_entry_t entry
, struct page
*page
)
548 pte_t swp_pte
= swp_entry_to_pte(entry
);
553 * We don't actually need pte lock while scanning for swp_pte: since
554 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
555 * page table while we're scanning; though it could get zapped, and on
556 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
557 * of unmatched parts which look like swp_pte, so unuse_pte must
558 * recheck under pte lock. Scanning without pte lock lets it be
559 * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
561 pte
= pte_offset_map(pmd
, addr
);
564 * swapoff spends a _lot_ of time in this loop!
565 * Test inline before going to call unuse_pte.
567 if (unlikely(pte_same(*pte
, swp_pte
))) {
569 ret
= unuse_pte(vma
, pmd
, addr
, entry
, page
);
572 pte
= pte_offset_map(pmd
, addr
);
574 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
580 static inline int unuse_pmd_range(struct vm_area_struct
*vma
, pud_t
*pud
,
581 unsigned long addr
, unsigned long end
,
582 swp_entry_t entry
, struct page
*page
)
588 pmd
= pmd_offset(pud
, addr
);
590 next
= pmd_addr_end(addr
, end
);
591 if (pmd_none_or_clear_bad(pmd
))
593 ret
= unuse_pte_range(vma
, pmd
, addr
, next
, entry
, page
);
596 } while (pmd
++, addr
= next
, addr
!= end
);
600 static inline int unuse_pud_range(struct vm_area_struct
*vma
, pgd_t
*pgd
,
601 unsigned long addr
, unsigned long end
,
602 swp_entry_t entry
, struct page
*page
)
608 pud
= pud_offset(pgd
, addr
);
610 next
= pud_addr_end(addr
, end
);
611 if (pud_none_or_clear_bad(pud
))
613 ret
= unuse_pmd_range(vma
, pud
, addr
, next
, entry
, page
);
616 } while (pud
++, addr
= next
, addr
!= end
);
620 static int unuse_vma(struct vm_area_struct
*vma
,
621 swp_entry_t entry
, struct page
*page
)
624 unsigned long addr
, end
, next
;
628 addr
= page_address_in_vma(page
, vma
);
632 end
= addr
+ PAGE_SIZE
;
634 addr
= vma
->vm_start
;
638 pgd
= pgd_offset(vma
->vm_mm
, addr
);
640 next
= pgd_addr_end(addr
, end
);
641 if (pgd_none_or_clear_bad(pgd
))
643 ret
= unuse_pud_range(vma
, pgd
, addr
, next
, entry
, page
);
646 } while (pgd
++, addr
= next
, addr
!= end
);
650 static int unuse_mm(struct mm_struct
*mm
,
651 swp_entry_t entry
, struct page
*page
)
653 struct vm_area_struct
*vma
;
656 if (!down_read_trylock(&mm
->mmap_sem
)) {
658 * Activate page so shrink_cache is unlikely to unmap its
659 * ptes while lock is dropped, so swapoff can make progress.
663 down_read(&mm
->mmap_sem
);
666 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
667 if (vma
->anon_vma
&& (ret
= unuse_vma(vma
, entry
, page
)))
670 up_read(&mm
->mmap_sem
);
671 return (ret
< 0)? ret
: 0;
675 * Scan swap_map from current position to next entry still in use.
676 * Recycle to start on reaching the end, returning 0 when empty.
678 static unsigned int find_next_to_unuse(struct swap_info_struct
*si
,
681 unsigned int max
= si
->max
;
682 unsigned int i
= prev
;
686 * No need for swap_lock here: we're just looking
687 * for whether an entry is in use, not modifying it; false
688 * hits are okay, and sys_swapoff() has already prevented new
689 * allocations from this area (while holding swap_lock).
698 * No entries in use at top of swap_map,
699 * loop back to start and recheck there.
705 count
= si
->swap_map
[i
];
706 if (count
&& count
!= SWAP_MAP_BAD
)
713 * We completely avoid races by reading each swap page in advance,
714 * and then search for the process using it. All the necessary
715 * page table adjustments can then be made atomically.
717 static int try_to_unuse(unsigned int type
)
719 struct swap_info_struct
* si
= &swap_info
[type
];
720 struct mm_struct
*start_mm
;
721 unsigned short *swap_map
;
722 unsigned short swcount
;
727 int reset_overflow
= 0;
731 * When searching mms for an entry, a good strategy is to
732 * start at the first mm we freed the previous entry from
733 * (though actually we don't notice whether we or coincidence
734 * freed the entry). Initialize this start_mm with a hold.
