cxgb3 - SGE doorbell overflow warning
[linux-2.6/sactl.git] / drivers / net / s2io.c
blobe7431c58da4936dfa5704037bab612667c771c99
1 /************************************************************************
2 * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
3 * Copyright(c) 2002-2007 Neterion Inc.
5 * This software may be used and distributed according to the terms of
6 * the GNU General Public License (GPL), incorporated herein by reference.
7 * Drivers based on or derived from this code fall under the GPL and must
8 * retain the authorship, copyright and license notice. This file is not
9 * a complete program and may only be used when the entire operating
10 * system is licensed under the GPL.
11 * See the file COPYING in this distribution for more information.
13 * Credits:
14 * Jeff Garzik : For pointing out the improper error condition
15 * check in the s2io_xmit routine and also some
16 * issues in the Tx watch dog function. Also for
17 * patiently answering all those innumerable
18 * questions regaring the 2.6 porting issues.
19 * Stephen Hemminger : Providing proper 2.6 porting mechanism for some
20 * macros available only in 2.6 Kernel.
21 * Francois Romieu : For pointing out all code part that were
22 * deprecated and also styling related comments.
23 * Grant Grundler : For helping me get rid of some Architecture
24 * dependent code.
25 * Christopher Hellwig : Some more 2.6 specific issues in the driver.
27 * The module loadable parameters that are supported by the driver and a brief
28 * explaination of all the variables.
30 * rx_ring_num : This can be used to program the number of receive rings used
31 * in the driver.
32 * rx_ring_sz: This defines the number of receive blocks each ring can have.
33 * This is also an array of size 8.
34 * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
35 * values are 1, 2.
36 * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
37 * tx_fifo_len: This too is an array of 8. Each element defines the number of
38 * Tx descriptors that can be associated with each corresponding FIFO.
39 * intr_type: This defines the type of interrupt. The values can be 0(INTA),
40 * 2(MSI_X). Default value is '2(MSI_X)'
41 * lro: Specifies whether to enable Large Receive Offload (LRO) or not.
42 * Possible values '1' for enable '0' for disable. Default is '0'
43 * lro_max_pkts: This parameter defines maximum number of packets can be
44 * aggregated as a single large packet
45 * napi: This parameter used to enable/disable NAPI (polling Rx)
46 * Possible values '1' for enable and '0' for disable. Default is '1'
47 * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO)
48 * Possible values '1' for enable and '0' for disable. Default is '0'
49 * vlan_tag_strip: This can be used to enable or disable vlan stripping.
50 * Possible values '1' for enable , '0' for disable.
51 * Default is '2' - which means disable in promisc mode
52 * and enable in non-promiscuous mode.
53 ************************************************************************/
55 #include <linux/module.h>
56 #include <linux/types.h>
57 #include <linux/errno.h>
58 #include <linux/ioport.h>
59 #include <linux/pci.h>
60 #include <linux/dma-mapping.h>
61 #include <linux/kernel.h>
62 #include <linux/netdevice.h>
63 #include <linux/etherdevice.h>
64 #include <linux/skbuff.h>
65 #include <linux/init.h>
66 #include <linux/delay.h>
67 #include <linux/stddef.h>
68 #include <linux/ioctl.h>
69 #include <linux/timex.h>
70 #include <linux/ethtool.h>
71 #include <linux/workqueue.h>
72 #include <linux/if_vlan.h>
73 #include <linux/ip.h>
74 #include <linux/tcp.h>
75 #include <net/tcp.h>
77 #include <asm/system.h>
78 #include <asm/uaccess.h>
79 #include <asm/io.h>
80 #include <asm/div64.h>
81 #include <asm/irq.h>
83 /* local include */
84 #include "s2io.h"
85 #include "s2io-regs.h"
87 #define DRV_VERSION "2.0.26.1"
89 /* S2io Driver name & version. */
90 static char s2io_driver_name[] = "Neterion";
91 static char s2io_driver_version[] = DRV_VERSION;
93 static int rxd_size[2] = {32,48};
94 static int rxd_count[2] = {127,85};
96 static inline int RXD_IS_UP2DT(struct RxD_t *rxdp)
98 int ret;
100 ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
101 (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
103 return ret;
107 * Cards with following subsystem_id have a link state indication
108 * problem, 600B, 600C, 600D, 640B, 640C and 640D.
109 * macro below identifies these cards given the subsystem_id.
111 #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
112 (dev_type == XFRAME_I_DEVICE) ? \
113 ((((subid >= 0x600B) && (subid <= 0x600D)) || \
114 ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
116 #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
117 ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
118 #define TASKLET_IN_USE test_and_set_bit(0, (&sp->tasklet_status))
119 #define PANIC 1
120 #define LOW 2
121 static inline int rx_buffer_level(struct s2io_nic * sp, int rxb_size, int ring)
123 struct mac_info *mac_control;
125 mac_control = &sp->mac_control;
126 if (rxb_size <= rxd_count[sp->rxd_mode])
127 return PANIC;
128 else if ((mac_control->rings[ring].pkt_cnt - rxb_size) > 16)
129 return LOW;
130 return 0;
133 /* Ethtool related variables and Macros. */
134 static char s2io_gstrings[][ETH_GSTRING_LEN] = {
135 "Register test\t(offline)",
136 "Eeprom test\t(offline)",
137 "Link test\t(online)",
138 "RLDRAM test\t(offline)",
139 "BIST Test\t(offline)"
142 static char ethtool_xena_stats_keys[][ETH_GSTRING_LEN] = {
143 {"tmac_frms"},
144 {"tmac_data_octets"},
145 {"tmac_drop_frms"},
146 {"tmac_mcst_frms"},
147 {"tmac_bcst_frms"},
148 {"tmac_pause_ctrl_frms"},
149 {"tmac_ttl_octets"},
150 {"tmac_ucst_frms"},
151 {"tmac_nucst_frms"},
152 {"tmac_any_err_frms"},
153 {"tmac_ttl_less_fb_octets"},
154 {"tmac_vld_ip_octets"},
155 {"tmac_vld_ip"},
156 {"tmac_drop_ip"},
157 {"tmac_icmp"},
158 {"tmac_rst_tcp"},
159 {"tmac_tcp"},
160 {"tmac_udp"},
161 {"rmac_vld_frms"},
162 {"rmac_data_octets"},
163 {"rmac_fcs_err_frms"},
164 {"rmac_drop_frms"},
165 {"rmac_vld_mcst_frms"},
166 {"rmac_vld_bcst_frms"},
167 {"rmac_in_rng_len_err_frms"},
168 {"rmac_out_rng_len_err_frms"},
169 {"rmac_long_frms"},
170 {"rmac_pause_ctrl_frms"},
171 {"rmac_unsup_ctrl_frms"},
172 {"rmac_ttl_octets"},
173 {"rmac_accepted_ucst_frms"},
174 {"rmac_accepted_nucst_frms"},
175 {"rmac_discarded_frms"},
176 {"rmac_drop_events"},
177 {"rmac_ttl_less_fb_octets"},
178 {"rmac_ttl_frms"},
179 {"rmac_usized_frms"},
180 {"rmac_osized_frms"},
181 {"rmac_frag_frms"},
182 {"rmac_jabber_frms"},
183 {"rmac_ttl_64_frms"},
184 {"rmac_ttl_65_127_frms"},
185 {"rmac_ttl_128_255_frms"},
186 {"rmac_ttl_256_511_frms"},
187 {"rmac_ttl_512_1023_frms"},
188 {"rmac_ttl_1024_1518_frms"},
189 {"rmac_ip"},
190 {"rmac_ip_octets"},
191 {"rmac_hdr_err_ip"},
192 {"rmac_drop_ip"},
193 {"rmac_icmp"},
194 {"rmac_tcp"},
195 {"rmac_udp"},
196 {"rmac_err_drp_udp"},
197 {"rmac_xgmii_err_sym"},
198 {"rmac_frms_q0"},
199 {"rmac_frms_q1"},
200 {"rmac_frms_q2"},
201 {"rmac_frms_q3"},
202 {"rmac_frms_q4"},
203 {"rmac_frms_q5"},
204 {"rmac_frms_q6"},
205 {"rmac_frms_q7"},
206 {"rmac_full_q0"},
207 {"rmac_full_q1"},
208 {"rmac_full_q2"},
209 {"rmac_full_q3"},
210 {"rmac_full_q4"},
211 {"rmac_full_q5"},
212 {"rmac_full_q6"},
213 {"rmac_full_q7"},
214 {"rmac_pause_cnt"},
215 {"rmac_xgmii_data_err_cnt"},
216 {"rmac_xgmii_ctrl_err_cnt"},
217 {"rmac_accepted_ip"},
218 {"rmac_err_tcp"},
219 {"rd_req_cnt"},
220 {"new_rd_req_cnt"},
221 {"new_rd_req_rtry_cnt"},
222 {"rd_rtry_cnt"},
223 {"wr_rtry_rd_ack_cnt"},
224 {"wr_req_cnt"},
225 {"new_wr_req_cnt"},
226 {"new_wr_req_rtry_cnt"},
227 {"wr_rtry_cnt"},
228 {"wr_disc_cnt"},
229 {"rd_rtry_wr_ack_cnt"},
230 {"txp_wr_cnt"},
231 {"txd_rd_cnt"},
232 {"txd_wr_cnt"},
233 {"rxd_rd_cnt"},
234 {"rxd_wr_cnt"},
235 {"txf_rd_cnt"},
236 {"rxf_wr_cnt"}
239 static char ethtool_enhanced_stats_keys[][ETH_GSTRING_LEN] = {
240 {"rmac_ttl_1519_4095_frms"},
241 {"rmac_ttl_4096_8191_frms"},
242 {"rmac_ttl_8192_max_frms"},
243 {"rmac_ttl_gt_max_frms"},
244 {"rmac_osized_alt_frms"},
245 {"rmac_jabber_alt_frms"},
246 {"rmac_gt_max_alt_frms"},
247 {"rmac_vlan_frms"},
248 {"rmac_len_discard"},
249 {"rmac_fcs_discard"},
250 {"rmac_pf_discard"},
251 {"rmac_da_discard"},
252 {"rmac_red_discard"},
253 {"rmac_rts_discard"},
254 {"rmac_ingm_full_discard"},
255 {"link_fault_cnt"}
258 static char ethtool_driver_stats_keys[][ETH_GSTRING_LEN] = {
259 {"\n DRIVER STATISTICS"},
260 {"single_bit_ecc_errs"},
261 {"double_bit_ecc_errs"},
262 {"parity_err_cnt"},
263 {"serious_err_cnt"},
264 {"soft_reset_cnt"},
265 {"fifo_full_cnt"},
266 {"ring_full_cnt"},
267 ("alarm_transceiver_temp_high"),
268 ("alarm_transceiver_temp_low"),
269 ("alarm_laser_bias_current_high"),
270 ("alarm_laser_bias_current_low"),
271 ("alarm_laser_output_power_high"),
272 ("alarm_laser_output_power_low"),
273 ("warn_transceiver_temp_high"),
274 ("warn_transceiver_temp_low"),
275 ("warn_laser_bias_current_high"),
276 ("warn_laser_bias_current_low"),
277 ("warn_laser_output_power_high"),
278 ("warn_laser_output_power_low"),
279 ("lro_aggregated_pkts"),
280 ("lro_flush_both_count"),
281 ("lro_out_of_sequence_pkts"),
282 ("lro_flush_due_to_max_pkts"),
283 ("lro_avg_aggr_pkts"),
284 ("mem_alloc_fail_cnt"),
285 ("pci_map_fail_cnt"),
286 ("watchdog_timer_cnt"),
287 ("mem_allocated"),
288 ("mem_freed"),
289 ("link_up_cnt"),
290 ("link_down_cnt"),
291 ("link_up_time"),
292 ("link_down_time"),
293 ("tx_tcode_buf_abort_cnt"),
294 ("tx_tcode_desc_abort_cnt"),
295 ("tx_tcode_parity_err_cnt"),
296 ("tx_tcode_link_loss_cnt"),
297 ("tx_tcode_list_proc_err_cnt"),
298 ("rx_tcode_parity_err_cnt"),
299 ("rx_tcode_abort_cnt"),
300 ("rx_tcode_parity_abort_cnt"),
301 ("rx_tcode_rda_fail_cnt"),
302 ("rx_tcode_unkn_prot_cnt"),
303 ("rx_tcode_fcs_err_cnt"),
304 ("rx_tcode_buf_size_err_cnt"),
305 ("rx_tcode_rxd_corrupt_cnt"),
306 ("rx_tcode_unkn_err_cnt")
309 #define S2IO_XENA_STAT_LEN sizeof(ethtool_xena_stats_keys)/ ETH_GSTRING_LEN
310 #define S2IO_ENHANCED_STAT_LEN sizeof(ethtool_enhanced_stats_keys)/ \
311 ETH_GSTRING_LEN
312 #define S2IO_DRIVER_STAT_LEN sizeof(ethtool_driver_stats_keys)/ ETH_GSTRING_LEN
314 #define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN )
315 #define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN )
317 #define XFRAME_I_STAT_STRINGS_LEN ( XFRAME_I_STAT_LEN * ETH_GSTRING_LEN )
318 #define XFRAME_II_STAT_STRINGS_LEN ( XFRAME_II_STAT_LEN * ETH_GSTRING_LEN )
320 #define S2IO_TEST_LEN sizeof(s2io_gstrings) / ETH_GSTRING_LEN
321 #define S2IO_STRINGS_LEN S2IO_TEST_LEN * ETH_GSTRING_LEN
323 #define S2IO_TIMER_CONF(timer, handle, arg, exp) \
324 init_timer(&timer); \
325 timer.function = handle; \
326 timer.data = (unsigned long) arg; \
327 mod_timer(&timer, (jiffies + exp)) \
329 /* Add the vlan */
330 static void s2io_vlan_rx_register(struct net_device *dev,
331 struct vlan_group *grp)
333 struct s2io_nic *nic = dev->priv;
334 unsigned long flags;
336 spin_lock_irqsave(&nic->tx_lock, flags);
337 nic->vlgrp = grp;
338 spin_unlock_irqrestore(&nic->tx_lock, flags);
341 /* A flag indicating whether 'RX_PA_CFG_STRIP_VLAN_TAG' bit is set or not */
342 static int vlan_strip_flag;
345 * Constants to be programmed into the Xena's registers, to configure
346 * the XAUI.
349 #define END_SIGN 0x0
350 static const u64 herc_act_dtx_cfg[] = {
351 /* Set address */
352 0x8000051536750000ULL, 0x80000515367500E0ULL,
353 /* Write data */
354 0x8000051536750004ULL, 0x80000515367500E4ULL,
355 /* Set address */
356 0x80010515003F0000ULL, 0x80010515003F00E0ULL,
357 /* Write data */
358 0x80010515003F0004ULL, 0x80010515003F00E4ULL,
359 /* Set address */
360 0x801205150D440000ULL, 0x801205150D4400E0ULL,
361 /* Write data */
362 0x801205150D440004ULL, 0x801205150D4400E4ULL,
363 /* Set address */
364 0x80020515F2100000ULL, 0x80020515F21000E0ULL,
365 /* Write data */
366 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
367 /* Done */
368 END_SIGN
371 static const u64 xena_dtx_cfg[] = {
372 /* Set address */
373 0x8000051500000000ULL, 0x80000515000000E0ULL,
374 /* Write data */
375 0x80000515D9350004ULL, 0x80000515D93500E4ULL,
376 /* Set address */
377 0x8001051500000000ULL, 0x80010515000000E0ULL,
378 /* Write data */
379 0x80010515001E0004ULL, 0x80010515001E00E4ULL,
380 /* Set address */
381 0x8002051500000000ULL, 0x80020515000000E0ULL,
382 /* Write data */
383 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
384 END_SIGN
388 * Constants for Fixing the MacAddress problem seen mostly on
389 * Alpha machines.
391 static const u64 fix_mac[] = {
392 0x0060000000000000ULL, 0x0060600000000000ULL,
393 0x0040600000000000ULL, 0x0000600000000000ULL,
394 0x0020600000000000ULL, 0x0060600000000000ULL,
395 0x0020600000000000ULL, 0x0060600000000000ULL,
396 0x0020600000000000ULL, 0x0060600000000000ULL,
397 0x0020600000000000ULL, 0x0060600000000000ULL,
398 0x0020600000000000ULL, 0x0060600000000000ULL,
399 0x0020600000000000ULL, 0x0060600000000000ULL,
400 0x0020600000000000ULL, 0x0060600000000000ULL,
401 0x0020600000000000ULL, 0x0060600000000000ULL,
402 0x0020600000000000ULL, 0x0060600000000000ULL,
403 0x0020600000000000ULL, 0x0060600000000000ULL,
404 0x0020600000000000ULL, 0x0000600000000000ULL,
405 0x0040600000000000ULL, 0x0060600000000000ULL,
406 END_SIGN
409 MODULE_LICENSE("GPL");
410 MODULE_VERSION(DRV_VERSION);
413 /* Module Loadable parameters. */
414 S2IO_PARM_INT(tx_fifo_num, 1);
415 S2IO_PARM_INT(rx_ring_num, 1);
418 S2IO_PARM_INT(rx_ring_mode, 1);
419 S2IO_PARM_INT(use_continuous_tx_intrs, 1);
420 S2IO_PARM_INT(rmac_pause_time, 0x100);
421 S2IO_PARM_INT(mc_pause_threshold_q0q3, 187);
422 S2IO_PARM_INT(mc_pause_threshold_q4q7, 187);
423 S2IO_PARM_INT(shared_splits, 0);
424 S2IO_PARM_INT(tmac_util_period, 5);
425 S2IO_PARM_INT(rmac_util_period, 5);
426 S2IO_PARM_INT(bimodal, 0);
427 S2IO_PARM_INT(l3l4hdr_size, 128);
428 /* Frequency of Rx desc syncs expressed as power of 2 */
429 S2IO_PARM_INT(rxsync_frequency, 3);
430 /* Interrupt type. Values can be 0(INTA), 2(MSI_X) */
431 S2IO_PARM_INT(intr_type, 2);
432 /* Large receive offload feature */
433 S2IO_PARM_INT(lro, 0);
434 /* Max pkts to be aggregated by LRO at one time. If not specified,
435 * aggregation happens until we hit max IP pkt size(64K)
437 S2IO_PARM_INT(lro_max_pkts, 0xFFFF);
438 S2IO_PARM_INT(indicate_max_pkts, 0);
440 S2IO_PARM_INT(napi, 1);
441 S2IO_PARM_INT(ufo, 0);
442 S2IO_PARM_INT(vlan_tag_strip, NO_STRIP_IN_PROMISC);
444 static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
445 {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
446 static unsigned int rx_ring_sz[MAX_RX_RINGS] =
447 {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
448 static unsigned int rts_frm_len[MAX_RX_RINGS] =
449 {[0 ...(MAX_RX_RINGS - 1)] = 0 };
451 module_param_array(tx_fifo_len, uint, NULL, 0);
452 module_param_array(rx_ring_sz, uint, NULL, 0);
453 module_param_array(rts_frm_len, uint, NULL, 0);
456 * S2IO device table.
457 * This table lists all the devices that this driver supports.
459 static struct pci_device_id s2io_tbl[] __devinitdata = {
460 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
461 PCI_ANY_ID, PCI_ANY_ID},
462 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
463 PCI_ANY_ID, PCI_ANY_ID},
464 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
465 PCI_ANY_ID, PCI_ANY_ID},
466 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
467 PCI_ANY_ID, PCI_ANY_ID},
468 {0,}
471 MODULE_DEVICE_TABLE(pci, s2io_tbl);
473 static struct pci_error_handlers s2io_err_handler = {
474 .error_detected = s2io_io_error_detected,
475 .slot_reset = s2io_io_slot_reset,
476 .resume = s2io_io_resume,
479 static struct pci_driver s2io_driver = {
480 .name = "S2IO",
481 .id_table = s2io_tbl,
482 .probe = s2io_init_nic,
483 .remove = __devexit_p(s2io_rem_nic),
484 .err_handler = &s2io_err_handler,
487 /* A simplifier macro used both by init and free shared_mem Fns(). */
488 #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
491 * init_shared_mem - Allocation and Initialization of Memory
492 * @nic: Device private variable.
493 * Description: The function allocates all the memory areas shared
494 * between the NIC and the driver. This includes Tx descriptors,
495 * Rx descriptors and the statistics block.
498 static int init_shared_mem(struct s2io_nic *nic)
500 u32 size;
501 void *tmp_v_addr, *tmp_v_addr_next;
502 dma_addr_t tmp_p_addr, tmp_p_addr_next;
503 struct RxD_block *pre_rxd_blk = NULL;
504 int i, j, blk_cnt;
505 int lst_size, lst_per_page;
506 struct net_device *dev = nic->dev;
507 unsigned long tmp;
508 struct buffAdd *ba;
510 struct mac_info *mac_control;
511 struct config_param *config;
512 unsigned long long mem_allocated = 0;
514 mac_control = &nic->mac_control;
515 config = &nic->config;
518 /* Allocation and initialization of TXDLs in FIOFs */
519 size = 0;
520 for (i = 0; i < config->tx_fifo_num; i++) {
521 size += config->tx_cfg[i].fifo_len;
523 if (size > MAX_AVAILABLE_TXDS) {
524 DBG_PRINT(ERR_DBG, "s2io: Requested TxDs too high, ");
525 DBG_PRINT(ERR_DBG, "Requested: %d, max supported: 8192\n", size);
526 return -EINVAL;
529 lst_size = (sizeof(struct TxD) * config->max_txds);
530 lst_per_page = PAGE_SIZE / lst_size;
532 for (i = 0; i < config->tx_fifo_num; i++) {
533 int fifo_len = config->tx_cfg[i].fifo_len;
534 int list_holder_size = fifo_len * sizeof(struct list_info_hold);
535 mac_control->fifos[i].list_info = kmalloc(list_holder_size,
536 GFP_KERNEL);
537 if (!mac_control->fifos[i].list_info) {
538 DBG_PRINT(INFO_DBG,
539 "Malloc failed for list_info\n");
540 return -ENOMEM;
542 mem_allocated += list_holder_size;
543 memset(mac_control->fifos[i].list_info, 0, list_holder_size);
545 for (i = 0; i < config->tx_fifo_num; i++) {
546 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
547 lst_per_page);
548 mac_control->fifos[i].tx_curr_put_info.offset = 0;
549 mac_control->fifos[i].tx_curr_put_info.fifo_len =
550 config->tx_cfg[i].fifo_len - 1;
551 mac_control->fifos[i].tx_curr_get_info.offset = 0;
552 mac_control->fifos[i].tx_curr_get_info.fifo_len =
553 config->tx_cfg[i].fifo_len - 1;
554 mac_control->fifos[i].fifo_no = i;
555 mac_control->fifos[i].nic = nic;
556 mac_control->fifos[i].max_txds = MAX_SKB_FRAGS + 2;
558 for (j = 0; j < page_num; j++) {
559 int k = 0;
560 dma_addr_t tmp_p;
561 void *tmp_v;
562 tmp_v = pci_alloc_consistent(nic->pdev,
563 PAGE_SIZE, &tmp_p);
564 if (!tmp_v) {
565 DBG_PRINT(INFO_DBG,
566 "pci_alloc_consistent ");
567 DBG_PRINT(INFO_DBG, "failed for TxDL\n");
568 return -ENOMEM;
570 /* If we got a zero DMA address(can happen on
571 * certain platforms like PPC), reallocate.