736 * A simpler strategy would be to start at the last mm we
737 * freed the previous entry from; but that would take less
738 * advantage of mmlist ordering, which clusters forked mms
739 * together, child after parent. If we race with dup_mmap(), we
740 * prefer to resolve parent before child, lest we miss entries
741 * duplicated after we scanned child: using last mm would invert
742 * that. Though it's only a serious concern when an overflowed
743 * swap count is reset from SWAP_MAP_MAX, preventing a rescan.
746 atomic_inc(&init_mm
.mm_users
);
749 * Keep on scanning until all entries have gone. Usually,
750 * one pass through swap_map is enough, but not necessarily:
751 * there are races when an instance of an entry might be missed.
753 while ((i
= find_next_to_unuse(si
, i
)) != 0) {
754 if (signal_pending(current
)) {
760 * Get a page for the entry, using the existing swap
761 * cache page if there is one. Otherwise, get a clean
762 * page and read the swap into it.
764 swap_map
= &si
->swap_map
[i
];
765 entry
= swp_entry(type
, i
);
766 page
= read_swap_cache_async(entry
,
767 GFP_HIGHUSER_MOVABLE
, NULL
, 0);
770 * Either swap_duplicate() failed because entry
771 * has been freed independently, and will not be
772 * reused since sys_swapoff() already disabled
773 * allocation from here, or alloc_page() failed.
782 * Don't hold on to start_mm if it looks like exiting.
784 if (atomic_read(&start_mm
->mm_users
) == 1) {
787 atomic_inc(&init_mm
.mm_users
);
791 * Wait for and lock page. When do_swap_page races with
792 * try_to_unuse, do_swap_page can handle the fault much
793 * faster than try_to_unuse can locate the entry. This
794 * apparently redundant "wait_on_page_locked" lets try_to_unuse
795 * defer to do_swap_page in such a case - in some tests,
796 * do_swap_page and try_to_unuse repeatedly compete.
798 wait_on_page_locked(page
);
799 wait_on_page_writeback(page
);
801 wait_on_page_writeback(page
);
804 * Remove all references to entry.
805 * Whenever we reach init_mm, there's no address space
806 * to search, but use it as a reminder to search shmem.
811 if (start_mm
== &init_mm
)
812 shmem
= shmem_unuse(entry
, page
);
814 retval
= unuse_mm(start_mm
, entry
, page
);
817 int set_start_mm
= (*swap_map
>= swcount
);
818 struct list_head
*p
= &start_mm
->mmlist
;
819 struct mm_struct
*new_start_mm
= start_mm
;
820 struct mm_struct
*prev_mm
= start_mm
;
821 struct mm_struct
*mm
;
823 atomic_inc(&new_start_mm
->mm_users
);
824 atomic_inc(&prev_mm
->mm_users
);
825 spin_lock(&mmlist_lock
);
826 while (*swap_map
> 1 && !retval
&& !shmem
&&
827 (p
= p
->next
) != &start_mm
->mmlist
) {
828 mm
= list_entry(p
, struct mm_struct
, mmlist
);
829 if (!atomic_inc_not_zero(&mm
->mm_users
))
831 spin_unlock(&mmlist_lock
);
840 else if (mm
== &init_mm
) {
842 shmem
= shmem_unuse(entry
, page
);
844 retval
= unuse_mm(mm
, entry
, page
);
845 if (set_start_mm
&& *swap_map
< swcount
) {
847 atomic_inc(&mm
->mm_users
);
851 spin_lock(&mmlist_lock
);
853 spin_unlock(&mmlist_lock
);
856 start_mm
= new_start_mm
;
859 /* page has already been unlocked and released */
867 page_cache_release(page
);
872 * How could swap count reach 0x7fff when the maximum
873 * pid is 0x7fff, and there's no way to repeat a swap
874 * page within an mm (except in shmem, where it's the
875 * shared object which takes the reference count)?
876 * We believe SWAP_MAP_MAX cannot occur in Linux 2.4.
878 * If that's wrong, then we should worry more about
879 * exit_mmap() and do_munmap() cases described above:
880 * we might be resetting SWAP_MAP_MAX too early here.
881 * We know "Undead"s can happen, they're okay, so don't
882 * report them; but do report if we reset SWAP_MAP_MAX.
884 if (*swap_map
== SWAP_MAP_MAX
) {
885 spin_lock(&swap_lock
);
887 spin_unlock(&swap_lock
);
892 * If a reference remains (rare), we would like to leave
893 * the page in the swap cache; but try_to_unmap could
894 * then re-duplicate the entry once we drop page lock,
895 * so we might loop indefinitely; also, that page could
896 * not be swapped out to other storage meanwhile. So:
897 * delete from cache even if there's another reference,
898 * after ensuring that the data has been saved to disk -
899 * since if the reference remains (rarer), it will be
900 * read from disk into another page. Splitting into two
901 * pages would be incorrect if swap supported "shared
902 * private" pages, but they are handled by tmpfs files.
904 if ((*swap_map
> 1) && PageDirty(page
) && PageSwapCache(page
)) {
905 struct writeback_control wbc
= {
906 .sync_mode
= WB_SYNC_NONE
,
909 swap_writepage(page
, &wbc
);
911 wait_on_page_writeback(page
);
913 if (PageSwapCache(page
))
914 delete_from_swap_cache(page
);
917 * So we could skip searching mms once swap count went
918 * to 1, we did not mark any present ptes as dirty: must
919 * mark page dirty so shrink_page_list will preserve it.
923 page_cache_release(page
);
926 * Make sure that we aren't completely killing
927 * interactive performance.
933 if (reset_overflow
) {
934 printk(KERN_WARNING
"swapoff: cleared swap entry overflow\n");
941 * After a successful try_to_unuse, if no swap is now in use, we know
942 * we can empty the mmlist. swap_lock must be held on entry and exit.
943 * Note that mmlist_lock nests inside swap_lock, and an mm must be
944 * added to the mmlist just after page_duplicate - before would be racy.
946 static void drain_mmlist(void)
948 struct list_head
*p
, *next
;
951 for (i
= 0; i
< nr_swapfiles
; i
++)
952 if (swap_info
[i
].inuse_pages
)
954 spin_lock(&mmlist_lock
);
955 list_for_each_safe(p
, next
, &init_mm
.mmlist
)
957 spin_unlock(&mmlist_lock
);
961 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
962 * corresponds to page offset `offset'.
964 sector_t
map_swap_page(struct swap_info_struct
*sis
, pgoff_t offset
)
966 struct swap_extent
*se
= sis
->curr_swap_extent
;
967 struct swap_extent
*start_se
= se
;
970 struct list_head
*lh
;
972 if (se
->start_page
<= offset
&&
973 offset
< (se
->start_page
+ se
->nr_pages
)) {
974 return se
->start_block
+ (offset
- se
->start_page
);
977 if (lh
== &sis
->extent_list
)
979 se
= list_entry(lh
, struct swap_extent
, list
);
980 sis
->curr_swap_extent
= se
;
981 BUG_ON(se
== start_se
); /* It *must* be present */
985 #ifdef CONFIG_HIBERNATION
987 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
988 * corresponding to given index in swap_info (swap type).
990 sector_t
swapdev_block(int swap_type
, pgoff_t offset
)
992 struct swap_info_struct
*sis
;
994 if (swap_type
>= nr_swapfiles
)
997 sis
= swap_info
+ swap_type
;
998 return (sis
->flags
& SWP_WRITEOK
) ? map_swap_page(sis
, offset
) : 0;
1000 #endif /* CONFIG_HIBERNATION */
1003 * Free all of a swapdev's extent information
1005 static void destroy_swap_extents(struct swap_info_struct
*sis
)
1007 while (!list_empty(&sis
->extent_list
)) {
1008 struct swap_extent
*se
;
1010 se
= list_entry(sis
->extent_list
.next
,
1011 struct swap_extent
, list
);
1012 list_del(&se
->list
);
1018 * Add a block range (and the corresponding page range) into this swapdev's
1019 * extent list. The extent list is kept sorted in page order.
1021 * This function rather assumes that it is called in ascending page order.
1024 add_swap_extent(struct swap_info_struct
*sis
, unsigned long start_page
,
1025 unsigned long nr_pages
, sector_t start_block
)
1027 struct swap_extent
*se
;
1028 struct swap_extent
*new_se
;
1029 struct list_head
*lh
;
1031 lh
= sis
->extent_list
.prev
; /* The highest page extent */
1032 if (lh
!= &sis
->extent_list
) {
1033 se
= list_entry(lh
, struct swap_extent
, list
);
1034 BUG_ON(se
->start_page
+ se
->nr_pages
!= start_page
);
1035 if (se
->start_block
+ se
->nr_pages
== start_block
) {
1037 se
->nr_pages
+= nr_pages
;
1043 * No merge. Insert a new extent, preserving ordering.
1045 new_se
= kmalloc(sizeof(*se
), GFP_KERNEL
);
1048 new_se
->start_page
= start_page
;
1049 new_se
->nr_pages
= nr_pages
;
1050 new_se
->start_block
= start_block
;
1052 list_add_tail(&new_se
->list
, &sis
->extent_list
);
1057 * A `swap extent' is a simple thing which maps a contiguous range of pages
1058 * onto a contiguous range of disk blocks. An ordered list of swap extents
1059 * is built at swapon time and is then used at swap_writepage/swap_readpage
1060 * time for locating where on disk a page belongs.