572 * Store virtual address of page we don't want,
573 * to be freed later.
575 if (!tmp_p) {
576 mac_control->zerodma_virt_addr = tmp_v;
577 DBG_PRINT(INIT_DBG,
578 "%s: Zero DMA address for TxDL. ", dev->name);
579 DBG_PRINT(INIT_DBG,
580 "Virtual address %p\n", tmp_v);
581 tmp_v = pci_alloc_consistent(nic->pdev,
582 PAGE_SIZE, &tmp_p);
583 if (!tmp_v) {
584 DBG_PRINT(INFO_DBG,
585 "pci_alloc_consistent ");
586 DBG_PRINT(INFO_DBG, "failed for TxDL\n");
587 return -ENOMEM;
589 mem_allocated += PAGE_SIZE;
591 while (k < lst_per_page) {
592 int l = (j * lst_per_page) + k;
593 if (l == config->tx_cfg[i].fifo_len)
594 break;
595 mac_control->fifos[i].list_info[l].list_virt_addr =
596 tmp_v + (k * lst_size);
597 mac_control->fifos[i].list_info[l].list_phy_addr =
598 tmp_p + (k * lst_size);
599 k++;
604 nic->ufo_in_band_v = kcalloc(size, sizeof(u64), GFP_KERNEL);
605 if (!nic->ufo_in_band_v)
606 return -ENOMEM;
607 mem_allocated += (size * sizeof(u64));
609 /* Allocation and initialization of RXDs in Rings */
610 size = 0;
611 for (i = 0; i < config->rx_ring_num; i++) {
612 if (config->rx_cfg[i].num_rxd %
613 (rxd_count[nic->rxd_mode] + 1)) {
614 DBG_PRINT(ERR_DBG, "%s: RxD count of ", dev->name);
615 DBG_PRINT(ERR_DBG, "Ring%d is not a multiple of ",
617 DBG_PRINT(ERR_DBG, "RxDs per Block");
618 return FAILURE;
620 size += config->rx_cfg[i].num_rxd;
621 mac_control->rings[i].block_count =
622 config->rx_cfg[i].num_rxd /
623 (rxd_count[nic->rxd_mode] + 1 );
624 mac_control->rings[i].pkt_cnt = config->rx_cfg[i].num_rxd -
625 mac_control->rings[i].block_count;
627 if (nic->rxd_mode == RXD_MODE_1)
628 size = (size * (sizeof(struct RxD1)));
629 else
630 size = (size * (sizeof(struct RxD3)));
632 for (i = 0; i < config->rx_ring_num; i++) {
633 mac_control->rings[i].rx_curr_get_info.block_index = 0;
634 mac_control->rings[i].rx_curr_get_info.offset = 0;
635 mac_control->rings[i].rx_curr_get_info.ring_len =
636 config->rx_cfg[i].num_rxd - 1;
637 mac_control->rings[i].rx_curr_put_info.block_index = 0;
638 mac_control->rings[i].rx_curr_put_info.offset = 0;
639 mac_control->rings[i].rx_curr_put_info.ring_len =
640 config->rx_cfg[i].num_rxd - 1;
641 mac_control->rings[i].nic = nic;
642 mac_control->rings[i].ring_no = i;
644 blk_cnt = config->rx_cfg[i].num_rxd /
645 (rxd_count[nic->rxd_mode] + 1);
646 /* Allocating all the Rx blocks */
647 for (j = 0; j < blk_cnt; j++) {
648 struct rx_block_info *rx_blocks;
649 int l;
651 rx_blocks = &mac_control->rings[i].rx_blocks[j];
652 size = SIZE_OF_BLOCK; //size is always page size
653 tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
654 &tmp_p_addr);
655 if (tmp_v_addr == NULL) {
657 * In case of failure, free_shared_mem()
658 * is called, which should free any
659 * memory that was alloced till the
660 * failure happened.
662 rx_blocks->block_virt_addr = tmp_v_addr;
663 return -ENOMEM;
665 mem_allocated += size;
666 memset(tmp_v_addr, 0, size);
667 rx_blocks->block_virt_addr = tmp_v_addr;
668 rx_blocks->block_dma_addr = tmp_p_addr;
669 rx_blocks->rxds = kmalloc(sizeof(struct rxd_info)*
670 rxd_count[nic->rxd_mode],
671 GFP_KERNEL);
672 if (!rx_blocks->rxds)
673 return -ENOMEM;
674 mem_allocated +=
675 (sizeof(struct rxd_info)* rxd_count[nic->rxd_mode]);
676 for (l=0; l<rxd_count[nic->rxd_mode];l++) {
677 rx_blocks->rxds[l].virt_addr =
678 rx_blocks->block_virt_addr +
679 (rxd_size[nic->rxd_mode] * l);
680 rx_blocks->rxds[l].dma_addr =
681 rx_blocks->block_dma_addr +
682 (rxd_size[nic->rxd_mode] * l);
685 /* Interlinking all Rx Blocks */
686 for (j = 0; j < blk_cnt; j++) {
687 tmp_v_addr =
688 mac_control->rings[i].rx_blocks[j].block_virt_addr;
689 tmp_v_addr_next =
690 mac_control->rings[i].rx_blocks[(j + 1) %
691 blk_cnt].block_virt_addr;
692 tmp_p_addr =
693 mac_control->rings[i].rx_blocks[j].block_dma_addr;
694 tmp_p_addr_next =
695 mac_control->rings[i].rx_blocks[(j + 1) %
696 blk_cnt].block_dma_addr;
698 pre_rxd_blk = (struct RxD_block *) tmp_v_addr;
699 pre_rxd_blk->reserved_2_pNext_RxD_block =
700 (unsigned long) tmp_v_addr_next;
701 pre_rxd_blk->pNext_RxD_Blk_physical =
702 (u64) tmp_p_addr_next;
705 if (nic->rxd_mode == RXD_MODE_3B) {
707 * Allocation of Storages for buffer addresses in 2BUFF mode
708 * and the buffers as well.
710 for (i = 0; i < config->rx_ring_num; i++) {
711 blk_cnt = config->rx_cfg[i].num_rxd /
712 (rxd_count[nic->rxd_mode]+ 1);
713 mac_control->rings[i].ba =
714 kmalloc((sizeof(struct buffAdd *) * blk_cnt),
715 GFP_KERNEL);
716 if (!mac_control->rings[i].ba)
717 return -ENOMEM;
718 mem_allocated +=(sizeof(struct buffAdd *) * blk_cnt);
719 for (j = 0; j < blk_cnt; j++) {
720 int k = 0;
721 mac_control->rings[i].ba[j] =
722 kmalloc((sizeof(struct buffAdd) *
723 (rxd_count[nic->rxd_mode] + 1)),
724 GFP_KERNEL);
725 if (!mac_control->rings[i].ba[j])
726 return -ENOMEM;
727 mem_allocated += (sizeof(struct buffAdd) * \
728 (rxd_count[nic->rxd_mode] + 1));
729 while (k != rxd_count[nic->rxd_mode]) {
730 ba = &mac_control->rings[i].ba[j][k];
732 ba->ba_0_org = (void *) kmalloc
733 (BUF0_LEN + ALIGN_SIZE, GFP_KERNEL);
734 if (!ba->ba_0_org)
735 return -ENOMEM;
736 mem_allocated +=
737 (BUF0_LEN + ALIGN_SIZE);
738 tmp = (unsigned long)ba->ba_0_org;
739 tmp += ALIGN_SIZE;
740 tmp &= ~((unsigned long) ALIGN_SIZE);
741 ba->ba_0 = (void *) tmp;
743 ba->ba_1_org = (void *) kmalloc
744 (BUF1_LEN + ALIGN_SIZE, GFP_KERNEL);
745 if (!ba->ba_1_org)
746 return -ENOMEM;
747 mem_allocated
748 += (BUF1_LEN + ALIGN_SIZE);
749 tmp = (unsigned long) ba->ba_1_org;
750 tmp += ALIGN_SIZE;
751 tmp &= ~((unsigned long) ALIGN_SIZE);
752 ba->ba_1 = (void *) tmp;
753 k++;
759 /* Allocation and initialization of Statistics block */
760 size = sizeof(struct stat_block);
761 mac_control->stats_mem = pci_alloc_consistent
762 (nic->pdev, size, &mac_control->stats_mem_phy);
764 if (!mac_control->stats_mem) {
766 * In case of failure, free_shared_mem() is called, which
767 * should free any memory that was alloced till the
768 * failure happened.
770 return -ENOMEM;
772 mem_allocated += size;
773 mac_control->stats_mem_sz = size;
775 tmp_v_addr = mac_control->stats_mem;
776 mac_control->stats_info = (struct stat_block *) tmp_v_addr;
777 memset(tmp_v_addr, 0, size);
778 DBG_PRINT(INIT_DBG, "%s:Ring Mem PHY: 0x%llx\n", dev->name,
779 (unsigned long long) tmp_p_addr);
780 mac_control->stats_info->sw_stat.mem_allocated += mem_allocated;
781 return SUCCESS;
785 * free_shared_mem - Free the allocated Memory
786 * @nic: Device private variable.
787 * Description: This function is to free all memory locations allocated by
788 * the init_shared_mem() function and return it to the kernel.
791 static void free_shared_mem(struct s2io_nic *nic)
793 int i, j, blk_cnt, size;
794 u32 ufo_size = 0;
795 void *tmp_v_addr;
796 dma_addr_t tmp_p_addr;
797 struct mac_info *mac_control;
798 struct config_param *config;
799 int lst_size, lst_per_page;
800 struct net_device *dev;
801 int page_num = 0;
803 if (!nic)
804 return;
806 dev = nic->dev;
808 mac_control = &nic->mac_control;
809 config = &nic->config;
811 lst_size = (sizeof(struct TxD) * config->max_txds);
812 lst_per_page = PAGE_SIZE / lst_size;
814 for (i = 0; i < config->tx_fifo_num; i++) {
815 ufo_size += config->tx_cfg[i].fifo_len;
816 page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
817 lst_per_page);
818 for (j = 0; j < page_num; j++) {
819 int mem_blks = (j * lst_per_page);
820 if (!mac_control->fifos[i].list_info)
821 return;
822 if (!mac_control->fifos[i].list_info[mem_blks].
823 list_virt_addr)
824 break;
825 pci_free_consistent(nic->pdev, PAGE_SIZE,
826 mac_control->fifos[i].
827 list_info[mem_blks].
828 list_virt_addr,
829 mac_control->fifos[i].
830 list_info[mem_blks].
831 list_phy_addr);
832 nic->mac_control.stats_info->sw_stat.mem_freed
833 += PAGE_SIZE;
835 /* If we got a zero DMA address during allocation,
836 * free the page now
838 if (mac_control->zerodma_virt_addr) {
839 pci_free_consistent(nic->pdev, PAGE_SIZE,
840 mac_control->zerodma_virt_addr,
841 (dma_addr_t)0);
842 DBG_PRINT(INIT_DBG,
843 "%s: Freeing TxDL with zero DMA addr. ",
844 dev->name);
845 DBG_PRINT(INIT_DBG, "Virtual address %p\n",
846 mac_control->zerodma_virt_addr);
847 nic->mac_control.stats_info->sw_stat.mem_freed
848 += PAGE_SIZE;
850 kfree(mac_control->fifos[i].list_info);
851 nic->mac_control.stats_info->sw_stat.mem_freed +=
852 (nic->config.tx_cfg[i].fifo_len *sizeof(struct list_info_hold));
855 size = SIZE_OF_BLOCK;
856 for (i = 0; i < config->rx_ring_num; i++) {
857 blk_cnt = mac_control->rings[i].block_count;
858 for (j = 0; j < blk_cnt; j++) {
859 tmp_v_addr = mac_control->rings[i].rx_blocks[j].
860 block_virt_addr;
861 tmp_p_addr = mac_control->rings[i].rx_blocks[j].
862 block_dma_addr;
863 if (tmp_v_addr == NULL)
864 break;
865 pci_free_consistent(nic->pdev, size,
866 tmp_v_addr, tmp_p_addr);
867 nic->mac_control.stats_info->sw_stat.mem_freed += size;
868 kfree(mac_control->rings[i].rx_blocks[j].rxds);
869 nic->mac_control.stats_info->sw_stat.mem_freed +=
870 ( sizeof(struct rxd_info)* rxd_count[nic->rxd_mode]);
874 if (nic->rxd_mode == RXD_MODE_3B) {
875 /* Freeing buffer storage addresses in 2BUFF mode. */
876 for (i = 0; i < config->rx_ring_num; i++) {
877 blk_cnt = config->rx_cfg[i].num_rxd /
878 (rxd_count[nic->rxd_mode] + 1);
879 for (j = 0; j < blk_cnt; j++) {
880 int k = 0;
881 if (!mac_control->rings[i].ba[j])
882 continue;
883 while (k != rxd_count[nic->rxd_mode]) {
884 struct buffAdd *ba =
885 &mac_control->rings[i].ba[j][k];
886 kfree(ba->ba_0_org);
887 nic->mac_control.stats_info->sw_stat.\
888 mem_freed += (BUF0_LEN + ALIGN_SIZE);
889 kfree(ba->ba_1_org);
890 nic->mac_control.stats_info->sw_stat.\
891 mem_freed += (BUF1_LEN + ALIGN_SIZE);
892 k++;
894 kfree(mac_control->rings[i].ba[j]);
895 nic->mac_control.stats_info->sw_stat.mem_freed += (sizeof(struct buffAdd) *
896 (rxd_count[nic->rxd_mode] + 1));
898 kfree(mac_control->rings[i].ba);
899 nic->mac_control.stats_info->sw_stat.mem_freed +=
900 (sizeof(struct buffAdd *) * blk_cnt);
904 if (mac_control->stats_mem) {
905 pci_free_consistent(nic->pdev,
906 mac_control->stats_mem_sz,
907 mac_control->stats_mem,
908 mac_control->stats_mem_phy);
909 nic->mac_control.stats_info->sw_stat.mem_freed +=
910 mac_control->stats_mem_sz;
912 if (nic->ufo_in_band_v) {
913 kfree(nic->ufo_in_band_v);
914 nic->mac_control.stats_info->sw_stat.mem_freed
915 += (ufo_size * sizeof(u64));
920 * s2io_verify_pci_mode -
923 static int s2io_verify_pci_mode(struct s2io_nic *nic)
925 struct XENA_dev_config __iomem *bar0 = nic->bar0;
926 register u64 val64 = 0;
927 int mode;
929 val64 = readq(&bar0->pci_mode);
930 mode = (u8)GET_PCI_MODE(val64);
932 if ( val64 & PCI_MODE_UNKNOWN_MODE)
933 return -1; /* Unknown PCI mode */
934 return mode;
937 #define NEC_VENID 0x1033
938 #define NEC_DEVID 0x0125
939 static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
941 struct pci_dev *tdev = NULL;
942 while ((tdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, tdev)) != NULL) {
943 if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) {
944 if (tdev->bus == s2io_pdev->bus->parent)
945 pci_dev_put(tdev);
946 return 1;
949 return 0;
952 static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
954 * s2io_print_pci_mode -
956 static int s2io_print_pci_mode(struct s2io_nic *nic)
958 struct XENA_dev_config __iomem *bar0 = nic->bar0;
959 register u64 val64 = 0;
960 int mode;
961 struct config_param *config = &nic->config;
963 val64 = readq(&bar0->pci_mode);
964 mode = (u8)GET_PCI_MODE(val64);
966 if ( val64 & PCI_MODE_UNKNOWN_MODE)
967 return -1; /* Unknown PCI mode */
969 config->bus_speed = bus_speed[mode];
971 if (s2io_on_nec_bridge(nic->pdev)) {
972 DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
973 nic->dev->name);
974 return mode;
977 if (val64 & PCI_MODE_32_BITS) {
978 DBG_PRINT(ERR_DBG, "%s: Device is on 32 bit ", nic->dev->name);
979 } else {
980 DBG_PRINT(ERR_DBG, "%s: Device is on 64 bit ", nic->dev->name);
983 switch(mode) {
984 case PCI_MODE_PCI_33:
985 DBG_PRINT(ERR_DBG, "33MHz PCI bus\n");
986 break;
987 case PCI_MODE_PCI_66:
988 DBG_PRINT(ERR_DBG, "66MHz PCI bus\n");
989 break;
990 case PCI_MODE_PCIX_M1_66:
991 DBG_PRINT(ERR_DBG, "66MHz PCIX(M1) bus\n");
992 break;
993 case PCI_MODE_PCIX_M1_100:
994 DBG_PRINT(ERR_DBG, "100MHz PCIX(M1) bus\n");
995 break;
996 case PCI_MODE_PCIX_M1_133:
997 DBG_PRINT(ERR_DBG, "133MHz PCIX(M1) bus\n");
998 break;
999 case PCI_MODE_PCIX_M2_66:
1000 DBG_PRINT(ERR_DBG, "133MHz PCIX(M2) bus\n");
1001 break;
1002 case PCI_MODE_PCIX_M2_100:
1003 DBG_PRINT(ERR_DBG, "200MHz PCIX(M2) bus\n");
1004 break;
1005 case PCI_MODE_PCIX_M2_133:
1006 DBG_PRINT(ERR_DBG, "266MHz PCIX(M2) bus\n");
1007 break;
1008 default:
1009 return -1; /* Unsupported bus speed */
1012 return mode;
1016 * init_nic - Initialization of hardware
1017 * @nic: device peivate variable
1018 * Description: The function sequentially configures every block
1019 * of the H/W from their reset values.
1020 * Return Value: SUCCESS on success and
1021 * '-1' on failure (endian settings incorrect).
1024 static int init_nic(struct s2io_nic *nic)
1026 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1027 struct net_device *dev = nic->dev;
1028 register u64 val64 = 0;
1029 void __iomem *add;
1030 u32 time;
1031 int i, j;
1032 struct mac_info *mac_control;
1033 struct config_param *config;
1034 int dtx_cnt = 0;
1035 unsigned long long mem_share;
1036 int mem_size;
1038 mac_control = &nic->mac_control;
1039 config = &nic->config;
1041 /* to set the swapper controle on the card */
1042 if(s2io_set_swapper(nic)) {
1043 DBG_PRINT(ERR_DBG,"ERROR: Setting Swapper failed\n");
1044 return -1;
1048 * Herc requires EOI to be removed from reset before XGXS, so..
1050 if (nic->device_type & XFRAME_II_DEVICE) {
1051 val64 = 0xA500000000ULL;
1052 writeq(val64, &bar0->sw_reset);
1053 msleep(500);
1054 val64 = readq(&bar0->sw_reset);
1057 /* Remove XGXS from reset state */
1058 val64 = 0;
1059 writeq(val64, &bar0->sw_reset);
1060 msleep(500);
1061 val64 = readq(&bar0->sw_reset);
1063 /* Enable Receiving broadcasts */
1064 add = &bar0->mac_cfg;
1065 val64 = readq(&bar0->mac_cfg);
1066 val64 |= MAC_RMAC_BCAST_ENABLE;
1067 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1068 writel((u32) val64, add);
1069 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1070 writel((u32) (val64 >> 32), (add + 4));
1072 /* Read registers in all blocks */
1073 val64 = readq(&bar0->mac_int_mask);
1074 val64 = readq(&bar0->mc_int_mask);
1075 val64 = readq(&bar0->xgxs_int_mask);
1077 /* Set MTU */
1078 val64 = dev->mtu;
1079 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
1081 if (nic->device_type & XFRAME_II_DEVICE) {
1082 while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
1083 SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
1084 &bar0->dtx_control, UF);
1085 if (dtx_cnt & 0x1)
1086 msleep(1); /* Necessary!! */
1087 dtx_cnt++;
1089 } else {
1090 while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
1091 SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
1092 &bar0->dtx_control, UF);
1093 val64 = readq(&bar0->dtx_control);
1094 dtx_cnt++;
1098 /* Tx DMA Initialization */
1099 val64 = 0;
1100 writeq(val64, &bar0->tx_fifo_partition_0);
1101 writeq(val64, &bar0->tx_fifo_partition_1);
1102 writeq(val64, &bar0->tx_fifo_partition_2);
1103 writeq(val64, &bar0->tx_fifo_partition_3);
1106 for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
1107 val64 |=
1108 vBIT(config->tx_cfg[i].fifo_len - 1, ((i * 32) + 19),
1109 13) | vBIT(config->tx_cfg[i].fifo_priority,
1110 ((i * 32) + 5), 3);
1112 if (i == (config->tx_fifo_num - 1)) {
1113 if (i % 2 == 0)
1114 i++;
1117 switch (i) {
1118 case 1:
1119 writeq(val64, &bar0->tx_fifo_partition_0);
1120 val64 = 0;
1121 break;
1122 case 3:
1123 writeq(val64, &bar0->tx_fifo_partition_1);
1124 val64 = 0;
1125 break;
1126 case 5:
1127 writeq(val64, &bar0->tx_fifo_partition_2);
1128 val64 = 0;
1129 break;
1130 case 7:
1131 writeq(val64, &bar0->tx_fifo_partition_3);
1132 break;
1137 * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1138 * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1140 if ((nic->device_type == XFRAME_I_DEVICE) &&
1141 (nic->pdev->revision < 4))
1142 writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
1144 val64 = readq(&bar0->tx_fifo_partition_0);
1145 DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
1146 &bar0->tx_fifo_partition_0, (unsigned long long) val64);
1149 * Initialization of Tx_PA_CONFIG register to ignore packet
1150 * integrity checking.