1062 * If the swapfile is an S_ISBLK block device, a single extent is installed.
1063 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1064 * swap files identically.
1066 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1067 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
1068 * swapfiles are handled *identically* after swapon time.
1070 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1071 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
1072 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1073 * requirements, they are simply tossed out - we will never use those blocks
1076 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
1077 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1078 * which will scribble on the fs.
1080 * The amount of disk space which a single swap extent represents varies.
1081 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
1082 * extents in the list. To avoid much list walking, we cache the previous
1083 * search location in `curr_swap_extent', and start new searches from there.
1084 * This is extremely effective. The average number of iterations in
1085 * map_swap_page() has been measured at about 0.3 per page. - akpm.
1087 static int setup_swap_extents(struct swap_info_struct
*sis
, sector_t
*span
)
1089 struct inode
*inode
;
1090 unsigned blocks_per_page
;
1091 unsigned long page_no
;
1093 sector_t probe_block
;
1094 sector_t last_block
;
1095 sector_t lowest_block
= -1;
1096 sector_t highest_block
= 0;
1100 inode
= sis
->swap_file
->f_mapping
->host
;
1101 if (S_ISBLK(inode
->i_mode
)) {
1102 ret
= add_swap_extent(sis
, 0, sis
->max
, 0);
1107 blkbits
= inode
->i_blkbits
;
1108 blocks_per_page
= PAGE_SIZE
>> blkbits
;
1111 * Map all the blocks into the extent list. This code doesn't try
1116 last_block
= i_size_read(inode
) >> blkbits
;
1117 while ((probe_block
+ blocks_per_page
) <= last_block
&&
1118 page_no
< sis
->max
) {
1119 unsigned block_in_page
;
1120 sector_t first_block
;
1122 first_block
= bmap(inode
, probe_block
);
1123 if (first_block
== 0)
1127 * It must be PAGE_SIZE aligned on-disk
1129 if (first_block
& (blocks_per_page
- 1)) {
1134 for (block_in_page
= 1; block_in_page
< blocks_per_page
;
1138 block
= bmap(inode
, probe_block
+ block_in_page
);
1141 if (block
!= first_block
+ block_in_page
) {
1148 first_block
>>= (PAGE_SHIFT
- blkbits
);
1149 if (page_no
) { /* exclude the header page */
1150 if (first_block
< lowest_block
)
1151 lowest_block
= first_block
;
1152 if (first_block
> highest_block
)
1153 highest_block
= first_block
;
1157 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
1159 ret
= add_swap_extent(sis
, page_no
, 1, first_block
);
1164 probe_block
+= blocks_per_page
;
1169 *span
= 1 + highest_block
- lowest_block
;
1171 page_no
= 1; /* force Empty message */
1173 sis
->pages
= page_no
- 1;
1174 sis
->highest_bit
= page_no
- 1;
1176 sis
->curr_swap_extent
= list_entry(sis
->extent_list
.prev
,
1177 struct swap_extent
, list
);
1180 printk(KERN_ERR
"swapon: swapfile has holes\n");
1186 #if 0 /* We don't need this yet */
1187 #include <linux/backing-dev.h>
1188 int page_queue_congested(struct page
*page
)
1190 struct backing_dev_info
*bdi
;
1192 BUG_ON(!PageLocked(page
)); /* It pins the swap_info_struct */
1194 if (PageSwapCache(page
)) {
1195 swp_entry_t entry
= { .val
= page_private(page
) };
1196 struct swap_info_struct
*sis
;
1198 sis
= get_swap_info_struct(swp_type(entry
));
1199 bdi
= sis
->bdev
->bd_inode
->i_mapping
->backing_dev_info
;
1201 bdi
= page
->mapping
->backing_dev_info
;
1202 return bdi_write_congested(bdi
);
1206 asmlinkage
long sys_swapoff(const char __user
* specialfile
)
1208 struct swap_info_struct
* p
= NULL
;
1209 unsigned short *swap_map
;
1210 struct file
*swap_file
, *victim
;
1211 struct address_space
*mapping
;
1212 struct inode
*inode
;
1217 if (!capable(CAP_SYS_ADMIN
))
1220 pathname
= getname(specialfile
);
1221 err
= PTR_ERR(pathname
);
1222 if (IS_ERR(pathname
))
1225 victim
= filp_open(pathname
, O_RDWR
|O_LARGEFILE
, 0);
1227 err
= PTR_ERR(victim
);
1231 mapping
= victim
->f_mapping
;
1233 spin_lock(&swap_lock
);
1234 for (type
= swap_list
.head
; type
>= 0; type
= swap_info
[type
].next
) {
1235 p
= swap_info
+ type
;
1236 if ((p
->flags
& SWP_ACTIVE
) == SWP_ACTIVE
) {
1237 if (p
->swap_file
->f_mapping
== mapping
)
1244 spin_unlock(&swap_lock
);
1247 if (!security_vm_enough_memory(p
->pages
))
1248 vm_unacct_memory(p
->pages
);
1251 spin_unlock(&swap_lock
);
1255 swap_list
.head
= p
->next
;
1257 swap_info
[prev
].next
= p
->next
;
1259 if (type
== swap_list
.next
) {
1260 /* just pick something that's safe... */
1261 swap_list
.next
= swap_list
.head
;
1263 nr_swap_pages
-= p
->pages
;
1264 total_swap_pages
-= p
->pages
;
1265 p
->flags
&= ~SWP_WRITEOK
;
1266 spin_unlock(&swap_lock
);
1268 current
->flags
|= PF_SWAPOFF
;
1269 err
= try_to_unuse(type
);
1270 current
->flags
&= ~PF_SWAPOFF
;
1273 /* re-insert swap space back into swap_list */
1274 spin_lock(&swap_lock
);
1275 for (prev
= -1, i
= swap_list
.head
; i
>= 0; prev
= i
, i
= swap_info
[i
].next
)
1276 if (p
->prio
>= swap_info
[i
].prio
)
1280 swap_list
.head
= swap_list
.next
= p
- swap_info
;
1282 swap_info
[prev
].next
= p
- swap_info
;
1283 nr_swap_pages
+= p
->pages
;
1284 total_swap_pages
+= p
->pages
;
1285 p
->flags
|= SWP_WRITEOK
;
1286 spin_unlock(&swap_lock
);
1290 /* wait for any unplug function to finish */
1291 down_write(&swap_unplug_sem
);
1292 up_write(&swap_unplug_sem
);
1294 destroy_swap_extents(p
);
1295 mutex_lock(&swapon_mutex
);
1296 spin_lock(&swap_lock
);
1299 /* wait for anyone still in scan_swap_map */
1300 p
->highest_bit
= 0; /* cuts scans short */
1301 while (p
->flags
>= SWP_SCANNING
) {
1302 spin_unlock(&swap_lock
);
1303 schedule_timeout_uninterruptible(1);
1304 spin_lock(&swap_lock
);
1307 swap_file
= p
->swap_file
;
1308 p
->swap_file
= NULL
;
1310 swap_map
= p
->swap_map
;
1313 spin_unlock(&swap_lock
);
1314 mutex_unlock(&swapon_mutex
);
1316 inode
= mapping
->host
;
1317 if (S_ISBLK(inode
->i_mode
)) {
1318 struct block_device
*bdev
= I_BDEV(inode
);
1319 set_blocksize(bdev
, p
->old_block_size
);
1322 mutex_lock(&inode
->i_mutex
);
1323 inode
->i_flags
&= ~S_SWAPFILE
;
1324 mutex_unlock(&inode
->i_mutex
);
1326 filp_close(swap_file
, NULL
);
1330 filp_close(victim
, NULL
);
1335 #ifdef CONFIG_PROC_FS
1337 static void *swap_start(struct seq_file
*swap
, loff_t
*pos
)
1339 struct swap_info_struct
*ptr
= swap_info
;
1343 mutex_lock(&swapon_mutex
);
1346 return SEQ_START_TOKEN
;
1348 for (i
= 0; i
< nr_swapfiles
; i
++, ptr
++) {
1349 if (!(ptr
->flags
& SWP_USED
) || !ptr
->swap_map
)
1358 static void *swap_next(struct seq_file
*swap
, void *v
, loff_t
*pos
)
1360 struct swap_info_struct
*ptr
;
1361 struct swap_info_struct
*endptr
= swap_info
+ nr_swapfiles
;
1363 if (v
== SEQ_START_TOKEN
)
1370 for (; ptr
< endptr
; ptr
++) {
1371 if (!(ptr
->flags
& SWP_USED
) || !ptr
->swap_map
)
1380 static void swap_stop(struct seq_file
*swap
, void *v
)
1382 mutex_unlock(&swapon_mutex
);
1385 static int swap_show(struct seq_file
*swap
, void *v
)
1387 struct swap_info_struct
*ptr
= v
;
1391 if (ptr
== SEQ_START_TOKEN
) {
1392 seq_puts(swap
,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1396 file
= ptr
->swap_file
;
1397 len
= seq_path(swap
, &file
->f_path
, " \t\n\\");
1398 seq_printf(swap
, "%*s%s\t%u\t%u\t%d\n",
1399 len
< 40 ? 40 - len
: 1, " ",
1400 S_ISBLK(file
->f_path
.dentry
->d_inode
->i_mode
) ?