1152 val64 = readq(&bar0->tx_pa_cfg);
1153 val64 |= TX_PA_CFG_IGNORE_FRM_ERR | TX_PA_CFG_IGNORE_SNAP_OUI |
1154 TX_PA_CFG_IGNORE_LLC_CTRL | TX_PA_CFG_IGNORE_L2_ERR;
1155 writeq(val64, &bar0->tx_pa_cfg);
1157 /* Rx DMA intialization. */
1158 val64 = 0;
1159 for (i = 0; i < config->rx_ring_num; i++) {
1160 val64 |=
1161 vBIT(config->rx_cfg[i].ring_priority, (5 + (i * 8)),
1164 writeq(val64, &bar0->rx_queue_priority);
1167 * Allocating equal share of memory to all the
1168 * configured Rings.
1170 val64 = 0;
1171 if (nic->device_type & XFRAME_II_DEVICE)
1172 mem_size = 32;
1173 else
1174 mem_size = 64;
1176 for (i = 0; i < config->rx_ring_num; i++) {
1177 switch (i) {
1178 case 0:
1179 mem_share = (mem_size / config->rx_ring_num +
1180 mem_size % config->rx_ring_num);
1181 val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
1182 continue;
1183 case 1:
1184 mem_share = (mem_size / config->rx_ring_num);
1185 val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
1186 continue;
1187 case 2:
1188 mem_share = (mem_size / config->rx_ring_num);
1189 val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
1190 continue;
1191 case 3:
1192 mem_share = (mem_size / config->rx_ring_num);
1193 val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
1194 continue;
1195 case 4:
1196 mem_share = (mem_size / config->rx_ring_num);
1197 val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
1198 continue;
1199 case 5:
1200 mem_share = (mem_size / config->rx_ring_num);
1201 val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
1202 continue;
1203 case 6:
1204 mem_share = (mem_size / config->rx_ring_num);
1205 val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
1206 continue;
1207 case 7:
1208 mem_share = (mem_size / config->rx_ring_num);
1209 val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
1210 continue;
1213 writeq(val64, &bar0->rx_queue_cfg);
1216 * Filling Tx round robin registers
1217 * as per the number of FIFOs
1219 switch (config->tx_fifo_num) {
1220 case 1:
1221 val64 = 0x0000000000000000ULL;
1222 writeq(val64, &bar0->tx_w_round_robin_0);
1223 writeq(val64, &bar0->tx_w_round_robin_1);
1224 writeq(val64, &bar0->tx_w_round_robin_2);
1225 writeq(val64, &bar0->tx_w_round_robin_3);
1226 writeq(val64, &bar0->tx_w_round_robin_4);
1227 break;
1228 case 2:
1229 val64 = 0x0000010000010000ULL;
1230 writeq(val64, &bar0->tx_w_round_robin_0);
1231 val64 = 0x0100000100000100ULL;
1232 writeq(val64, &bar0->tx_w_round_robin_1);
1233 val64 = 0x0001000001000001ULL;
1234 writeq(val64, &bar0->tx_w_round_robin_2);
1235 val64 = 0x0000010000010000ULL;
1236 writeq(val64, &bar0->tx_w_round_robin_3);
1237 val64 = 0x0100000000000000ULL;
1238 writeq(val64, &bar0->tx_w_round_robin_4);
1239 break;
1240 case 3:
1241 val64 = 0x0001000102000001ULL;
1242 writeq(val64, &bar0->tx_w_round_robin_0);
1243 val64 = 0x0001020000010001ULL;
1244 writeq(val64, &bar0->tx_w_round_robin_1);
1245 val64 = 0x0200000100010200ULL;
1246 writeq(val64, &bar0->tx_w_round_robin_2);
1247 val64 = 0x0001000102000001ULL;
1248 writeq(val64, &bar0->tx_w_round_robin_3);
1249 val64 = 0x0001020000000000ULL;
1250 writeq(val64, &bar0->tx_w_round_robin_4);
1251 break;
1252 case 4:
1253 val64 = 0x0001020300010200ULL;
1254 writeq(val64, &bar0->tx_w_round_robin_0);
1255 val64 = 0x0100000102030001ULL;
1256 writeq(val64, &bar0->tx_w_round_robin_1);
1257 val64 = 0x0200010000010203ULL;
1258 writeq(val64, &bar0->tx_w_round_robin_2);
1259 val64 = 0x0001020001000001ULL;
1260 writeq(val64, &bar0->tx_w_round_robin_3);
1261 val64 = 0x0203000100000000ULL;
1262 writeq(val64, &bar0->tx_w_round_robin_4);
1263 break;
1264 case 5:
1265 val64 = 0x0001000203000102ULL;
1266 writeq(val64, &bar0->tx_w_round_robin_0);
1267 val64 = 0x0001020001030004ULL;
1268 writeq(val64, &bar0->tx_w_round_robin_1);
1269 val64 = 0x0001000203000102ULL;
1270 writeq(val64, &bar0->tx_w_round_robin_2);
1271 val64 = 0x0001020001030004ULL;
1272 writeq(val64, &bar0->tx_w_round_robin_3);
1273 val64 = 0x0001000000000000ULL;
1274 writeq(val64, &bar0->tx_w_round_robin_4);
1275 break;
1276 case 6:
1277 val64 = 0x0001020304000102ULL;
1278 writeq(val64, &bar0->tx_w_round_robin_0);
1279 val64 = 0x0304050001020001ULL;
1280 writeq(val64, &bar0->tx_w_round_robin_1);
1281 val64 = 0x0203000100000102ULL;
1282 writeq(val64, &bar0->tx_w_round_robin_2);
1283 val64 = 0x0304000102030405ULL;
1284 writeq(val64, &bar0->tx_w_round_robin_3);
1285 val64 = 0x0001000200000000ULL;
1286 writeq(val64, &bar0->tx_w_round_robin_4);
1287 break;
1288 case 7:
1289 val64 = 0x0001020001020300ULL;
1290 writeq(val64, &bar0->tx_w_round_robin_0);
1291 val64 = 0x0102030400010203ULL;
1292 writeq(val64, &bar0->tx_w_round_robin_1);
1293 val64 = 0x0405060001020001ULL;
1294 writeq(val64, &bar0->tx_w_round_robin_2);
1295 val64 = 0x0304050000010200ULL;
1296 writeq(val64, &bar0->tx_w_round_robin_3);
1297 val64 = 0x0102030000000000ULL;
1298 writeq(val64, &bar0->tx_w_round_robin_4);
1299 break;
1300 case 8:
1301 val64 = 0x0001020300040105ULL;
1302 writeq(val64, &bar0->tx_w_round_robin_0);
1303 val64 = 0x0200030106000204ULL;
1304 writeq(val64, &bar0->tx_w_round_robin_1);
1305 val64 = 0x0103000502010007ULL;
1306 writeq(val64, &bar0->tx_w_round_robin_2);
1307 val64 = 0x0304010002060500ULL;
1308 writeq(val64, &bar0->tx_w_round_robin_3);
1309 val64 = 0x0103020400000000ULL;
1310 writeq(val64, &bar0->tx_w_round_robin_4);
1311 break;
1314 /* Enable all configured Tx FIFO partitions */
1315 val64 = readq(&bar0->tx_fifo_partition_0);
1316 val64 |= (TX_FIFO_PARTITION_EN);
1317 writeq(val64, &bar0->tx_fifo_partition_0);
1319 /* Filling the Rx round robin registers as per the
1320 * number of Rings and steering based on QoS.
1322 switch (config->rx_ring_num) {
1323 case 1:
1324 val64 = 0x8080808080808080ULL;
1325 writeq(val64, &bar0->rts_qos_steering);
1326 break;
1327 case 2:
1328 val64 = 0x0000010000010000ULL;
1329 writeq(val64, &bar0->rx_w_round_robin_0);
1330 val64 = 0x0100000100000100ULL;
1331 writeq(val64, &bar0->rx_w_round_robin_1);
1332 val64 = 0x0001000001000001ULL;
1333 writeq(val64, &bar0->rx_w_round_robin_2);
1334 val64 = 0x0000010000010000ULL;
1335 writeq(val64, &bar0->rx_w_round_robin_3);
1336 val64 = 0x0100000000000000ULL;
1337 writeq(val64, &bar0->rx_w_round_robin_4);
1339 val64 = 0x8080808040404040ULL;
1340 writeq(val64, &bar0->rts_qos_steering);
1341 break;
1342 case 3:
1343 val64 = 0x0001000102000001ULL;
1344 writeq(val64, &bar0->rx_w_round_robin_0);
1345 val64 = 0x0001020000010001ULL;
1346 writeq(val64, &bar0->rx_w_round_robin_1);
1347 val64 = 0x0200000100010200ULL;
1348 writeq(val64, &bar0->rx_w_round_robin_2);
1349 val64 = 0x0001000102000001ULL;
1350 writeq(val64, &bar0->rx_w_round_robin_3);
1351 val64 = 0x0001020000000000ULL;
1352 writeq(val64, &bar0->rx_w_round_robin_4);
1354 val64 = 0x8080804040402020ULL;
1355 writeq(val64, &bar0->rts_qos_steering);
1356 break;
1357 case 4:
1358 val64 = 0x0001020300010200ULL;
1359 writeq(val64, &bar0->rx_w_round_robin_0);
1360 val64 = 0x0100000102030001ULL;
1361 writeq(val64, &bar0->rx_w_round_robin_1);
1362 val64 = 0x0200010000010203ULL;
1363 writeq(val64, &bar0->rx_w_round_robin_2);
1364 val64 = 0x0001020001000001ULL;
1365 writeq(val64, &bar0->rx_w_round_robin_3);
1366 val64 = 0x0203000100000000ULL;
1367 writeq(val64, &bar0->rx_w_round_robin_4);
1369 val64 = 0x8080404020201010ULL;
1370 writeq(val64, &bar0->rts_qos_steering);
1371 break;
1372 case 5:
1373 val64 = 0x0001000203000102ULL;
1374 writeq(val64, &bar0->rx_w_round_robin_0);
1375 val64 = 0x0001020001030004ULL;
1376 writeq(val64, &bar0->rx_w_round_robin_1);
1377 val64 = 0x0001000203000102ULL;
1378 writeq(val64, &bar0->rx_w_round_robin_2);
1379 val64 = 0x0001020001030004ULL;
1380 writeq(val64, &bar0->rx_w_round_robin_3);
1381 val64 = 0x0001000000000000ULL;
1382 writeq(val64, &bar0->rx_w_round_robin_4);
1384 val64 = 0x8080404020201008ULL;
1385 writeq(val64, &bar0->rts_qos_steering);
1386 break;
1387 case 6:
1388 val64 = 0x0001020304000102ULL;
1389 writeq(val64, &bar0->rx_w_round_robin_0);
1390 val64 = 0x0304050001020001ULL;
1391 writeq(val64, &bar0->rx_w_round_robin_1);
1392 val64 = 0x0203000100000102ULL;
1393 writeq(val64, &bar0->rx_w_round_robin_2);
1394 val64 = 0x0304000102030405ULL;
1395 writeq(val64, &bar0->rx_w_round_robin_3);
1396 val64 = 0x0001000200000000ULL;
1397 writeq(val64, &bar0->rx_w_round_robin_4);
1399 val64 = 0x8080404020100804ULL;
1400 writeq(val64, &bar0->rts_qos_steering);
1401 break;
1402 case 7:
1403 val64 = 0x0001020001020300ULL;
1404 writeq(val64, &bar0->rx_w_round_robin_0);
1405 val64 = 0x0102030400010203ULL;
1406 writeq(val64, &bar0->rx_w_round_robin_1);
1407 val64 = 0x0405060001020001ULL;
1408 writeq(val64, &bar0->rx_w_round_robin_2);
1409 val64 = 0x0304050000010200ULL;
1410 writeq(val64, &bar0->rx_w_round_robin_3);
1411 val64 = 0x0102030000000000ULL;
1412 writeq(val64, &bar0->rx_w_round_robin_4);
1414 val64 = 0x8080402010080402ULL;
1415 writeq(val64, &bar0->rts_qos_steering);
1416 break;
1417 case 8:
1418 val64 = 0x0001020300040105ULL;
1419 writeq(val64, &bar0->rx_w_round_robin_0);
1420 val64 = 0x0200030106000204ULL;
1421 writeq(val64, &bar0->rx_w_round_robin_1);
1422 val64 = 0x0103000502010007ULL;
1423 writeq(val64, &bar0->rx_w_round_robin_2);
1424 val64 = 0x0304010002060500ULL;
1425 writeq(val64, &bar0->rx_w_round_robin_3);
1426 val64 = 0x0103020400000000ULL;
1427 writeq(val64, &bar0->rx_w_round_robin_4);
1429 val64 = 0x8040201008040201ULL;
1430 writeq(val64, &bar0->rts_qos_steering);
1431 break;
1434 /* UDP Fix */
1435 val64 = 0;
1436 for (i = 0; i < 8; i++)
1437 writeq(val64, &bar0->rts_frm_len_n[i]);
1439 /* Set the default rts frame length for the rings configured */
1440 val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
1441 for (i = 0 ; i < config->rx_ring_num ; i++)
1442 writeq(val64, &bar0->rts_frm_len_n[i]);
1444 /* Set the frame length for the configured rings
1445 * desired by the user
1447 for (i = 0; i < config->rx_ring_num; i++) {
1448 /* If rts_frm_len[i] == 0 then it is assumed that user not
1449 * specified frame length steering.
1450 * If the user provides the frame length then program
1451 * the rts_frm_len register for those values or else
1452 * leave it as it is.
1454 if (rts_frm_len[i] != 0) {
1455 writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
1456 &bar0->rts_frm_len_n[i]);
1460 /* Disable differentiated services steering logic */
1461 for (i = 0; i < 64; i++) {
1462 if (rts_ds_steer(nic, i, 0) == FAILURE) {
1463 DBG_PRINT(ERR_DBG, "%s: failed rts ds steering",
1464 dev->name);
1465 DBG_PRINT(ERR_DBG, "set on codepoint %d\n", i);
1466 return FAILURE;
1470 /* Program statistics memory */
1471 writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
1473 if (nic->device_type == XFRAME_II_DEVICE) {
1474 val64 = STAT_BC(0x320);
1475 writeq(val64, &bar0->stat_byte_cnt);
1479 * Initializing the sampling rate for the device to calculate the
1480 * bandwidth utilization.
1482 val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
1483 MAC_RX_LINK_UTIL_VAL(rmac_util_period);
1484 writeq(val64, &bar0->mac_link_util);
1488 * Initializing the Transmit and Receive Traffic Interrupt
1489 * Scheme.
1492 * TTI Initialization. Default Tx timer gets us about
1493 * 250 interrupts per sec. Continuous interrupts are enabled
1494 * by default.
1496 if (nic->device_type == XFRAME_II_DEVICE) {
1497 int count = (nic->config.bus_speed * 125)/2;
1498 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
1499 } else {
1501 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1503 val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1504 TTI_DATA1_MEM_TX_URNG_B(0x10) |
1505 TTI_DATA1_MEM_TX_URNG_C(0x30) | TTI_DATA1_MEM_TX_TIMER_AC_EN;
1506 if (use_continuous_tx_intrs)
1507 val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
1508 writeq(val64, &bar0->tti_data1_mem);
1510 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1511 TTI_DATA2_MEM_TX_UFC_B(0x20) |
1512 TTI_DATA2_MEM_TX_UFC_C(0x40) | TTI_DATA2_MEM_TX_UFC_D(0x80);
1513 writeq(val64, &bar0->tti_data2_mem);
1515 val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD;
1516 writeq(val64, &bar0->tti_command_mem);
1519 * Once the operation completes, the Strobe bit of the command
1520 * register will be reset. We poll for this particular condition
1521 * We wait for a maximum of 500ms for the operation to complete,
1522 * if it's not complete by then we return error.
1524 time = 0;
1525 while (TRUE) {
1526 val64 = readq(&bar0->tti_command_mem);
1527 if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) {
1528 break;
1530 if (time > 10) {
1531 DBG_PRINT(ERR_DBG, "%s: TTI init Failed\n",
1532 dev->name);
1533 return -1;
1535 msleep(50);
1536 time++;
1539 if (nic->config.bimodal) {
1540 int k = 0;
1541 for (k = 0; k < config->rx_ring_num; k++) {
1542 val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD;
1543 val64 |= TTI_CMD_MEM_OFFSET(0x38+k);
1544 writeq(val64, &bar0->tti_command_mem);
1547 * Once the operation completes, the Strobe bit of the command
1548 * register will be reset. We poll for this particular condition
1549 * We wait for a maximum of 500ms for the operation to complete,
1550 * if it's not complete by then we return error.
1552 time = 0;
1553 while (TRUE) {
1554 val64 = readq(&bar0->tti_command_mem);
1555 if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) {
1556 break;
1558 if (time > 10) {
1559 DBG_PRINT(ERR_DBG,
1560 "%s: TTI init Failed\n",
1561 dev->name);
1562 return -1;
1564 time++;
1565 msleep(50);
1568 } else {
1570 /* RTI Initialization */
1571 if (nic->device_type == XFRAME_II_DEVICE) {
1573 * Programmed to generate Apprx 500 Intrs per
1574 * second
1576 int count = (nic->config.bus_speed * 125)/4;
1577 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
1578 } else {
1579 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1581 val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1582 RTI_DATA1_MEM_RX_URNG_B(0x10) |
1583 RTI_DATA1_MEM_RX_URNG_C(0x30) | RTI_DATA1_MEM_RX_TIMER_AC_EN;
1585 writeq(val64, &bar0->rti_data1_mem);
1587 val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
1588 RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1589 if (nic->intr_type == MSI_X)
1590 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) | \
1591 RTI_DATA2_MEM_RX_UFC_D(0x40));
1592 else
1593 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) | \
1594 RTI_DATA2_MEM_RX_UFC_D(0x80));
1595 writeq(val64, &bar0->rti_data2_mem);
1597 for (i = 0; i < config->rx_ring_num; i++) {
1598 val64 = RTI_CMD_MEM_WE | RTI_CMD_MEM_STROBE_NEW_CMD
1599 | RTI_CMD_MEM_OFFSET(i);
1600 writeq(val64, &bar0->rti_command_mem);
1603 * Once the operation completes, the Strobe bit of the
1604 * command register will be reset. We poll for this
1605 * particular condition. We wait for a maximum of 500ms
1606 * for the operation to complete, if it's not complete
1607 * by then we return error.
1609 time = 0;
1610 while (TRUE) {
1611 val64 = readq(&bar0->rti_command_mem);
1612 if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD)) {
1613 break;
1615 if (time > 10) {
1616 DBG_PRINT(ERR_DBG, "%s: RTI init Failed\n",
1617 dev->name);
1618 return -1;
1620 time++;
1621 msleep(50);
1627 * Initializing proper values as Pause threshold into all
1628 * the 8 Queues on Rx side.
1630 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
1631 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
1633 /* Disable RMAC PAD STRIPPING */
1634 add = &bar0->mac_cfg;
1635 val64 = readq(&bar0->mac_cfg);
1636 val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
1637 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1638 writel((u32) (val64), add);
1639 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1640 writel((u32) (val64 >> 32), (add + 4));
1641 val64 = readq(&bar0->mac_cfg);
1643 /* Enable FCS stripping by adapter */
1644 add = &bar0->mac_cfg;
1645 val64 = readq(&bar0->mac_cfg);
1646 val64 |= MAC_CFG_RMAC_STRIP_FCS;
1647 if (nic->device_type == XFRAME_II_DEVICE)
1648 writeq(val64, &bar0->mac_cfg);
1649 else {
1650 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1651 writel((u32) (val64), add);
1652 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1653 writel((u32) (val64 >> 32), (add + 4));
1657 * Set the time value to be inserted in the pause frame
1658 * generated by xena.
1660 val64 = readq(&bar0->rmac_pause_cfg);
1661 val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1662 val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
1663 writeq(val64, &bar0->rmac_pause_cfg);
1666 * Set the Threshold Limit for Generating the pause frame
1667 * If the amount of data in any Queue exceeds ratio of
1668 * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1669 * pause frame is generated
1671 val64 = 0;
1672 for (i = 0; i < 4; i++) {
1673 val64 |=
1674 (((u64) 0xFF00 | nic->mac_control.
1675 mc_pause_threshold_q0q3)
1676 << (i * 2 * 8));
1678 writeq(val64, &bar0->mc_pause_thresh_q0q3);
1680 val64 = 0;
1681 for (i = 0; i < 4; i++) {
1682 val64 |=
1683 (((u64) 0xFF00 | nic->mac_control.
1684 mc_pause_threshold_q4q7)
1685 << (i * 2 * 8));
1687 writeq(val64, &bar0->mc_pause_thresh_q4q7);
1690 * TxDMA will stop Read request if the number of read split has
1691 * exceeded the limit pointed by shared_splits
1693 val64 = readq(&bar0->pic_control);
1694 val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
1695 writeq(val64, &bar0->pic_control);
1697 if (nic->config.bus_speed == 266) {
1698 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
1699 writeq(0x0, &bar0->read_retry_delay);
1700 writeq(0x0, &bar0->write_retry_delay);
1704 * Programming the Herc to split every write transaction
1705 * that does not start on an ADB to reduce disconnects.
1707 if (nic->device_type == XFRAME_II_DEVICE) {
1708 val64 = FAULT_BEHAVIOUR | EXT_REQ_EN |
1709 MISC_LINK_STABILITY_PRD(3);
1710 writeq(val64, &bar0->misc_control);
1711 val64 = readq(&bar0->pic_control2);
1712 val64 &= ~(BIT(13)|BIT(14)|BIT(15));
1713 writeq(val64, &bar0->pic_control2);
1715 if (strstr(nic->product_name, "CX4")) {
1716 val64 = TMAC_AVG_IPG(0x17);
1717 writeq(val64, &bar0->tmac_avg_ipg);
1720 return SUCCESS;
1722 #define LINK_UP_DOWN_INTERRUPT 1
1723 #define MAC_RMAC_ERR_TIMER 2
1725 static int s2io_link_fault_indication(struct s2io_nic *nic)
1727 if (nic->intr_type != INTA)
1728 return MAC_RMAC_ERR_TIMER;
1729 if (nic->device_type == XFRAME_II_DEVICE)
1730 return LINK_UP_DOWN_INTERRUPT;
1731 else
1732 return MAC_RMAC_ERR_TIMER;
1736 * en_dis_able_nic_intrs - Enable or Disable the interrupts
1737 * @nic: device private variable,
1738 * @mask: A mask indicating which Intr block must be modified and,
1739 * @flag: A flag indicating whether to enable or disable the Intrs.
1740 * Description: This function will either disable or enable the interrupts
1741 * depending on the flag argument. The mask argument can be used to
1742 * enable/disable any Intr block.
1743 * Return Value: NONE.
1746 static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
1748 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1749 register u64 val64 = 0, temp64 = 0;
1751 /* Top level interrupt classification */
1752 /* PIC Interrupts */
1753 if ((mask & (TX_PIC_INTR | RX_PIC_INTR))) {
1754 /* Enable PIC Intrs in the general intr mask register */
1755 val64 = TXPIC_INT_M;
1756 if (flag == ENABLE_INTRS) {
1757 temp64 = readq(&bar0->general_int_mask);
1758 temp64 &= ~((u64) val64);
1759 writeq(temp64, &bar0->general_int_mask);
1761 * If Hercules adapter enable GPIO otherwise
1762 * disable all PCIX, Flash, MDIO, IIC and GPIO
1763 * interrupts for now.
1764 * TODO
1766 if (s2io_link_fault_indication(nic) ==
1767 LINK_UP_DOWN_INTERRUPT ) {
1768 temp64 = readq(&bar0->pic_int_mask);
1769 temp64 &= ~((u64) PIC_INT_GPIO);
1770 writeq(temp64, &bar0->pic_int_mask);
1771 temp64 = readq(&bar0->gpio_int_mask);
1772 temp64 &= ~((u64) GPIO_INT_MASK_LINK_UP);
1773 writeq(temp64, &bar0->gpio_int_mask);
1774 } else {
1775 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1778 * No MSI Support is available presently, so TTI and
1779 * RTI interrupts are also disabled.
1781 } else if (flag == DISABLE_INTRS) {
1783 * Disable PIC Intrs in the general
1784 * intr mask register
1786 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1787 temp64 = readq(&bar0->general_int_mask);
1788 val64 |= temp64;
1789 writeq(val64, &bar0->general_int_mask);
1793 /* MAC Interrupts */
1794 /* Enabling/Disabling MAC interrupts */
1795 if (mask & (TX_MAC_INTR | RX_MAC_INTR)) {
1796 val64 = TXMAC_INT_M | RXMAC_INT_M;
1797 if (flag == ENABLE_INTRS) {
1798 temp64 = readq(&bar0->general_int_mask);
1799 temp64 &= ~((u64) val64);
1800 writeq(temp64, &bar0->general_int_mask);
1802 * All MAC block error interrupts are disabled for now
1803 * TODO
1805 } else if (flag == DISABLE_INTRS) {
1807 * Disable MAC Intrs in the general intr mask register
1809 writeq(DISABLE_ALL_INTRS, &bar0->mac_int_mask);
1810 writeq(DISABLE_ALL_INTRS,
1811 &bar0->mac_rmac_err_mask);
1813 temp64 = readq(&bar0->general_int_mask);
1814 val64 |= temp64;
1815 writeq(val64, &bar0->general_int_mask);
1819 /* Tx traffic interrupts */
1820 if (mask & TX_TRAFFIC_INTR) {
1821 val64 = TXTRAFFIC_INT_M;
1822 if (flag == ENABLE_INTRS) {
1823 temp64 = readq(&bar0->general_int_mask);
1824 temp64 &= ~((u64) val64);
1825 writeq(temp64, &bar0->general_int_mask);
1827 * Enable all the Tx side interrupts
1828 * writing 0 Enables all 64 TX interrupt levels
1830 writeq(0x0, &bar0->tx_traffic_mask);
1831 } else if (flag == DISABLE_INTRS) {
1833 * Disable Tx Traffic Intrs in the general intr mask
1834 * register.
1836 writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
1837 temp64 = readq(&bar0->general_int_mask);
1838 val64 |= temp64;
1839 writeq(val64, &bar0->general_int_mask);
1843 /* Rx traffic interrupts */
1844 if (mask & RX_TRAFFIC_INTR) {
1845 val64 = RXTRAFFIC_INT_M;
1846 if (flag == ENABLE_INTRS) {
1847 temp64 = readq(&bar0->general_int_mask);
1848 temp64 &= ~((u64) val64);
1849 writeq(temp64, &bar0->general_int_mask);
1850 /* writing 0 Enables all 8 RX interrupt levels */
1851 writeq(0x0, &bar0->rx_traffic_mask);
1852 } else if (flag == DISABLE_INTRS) {
1854 * Disable Rx Traffic Intrs in the general intr mask
1855 * register.
1857 writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
1858 temp64 = readq(&bar0->general_int_mask);
1859 val64 |= temp64;
1860 writeq(val64, &bar0->general_int_mask);
1866 * verify_pcc_quiescent- Checks for PCC quiescent state
1867 * Return: 1 If PCC is quiescence
1868 * 0 If PCC is not quiescence
1870 static int verify_pcc_quiescent(struct s2io_nic *sp, int flag)
1872 int ret = 0, herc;
1873 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1874 u64 val64 = readq(&bar0->adapter_status);
1876 herc = (sp->device_type == XFRAME_II_DEVICE);
1878 if (flag == FALSE) {
1879 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
1880 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE))
1881 ret = 1;
1882 } else {
1883 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
1884 ret = 1;
1886 } else {
1887 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
1888 if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
1889 ADAPTER_STATUS_RMAC_PCC_IDLE))
1890 ret = 1;
1891 } else {
1892 if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
1893 ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
1894 ret = 1;
1898 return ret;
1901 * verify_xena_quiescence - Checks whether the H/W is ready
1902 * Description: Returns whether the H/W is ready to go or not. Depending
1903 * on whether adapter enable bit was written or not the comparison
1904 * differs and the calling function passes the input argument flag to
1905 * indicate this.
1906 * Return: 1 If xena is quiescence
1907 * 0 If Xena is not quiescence
1910 static int verify_xena_quiescence(struct s2io_nic *sp)
1912 int mode;
1913 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1914 u64 val64 = readq(&bar0->adapter_status);
1915 mode = s2io_verify_pci_mode(sp);
1917 if (!(val64 & ADAPTER_STATUS_TDMA_READY)) {
1918 DBG_PRINT(ERR_DBG, "%s", "TDMA is not ready!");
1919 return 0;
1921 if (!(val64 & ADAPTER_STATUS_RDMA_READY)) {
1922 DBG_PRINT(ERR_DBG, "%s", "RDMA is not ready!");
1923 return 0;
1925 if (!(val64 & ADAPTER_STATUS_PFC_READY)) {
1926 DBG_PRINT(ERR_DBG, "%s", "PFC is not ready!");
1927 return 0;
1929 if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) {
1930 DBG_PRINT(ERR_DBG, "%s", "TMAC BUF is not empty!");
1931 return 0;
1933 if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) {
1934 DBG_PRINT(ERR_DBG, "%s", "PIC is not QUIESCENT!");
1935 return 0;
1937 if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) {
1938 DBG_PRINT(ERR_DBG, "%s", "MC_DRAM is not ready!");
1939 return 0;
1941 if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) {
1942 DBG_PRINT(ERR_DBG, "%s", "MC_QUEUES is not ready!");
1943 return 0;
1945 if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) {
1946 DBG_PRINT(ERR_DBG, "%s", "M_PLL is not locked!");
1947 return 0;
1951 * In PCI 33 mode, the P_PLL is not used, and therefore,
1952 * the the P_PLL_LOCK bit in the adapter_status register will
1953 * not be asserted.
1955 if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) &&
1956 sp->device_type == XFRAME_II_DEVICE && mode !=
1957 PCI_MODE_PCI_33) {
1958 DBG_PRINT(ERR_DBG, "%s", "P_PLL is not locked!");
1959 return 0;
1961 if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
1962 ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
1963 DBG_PRINT(ERR_DBG, "%s", "RC_PRC is not QUIESCENT!");
1964 return 0;
1966 return 1;
1970 * fix_mac_address - Fix for Mac addr problem on Alpha platforms
1971 * @sp: Pointer to device specifc structure
1972 * Description :
1973 * New procedure to clear mac address reading problems on Alpha platforms
1977 static void fix_mac_address(struct s2io_nic * sp)
1979 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1980 u64 val64;
1981 int i = 0;
1983 while (fix_mac[i] != END_SIGN) {
1984 writeq(fix_mac[i++], &bar0->gpio_control);
1985 udelay(10);
1986 val64 = readq(&bar0->gpio_control);
1991 * start_nic - Turns the device on
1992 * @nic : device private variable.
1993 * Description:
1994 * This function actually turns the device on. Before this function is
1995 * called,all Registers are configured from their reset states
1996 * and shared memory is allocated but the NIC is still quiescent. On
1997 * calling this function, the device interrupts are cleared and the NIC is
1998 * literally switched on by writing into the adapter control register.
1999 * Return Value:
2000 * SUCCESS on success and -1 on failure.
2003 static int start_nic(struct s2io_nic *nic)
2005 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2006 struct net_device *dev = nic->dev;
2007 register u64 val64 = 0;
2008 u16 subid, i;
2009 struct mac_info *mac_control;
2010 struct config_param *config;
2012 mac_control = &nic->mac_control;
2013 config = &nic->config;
2015 /* PRC Initialization and configuration */
2016 for (i = 0; i < config->rx_ring_num; i++) {
2017 writeq((u64) mac_control->rings[i].rx_blocks[0].block_dma_addr,
2018 &bar0->prc_rxd0_n[i]);
2020 val64 = readq(&bar0->prc_ctrl_n[i]);
2021 if (nic->config.bimodal)
2022 val64 |= PRC_CTRL_BIMODAL_INTERRUPT;
2023 if (nic->rxd_mode == RXD_MODE_1)
2024 val64 |= PRC_CTRL_RC_ENABLED;
2025 else
2026 val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
2027 if (nic->device_type == XFRAME_II_DEVICE)
2028 val64 |= PRC_CTRL_GROUP_READS;
2029 val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
2030 val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
2031 writeq(val64, &bar0->prc_ctrl_n[i]);
2034 if (nic->rxd_mode == RXD_MODE_3B) {
2035 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
2036 val64 = readq(&bar0->rx_pa_cfg);
2037 val64 |= RX_PA_CFG_IGNORE_L2_ERR;
2038 writeq(val64, &bar0->rx_pa_cfg);
2041 if (vlan_tag_strip == 0) {
2042 val64 = readq(&bar0->rx_pa_cfg);
2043 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
2044 writeq(val64, &bar0->rx_pa_cfg);
2045 vlan_strip_flag = 0;
2049 * Enabling MC-RLDRAM. After enabling the device, we timeout
2050 * for around 100ms, which is approximately the time required
2051 * for the device to be ready for operation.
2053 val64 = readq(&bar0->mc_rldram_mrs);
2054 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
2055 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
2056 val64 = readq(&bar0->mc_rldram_mrs);
2058 msleep(100); /* Delay by around 100 ms. */
2060 /* Enabling ECC Protection. */
2061 val64 = readq(&bar0->adapter_control);
2062 val64 &= ~ADAPTER_ECC_EN;
2063 writeq(val64, &bar0->adapter_control);
2066 * Clearing any possible Link state change interrupts that
2067 * could have popped up just before Enabling the card.
2069 val64 = readq(&bar0->mac_rmac_err_reg);
2070 if (val64)
2071 writeq(val64, &bar0->mac_rmac_err_reg);
2074 * Verify if the device is ready to be enabled, if so enable
2075 * it.
2077 val64 = readq(&bar0->adapter_status);
2078 if (!verify_xena_quiescence(nic)) {
2079 DBG_PRINT(ERR_DBG, "%s: device is not ready, ", dev->name);
2080 DBG_PRINT(ERR_DBG, "Adapter status reads: 0x%llx\n",
2081 (unsigned long long) val64);
2082 return FAILURE;
2086 * With some switches, link might be already up at this point.
2087 * Because of this weird behavior, when we enable laser,
2088 * we may not get link. We need to handle this. We cannot
2089 * figure out which switch is misbehaving. So we are forced to
2090 * make a global change.
2093 /* Enabling Laser. */
2094 val64 = readq(&bar0->adapter_control);
2095 val64 |= ADAPTER_EOI_TX_ON;
2096 writeq(val64, &bar0->adapter_control);
2098 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
2100 * Dont see link state interrupts initally on some switches,
2101 * so directly scheduling the link state task here.
2103 schedule_work(&nic->set_link_task);
2105 /* SXE-002: Initialize link and activity LED */
2106 subid = nic->pdev->subsystem_device;
2107 if (((subid & 0xFF) >= 0x07) &&
2108 (nic->device_type == XFRAME_I_DEVICE)) {
2109 val64 = readq(&bar0->gpio_control);
2110 val64 |= 0x0000800000000000ULL;
2111 writeq(val64, &bar0->gpio_control);
2112 val64 = 0x0411040400000000ULL;
2113 writeq(val64, (void __iomem *)bar0 + 0x2700);
2116 return SUCCESS;
2119 * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2121 static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data, struct \
2122 TxD *txdlp, int get_off)
2124 struct s2io_nic *nic = fifo_data->nic;
2125 struct sk_buff *skb;
2126 struct TxD *txds;
2127 u16 j, frg_cnt;
2129 txds = txdlp;
2130 if (txds->Host_Control == (u64)(long)nic->ufo_in_band_v) {
2131 pci_unmap_single(nic->pdev, (dma_addr_t)
2132 txds->Buffer_Pointer, sizeof(u64),
2133 PCI_DMA_TODEVICE);
2134 txds++;
2137 skb = (struct sk_buff *) ((unsigned long)
2138 txds->Host_Control);
2139 if (!skb) {
2140 memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
2141 return NULL;
2143 pci_unmap_single(nic->pdev, (dma_addr_t)
2144 txds->Buffer_Pointer,
2145 skb->len - skb->data_len,
2146 PCI_DMA_TODEVICE);
2147 frg_cnt = skb_shinfo(skb)->nr_frags;
2148 if (frg_cnt) {
2149 txds++;
2150 for (j = 0; j < frg_cnt; j++, txds++) {
2151 skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
2152 if (!txds->Buffer_Pointer)
2153 break;
2154 pci_unmap_page(nic->pdev, (dma_addr_t)
2155 txds->Buffer_Pointer,
2156 frag->size, PCI_DMA_TODEVICE);
2159 memset(txdlp,0, (sizeof(struct TxD) * fifo_data->max_txds));
2160 return(skb);
2164 * free_tx_buffers - Free all queued Tx buffers
2165 * @nic : device private variable.
2166 * Description:
2167 * Free all queued Tx buffers.
2168 * Return Value: void
2171 static void free_tx_buffers(struct s2io_nic *nic)
2173 struct net_device *dev = nic->dev;
2174 struct sk_buff *skb;
2175 struct TxD *txdp;
2176 int i, j;
2177 struct mac_info *mac_control;
2178 struct config_param *config;
2179 int cnt = 0;
2181 mac_control = &nic->mac_control;
2182 config = &nic->config;
2184 for (i = 0; i < config->tx_fifo_num; i++) {
2185 for (j = 0; j < config->tx_cfg[i].fifo_len - 1; j++) {
2186 txdp = (struct TxD *) \
2187 mac_control->fifos[i].list_info[j].list_virt_addr;
2188 skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
2189 if (skb) {
2190 nic->mac_control.stats_info->sw_stat.mem_freed
2191 += skb->truesize;
2192 dev_kfree_skb(skb);
2193 cnt++;
2196 DBG_PRINT(INTR_DBG,
2197 "%s:forcibly freeing %d skbs on FIFO%d\n",
2198 dev->name, cnt, i);
2199 mac_control->fifos[i].tx_curr_get_info.offset = 0;
2200 mac_control->fifos[i].tx_curr_put_info.offset = 0;
2205 * stop_nic - To stop the nic
2206 * @nic ; device private variable.
2207 * Description:
2208 * This function does exactly the opposite of what the start_nic()
2209 * function does. This function is called to stop the device.
2210 * Return Value:
2211 * void.
2214 static void stop_nic(struct s2io_nic *nic)
2216 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2217 register u64 val64 = 0;
2218 u16 interruptible;
2219 struct mac_info *mac_control;
2220 struct config_param *config;
2222 mac_control = &nic->mac_control;
2223 config = &nic->config;
2225 /* Disable all interrupts */
2226 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
2227 interruptible |= TX_PIC_INTR | RX_PIC_INTR;
2228 interruptible |= TX_MAC_INTR | RX_MAC_INTR;
2229 en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
2231 /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2232 val64 = readq(&bar0->adapter_control);
2233 val64 &= ~(ADAPTER_CNTL_EN);
2234 writeq(val64, &bar0->adapter_control);
2238 * fill_rx_buffers - Allocates the Rx side skbs
2239 * @nic: device private variable
2240 * @ring_no: ring number
2241 * Description:
2242 * The function allocates Rx side skbs and puts the physical
2243 * address of these buffers into the RxD buffer pointers, so that the NIC
2244 * can DMA the received frame into these locations.
2245 * The NIC supports 3 receive modes, viz
2246 * 1. single buffer,
2247 * 2. three buffer and
2248 * 3. Five buffer modes.
2249 * Each mode defines how many fragments the received frame will be split
2250 * up into by the NIC. The frame is split into L3 header, L4 Header,
2251 * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2252 * is split into 3 fragments. As of now only single buffer mode is
2253 * supported.
2254 * Return Value:
2255 * SUCCESS on success or an appropriate -ve value on failure.
2258 static int fill_rx_buffers(struct s2io_nic *nic, int ring_no)
2260 struct net_device *dev = nic->dev;
2261 struct sk_buff *skb;
2262 struct RxD_t *rxdp;
2263 int off, off1, size, block_no, block_no1;
2264 u32 alloc_tab = 0;
2265 u32 alloc_cnt;
2266 struct mac_info *mac_control;
2267 struct config_param *config;
2268 u64 tmp;
2269 struct buffAdd *ba;
2270 unsigned long flags;
2271 struct RxD_t *first_rxdp = NULL;
2272 u64 Buffer0_ptr = 0, Buffer1_ptr = 0;
2273 struct RxD1 *rxdp1;
2274 struct RxD3 *rxdp3;
2275 struct swStat *stats = &nic->mac_control.stats_info->sw_stat;
2277 mac_control = &nic->mac_control;
2278 config = &nic->config;
2279 alloc_cnt = mac_control->rings[ring_no].pkt_cnt -
2280 atomic_read(&nic->rx_bufs_left[ring_no]);
2282 block_no1 = mac_control->rings[ring_no].rx_curr_get_info.block_index;
2283 off1 = mac_control->rings[ring_no].rx_curr_get_info.offset;
2284 while (alloc_tab < alloc_cnt) {
2285 block_no = mac_control->rings[ring_no].rx_curr_put_info.
2286 block_index;
2287 off = mac_control->rings[ring_no].rx_curr_put_info.offset;
2289 rxdp = mac_control->rings[ring_no].
2290 rx_blocks[block_no].rxds[off].virt_addr;
2292 if ((block_no == block_no1) && (off == off1) &&
2293 (rxdp->Host_Control)) {
2294 DBG_PRINT(INTR_DBG, "%s: Get and Put",
2295 dev->name);
2296 DBG_PRINT(INTR_DBG, " info equated\n");
2297 goto end;
2299 if (off && (off == rxd_count[nic->rxd_mode])) {
2300 mac_control->rings[ring_no].rx_curr_put_info.
2301 block_index++;
2302 if (mac_control->rings[ring_no].rx_curr_put_info.
2303 block_index == mac_control->rings[ring_no].
2304 block_count)
2305 mac_control->rings[ring_no].rx_curr_put_info.
2306 block_index = 0;
2307 block_no = mac_control->rings[ring_no].
2308 rx_curr_put_info.block_index;
2309 if (off == rxd_count[nic->rxd_mode])
2310 off = 0;
2311 mac_control->rings[ring_no].rx_curr_put_info.
2312 offset = off;
2313 rxdp = mac_control->rings[ring_no].
2314 rx_blocks[block_no].block_virt_addr;
2315 DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
2316 dev->name, rxdp);
2318 if(!napi) {
2319 spin_lock_irqsave(&nic->put_lock, flags);
2320 mac_control->rings[ring_no].put_pos =
2321 (block_no * (rxd_count[nic->rxd_mode] + 1)) + off;
2322 spin_unlock_irqrestore(&nic->put_lock, flags);
2323 } else {
2324 mac_control->rings[ring_no].put_pos =
2325 (block_no * (rxd_count[nic->rxd_mode] + 1)) + off;
2327 if ((rxdp->Control_1 & RXD_OWN_XENA) &&
2328 ((nic->rxd_mode == RXD_MODE_3B) &&
2329 (rxdp->Control_2 & BIT(0)))) {
2330 mac_control->rings[ring_no].rx_curr_put_info.