1401 "partition" : "file\t",
1402 ptr
->pages
<< (PAGE_SHIFT
- 10),
1403 ptr
->inuse_pages
<< (PAGE_SHIFT
- 10),
1408 static const struct seq_operations swaps_op
= {
1409 .start
= swap_start
,
1415 static int swaps_open(struct inode
*inode
, struct file
*file
)
1417 return seq_open(file
, &swaps_op
);
1420 static const struct file_operations proc_swaps_operations
= {
1423 .llseek
= seq_lseek
,
1424 .release
= seq_release
,
1427 static int __init
procswaps_init(void)
1429 struct proc_dir_entry
*entry
;
1431 entry
= create_proc_entry("swaps", 0, NULL
);
1433 entry
->proc_fops
= &proc_swaps_operations
;
1436 __initcall(procswaps_init
);
1437 #endif /* CONFIG_PROC_FS */
1440 * Written 01/25/92 by Simmule Turner, heavily changed by Linus.
1442 * The swapon system call
1444 asmlinkage
long sys_swapon(const char __user
* specialfile
, int swap_flags
)
1446 struct swap_info_struct
* p
;
1448 struct block_device
*bdev
= NULL
;
1449 struct file
*swap_file
= NULL
;
1450 struct address_space
*mapping
;
1454 static int least_priority
;
1455 union swap_header
*swap_header
= NULL
;
1456 int swap_header_version
;
1457 unsigned int nr_good_pages
= 0;
1460 unsigned long maxpages
= 1;
1462 unsigned short *swap_map
;
1463 struct page
*page
= NULL
;
1464 struct inode
*inode
= NULL
;
1467 if (!capable(CAP_SYS_ADMIN
))
1469 spin_lock(&swap_lock
);
1471 for (type
= 0 ; type
< nr_swapfiles
; type
++,p
++)
1472 if (!(p
->flags
& SWP_USED
))
1475 if (type
>= MAX_SWAPFILES
) {
1476 spin_unlock(&swap_lock
);
1479 if (type
>= nr_swapfiles
)
1480 nr_swapfiles
= type
+1;
1481 INIT_LIST_HEAD(&p
->extent_list
);
1482 p
->flags
= SWP_USED
;
1483 p
->swap_file
= NULL
;
1484 p
->old_block_size
= 0;
1491 if (swap_flags
& SWAP_FLAG_PREFER
) {
1493 (swap_flags
& SWAP_FLAG_PRIO_MASK
)>>SWAP_FLAG_PRIO_SHIFT
;
1495 p
->prio
= --least_priority
;
1497 spin_unlock(&swap_lock
);
1498 name
= getname(specialfile
);
1499 error
= PTR_ERR(name
);
1504 swap_file
= filp_open(name
, O_RDWR
|O_LARGEFILE
, 0);
1505 error
= PTR_ERR(swap_file
);
1506 if (IS_ERR(swap_file
)) {
1511 p
->swap_file
= swap_file
;
1512 mapping
= swap_file
->f_mapping
;
1513 inode
= mapping
->host
;
1516 for (i
= 0; i
< nr_swapfiles
; i
++) {
1517 struct swap_info_struct
*q
= &swap_info
[i
];
1519 if (i
== type
|| !q
->swap_file
)
1521 if (mapping
== q
->swap_file
->f_mapping
)
1526 if (S_ISBLK(inode
->i_mode
)) {
1527 bdev
= I_BDEV(inode
);
1528 error
= bd_claim(bdev
, sys_swapon
);
1534 p
->old_block_size
= block_size(bdev
);
1535 error
= set_blocksize(bdev
, PAGE_SIZE
);
1539 } else if (S_ISREG(inode
->i_mode
)) {
1540 p
->bdev
= inode
->i_sb
->s_bdev
;
1541 mutex_lock(&inode
->i_mutex
);
1543 if (IS_SWAPFILE(inode
)) {
1551 swapfilesize
= i_size_read(inode
) >> PAGE_SHIFT
;
1554 * Read the swap header.