2331 offset = off;
2332 goto end;
2334 /* calculate size of skb based on ring mode */
2335 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
2336 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
2337 if (nic->rxd_mode == RXD_MODE_1)
2338 size += NET_IP_ALIGN;
2339 else
2340 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
2342 /* allocate skb */
2343 skb = dev_alloc_skb(size);
2344 if(!skb) {
2345 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
2346 DBG_PRINT(INFO_DBG, "memory to allocate SKBs\n");
2347 if (first_rxdp) {
2348 wmb();
2349 first_rxdp->Control_1 |= RXD_OWN_XENA;
2351 nic->mac_control.stats_info->sw_stat. \
2352 mem_alloc_fail_cnt++;
2353 return -ENOMEM ;
2355 nic->mac_control.stats_info->sw_stat.mem_allocated
2356 += skb->truesize;
2357 if (nic->rxd_mode == RXD_MODE_1) {
2358 /* 1 buffer mode - normal operation mode */
2359 rxdp1 = (struct RxD1*)rxdp;
2360 memset(rxdp, 0, sizeof(struct RxD1));
2361 skb_reserve(skb, NET_IP_ALIGN);
2362 rxdp1->Buffer0_ptr = pci_map_single
2363 (nic->pdev, skb->data, size - NET_IP_ALIGN,
2364 PCI_DMA_FROMDEVICE);
2365 if( (rxdp1->Buffer0_ptr == 0) ||
2366 (rxdp1->Buffer0_ptr ==
2367 DMA_ERROR_CODE))
2368 goto pci_map_failed;
2370 rxdp->Control_2 =
2371 SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
2373 } else if (nic->rxd_mode == RXD_MODE_3B) {
2375 * 2 buffer mode -
2376 * 2 buffer mode provides 128
2377 * byte aligned receive buffers.
2380 rxdp3 = (struct RxD3*)rxdp;
2381 /* save buffer pointers to avoid frequent dma mapping */
2382 Buffer0_ptr = rxdp3->Buffer0_ptr;
2383 Buffer1_ptr = rxdp3->Buffer1_ptr;
2384 memset(rxdp, 0, sizeof(struct RxD3));
2385 /* restore the buffer pointers for dma sync*/
2386 rxdp3->Buffer0_ptr = Buffer0_ptr;
2387 rxdp3->Buffer1_ptr = Buffer1_ptr;
2389 ba = &mac_control->rings[ring_no].ba[block_no][off];
2390 skb_reserve(skb, BUF0_LEN);
2391 tmp = (u64)(unsigned long) skb->data;
2392 tmp += ALIGN_SIZE;
2393 tmp &= ~ALIGN_SIZE;
2394 skb->data = (void *) (unsigned long)tmp;
2395 skb_reset_tail_pointer(skb);
2397 if (!(rxdp3->Buffer0_ptr))
2398 rxdp3->Buffer0_ptr =
2399 pci_map_single(nic->pdev, ba->ba_0, BUF0_LEN,
2400 PCI_DMA_FROMDEVICE);
2401 else
2402 pci_dma_sync_single_for_device(nic->pdev,
2403 (dma_addr_t) rxdp3->Buffer0_ptr,
2404 BUF0_LEN, PCI_DMA_FROMDEVICE);
2405 if( (rxdp3->Buffer0_ptr == 0) ||
2406 (rxdp3->Buffer0_ptr == DMA_ERROR_CODE))
2407 goto pci_map_failed;
2409 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
2410 if (nic->rxd_mode == RXD_MODE_3B) {
2411 /* Two buffer mode */
2414 * Buffer2 will have L3/L4 header plus
2415 * L4 payload
2417 rxdp3->Buffer2_ptr = pci_map_single
2418 (nic->pdev, skb->data, dev->mtu + 4,
2419 PCI_DMA_FROMDEVICE);
2421 if( (rxdp3->Buffer2_ptr == 0) ||
2422 (rxdp3->Buffer2_ptr == DMA_ERROR_CODE))
2423 goto pci_map_failed;
2425 rxdp3->Buffer1_ptr =
2426 pci_map_single(nic->pdev,
2427 ba->ba_1, BUF1_LEN,
2428 PCI_DMA_FROMDEVICE);
2429 if( (rxdp3->Buffer1_ptr == 0) ||
2430 (rxdp3->Buffer1_ptr == DMA_ERROR_CODE)) {
2431 pci_unmap_single
2432 (nic->pdev,
2433 (dma_addr_t)rxdp3->Buffer2_ptr,
2434 dev->mtu + 4,
2435 PCI_DMA_FROMDEVICE);
2436 goto pci_map_failed;
2438 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
2439 rxdp->Control_2 |= SET_BUFFER2_SIZE_3
2440 (dev->mtu + 4);
2442 rxdp->Control_2 |= BIT(0);
2444 rxdp->Host_Control = (unsigned long) (skb);
2445 if (alloc_tab & ((1 << rxsync_frequency) - 1))
2446 rxdp->Control_1 |= RXD_OWN_XENA;
2447 off++;
2448 if (off == (rxd_count[nic->rxd_mode] + 1))
2449 off = 0;
2450 mac_control->rings[ring_no].rx_curr_put_info.offset = off;
2452 rxdp->Control_2 |= SET_RXD_MARKER;
2453 if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
2454 if (first_rxdp) {
2455 wmb();
2456 first_rxdp->Control_1 |= RXD_OWN_XENA;
2458 first_rxdp = rxdp;
2460 atomic_inc(&nic->rx_bufs_left[ring_no]);
2461 alloc_tab++;
2464 end:
2465 /* Transfer ownership of first descriptor to adapter just before
2466 * exiting. Before that, use memory barrier so that ownership
2467 * and other fields are seen by adapter correctly.
2469 if (first_rxdp) {
2470 wmb();
2471 first_rxdp->Control_1 |= RXD_OWN_XENA;
2474 return SUCCESS;
2475 pci_map_failed:
2476 stats->pci_map_fail_cnt++;
2477 stats->mem_freed += skb->truesize;
2478 dev_kfree_skb_irq(skb);
2479 return -ENOMEM;
2482 static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
2484 struct net_device *dev = sp->dev;
2485 int j;
2486 struct sk_buff *skb;
2487 struct RxD_t *rxdp;
2488 struct mac_info *mac_control;
2489 struct buffAdd *ba;
2490 struct RxD1 *rxdp1;
2491 struct RxD3 *rxdp3;
2493 mac_control = &sp->mac_control;
2494 for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
2495 rxdp = mac_control->rings[ring_no].
2496 rx_blocks[blk].rxds[j].virt_addr;
2497 skb = (struct sk_buff *)
2498 ((unsigned long) rxdp->Host_Control);
2499 if (!skb) {
2500 continue;
2502 if (sp->rxd_mode == RXD_MODE_1) {
2503 rxdp1 = (struct RxD1*)rxdp;
2504 pci_unmap_single(sp->pdev, (dma_addr_t)
2505 rxdp1->Buffer0_ptr,
2506 dev->mtu +
2507 HEADER_ETHERNET_II_802_3_SIZE
2508 + HEADER_802_2_SIZE +
2509 HEADER_SNAP_SIZE,
2510 PCI_DMA_FROMDEVICE);
2511 memset(rxdp, 0, sizeof(struct RxD1));
2512 } else if(sp->rxd_mode == RXD_MODE_3B) {
2513 rxdp3 = (struct RxD3*)rxdp;
2514 ba = &mac_control->rings[ring_no].
2515 ba[blk][j];
2516 pci_unmap_single(sp->pdev, (dma_addr_t)
2517 rxdp3->Buffer0_ptr,
2518 BUF0_LEN,
2519 PCI_DMA_FROMDEVICE);
2520 pci_unmap_single(sp->pdev, (dma_addr_t)
2521 rxdp3->Buffer1_ptr,
2522 BUF1_LEN,
2523 PCI_DMA_FROMDEVICE);
2524 pci_unmap_single(sp->pdev, (dma_addr_t)
2525 rxdp3->Buffer2_ptr,
2526 dev->mtu + 4,
2527 PCI_DMA_FROMDEVICE);
2528 memset(rxdp, 0, sizeof(struct RxD3));
2530 sp->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
2531 dev_kfree_skb(skb);
2532 atomic_dec(&sp->rx_bufs_left[ring_no]);
2537 * free_rx_buffers - Frees all Rx buffers
2538 * @sp: device private variable.
2539 * Description:
2540 * This function will free all Rx buffers allocated by host.
2541 * Return Value:
2542 * NONE.
2545 static void free_rx_buffers(struct s2io_nic *sp)
2547 struct net_device *dev = sp->dev;
2548 int i, blk = 0, buf_cnt = 0;
2549 struct mac_info *mac_control;
2550 struct config_param *config;
2552 mac_control = &sp->mac_control;
2553 config = &sp->config;
2555 for (i = 0; i < config->rx_ring_num; i++) {
2556 for (blk = 0; blk < rx_ring_sz[i]; blk++)
2557 free_rxd_blk(sp,i,blk);
2559 mac_control->rings[i].rx_curr_put_info.block_index = 0;
2560 mac_control->rings[i].rx_curr_get_info.block_index = 0;
2561 mac_control->rings[i].rx_curr_put_info.offset = 0;
2562 mac_control->rings[i].rx_curr_get_info.offset = 0;
2563 atomic_set(&sp->rx_bufs_left[i], 0);
2564 DBG_PRINT(INIT_DBG, "%s:Freed 0x%x Rx Buffers on ring%d\n",
2565 dev->name, buf_cnt, i);
2570 * s2io_poll - Rx interrupt handler for NAPI support
2571 * @napi : pointer to the napi structure.
2572 * @budget : The number of packets that were budgeted to be processed
2573 * during one pass through the 'Poll" function.
2574 * Description:
2575 * Comes into picture only if NAPI support has been incorporated. It does
2576 * the same thing that rx_intr_handler does, but not in a interrupt context
2577 * also It will process only a given number of packets.
2578 * Return value:
2579 * 0 on success and 1 if there are No Rx packets to be processed.
2582 static int s2io_poll(struct napi_struct *napi, int budget)
2584 struct s2io_nic *nic = container_of(napi, struct s2io_nic, napi);
2585 struct net_device *dev = nic->dev;
2586 int pkt_cnt = 0, org_pkts_to_process;
2587 struct mac_info *mac_control;
2588 struct config_param *config;
2589 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2590 int i;
2592 atomic_inc(&nic->isr_cnt);
2593 mac_control = &nic->mac_control;
2594 config = &nic->config;
2596 nic->pkts_to_process = budget;
2597 org_pkts_to_process = nic->pkts_to_process;
2599 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
2600 readl(&bar0->rx_traffic_int);
2602 for (i = 0; i < config->rx_ring_num; i++) {
2603 rx_intr_handler(&mac_control->rings[i]);
2604 pkt_cnt = org_pkts_to_process - nic->pkts_to_process;
2605 if (!nic->pkts_to_process) {
2606 /* Quota for the current iteration has been met */
2607 goto no_rx;
2611 netif_rx_complete(dev, napi);
2613 for (i = 0; i < config->rx_ring_num; i++) {
2614 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2615 DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
2616 DBG_PRINT(INFO_DBG, " in Rx Poll!!\n");
2617 break;
2620 /* Re enable the Rx interrupts. */
2621 writeq(0x0, &bar0->rx_traffic_mask);
2622 readl(&bar0->rx_traffic_mask);
2623 atomic_dec(&nic->isr_cnt);
2624 return pkt_cnt;
2626 no_rx:
2627 for (i = 0; i < config->rx_ring_num; i++) {
2628 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2629 DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
2630 DBG_PRINT(INFO_DBG, " in Rx Poll!!\n");
2631 break;
2634 atomic_dec(&nic->isr_cnt);
2635 return pkt_cnt;
2638 #ifdef CONFIG_NET_POLL_CONTROLLER
2640 * s2io_netpoll - netpoll event handler entry point
2641 * @dev : pointer to the device structure.
2642 * Description:
2643 * This function will be called by upper layer to check for events on the
2644 * interface in situations where interrupts are disabled. It is used for
2645 * specific in-kernel networking tasks, such as remote consoles and kernel
2646 * debugging over the network (example netdump in RedHat).
2648 static void s2io_netpoll(struct net_device *dev)
2650 struct s2io_nic *nic = dev->priv;
2651 struct mac_info *mac_control;
2652 struct config_param *config;
2653 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2654 u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
2655 int i;
2657 if (pci_channel_offline(nic->pdev))
2658 return;
2660 disable_irq(dev->irq);
2662 atomic_inc(&nic->isr_cnt);
2663 mac_control = &nic->mac_control;
2664 config = &nic->config;
2666 writeq(val64, &bar0->rx_traffic_int);
2667 writeq(val64, &bar0->tx_traffic_int);
2669 /* we need to free up the transmitted skbufs or else netpoll will
2670 * run out of skbs and will fail and eventually netpoll application such
2671 * as netdump will fail.
2673 for (i = 0; i < config->tx_fifo_num; i++)
2674 tx_intr_handler(&mac_control->fifos[i]);
2676 /* check for received packet and indicate up to network */
2677 for (i = 0; i < config->rx_ring_num; i++)
2678 rx_intr_handler(&mac_control->rings[i]);
2680 for (i = 0; i < config->rx_ring_num; i++) {
2681 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2682 DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
2683 DBG_PRINT(INFO_DBG, " in Rx Netpoll!!\n");
2684 break;
2687 atomic_dec(&nic->isr_cnt);
2688 enable_irq(dev->irq);
2689 return;
2691 #endif
2694 * rx_intr_handler - Rx interrupt handler
2695 * @nic: device private variable.
2696 * Description:
2697 * If the interrupt is because of a received frame or if the
2698 * receive ring contains fresh as yet un-processed frames,this function is
2699 * called. It picks out the RxD at which place the last Rx processing had
2700 * stopped and sends the skb to the OSM's Rx handler and then increments
2701 * the offset.
2702 * Return Value:
2703 * NONE.
2705 static void rx_intr_handler(struct ring_info *ring_data)
2707 struct s2io_nic *nic = ring_data->nic;
2708 struct net_device *dev = (struct net_device *) nic->dev;
2709 int get_block, put_block, put_offset;
2710 struct rx_curr_get_info get_info, put_info;
2711 struct RxD_t *rxdp;
2712 struct sk_buff *skb;
2713 int pkt_cnt = 0;
2714 int i;
2715 struct RxD1* rxdp1;
2716 struct RxD3* rxdp3;
2718 spin_lock(&nic->rx_lock);
2719 if (atomic_read(&nic->card_state) == CARD_DOWN) {
2720 DBG_PRINT(INTR_DBG, "%s: %s going down for reset\n",
2721 __FUNCTION__, dev->name);
2722 spin_unlock(&nic->rx_lock);
2723 return;
2726 get_info = ring_data->rx_curr_get_info;
2727 get_block = get_info.block_index;
2728 memcpy(&put_info, &ring_data->rx_curr_put_info, sizeof(put_info));
2729 put_block = put_info.block_index;
2730 rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
2731 if (!napi) {
2732 spin_lock(&nic->put_lock);
2733 put_offset = ring_data->put_pos;
2734 spin_unlock(&nic->put_lock);
2735 } else
2736 put_offset = ring_data->put_pos;
2738 while (RXD_IS_UP2DT(rxdp)) {
2740 * If your are next to put index then it's
2741 * FIFO full condition
2743 if ((get_block == put_block) &&
2744 (get_info.offset + 1) == put_info.offset) {
2745 DBG_PRINT(INTR_DBG, "%s: Ring Full\n",dev->name);
2746 break;
2748 skb = (struct sk_buff *) ((unsigned long)rxdp->Host_Control);
2749 if (skb == NULL) {
2750 DBG_PRINT(ERR_DBG, "%s: The skb is ",
2751 dev->name);
2752 DBG_PRINT(ERR_DBG, "Null in Rx Intr\n");
2753 spin_unlock(&nic->rx_lock);
2754 return;
2756 if (nic->rxd_mode == RXD_MODE_1) {
2757 rxdp1 = (struct RxD1*)rxdp;
2758 pci_unmap_single(nic->pdev, (dma_addr_t)
2759 rxdp1->Buffer0_ptr,
2760 dev->mtu +
2761 HEADER_ETHERNET_II_802_3_SIZE +
2762 HEADER_802_2_SIZE +
2763 HEADER_SNAP_SIZE,
2764 PCI_DMA_FROMDEVICE);
2765 } else if (nic->rxd_mode == RXD_MODE_3B) {
2766 rxdp3 = (struct RxD3*)rxdp;
2767 pci_dma_sync_single_for_cpu(nic->pdev, (dma_addr_t)
2768 rxdp3->Buffer0_ptr,
2769 BUF0_LEN, PCI_DMA_FROMDEVICE);
2770 pci_unmap_single(nic->pdev, (dma_addr_t)
2771 rxdp3->Buffer2_ptr,
2772 dev->mtu + 4,
2773 PCI_DMA_FROMDEVICE);
2775 prefetch(skb->data);
2776 rx_osm_handler(ring_data, rxdp);
2777 get_info.offset++;
2778 ring_data->rx_curr_get_info.offset = get_info.offset;
2779 rxdp = ring_data->rx_blocks[get_block].
2780 rxds[get_info.offset].virt_addr;
2781 if (get_info.offset == rxd_count[nic->rxd_mode]) {
2782 get_info.offset = 0;
2783 ring_data->rx_curr_get_info.offset = get_info.offset;
2784 get_block++;
2785 if (get_block == ring_data->block_count)
2786 get_block = 0;
2787 ring_data->rx_curr_get_info.block_index = get_block;
2788 rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
2791 nic->pkts_to_process -= 1;
2792 if ((napi) && (!nic->pkts_to_process))
2793 break;
2794 pkt_cnt++;
2795 if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
2796 break;
2798 if (nic->lro) {
2799 /* Clear all LRO sessions before exiting */
2800 for (i=0; i<MAX_LRO_SESSIONS; i++) {
2801 struct lro *lro = &nic->lro0_n[i];
2802 if (lro->in_use) {
2803 update_L3L4_header(nic, lro);
2804 queue_rx_frame(lro->parent);
2805 clear_lro_session(lro);
2810 spin_unlock(&nic->rx_lock);
2814 * tx_intr_handler - Transmit interrupt handler
2815 * @nic : device private variable
2816 * Description:
2817 * If an interrupt was raised to indicate DMA complete of the
2818 * Tx packet, this function is called. It identifies the last TxD
2819 * whose buffer was freed and frees all skbs whose data have already
2820 * DMA'ed into the NICs internal memory.
2821 * Return Value:
2822 * NONE
2825 static void tx_intr_handler(struct fifo_info *fifo_data)
2827 struct s2io_nic *nic = fifo_data->nic;
2828 struct net_device *dev = (struct net_device *) nic->dev;
2829 struct tx_curr_get_info get_info, put_info;
2830 struct sk_buff *skb;
2831 struct TxD *txdlp;
2832 u8 err_mask;
2834 get_info = fifo_data->tx_curr_get_info;
2835 memcpy(&put_info, &fifo_data->tx_curr_put_info, sizeof(put_info));
2836 txdlp = (struct TxD *) fifo_data->list_info[get_info.offset].
2837 list_virt_addr;
2838 while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
2839 (get_info.offset != put_info.offset) &&
2840 (txdlp->Host_Control)) {
2841 /* Check for TxD errors */
2842 if (txdlp->Control_1 & TXD_T_CODE) {
2843 unsigned long long err;
2844 err = txdlp->Control_1 & TXD_T_CODE;
2845 if (err & 0x1) {
2846 nic->mac_control.stats_info->sw_stat.
2847 parity_err_cnt++;
2850 /* update t_code statistics */
2851 err_mask = err >> 48;
2852 switch(err_mask) {
2853 case 2:
2854 nic->mac_control.stats_info->sw_stat.
2855 tx_buf_abort_cnt++;
2856 break;
2858 case 3:
2859 nic->mac_control.stats_info->sw_stat.
2860 tx_desc_abort_cnt++;
2861 break;
2863 case 7:
2864 nic->mac_control.stats_info->sw_stat.
2865 tx_parity_err_cnt++;
2866 break;
2868 case 10:
2869 nic->mac_control.stats_info->sw_stat.
2870 tx_link_loss_cnt++;
2871 break;
2873 case 15:
2874 nic->mac_control.stats_info->sw_stat.