1556 if (!mapping
->a_ops
->readpage
) {
1560 page
= read_mapping_page(mapping
, 0, swap_file
);
1562 error
= PTR_ERR(page
);
1566 swap_header
= page_address(page
);
1568 if (!memcmp("SWAP-SPACE",swap_header
->magic
.magic
,10))
1569 swap_header_version
= 1;
1570 else if (!memcmp("SWAPSPACE2",swap_header
->magic
.magic
,10))
1571 swap_header_version
= 2;
1573 printk(KERN_ERR
"Unable to find swap-space signature\n");
1578 switch (swap_header_version
) {
1580 printk(KERN_ERR
"version 0 swap is no longer supported. "
1581 "Use mkswap -v1 %s\n", name
);
1585 /* swap partition endianess hack... */
1586 if (swab32(swap_header
->info
.version
) == 1) {
1587 swab32s(&swap_header
->info
.version
);
1588 swab32s(&swap_header
->info
.last_page
);
1589 swab32s(&swap_header
->info
.nr_badpages
);
1590 for (i
= 0; i
< swap_header
->info
.nr_badpages
; i
++)
1591 swab32s(&swap_header
->info
.badpages
[i
]);
1593 /* Check the swap header's sub-version and the size of
1594 the swap file and bad block lists */
1595 if (swap_header
->info
.version
!= 1) {
1597 "Unable to handle swap header version %d\n",
1598 swap_header
->info
.version
);
1604 p
->cluster_next
= 1;
1607 * Find out how many pages are allowed for a single swap
1608 * device. There are two limiting factors: 1) the number of
1609 * bits for the swap offset in the swp_entry_t type and
1610 * 2) the number of bits in the a swap pte as defined by
1611 * the different architectures. In order to find the
1612 * largest possible bit mask a swap entry with swap type 0
1613 * and swap offset ~0UL is created, encoded to a swap pte,
1614 * decoded to a swp_entry_t again and finally the swap
1615 * offset is extracted. This will mask all the bits from
1616 * the initial ~0UL mask that can't be encoded in either
1617 * the swp_entry_t or the architecture definition of a
1620 maxpages
= swp_offset(pte_to_swp_entry(swp_entry_to_pte(swp_entry(0,~0UL)))) - 1;
1621 if (maxpages
> swap_header
->info
.last_page
)
1622 maxpages
= swap_header
->info
.last_page
;
1623 p
->highest_bit
= maxpages
- 1;
1628 if (swapfilesize
&& maxpages
> swapfilesize
) {
1630 "Swap area shorter than signature indicates\n");
1633 if (swap_header
->info
.nr_badpages
&& S_ISREG(inode
->i_mode
))
1635 if (swap_header
->info
.nr_badpages
> MAX_SWAP_BADPAGES
)
1638 /* OK, set up the swap map and apply the bad block list */
1639 if (!(p
->swap_map
= vmalloc(maxpages
* sizeof(short)))) {
1645 memset(p
->swap_map
, 0, maxpages
* sizeof(short));
1646 for (i
= 0; i
< swap_header
->info
.nr_badpages
; i
++) {
1647 int page_nr
= swap_header
->info
.badpages
[i
];
1648 if (page_nr
<= 0 || page_nr
>= swap_header
->info
.last_page
)
1651 p
->swap_map
[page_nr
] = SWAP_MAP_BAD
;
1653 nr_good_pages
= swap_header
->info
.last_page
-
1654 swap_header
->info
.nr_badpages
-
1655 1 /* header page */;
1660 if (nr_good_pages
) {
1661 p
->swap_map
[0] = SWAP_MAP_BAD
;
1663 p
->pages
= nr_good_pages
;
1664 nr_extents
= setup_swap_extents(p
, &span
);
1665 if (nr_extents
< 0) {
1669 nr_good_pages
= p
->pages
;
1671 if (!nr_good_pages
) {
1672 printk(KERN_WARNING
"Empty swap-file\n");
1677 mutex_lock(&swapon_mutex
);
1678 spin_lock(&swap_lock
);
1679 p
->flags
= SWP_ACTIVE
;
1680 nr_swap_pages
+= nr_good_pages
;
1681 total_swap_pages
+= nr_good_pages
;
1683 printk(KERN_INFO
"Adding %uk swap on %s. "
1684 "Priority:%d extents:%d across:%lluk\n",
1685 nr_good_pages
<<(PAGE_SHIFT
-10), name
, p
->prio
,
1686 nr_extents
, (unsigned long long)span
<<(PAGE_SHIFT
-10));
1688 /* insert swap space into swap_list: */
1690 for (i
= swap_list