2875 tx_list_proc_err_cnt++;
2876 break;
2880 skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
2881 if (skb == NULL) {
2882 DBG_PRINT(ERR_DBG, "%s: Null skb ",
2883 __FUNCTION__);
2884 DBG_PRINT(ERR_DBG, "in Tx Free Intr\n");
2885 return;
2888 /* Updating the statistics block */
2889 nic->stats.tx_bytes += skb->len;
2890 nic->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
2891 dev_kfree_skb_irq(skb);
2893 get_info.offset++;
2894 if (get_info.offset == get_info.fifo_len + 1)
2895 get_info.offset = 0;
2896 txdlp = (struct TxD *) fifo_data->list_info
2897 [get_info.offset].list_virt_addr;
2898 fifo_data->tx_curr_get_info.offset =
2899 get_info.offset;
2902 spin_lock(&nic->tx_lock);
2903 if (netif_queue_stopped(dev))
2904 netif_wake_queue(dev);
2905 spin_unlock(&nic->tx_lock);
2909 * s2io_mdio_write - Function to write in to MDIO registers
2910 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
2911 * @addr : address value
2912 * @value : data value
2913 * @dev : pointer to net_device structure
2914 * Description:
2915 * This function is used to write values to the MDIO registers
2916 * NONE
2918 static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value, struct net_device *dev)
2920 u64 val64 = 0x0;
2921 struct s2io_nic *sp = dev->priv;
2922 struct XENA_dev_config __iomem *bar0 = sp->bar0;
2924 //address transaction
2925 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2926 | MDIO_MMD_DEV_ADDR(mmd_type)
2927 | MDIO_MMS_PRT_ADDR(0x0);
2928 writeq(val64, &bar0->mdio_control);
2929 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2930 writeq(val64, &bar0->mdio_control);
2931 udelay(100);
2933 //Data transaction
2934 val64 = 0x0;
2935 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2936 | MDIO_MMD_DEV_ADDR(mmd_type)
2937 | MDIO_MMS_PRT_ADDR(0x0)
2938 | MDIO_MDIO_DATA(value)
2939 | MDIO_OP(MDIO_OP_WRITE_TRANS);
2940 writeq(val64, &bar0->mdio_control);
2941 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2942 writeq(val64, &bar0->mdio_control);
2943 udelay(100);
2945 val64 = 0x0;
2946 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2947 | MDIO_MMD_DEV_ADDR(mmd_type)
2948 | MDIO_MMS_PRT_ADDR(0x0)
2949 | MDIO_OP(MDIO_OP_READ_TRANS);
2950 writeq(val64, &bar0->mdio_control);
2951 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2952 writeq(val64, &bar0->mdio_control);
2953 udelay(100);
2958 * s2io_mdio_read - Function to write in to MDIO registers
2959 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
2960 * @addr : address value
2961 * @dev : pointer to net_device structure
2962 * Description:
2963 * This function is used to read values to the MDIO registers
2964 * NONE
2966 static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
2968 u64 val64 = 0x0;
2969 u64 rval64 = 0x0;
2970 struct s2io_nic *sp = dev->priv;
2971 struct XENA_dev_config __iomem *bar0 = sp->bar0;
2973 /* address transaction */
2974 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2975 | MDIO_MMD_DEV_ADDR(mmd_type)
2976 | MDIO_MMS_PRT_ADDR(0x0);
2977 writeq(val64, &bar0->mdio_control);
2978 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2979 writeq(val64, &bar0->mdio_control);
2980 udelay(100);
2982 /* Data transaction */
2983 val64 = 0x0;
2984 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2985 | MDIO_MMD_DEV_ADDR(mmd_type)
2986 | MDIO_MMS_PRT_ADDR(0x0)
2987 | MDIO_OP(MDIO_OP_READ_TRANS);
2988 writeq(val64, &bar0->mdio_control);
2989 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2990 writeq(val64, &bar0->mdio_control);
2991 udelay(100);
2993 /* Read the value from regs */
2994 rval64 = readq(&bar0->mdio_control);
2995 rval64 = rval64 & 0xFFFF0000;
2996 rval64 = rval64 >> 16;
2997 return rval64;
3000 * s2io_chk_xpak_counter - Function to check the status of the xpak counters
3001 * @counter : couter value to be updated
3002 * @flag : flag to indicate the status
3003 * @type : counter type
3004 * Description:
3005 * This function is to check the status of the xpak counters value
3006 * NONE
3009 static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index, u16 flag, u16 type)
3011 u64 mask = 0x3;
3012 u64 val64;
3013 int i;
3014 for(i = 0; i <index; i++)
3015 mask = mask << 0x2;
3017 if(flag > 0)
3019 *counter = *counter + 1;
3020 val64 = *regs_stat & mask;
3021 val64 = val64 >> (index * 0x2);
3022 val64 = val64 + 1;
3023 if(val64 == 3)
3025 switch(type)
3027 case 1:
3028 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3029 "service. Excessive temperatures may "
3030 "result in premature transceiver "
3031 "failure \n");
3032 break;
3033 case 2:
3034 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3035 "service Excessive bias currents may "
3036 "indicate imminent laser diode "
3037 "failure \n");
3038 break;
3039 case 3:
3040 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3041 "service Excessive laser output "
3042 "power may saturate far-end "
3043 "receiver\n");
3044 break;
3045 default:
3046 DBG_PRINT(ERR_DBG, "Incorrect XPAK Alarm "
3047 "type \n");
3049 val64 = 0x0;
3051 val64 = val64 << (index * 0x2);
3052 *regs_stat = (*regs_stat & (~mask)) | (val64);
3054 } else {
3055 *regs_stat = *regs_stat & (~mask);
3060 * s2io_updt_xpak_counter - Function to update the xpak counters
3061 * @dev : pointer to net_device struct
3062 * Description:
3063 * This function is to upate the status of the xpak counters value
3064 * NONE
3066 static void s2io_updt_xpak_counter(struct net_device *dev)
3068 u16 flag = 0x0;
3069 u16 type = 0x0;
3070 u16 val16 = 0x0;
3071 u64 val64 = 0x0;
3072 u64 addr = 0x0;
3074 struct s2io_nic *sp = dev->priv;
3075 struct stat_block *stat_info = sp->mac_control.stats_info;
3077 /* Check the communication with the MDIO slave */
3078 addr = 0x0000;
3079 val64 = 0x0;
3080 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3081 if((val64 == 0xFFFF) || (val64 == 0x0000))
3083 DBG_PRINT(ERR_DBG, "ERR: MDIO slave access failed - "
3084 "Returned %llx\n", (unsigned long long)val64);
3085 return;
3088 /* Check for the expecte value of 2040 at PMA address 0x0000 */
3089 if(val64 != 0x2040)
3091 DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - ");
3092 DBG_PRINT(ERR_DBG, "Returned: %llx- Expected: 0x2040\n",
3093 (unsigned long long)val64);
3094 return;
3097 /* Loading the DOM register to MDIO register */
3098 addr = 0xA100;
3099 s2io_mdio_write(MDIO_MMD_PMA_DEV_ADDR, addr, val16, dev);
3100 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3102 /* Reading the Alarm flags */
3103 addr = 0xA070;
3104 val64 = 0x0;
3105 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3107 flag = CHECKBIT(val64, 0x7);
3108 type = 1;
3109 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_transceiver_temp_high,
3110 &stat_info->xpak_stat.xpak_regs_stat,
3111 0x0, flag, type);
3113 if(CHECKBIT(val64, 0x6))
3114 stat_info->xpak_stat.alarm_transceiver_temp_low++;
3116 flag = CHECKBIT(val64, 0x3);
3117 type = 2;
3118 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_bias_current_high,
3119 &stat_info->xpak_stat.xpak_regs_stat,
3120 0x2, flag, type);
3122 if(CHECKBIT(val64, 0x2))
3123 stat_info->xpak_stat.alarm_laser_bias_current_low++;
3125 flag = CHECKBIT(val64, 0x1);
3126 type = 3;
3127 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_output_power_high,
3128 &stat_info->xpak_stat.xpak_regs_stat,
3129 0x4, flag, type);
3131 if(CHECKBIT(val64, 0x0))
3132 stat_info->xpak_stat.alarm_laser_output_power_low++;
3134 /* Reading the Warning flags */
3135 addr = 0xA074;
3136 val64 = 0x0;
3137 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3139 if(CHECKBIT(val64, 0x7))
3140 stat_info->xpak_stat.warn_transceiver_temp_high++;
3142 if(CHECKBIT(val64, 0x6))
3143 stat_info->xpak_stat.warn_transceiver_temp_low++;
3145 if(CHECKBIT(val64, 0x3))
3146 stat_info->xpak_stat.warn_laser_bias_current_high++;
3148 if(CHECKBIT(val64, 0x2))
3149 stat_info->xpak_stat.warn_laser_bias_current_low++;
3151 if(CHECKBIT(val64, 0x1))
3152 stat_info->xpak_stat.warn_laser_output_power_high++;
3154 if(CHECKBIT(val64, 0x0))
3155 stat_info->xpak_stat.warn_laser_output_power_low++;
3159 * alarm_intr_handler - Alarm Interrrupt handler
3160 * @nic: device private variable
3161 * Description: If the interrupt was neither because of Rx packet or Tx
3162 * complete, this function is called. If the interrupt was to indicate
3163 * a loss of link, the OSM link status handler is invoked for any other
3164 * alarm interrupt the block that raised the interrupt is displayed
3165 * and a H/W reset is issued.
3166 * Return Value:
3167 * NONE
3170 static void alarm_intr_handler(struct s2io_nic *nic)
3172 struct net_device *dev = (struct net_device *) nic->dev;
3173 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3174 register u64 val64 = 0, err_reg = 0;
3175 u64 cnt;
3176 int i;
3177 if (atomic_read(&nic->card_state) == CARD_DOWN)
3178 return;
3179 if (pci_channel_offline(nic->pdev))
3180 return;
3181 nic->mac_control.stats_info->sw_stat.ring_full_cnt = 0;
3182 /* Handling the XPAK counters update */
3183 if(nic->mac_control.stats_info->xpak_stat.xpak_timer_count < 72000) {
3184 /* waiting for an hour */
3185 nic->mac_control.stats_info->xpak_stat.xpak_timer_count++;
3186 } else {
3187 s2io_updt_xpak_counter(dev);
3188 /* reset the count to zero */
3189 nic->mac_control.stats_info->xpak_stat.xpak_timer_count = 0;
3192 /* Handling link status change error Intr */
3193 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
3194 err_reg = readq(&bar0->mac_rmac_err_reg);
3195 writeq(err_reg, &bar0->mac_rmac_err_reg);
3196 if (err_reg & RMAC_LINK_STATE_CHANGE_INT) {
3197 schedule_work(&nic->set_link_task);
3201 /* Handling Ecc errors */
3202 val64 = readq(&bar0->mc_err_reg);
3203 writeq(val64, &bar0->mc_err_reg);
3204 if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
3205 if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
3206 nic->mac_control.stats_info->sw_stat.
3207 double_ecc_errs++;
3208 DBG_PRINT(INIT_DBG, "%s: Device indicates ",
3209 dev->name);
3210 DBG_PRINT(INIT_DBG, "double ECC error!!\n");
3211 if (nic->device_type != XFRAME_II_DEVICE) {
3212 /* Reset XframeI only if critical error */
3213 if (val64 & (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
3214 MC_ERR_REG_MIRI_ECC_DB_ERR_1)) {
3215 netif_stop_queue(dev);
3216 schedule_work(&nic->rst_timer_task);
3217 nic->mac_control.stats_info->sw_stat.
3218 soft_reset_cnt++;
3221 } else {
3222 nic->mac_control.stats_info->sw_stat.
3223 single_ecc_errs++;
3227 /* In case of a serious error, the device will be Reset. */
3228 val64 = readq(&bar0->serr_source);
3229 if (val64 & SERR_SOURCE_ANY) {
3230 nic->mac_control.stats_info->sw_stat.serious_err_cnt++;
3231 DBG_PRINT(ERR_DBG, "%s: Device indicates ", dev->name);
3232 DBG_PRINT(ERR_DBG, "serious error %llx!!\n",
3233 (unsigned long long)val64);
3234 netif_stop_queue(dev);
3235 schedule_work(&nic->rst_timer_task);
3236 nic->mac_control.stats_info->sw_stat.soft_reset_cnt++;
3240 * Also as mentioned in the latest Errata sheets if the PCC_FB_ECC
3241 * Error occurs, the adapter will be recycled by disabling the
3242 * adapter enable bit and enabling it again after the device
3243 * becomes Quiescent.
3245 val64 = readq(&bar0->pcc_err_reg);
3246 writeq(val64, &bar0->pcc_err_reg);
3247 if (val64 & PCC_FB_ECC_DB_ERR) {
3248 u64 ac = readq(&bar0->adapter_control);
3249 ac &= ~(ADAPTER_CNTL_EN);
3250 writeq(ac, &bar0->adapter_control);
3251 ac = readq(&bar0->adapter_control);
3252 schedule_work(&nic->set_link_task);
3254 /* Check for data parity error */
3255 val64 = readq(&bar0->pic_int_status);
3256 if (val64 & PIC_INT_GPIO) {
3257 val64 = readq(&bar0->gpio_int_reg);
3258 if (val64 & GPIO_INT_REG_DP_ERR_INT) {
3259 nic->mac_control.stats_info->sw_stat.parity_err_cnt++;
3260 schedule_work(&nic->rst_timer_task);
3261 nic->mac_control.stats_info->sw_stat.soft_reset_cnt++;
3265 /* Check for ring full counter */
3266 if (nic->device_type & XFRAME_II_DEVICE) {
3267 val64 = readq(&bar0->ring_bump_counter1);
3268 for (i=0; i<4; i++) {
3269 cnt = ( val64 & vBIT(0xFFFF,(i*16),16));
3270 cnt >>= 64 - ((i+1)*16);
3271 nic->mac_control.stats_info->sw_stat.ring_full_cnt
3272 += cnt;
3275 val64 = readq(&bar0->ring_bump_counter2);
3276 for (i=0; i<4; i++) {
3277 cnt = ( val64 & vBIT(0xFFFF,(i*16),16));
3278 cnt >>= 64 - ((i+1)*16);
3279 nic->mac_control.stats_info->sw_stat.ring_full_cnt
3280 += cnt;
3284 /* Other type of interrupts are not being handled now, TODO */
3288 * wait_for_cmd_complete - waits for a command to complete.
3289 * @sp : private member of the device structure, which is a pointer to the
3290 * s2io_nic structure.
3291 * Description: Function that waits for a command to Write into RMAC
3292 * ADDR DATA registers to be completed and returns either success or
3293 * error depending on whether the command was complete or not.
3294 * Return value:
3295 * SUCCESS on success and FAILURE on failure.
3298 static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit,
3299 int bit_state)
3301 int ret = FAILURE, cnt = 0, delay = 1;
3302 u64 val64;
3304 if ((bit_state != S2IO_BIT_RESET) && (bit_state != S2IO_BIT_SET))
3305 return FAILURE;
3307 do {
3308 val64 = readq(addr);
3309 if (bit_state == S2IO_BIT_RESET) {
3310 if (!(val64 & busy_bit)) {
3311 ret = SUCCESS;
3312 break;
3314 } else {
3315 if (!(val64 & busy_bit)) {
3316 ret = SUCCESS;
3317 break;
3321 if(in_interrupt())
3322 mdelay(delay);
3323 else
3324 msleep(delay);
3326 if (++cnt >= 10)
3327 delay = 50;
3328 } while (cnt < 20);
3329 return ret;
3332 * check_pci_device_id - Checks if the device id is supported
3333 * @id : device id
3334 * Description: Function to check if the pci device id is supported by driver.
3335 * Return value: Actual device id if supported else PCI_ANY_ID
3337 static u16 check_pci_device_id(u16 id)
3339 switch (id) {
3340 case PCI_DEVICE_ID_HERC_WIN:
3341 case PCI_DEVICE_ID_HERC_UNI:
3342 return XFRAME_II_DEVICE;
3343 case PCI_DEVICE_ID_S2IO_UNI:
3344 case PCI_DEVICE_ID_S2IO_WIN:
3345 return XFRAME_I_DEVICE;
3346 default:
3347 return PCI_ANY_ID;
3352 * s2io_reset - Resets the card.
3353 * @sp : private member of the device structure.
3354 * Description: Function to Reset the card. This function then also
3355 * restores the previously saved PCI configuration space registers as
3356 * the card reset also resets the configuration space.
3357 * Return value:
3358 * void.
3361 static void s2io_reset(struct s2io_nic * sp)
3363 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3364 u64 val64;
3365 u16 subid, pci_cmd;
3366 int i;
3367 u16 val16;
3368 unsigned long long up_cnt, down_cnt, up_time, down_time, reset_cnt;
3369 unsigned long long mem_alloc_cnt, mem_free_cnt, watchdog_cnt;
3371 DBG_PRINT(INIT_DBG,"%s - Resetting XFrame card %s\n",
3372 __FUNCTION__, sp->dev->name);
3374 /* Back up the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
3375 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
3377 val64 = SW_RESET_ALL;
3378 writeq(val64, &bar0->sw_reset);
3379 if (strstr(sp->product_name, "CX4")) {
3380 msleep(750);
3382 msleep(250);
3383 for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) {
3385 /* Restore the PCI state saved during initialization. */
3386 pci_restore_state(sp->pdev);
3387 pci_read_config_word(sp->pdev, 0x2, &val16);
3388 if (check_pci_device_id(val16) != (u16)PCI_ANY_ID)
3389 break;
3390 msleep(200);
3393 if (check_pci_device_id(val16) == (u16)PCI_ANY_ID) {
3394 DBG_PRINT(ERR_DBG,"%s SW_Reset failed!\n", __FUNCTION__);
3397 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd);
3399 s2io_init_pci(sp);
3401 /* Set swapper to enable I/O register access */
3402 s2io_set_swapper(sp);
3404 /* Restore the MSIX table entries from local variables */
3405 restore_xmsi_data(sp);
3407 /* Clear certain PCI/PCI-X fields after reset */
3408 if (sp->device_type == XFRAME_II_DEVICE) {
3409 /* Clear "detected parity error" bit */
3410 pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
3412 /* Clearing PCIX Ecc status register */
3413 pci_write_config_dword(sp->pdev, 0x68, 0x7C);
3415 /* Clearing PCI_STATUS error reflected here */
3416 writeq(BIT(62), &bar0->txpic_int_reg);
3419 /* Reset device statistics maintained by OS */
3420 memset(&sp->stats, 0, sizeof (struct net_device_stats));
3422 up_cnt = sp->mac_control.stats_info->sw_stat.link_up_cnt;
3423 down_cnt = sp->mac_control.stats_info->sw_stat.link_down_cnt;
3424 up_time = sp->mac_control.stats_info->sw_stat.link_up_time;
3425 down_time = sp->mac_control.stats_info->sw_stat.link_down_time;
3426 reset_cnt = sp->mac_control.stats_info->sw_stat.soft_reset_cnt;
3427 mem_alloc_cnt = sp->mac_control.stats_info->sw_stat.mem_allocated;
3428 mem_free_cnt = sp->mac_control.stats_info->sw_stat.mem_freed;
3429 watchdog_cnt = sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt;
3430 /* save link up/down time/cnt, reset/memory/watchdog cnt */
3431 memset(sp->mac_control.stats_info, 0, sizeof(struct stat_block));
3432 /* restore link up/down time/cnt, reset/memory/watchdog cnt */
3433 sp->mac_control.stats_info->sw_stat.link_up_cnt = up_cnt;
3434 sp->mac_control.stats_info->sw_stat.link_down_cnt = down_cnt;
3435 sp->mac_control.stats_info->sw_stat.link_up_time = up_time;
3436 sp->mac_control.stats_info->sw_stat.link_down_time = down_time;
3437 sp->mac_control.stats_info->sw_stat.soft_reset_cnt = reset_cnt;
3438 sp->mac_control.stats_info->sw_stat.mem_allocated = mem_alloc_cnt;
3439 sp->mac_control.stats_info->sw_stat.mem_freed = mem_free_cnt;
3440 sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt = watchdog_cnt;
3442 /* SXE-002: Configure link and activity LED to turn it off */
3443 subid = sp->pdev->subsystem_device;
3444 if (((subid & 0xFF) >= 0x07) &&
3445 (sp->device_type == XFRAME_I_DEVICE)) {
3446 val64 = readq(&bar0->gpio_control);
3447 val64 |= 0x0000800000000000ULL;
3448 writeq(val64, &bar0->gpio_control);
3449 val64 = 0x0411040400000000ULL;
3450 writeq(val64, (void __iomem *)bar0 + 0x2700);
3454 * Clear spurious ECC interrupts that would have occured on
3455 * XFRAME II cards after reset.
3457 if (sp->device_type == XFRAME_II_DEVICE) {
3458 val64 = readq(&bar0->pcc_err_reg);
3459 writeq(val64, &bar0->pcc_err_reg);
3462 /* restore the previously assigned mac address */
3463 s2io_set_mac_addr(sp->dev, (u8 *)&sp->def_mac_addr[0].mac_addr);
3465 sp->device_enabled_once = FALSE;
3469 * s2io_set_swapper - to set the swapper controle on the card
3470 * @sp : private member of the device structure,
3471 * pointer to the s2io_nic structure.
3472 * Description: Function to set the swapper control on the card
3473 * correctly depending on the 'endianness' of the system.
3474 * Return value:
3475 * SUCCESS on success and FAILURE on failure.
3478 static int s2io_set_swapper(struct s2io_nic * sp)
3480 struct net_device *dev = sp->dev;
3481 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3482 u64 val64, valt, valr;
3485 * Set proper endian settings and verify the same by reading
3486 * the PIF Feed-back register.
3489 val64 = readq(&bar0->pif_rd_swapper_fb);
3490 if (val64 != 0x0123456789ABCDEFULL) {
3491 int i = 0;
3492 u64 value[] = { 0xC30000C3C30000C3ULL, /* FE=1, SE=1 */
3493 0x8100008181000081ULL, /* FE=1, SE=0 */
3494 0x4200004242000042ULL, /* FE=0, SE=1 */
3495 0}; /* FE=0, SE=0 */
3497 while(i<4) {
3498 writeq(value[i], &bar0->swapper_ctrl);
3499 val64 = readq(&bar0->pif_rd_swapper_fb);
3500 if (val64 == 0x0123456789ABCDEFULL)
3501 break;
3502 i++;
3504 if (i == 4) {
3505 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3506 dev->name);
3507 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3508 (unsigned long long) val64);
3509 return FAILURE;
3511 valr = value[i];
3512 } else {
3513 valr = readq(&bar0->swapper_ctrl);
3516 valt = 0x0123456789ABCDEFULL;
3517 writeq(valt, &bar0->xmsi_address);
3518 val64 = readq(&bar0->xmsi_address);
3520 if(val64 != valt) {
3521 int i = 0;
3522 u64 value[] = { 0x00C3C30000C3C300ULL, /* FE=1, SE=1 */
3523 0x0081810000818100ULL, /* FE=1, SE=0 */
3524 0x0042420000424200ULL, /* FE=0, SE=1 */
3525 0}; /* FE=0, SE=0 */
3527 while(i<4) {
3528 writeq((value[i] | valr), &bar0->swapper_ctrl);
3529 writeq(valt, &bar0->xmsi_address);
3530 val64 = readq(&bar0->xmsi_address);
3531 if(val64 == valt)
3532 break;
3533 i++;
3535 if(i == 4) {
3536 unsigned long long x = val64;
3537 DBG_PRINT(ERR_DBG, "Write failed, Xmsi_addr ");
3538 DBG_PRINT(ERR_DBG, "reads:0x%llx\n", x);
3539 return FAILURE;
3542 val64 = readq(&bar0->swapper_ctrl);
3543 val64 &= 0xFFFF000000000000ULL;
3545 #ifdef __BIG_ENDIAN
3547 * The device by default set to a big endian format, so a
3548 * big endian driver need not set anything.
3550 val64 |= (SWAPPER_CTRL_TXP_FE |
3551 SWAPPER_CTRL_TXP_SE |
3552 SWAPPER_CTRL_TXD_R_FE |
3553 SWAPPER_CTRL_TXD_W_FE |
3554 SWAPPER_CTRL_TXF_R_FE |
3555 SWAPPER_CTRL_RXD_R_FE |
3556 SWAPPER_CTRL_RXD_W_FE |
3557 SWAPPER_CTRL_RXF_W_FE |
3558 SWAPPER_CTRL_XMSI_FE |
3559 SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
3560 if (sp->intr_type == INTA)
3561 val64 |= SWAPPER_CTRL_XMSI_SE;
3562 writeq(val64, &bar0->swapper_ctrl);
3563 #else
3565 * Initially we enable all bits to make it accessible by the
3566 * driver, then we selectively enable only those bits that
3567 * we want to set.
3569 val64 |= (SWAPPER_CTRL_TXP_FE |
3570 SWAPPER_CTRL_TXP_SE |
3571 SWAPPER_CTRL_TXD_R_FE |
3572 SWAPPER_CTRL_TXD_R_SE |
3573 SWAPPER_CTRL_TXD_W_FE |
3574 SWAPPER_CTRL_TXD_W_SE |
3575 SWAPPER_CTRL_TXF_R_FE |
3576 SWAPPER_CTRL_RXD_R_FE |
3577 SWAPPER_CTRL_RXD_R_SE |
3578 SWAPPER_CTRL_RXD_W_FE |
3579 SWAPPER_CTRL_RXD_W_SE |
3580 SWAPPER_CTRL_RXF_W_FE |
3581 SWAPPER_CTRL_XMSI_FE |
3582 SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
3583 if (sp->intr_type == INTA)
3584 val64 |= SWAPPER_CTRL_XMSI_SE;
3585 writeq(val64, &bar0->swapper_ctrl);
3586 #endif
3587 val64 = readq(&bar0->swapper_ctrl);
3590 * Verifying if endian settings are accurate by reading a
3591 * feedback register.
3593 val64 = readq(&bar0->pif_rd_swapper_fb);
3594 if (val64 != 0x0123456789ABCDEFULL) {
3595 /* Endian settings are incorrect, calls for another dekko. */
3596 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3597 dev->name);
3598 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3599 (unsigned long long) val64);
3600 return FAILURE;
3603 return SUCCESS;
3606 static int wait_for_msix_trans(struct s2io_nic *nic, int i)
3608 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3609 u64 val64;
3610 int ret = 0, cnt = 0;
3612 do {
3613 val64 = readq(&bar0->xmsi_access);
3614 if (!(val64 & BIT(15)))
3615 break;
3616 mdelay(1);
3617 cnt++;
3618 } while(cnt < 5);
3619 if (cnt == 5) {
3620 DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
3621 ret = 1;
3624 return ret;
3627 static void restore_xmsi_data(struct s2io_nic *nic)
3629 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3630 u64 val64;
3631 int i;
3633 for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
3634 writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
3635 writeq(nic->msix_info[i].data, &bar0->xmsi_data);
3636 val64 = (BIT(7) | BIT(15) | vBIT(i, 26, 6));
3637 writeq(val64, &bar0->xmsi_access);
3638 if (wait_for_msix_trans(nic, i)) {
3639 DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3640 continue;
3645 static void store_xmsi_data(struct s2io_nic *nic)
3647 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3648 u64 val64, addr, data;
3649 int i;
3651 /* Store and display */
3652 for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
3653 val64 = (BIT(15) | vBIT(i, 26, 6));
3654 writeq(val64, &bar0->xmsi_access);
3655 if (wait_for_msix_trans(nic, i)) {
3656 DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3657 continue;
3659 addr = readq(&bar0->xmsi_address);
3660 data = readq(&bar0->xmsi_data);
3661 if (addr && data) {
3662 nic->msix_info[i].addr = addr;
3663 nic->msix_info[i].data = data;
3668 static int s2io_enable_msi_x(struct s2io_nic *nic)
3670 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3671 u64 tx_mat, rx_mat;
3672 u16 msi_control; /* Temp variable */
3673 int ret, i, j, msix_indx = 1;
3675 nic->entries = kmalloc(MAX_REQUESTED_MSI_X * sizeof(struct msix_entry),
3676 GFP_KERNEL);
3677 if (nic->entries == NULL) {
3678 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n", \
3679 __FUNCTION__);
3680 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
3681 return -ENOMEM;
3683 nic->mac_control.stats_info->sw_stat.mem_allocated
3684 += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3685 memset(nic->entries, 0,MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3687 nic->s2io_entries =
3688 kmalloc(MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry),
3689 GFP_KERNEL);
3690 if (nic->s2io_entries == NULL) {
3691 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
3692 __FUNCTION__);
3693 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
3694 kfree(nic->entries);
3695 nic->mac_control.stats_info->sw_stat.mem_freed
3696 += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3697 return -ENOMEM;
3699 nic->mac_control.stats_info->sw_stat.mem_allocated
3700 += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
3701 memset(nic->s2io_entries, 0,
3702 MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
3704 for (i=0; i< MAX_REQUESTED_MSI_X; i++) {
3705 nic->entries[i].entry = i;
3706 nic->s2io_entries[i].entry = i;
3707 nic->s2io_entries[i].arg = NULL;
3708 nic->s2io_entries[i].in_use = 0;
3711 tx_mat = readq(&bar0->tx_mat0_n[0]);
3712 for (i=0; i<nic->config.tx_fifo_num; i++, msix_indx++) {
3713 tx_mat |= TX_MAT_SET(i, msix_indx);
3714 nic->s2io_entries[msix_indx].arg = &nic->mac_control.fifos[i];
3715 nic->s2io_entries[msix_indx].type = MSIX_FIFO_TYPE;
3716 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3718 writeq(tx_mat, &bar0->tx_mat0_n[0]);
3720 if (!nic->config.bimodal) {
3721 rx_mat = readq(&bar0->rx_mat);
3722 for (j=0; j<nic->config.rx_ring_num; j++, msix_indx++) {
3723 rx_mat |= RX_MAT_SET(j, msix_indx);
3724 nic->s2io_entries[msix_indx].arg
3725 = &nic->mac_control.rings[j];
3726 nic->s2io_entries[msix_indx].type = MSIX_RING_TYPE;
3727 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3729 writeq(rx_mat, &bar0->rx_mat);
3730 } else {
3731 tx_mat = readq(&bar0->tx_mat0_n[7]);
3732 for (j=0; j<nic->config.rx_ring_num; j++, msix_indx++) {
3733 tx_mat |= TX_MAT_SET(i, msix_indx);
3734 nic->s2io_entries[msix_indx].arg
3735 = &nic->mac_control.rings[j];
3736 nic->s2io_entries[msix_indx].type = MSIX_RING_TYPE;
3737 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3739 writeq(tx_mat, &bar0->tx_mat0_n[7]);
3742 nic->avail_msix_vectors = 0;
3743 ret = pci_enable_msix(nic->pdev, nic->entries, MAX_REQUESTED_MSI_X);
3744 /* We fail init if error or we get less vectors than min required */
3745 if (ret >= (nic->config.tx_fifo_num + nic->config.rx_ring_num + 1)) {
3746 nic->avail_msix_vectors = ret;
3747 ret = pci_enable_msix(nic->pdev, nic->entries, ret);
3749 if (ret) {
3750 DBG_PRINT(ERR_DBG, "%s: Enabling MSIX failed\n", nic->dev->name);
3751 kfree(nic->entries);
3752 nic->mac_control.stats_info->sw_stat.mem_freed
3753 += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3754 kfree(nic->s2io_entries);
3755 nic->mac_control.stats_info->sw_stat.mem_freed
3756 += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
3757 nic->entries = NULL;
3758 nic->s2io_entries = NULL;
3759 nic->avail_msix_vectors = 0;
3760 return -ENOMEM;
3762 if (!nic->avail_msix_vectors)
3763 nic->avail_msix_vectors = MAX_REQUESTED_MSI_X;
3766 * To enable MSI-X, MSI also needs to be enabled, due to a bug
3767 * in the herc NIC. (Temp change, needs to be removed later)
3769 pci_read_config_word(nic->pdev, 0x42, &msi_control);
3770 msi_control |= 0x1; /* Enable MSI */
3771 pci_write_config_word(nic->pdev, 0x42, msi_control);
3773 return 0;
3776 /* Handle software interrupt used during MSI(X) test */
3777 static irqreturn_t __devinit s2io_test_intr(int irq, void *dev_id)
3779 struct s2io_nic *sp = dev_id;
3781 sp->msi_detected = 1;
3782 wake_up(&sp->msi_wait);
3784 return IRQ_HANDLED;
3787 /* Test interrupt path by forcing a a software IRQ */
3788 static int __devinit s2io_test_msi(struct s2io_nic *sp)
3790 struct pci_dev *pdev = sp->pdev;
3791 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3792 int err;
3793 u64 val64, saved64;
3795 err = request_irq(sp->entries[1].vector, s2io_test_intr, 0,
3796 sp->name, sp);
3797 if (err) {
3798 DBG_PRINT(ERR_DBG, "%s: PCI %s: cannot assign irq %d\n",
3799 sp->dev->name, pci_name(pdev), pdev->irq);
3800 return err;
3803 init_waitqueue_head (&sp->msi_wait);
3804 sp->msi_detected = 0;
3806 saved64 = val64 = readq(&bar0->scheduled_int_ctrl);
3807 val64 |= SCHED_INT_CTRL_ONE_SHOT;
3808 val64 |= SCHED_INT_CTRL_TIMER_EN;
3809 val64 |= SCHED_INT_CTRL_INT2MSI(1);
3810 writeq(val64, &bar0->scheduled_int_ctrl);
3812 wait_event_timeout(sp->msi_wait, sp->msi_detected, HZ/10);
3814 if (!sp->msi_detected) {
3815 /* MSI(X) test failed, go back to INTx mode */
3816 DBG_PRINT(ERR_DBG, "%s: PCI %s: No interrupt was generated"
3817 "using MSI(X) during test\n", sp->dev->name,
3818 pci_name(pdev));
3820 err = -EOPNOTSUPP;
3823 free_irq(sp->entries[1].vector, sp);
3825 writeq(saved64, &bar0->scheduled_int_ctrl);
3827 return err;
3829 /* ********************************************************* *
3830 * Functions defined below concern the OS part of the driver *
3831 * ********************************************************* */
3834 * s2io_open - open entry point of the driver
3835 * @dev : pointer to the device structure.
3836 * Description:
3837 * This function is the open entry point of the driver. It mainly calls a
3838 * function to allocate Rx buffers and inserts them into the buffer
3839 * descriptors and then enables the Rx part of the NIC.
3840 * Return value:
3841 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3842 * file on failure.
3845 static int s2io_open(struct net_device *dev)
3847 struct s2io_nic *sp = dev->priv;
3848 int err = 0;
3851 * Make sure you have link off by default every time
3852 * Nic is initialized
3854 netif_carrier_off(dev);
3855 sp->last_link_state = 0;
3857 napi_enable(&sp->napi);
3859 if (sp->intr_type == MSI_X) {
3860 int ret = s2io_enable_msi_x(sp);
3862 if (!ret) {
3863 u16 msi_control;
3865 ret = s2io_test_msi(sp);
3867 /* rollback MSI-X, will re-enable during add_isr() */
3868 kfree(sp->entries);
3869 sp->mac_control.stats_info->sw_stat.mem_freed +=
3870 (MAX_REQUESTED_MSI_X *
3871 sizeof(struct msix_entry));
3872 kfree(sp->s2io_entries);
3873 sp->mac_control.stats_info->sw_stat.mem_freed +=
3874 (MAX_REQUESTED_MSI_X *
3875 sizeof(struct s2io_msix_entry));
3876 sp->entries = NULL;
3877 sp->s2io_entries = NULL;
3879 pci_read_config_word(sp->pdev, 0x42, &msi_control);
3880 msi_control &= 0xFFFE; /* Disable MSI */
3881 pci_write_config_word(sp->pdev, 0x42, msi_control);
3883 pci_disable_msix(sp->pdev);
3886 if (ret) {
3888 DBG_PRINT(ERR_DBG,
3889 "%s: MSI-X requested but failed to enable\n",
3890 dev->name);
3891 sp->intr_type = INTA;
3895 /* NAPI doesn't work well with MSI(X) */
3896 if (sp->intr_type != INTA) {
3897 if(sp->config.napi)
3898 sp->config.napi = 0;
3901 /* Initialize H/W and enable interrupts */
3902 err = s2io_card_up(sp);
3903 if (err) {
3904 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
3905 dev->name);
3906 goto hw_init_failed;
3909 if (s2io_set_mac_addr(dev, dev->dev_addr) == FAILURE) {
3910 DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
3911 s2io_card_down(sp);
3912 err = -ENODEV;
3913 goto hw_init_failed;
3916 netif_start_queue(dev);
3917 return 0;
3919 hw_init_failed:
3920 napi_disable(&sp->napi);
3921 if (sp->intr_type == MSI_X) {
3922 if (sp->entries) {
3923 kfree(sp->entries);
3924 sp->mac_control.stats_info->sw_stat.mem_freed
3925 += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3927 if (sp->s2io_entries) {
3928 kfree(sp->s2io_entries);
3929 sp->mac_control.stats_info->sw_stat.mem_freed
3930 += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
3933 return err;
3937 * s2io_close -close entry point of the driver
3938 * @dev : device pointer.
3939 * Description:
3940 * This is the stop entry point of the driver. It needs to undo exactly
3941 * whatever was done by the open entry point,thus it's usually referred to
3942 * as the close function.Among other things this function mainly stops the
3943 * Rx side of the NIC and frees all the Rx buffers in the Rx rings.
3944 * Return value:
3945 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3946 * file on failure.
3949 static int s2io_close(struct net_device *dev)
3951 struct s2io_nic *sp = dev->priv;
3953 netif_stop_queue(dev);
3954 napi_disable(&sp->napi);
3955 /* Reset card, kill tasklet and free Tx and Rx buffers. */
3956 s2io_card_down(sp);
3958 return 0;
3962 * s2io_xmit - Tx entry point of te driver
3963 * @skb : the socket buffer containing the Tx data.
3964 * @dev : device pointer.
3965 * Description :
3966 * This function is the Tx entry point of the driver. S2IO NIC supports
3967 * certain protocol assist features on Tx side, namely CSO, S/G, LSO.
3968 * NOTE: when device cant queue the pkt,just the trans_start variable will
3969 * not be upadted.
3970 * Return value:
3971 * 0 on success & 1 on failure.
3974 static int s2io_xmit(struct sk_buff *skb, struct net_device *dev)
3976 struct s2io_nic *sp = dev->priv;
3977 u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
3978 register u64 val64;
3979 struct TxD *txdp;
3980 struct TxFIFO_element __iomem *tx_fifo;
3981 unsigned long flags;
3982 u16 vlan_tag = 0;
3983 int vlan_priority = 0;
3984 struct mac_info *mac_control;
3985 struct config_param *config;
3986 int offload_type;
3987 struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
3989 mac_control = &sp->mac_control;
3990 config = &sp->config;
3992 DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
3994 if (unlikely(skb->len <= 0)) {
3995 DBG_PRINT(TX_DBG, "%s:Buffer has no data..\n", dev->name);
3996 dev_kfree_skb_any(skb);
3997 return 0;
4000 spin_lock_irqsave(&sp->tx_lock, flags);
4001 if (atomic_read(&sp->card_state) == CARD_DOWN) {
4002 DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
4003 dev->name);
4004 spin_unlock_irqrestore(&sp->tx_lock, flags);
4005 dev_kfree_skb(skb);
4006 return 0;
4009 queue = 0;
4010 /* Get Fifo number to Transmit based on vlan priority */
4011 if (sp->vlgrp && vlan_tx_tag_present(skb)) {
4012 vlan_tag = vlan_tx_tag_get(skb);
4013 vlan_priority = vlan_tag >> 13;
4014 queue = config->fifo_mapping[vlan_priority];
4017 put_off = (u16) mac_control->fifos[queue].tx_curr_put_info.offset;
4018 get_off = (u16) mac_control->fifos[queue].tx_curr_get_info.offset;
4019 txdp = (struct TxD *) mac_control->fifos[queue].list_info[put_off].
4020 list_virt_addr;
4022 queue_len = mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1;
4023 /* Avoid "put" pointer going beyond "get" pointer */
4024 if (txdp->Host_Control ||
4025 ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4026 DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
4027 netif_stop_queue(dev);
4028 dev_kfree_skb(skb);
4029 spin_unlock_irqrestore(&sp->tx_lock, flags);
4030 return 0;
4033 offload_type = s2io_offload_type(skb);
4034 if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
4035 txdp->Control_1 |= TXD_TCP_LSO_EN;
4036 txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb));
4038 if (skb->ip_summed == CHECKSUM_PARTIAL) {
4039 txdp->Control_2 |=
4040 (TXD_TX_CKO_IPV4_EN | TXD_TX_CKO_TCP_EN |
4041 TXD_TX_CKO_UDP_EN);
4043 txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
4044 txdp->Control_1 |= TXD_LIST_OWN_XENA;
4045 txdp->Control_2 |= config->tx_intr_type;
4047 if (sp->vlgrp && vlan_tx_tag_present(skb)) {
4048 txdp->Control_2 |= TXD_VLAN_ENABLE;
4049 txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
4052 frg_len = skb->len - skb->data_len;
4053 if (offload_type == SKB_GSO_UDP) {
4054 int ufo_size;
4056 ufo_size = s2io_udp_mss(skb);
4057 ufo_size &= ~7;
4058 txdp->Control_1 |= TXD_UFO_EN;
4059 txdp->Control_1 |= TXD_UFO_MSS(ufo_size);
4060 txdp->Control_1 |= TXD_BUFFER0_SIZE(8);
4061 #ifdef __BIG_ENDIAN
4062 sp->ufo_in_band_v[put_off] =
4063 (u64)skb_shinfo(skb)->ip6_frag_id;
4064 #else
4065 sp->ufo_in_band_v[put_off] =
4066 (u64)skb_shinfo(skb)->ip6_frag_id << 32;
4067 #endif
4068 txdp->Host_Control = (unsigned long)sp->ufo_in_band_v;
4069 txdp->Buffer_Pointer = pci_map_single(sp->pdev,
4070 sp->ufo_in_band_v,
4071 sizeof(u64), PCI_DMA_TODEVICE);
4072 if((txdp->Buffer_Pointer == 0) ||
4073 (txdp->Buffer_Pointer == DMA_ERROR_CODE))
4074 goto pci_map_failed;
4075 txdp++;
4078 txdp->Buffer_Pointer = pci_map_single
4079 (sp->pdev, skb->data, frg_len, PCI_DMA_TODEVICE);
4080 if((txdp->Buffer_Pointer == 0) ||
4081 (txdp->Buffer_Pointer == DMA_ERROR_CODE))
4082 goto pci_map_failed;
4084 txdp->Host_Control = (unsigned long) skb;
4085 txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
4086 if (offload_type == SKB_GSO_UDP)
4087 txdp->Control_1 |= TXD_UFO_EN;
4089 frg_cnt = skb_shinfo(skb)->nr_frags;
4090 /* For fragmented SKB. */
4091 for (i = 0; i < frg_cnt; i++) {
4092 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4093 /* A '0' length fragment will be ignored */
4094 if (!frag->size)
4095 continue;
4096 txdp++;
4097 txdp->Buffer_Pointer = (u64) pci_map_page
4098 (sp->pdev, frag->page, frag->page_offset,
4099 frag->size, PCI_DMA_TODEVICE);
4100 txdp->Control_1 = TXD_BUFFER0_SIZE(frag->size);
4101 if (offload_type == SKB_GSO_UDP)
4102 txdp->Control_1 |= TXD_UFO_EN;
4104 txdp->Control_1 |= TXD_GATHER_CODE_LAST;
4106 if (offload_type == SKB_GSO_UDP)
4107 frg_cnt++; /* as Txd0 was used for inband header */
4109 tx_fifo = mac_control->tx_FIFO_start[queue];
4110 val64 = mac_control->fifos[queue].list_info[put_off].list_phy_addr;
4111 writeq(val64, &tx_fifo->TxDL_Pointer);
4113 val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
4114 TX_FIFO_LAST_LIST);
4115 if (offload_type)
4116 val64 |= TX_FIFO_SPECIAL_FUNC;
4118 writeq(val64, &tx_fifo->List_Control);
4120 mmiowb();
4122 put_off++;
4123 if (put_off == mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1)
4124 put_off = 0;
4125 mac_control->fifos[queue].tx_curr_put_info.offset = put_off;
4127 /* Avoid "put" pointer going beyond "get" pointer */
4128 if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4129 sp->mac_control.stats_info->sw_stat.fifo_full_cnt++;
4130 DBG_PRINT(TX_DBG,
4131 "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
4132 put_off, get_off);
4133 netif_stop_queue(dev);
4135 mac_control->stats_info->sw_stat.mem_allocated += skb->truesize;
4136 dev->trans_start = jiffies;
4137 spin_unlock_irqrestore(&sp->tx_lock, flags);
4139 return 0;
4140 pci_map_failed:
4141 stats->pci_map_fail_cnt++;
4142 netif_stop_queue(dev);
4143 stats->mem_freed += skb->truesize;
4144 dev_kfree_skb(skb);
4145 spin_unlock_irqrestore(&sp->tx_lock, flags);
4146 return 0;
4149 static void
4150 s2io_alarm_handle(unsigned long data)
4152 struct s2io_nic *sp = (struct s2io_nic *)data;
4154 alarm_intr_handler(sp);
4155 mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
4158 static int s2io_chk_rx_buffers(struct s2io_nic *sp, int rng_n)
4160 int rxb_size, level;
4162 if (!sp->lro) {
4163 rxb_size = atomic_read(&sp->rx_bufs_left[rng_n]);
4164 level = rx_buffer_level(sp, rxb_size, rng_n);
4166 if ((level == PANIC) && (!TASKLET_IN_USE)) {
4167 int ret;
4168 DBG_PRINT(INTR_DBG, "%s: Rx BD hit ", __FUNCTION__);
4169 DBG_PRINT(INTR_DBG, "PANIC levels\n");
4170 if ((ret = fill_rx_buffers(sp, rng_n)) == -ENOMEM) {
4171 DBG_PRINT(INFO_DBG, "Out of memory in %s",
4172 __FUNCTION__);
4173 clear_bit(0, (&sp->tasklet_status));
4174 return -1;
4176 clear_bit(0, (&sp->tasklet_status));
4177 } else if (level == LOW)
4178 tasklet_schedule(&sp->task);
4180 } else if (fill_rx_buffers(sp, rng_n) == -ENOMEM) {
4181 DBG_PRINT(INFO_DBG, "%s:Out of memory", sp->dev->name);
4182 DBG_PRINT(INFO_DBG, " in Rx Intr!!\n");
4184 return 0;
4187 static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id)
4189 struct ring_info *ring = (struct ring_info *)dev_id;
4190 struct s2io_nic *sp = ring->nic;
4192 atomic_inc(&sp->isr_cnt);
4194 rx_intr_handler(ring);
4195 s2io_chk_rx_buffers(sp, ring->ring_no);
4197 atomic_dec(&sp->isr_cnt);
4198 return IRQ_HANDLED;
4201 static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id)
4203 struct fifo_info *fifo = (struct fifo_info *)dev_id;
4204 struct s2io_nic *sp = fifo->nic;
4206 atomic_inc(&sp->isr_cnt);
4207 tx_intr_handler(fifo);
4208 atomic_dec(&sp->isr_cnt);
4209 return IRQ_HANDLED;
4211 static void s2io_txpic_intr_handle(struct s2io_nic *sp)
4213 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4214 u64 val64;
4216 val64 = readq(&bar0->pic_int_status);
4217 if (val64 & PIC_INT_GPIO) {
4218 val64 = readq(&bar0->gpio_int_reg);
4219 if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
4220 (val64 & GPIO_INT_REG_LINK_UP)) {
4222 * This is unstable state so clear both up/down
4223 * interrupt and adapter to re-evaluate the link state.