.head
; i
>= 0; i
= swap_info
[i
].next
) {
1691 if (p
->prio
>= swap_info
[i
].prio
) {
1698 swap_list
.head
= swap_list
.next
= p
- swap_info
;
1700 swap_info
[prev
].next
= p
- swap_info
;
1702 spin_unlock(&swap_lock
);
1703 mutex_unlock(&swapon_mutex
);
1708 set_blocksize(bdev
, p
->old_block_size
);
1711 destroy_swap_extents(p
);
1713 spin_lock(&swap_lock
);
1714 swap_map
= p
->swap_map
;
1715 p
->swap_file
= NULL
;
1718 if (!(swap_flags
& SWAP_FLAG_PREFER
))
1720 spin_unlock(&swap_lock
);
1723 filp_close(swap_file
, NULL
);
1725 if (page
&& !IS_ERR(page
)) {
1727 page_cache_release(page
);
1733 inode
->i_flags
|= S_SWAPFILE
;
1734 mutex_unlock(&inode
->i_mutex
);
1739 void si_swapinfo(struct sysinfo
*val
)
1742 unsigned long nr_to_be_unused
= 0;
1744 spin_lock(&swap_lock
);
1745 for (i
= 0; i
< nr_swapfiles
; i
++) {
1746 if (!(swap_info
[i
].flags
& SWP_USED
) ||
1747 (swap_info
[i
].flags
& SWP_WRITEOK
))
1749 nr_to_be_unused
+= swap_info
[i
].inuse_pages
;
1751 val
->freeswap
= nr_swap_pages
+ nr_to_be_unused
;
1752 val
->totalswap
= total_swap_pages
+ nr_to_be_unused
;
1753 spin_unlock(&swap_lock
);
1757 * Verify that a swap entry is valid and increment its swap map count.
1759 * Note: if swap_map[] reaches SWAP_MAP_MAX the entries are treated as
1760 * "permanent", but will be reclaimed by the next swapoff.
1762 int swap_duplicate(swp_entry_t entry
)
1764 struct swap_info_struct
* p
;
1765 unsigned long offset
, type
;
1768 if (is_migration_entry(entry
))
1771 type
= swp_type(entry
);
1772 if (type
>= nr_swapfiles
)
1774 p
= type
+ swap_info
;
1775 offset
= swp_offset(entry
);
1777 spin_lock(&swap_lock
);
1778 if (offset
< p
->max
&& p
->swap_map
[offset
]) {
1779 if (p
->swap_map
[offset
] < SWAP_MAP_MAX
- 1) {
1780 p
->swap_map
[offset
]++;
1782 } else if (p
->swap_map
[offset
] <= SWAP_MAP_MAX
) {
1783 if (swap_overflow
++ < 5)
1784 printk(KERN_WARNING
"swap_dup: swap entry overflow\n");
1785 p
->swap_map
[offset
] = SWAP_MAP_MAX
;
1789 spin_unlock(&swap_lock
);
1794 printk(KERN_ERR
"swap_dup: %s%08lx\n", Bad_file
, entry
.val
);
1798 struct swap_info_struct
*
1799 get_swap_info_struct(unsigned type
)
1801 return &swap_info
[type
];
1805 * swap_lock prevents swap_map being freed. Don't grab an extra
1806 * reference on the swaphandle, it doesn't matter if it becomes unused.
1808 int valid_swaphandles(swp_entry_t entry
, unsigned long *offset
)
1810 struct swap_info_struct
*si
;
1811 int our_page_cluster
= page_cluster
;
1812 pgoff_t target
, toff
;
1816 if (!our_page_cluster
) /* no readahead */
1819 si
= &swap_info
[swp_type(entry
)];
1820 target
= swp_offset(entry
);
1821 base
= (target
>> our_page_cluster
) << our_page_cluster
;
1822 end
= base
+ (1 << our_page_cluster
);
1823 if (!base
) /* first page is swap header */
1826 spin_lock(&swap_lock
);
1827 if (end
> si
->max
) /* don't go beyond end of map */
1830 /* Count contiguous allocated slots above our target */
1831 for (toff
= target
; ++toff
< end
; nr_pages
++) {
1832 /* Don't read in free or bad pages */
1833 if (!si
->swap_map
[toff
])
1835 if (si
->swap_map
[toff
] == SWAP_MAP_BAD
)
1838 /* Count contiguous allocated slots below our target */
1839 for (toff
= target
; --toff
>= base
; nr_pages
++) {
1840 /* Don't read in free or bad pages */
1841 if (!si
->swap_map
[toff
])
1843 if (si
->swap_map
[toff
] == SWAP_MAP_BAD
)
1846 spin_unlock(&swap_lock
);
1849 * Indicate starting offset, and return number of pages to get:
1850 * if only 1, say 0, since there's then no readahead to be done.
1853 return nr_pages
? ++nr_pages
: 0;