4225 val64 |= GPIO_INT_REG_LINK_DOWN;
4226 val64 |= GPIO_INT_REG_LINK_UP;
4227 writeq(val64, &bar0->gpio_int_reg);
4228 val64 = readq(&bar0->gpio_int_mask);
4229 val64 &= ~(GPIO_INT_MASK_LINK_UP |
4230 GPIO_INT_MASK_LINK_DOWN);
4231 writeq(val64, &bar0->gpio_int_mask);
4233 else if (val64 & GPIO_INT_REG_LINK_UP) {
4234 val64 = readq(&bar0->adapter_status);
4235 /* Enable Adapter */
4236 val64 = readq(&bar0->adapter_control);
4237 val64 |= ADAPTER_CNTL_EN;
4238 writeq(val64, &bar0->adapter_control);
4239 val64 |= ADAPTER_LED_ON;
4240 writeq(val64, &bar0->adapter_control);
4241 if (!sp->device_enabled_once)
4242 sp->device_enabled_once = 1;
4244 s2io_link(sp, LINK_UP);
4246 * unmask link down interrupt and mask link-up
4247 * intr
4249 val64 = readq(&bar0->gpio_int_mask);
4250 val64 &= ~GPIO_INT_MASK_LINK_DOWN;
4251 val64 |= GPIO_INT_MASK_LINK_UP;
4252 writeq(val64, &bar0->gpio_int_mask);
4254 }else if (val64 & GPIO_INT_REG_LINK_DOWN) {
4255 val64 = readq(&bar0->adapter_status);
4256 s2io_link(sp, LINK_DOWN);
4257 /* Link is down so unmaks link up interrupt */
4258 val64 = readq(&bar0->gpio_int_mask);
4259 val64 &= ~GPIO_INT_MASK_LINK_UP;
4260 val64 |= GPIO_INT_MASK_LINK_DOWN;
4261 writeq(val64, &bar0->gpio_int_mask);
4263 /* turn off LED */
4264 val64 = readq(&bar0->adapter_control);
4265 val64 = val64 &(~ADAPTER_LED_ON);
4266 writeq(val64, &bar0->adapter_control);
4269 val64 = readq(&bar0->gpio_int_mask);
4273 * s2io_isr - ISR handler of the device .
4274 * @irq: the irq of the device.
4275 * @dev_id: a void pointer to the dev structure of the NIC.
4276 * Description: This function is the ISR handler of the device. It
4277 * identifies the reason for the interrupt and calls the relevant
4278 * service routines. As a contongency measure, this ISR allocates the
4279 * recv buffers, if their numbers are below the panic value which is
4280 * presently set to 25% of the original number of rcv buffers allocated.
4281 * Return value:
4282 * IRQ_HANDLED: will be returned if IRQ was handled by this routine
4283 * IRQ_NONE: will be returned if interrupt is not from our device
4285 static irqreturn_t s2io_isr(int irq, void *dev_id)
4287 struct net_device *dev = (struct net_device *) dev_id;
4288 struct s2io_nic *sp = dev->priv;
4289 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4290 int i;
4291 u64 reason = 0;
4292 struct mac_info *mac_control;
4293 struct config_param *config;
4295 /* Pretend we handled any irq's from a disconnected card */
4296 if (pci_channel_offline(sp->pdev))
4297 return IRQ_NONE;
4299 atomic_inc(&sp->isr_cnt);
4300 mac_control = &sp->mac_control;
4301 config = &sp->config;
4304 * Identify the cause for interrupt and call the appropriate
4305 * interrupt handler. Causes for the interrupt could be;
4306 * 1. Rx of packet.
4307 * 2. Tx complete.
4308 * 3. Link down.
4309 * 4. Error in any functional blocks of the NIC.
4311 reason = readq(&bar0->general_int_status);
4313 if (!reason) {
4314 /* The interrupt was not raised by us. */
4315 atomic_dec(&sp->isr_cnt);
4316 return IRQ_NONE;
4318 else if (unlikely(reason == S2IO_MINUS_ONE) ) {
4319 /* Disable device and get out */
4320 atomic_dec(&sp->isr_cnt);
4321 return IRQ_NONE;
4324 if (napi) {
4325 if (reason & GEN_INTR_RXTRAFFIC) {
4326 if (likely (netif_rx_schedule_prep(dev, &sp->napi))) {
4327 __netif_rx_schedule(dev, &sp->napi);
4328 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_mask);
4330 else
4331 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4333 } else {
4335 * Rx handler is called by default, without checking for the
4336 * cause of interrupt.
4337 * rx_traffic_int reg is an R1 register, writing all 1's
4338 * will ensure that the actual interrupt causing bit get's
4339 * cleared and hence a read can be avoided.
4341 if (reason & GEN_INTR_RXTRAFFIC)
4342 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4344 for (i = 0; i < config->rx_ring_num; i++) {
4345 rx_intr_handler(&mac_control->rings[i]);
4350 * tx_traffic_int reg is an R1 register, writing all 1's
4351 * will ensure that the actual interrupt causing bit get's
4352 * cleared and hence a read can be avoided.
4354 if (reason & GEN_INTR_TXTRAFFIC)
4355 writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4357 for (i = 0; i < config->tx_fifo_num; i++)
4358 tx_intr_handler(&mac_control->fifos[i]);
4360 if (reason & GEN_INTR_TXPIC)
4361 s2io_txpic_intr_handle(sp);
4363 * If the Rx buffer count is below the panic threshold then
4364 * reallocate the buffers from the interrupt handler itself,
4365 * else schedule a tasklet to reallocate the buffers.
4367 if (!napi) {
4368 for (i = 0; i < config->rx_ring_num; i++)
4369 s2io_chk_rx_buffers(sp, i);
4372 writeq(0, &bar0->general_int_mask);
4373 readl(&bar0->general_int_status);
4375 atomic_dec(&sp->isr_cnt);
4376 return IRQ_HANDLED;
4380 * s2io_updt_stats -
4382 static void s2io_updt_stats(struct s2io_nic *sp)
4384 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4385 u64 val64;
4386 int cnt = 0;
4388 if (atomic_read(&sp->card_state) == CARD_UP) {
4389 /* Apprx 30us on a 133 MHz bus */
4390 val64 = SET_UPDT_CLICKS(10) |
4391 STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
4392 writeq(val64, &bar0->stat_cfg);
4393 do {
4394 udelay(100);
4395 val64 = readq(&bar0->stat_cfg);
4396 if (!(val64 & BIT(0)))
4397 break;
4398 cnt++;
4399 if (cnt == 5)
4400 break; /* Updt failed */
4401 } while(1);
4406 * s2io_get_stats - Updates the device statistics structure.
4407 * @dev : pointer to the device structure.
4408 * Description:
4409 * This function updates the device statistics structure in the s2io_nic
4410 * structure and returns a pointer to the same.
4411 * Return value:
4412 * pointer to the updated net_device_stats structure.
4415 static struct net_device_stats *s2io_get_stats(struct net_device *dev)
4417 struct s2io_nic *sp = dev->priv;
4418 struct mac_info *mac_control;
4419 struct config_param *config;
4422 mac_control = &sp->mac_control;
4423 config = &sp->config;
4425 /* Configure Stats for immediate updt */
4426 s2io_updt_stats(sp);
4428 sp->stats.tx_packets =
4429 le32_to_cpu(mac_control->stats_info->tmac_frms);
4430 sp->stats.tx_errors =
4431 le32_to_cpu(mac_control->stats_info->tmac_any_err_frms);
4432 sp->stats.rx_errors =
4433 le64_to_cpu(mac_control->stats_info->rmac_drop_frms);
4434 sp->stats.multicast =
4435 le32_to_cpu(mac_control->stats_info->rmac_vld_mcst_frms);
4436 sp->stats.rx_length_errors =
4437 le64_to_cpu(mac_control->stats_info->rmac_long_frms);
4439 return (&sp->stats);
4443 * s2io_set_multicast - entry point for multicast address enable/disable.
4444 * @dev : pointer to the device structure
4445 * Description:
4446 * This function is a driver entry point which gets called by the kernel
4447 * whenever multicast addresses must be enabled/disabled. This also gets
4448 * called to set/reset promiscuous mode. Depending on the deivce flag, we
4449 * determine, if multicast address must be enabled or if promiscuous mode
4450 * is to be disabled etc.
4451 * Return value:
4452 * void.
4455 static void s2io_set_multicast(struct net_device *dev)
4457 int i, j, prev_cnt;
4458 struct dev_mc_list *mclist;
4459 struct s2io_nic *sp = dev->priv;
4460 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4461 u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
4462 0xfeffffffffffULL;
4463 u64 dis_addr = 0xffffffffffffULL, mac_addr = 0;
4464 void __iomem *add;
4466 if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
4467 /* Enable all Multicast addresses */
4468 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
4469 &bar0->rmac_addr_data0_mem);
4470 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
4471 &bar0->rmac_addr_data1_mem);
4472 val64 = RMAC_ADDR_CMD_MEM_WE |
4473 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4474 RMAC_ADDR_CMD_MEM_OFFSET(MAC_MC_ALL_MC_ADDR_OFFSET);
4475 writeq(val64, &bar0->rmac_addr_cmd_mem);
4476 /* Wait till command completes */
4477 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4478 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4479 S2IO_BIT_RESET);
4481 sp->m_cast_flg = 1;
4482 sp->all_multi_pos = MAC_MC_ALL_MC_ADDR_OFFSET;
4483 } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
4484 /* Disable all Multicast addresses */
4485 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4486 &bar0->rmac_addr_data0_mem);
4487 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
4488 &bar0->rmac_addr_data1_mem);
4489 val64 = RMAC_ADDR_CMD_MEM_WE |
4490 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4491 RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
4492 writeq(val64, &bar0->rmac_addr_cmd_mem);
4493 /* Wait till command completes */
4494 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4495 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4496 S2IO_BIT_RESET);
4498 sp->m_cast_flg = 0;
4499 sp->all_multi_pos = 0;
4502 if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
4503 /* Put the NIC into promiscuous mode */
4504 add = &bar0->mac_cfg;
4505 val64 = readq(&bar0->mac_cfg);
4506 val64 |= MAC_CFG_RMAC_PROM_ENABLE;
4508 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4509 writel((u32) val64, add);
4510 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4511 writel((u32) (val64 >> 32), (add + 4));
4513 if (vlan_tag_strip != 1) {
4514 val64 = readq(&bar0->rx_pa_cfg);
4515 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
4516 writeq(val64, &bar0->rx_pa_cfg);
4517 vlan_strip_flag = 0;
4520 val64 = readq(&bar0->mac_cfg);
4521 sp->promisc_flg = 1;
4522 DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
4523 dev->name);
4524 } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
4525 /* Remove the NIC from promiscuous mode */
4526 add = &bar0->mac_cfg;
4527 val64 = readq(&bar0->mac_cfg);
4528 val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
4530 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4531 writel((u32) val64, add);
4532 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4533 writel((u32) (val64 >> 32), (add + 4));
4535 if (vlan_tag_strip != 0) {
4536 val64 = readq(&bar0->rx_pa_cfg);
4537 val64 |= RX_PA_CFG_STRIP_VLAN_TAG;
4538 writeq(val64, &bar0->rx_pa_cfg);
4539 vlan_strip_flag = 1;
4542 val64 = readq(&bar0->mac_cfg);
4543 sp->promisc_flg = 0;
4544 DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n",
4545 dev->name);
4548 /* Update individual M_CAST address list */
4549 if ((!sp->m_cast_flg) && dev->mc_count) {
4550 if (dev->mc_count >
4551 (MAX_ADDRS_SUPPORTED - MAC_MC_ADDR_START_OFFSET - 1)) {
4552 DBG_PRINT(ERR_DBG, "%s: No more Rx filters ",
4553 dev->name);
4554 DBG_PRINT(ERR_DBG, "can be added, please enable ");
4555 DBG_PRINT(ERR_DBG, "ALL_MULTI instead\n");
4556 return;
4559 prev_cnt = sp->mc_addr_count;
4560 sp->mc_addr_count = dev->mc_count;
4562 /* Clear out the previous list of Mc in the H/W. */
4563 for (i = 0; i < prev_cnt; i++) {
4564 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4565 &bar0->rmac_addr_data0_mem);
4566 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
4567 &bar0->rmac_addr_data1_mem);
4568 val64 = RMAC_ADDR_CMD_MEM_WE |
4569 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4570 RMAC_ADDR_CMD_MEM_OFFSET
4571 (MAC_MC_ADDR_START_OFFSET + i);
4572 writeq(val64, &bar0->rmac_addr_cmd_mem);
4574 /* Wait for command completes */
4575 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4576 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4577 S2IO_BIT_RESET)) {
4578 DBG_PRINT(ERR_DBG, "%s: Adding ",
4579 dev->name);
4580 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
4581 return;
4585 /* Create the new Rx filter list and update the same in H/W. */
4586 for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
4587 i++, mclist = mclist->next) {
4588 memcpy(sp->usr_addrs[i].addr, mclist->dmi_addr,
4589 ETH_ALEN);
4590 mac_addr = 0;
4591 for (j = 0; j < ETH_ALEN; j++) {
4592 mac_addr |= mclist->dmi_addr[j];
4593 mac_addr <<= 8;
4595 mac_addr >>= 8;
4596 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
4597 &bar0->rmac_addr_data0_mem);
4598 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
4599 &bar0->rmac_addr_data1_mem);
4600 val64 = RMAC_ADDR_CMD_MEM_WE |
4601 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4602 RMAC_ADDR_CMD_MEM_OFFSET
4603 (i + MAC_MC_ADDR_START_OFFSET);
4604 writeq(val64, &bar0->rmac_addr_cmd_mem);
4606 /* Wait for command completes */
4607 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4608 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4609 S2IO_BIT_RESET)) {
4610 DBG_PRINT(ERR_DBG, "%s: Adding ",
4611 dev->name);
4612 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
4613 return;
4620 * s2io_set_mac_addr - Programs the Xframe mac address
4621 * @dev : pointer to the device structure.
4622 * @addr: a uchar pointer to the new mac address which is to be set.
4623 * Description : This procedure will program the Xframe to receive
4624 * frames with new Mac Address
4625 * Return value: SUCCESS on success and an appropriate (-)ve integer
4626 * as defined in errno.h file on failure.
4629 static int s2io_set_mac_addr(struct net_device *dev, u8 * addr)
4631 struct s2io_nic *sp = dev->priv;
4632 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4633 register u64 val64, mac_addr = 0;
4634 int i;
4635 u64 old_mac_addr = 0;
4638 * Set the new MAC address as the new unicast filter and reflect this
4639 * change on the device address registered with the OS. It will be
4640 * at offset 0.
4642 for (i = 0; i < ETH_ALEN; i++) {
4643 mac_addr <<= 8;
4644 mac_addr |= addr[i];
4645 old_mac_addr <<= 8;
4646 old_mac_addr |= sp->def_mac_addr[0].mac_addr[i];
4649 if(0 == mac_addr)
4650 return SUCCESS;
4652 /* Update the internal structure with this new mac address */
4653 if(mac_addr != old_mac_addr) {
4654 memset(sp->def_mac_addr[0].mac_addr, 0, sizeof(ETH_ALEN));
4655 sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_addr);
4656 sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_addr >> 8);
4657 sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_addr >> 16);
4658 sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_addr >> 24);
4659 sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_addr >> 32);
4660 sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_addr >> 40);
4663 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
4664 &bar0->rmac_addr_data0_mem);
4666 val64 =
4667 RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4668 RMAC_ADDR_CMD_MEM_OFFSET(0);
4669 writeq(val64, &bar0->rmac_addr_cmd_mem);
4670 /* Wait till command completes */
4671 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4672 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, S2IO_BIT_RESET)) {
4673 DBG_PRINT(ERR_DBG, "%s: set_mac_addr failed\n", dev->name);
4674 return FAILURE;
4677 return SUCCESS;
4681 * s2io_ethtool_sset - Sets different link parameters.
4682 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
4683 * @info: pointer to the structure with parameters given by ethtool to set
4684 * link information.
4685 * Description:
4686 * The function sets different link parameters provided by the user onto
4687 * the NIC.
4688 * Return value:
4689 * 0 on success.
4692 static int s2io_ethtool_sset(struct net_device *dev,
4693 struct ethtool_cmd *info)
4695 struct s2io_nic *sp = dev->priv;
4696 if ((info->autoneg == AUTONEG_ENABLE) ||
4697 (info->speed != SPEED_10000) || (info->duplex != DUPLEX_FULL))
4698 return -EINVAL;
4699 else {
4700 s2io_close(sp->dev);
4701 s2io_open(sp->dev);
4704 return 0;
4708 * s2io_ethtol_gset - Return link specific information.
4709 * @sp : private member of the device structure, pointer to the
4710 * s2io_nic structure.
4711 * @info : pointer to the structure with parameters given by ethtool
4712 * to return link information.
4713 * Description:
4714 * Returns link specific information like speed, duplex etc.. to ethtool.
4715 * Return value :
4716 * return 0 on success.
4719 static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
4721 struct s2io_nic *sp = dev->priv;
4722 info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
4723 info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
4724 info->port = PORT_FIBRE;
4725 /* info->transceiver?? TODO */
4727 if (netif_carrier_ok(sp->dev)) {
4728 info->speed = 10000;
4729 info->duplex = DUPLEX_FULL;
4730 } else {
4731 info->speed = -1;
4732 info->duplex = -1;
4735 info->autoneg = AUTONEG_DISABLE;
4736 return 0;
4740 * s2io_ethtool_gdrvinfo - Returns driver specific information.
4741 * @sp : private member of the device structure, which is a pointer to the
4742 * s2io_nic structure.
4743 * @info : pointer to the structure with parameters given by ethtool to
4744 * return driver information.
4745 * Description:
4746 * Returns driver specefic information like name, version etc.. to ethtool.
4747 * Return value:
4748 * void
4751 static void s2io_ethtool_gdrvinfo(struct net_device *dev,
4752 struct ethtool_drvinfo *info)
4754 struct s2io_nic *sp = dev->priv;
4756 strncpy(info->driver, s2io_driver_name, sizeof(info->driver));
4757 strncpy(info->version, s2io_driver_version, sizeof(info->version));
4758 strncpy(info->fw_version, "", sizeof(info->fw_version));
4759 strncpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
4760 info->regdump_len = XENA_REG_SPACE;
4761 info->eedump_len = XENA_EEPROM_SPACE;
4762 info->testinfo_len = S2IO_TEST_LEN;
4764 if (sp->device_type == XFRAME_I_DEVICE)
4765 info->n_stats = XFRAME_I_STAT_LEN;
4766 else
4767 info->n_stats = XFRAME_II_STAT_LEN;
4771 * s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
4772 * @sp: private member of the device structure, which is a pointer to the
4773 * s2io_nic structure.
4774 * @regs : pointer to the structure with parameters given by ethtool for
4775 * dumping the registers.
4776 * @reg_space: The input argumnet into which all the registers are dumped.
4777 * Description:
4778 * Dumps the entire register space of xFrame NIC into the user given
4779 * buffer area.
4780 * Return value :
4781 * void .
4784 static void s2io_ethtool_gregs(struct net_device *dev,
4785 struct ethtool_regs *regs, void *space)
4787 int i;
4788 u64 reg;
4789 u8 *reg_space = (u8 *) space;
4790 struct s2io_nic *sp = dev->priv;
4792 regs->len = XENA_REG_SPACE;
4793 regs->version = sp->pdev->subsystem_device;
4795 for (i = 0; i < regs->len; i += 8) {
4796 reg = readq(sp->bar0 + i);
4797 memcpy((reg_space + i), &reg, 8);
4802 * s2io_phy_id - timer function that alternates adapter LED.
4803 * @data : address of the private member of the device structure, which
4804 * is a pointer to the s2io_nic structure, provided as an u32.
4805 * Description: This is actually the timer function that alternates the
4806 * adapter LED bit of the adapter control bit to set/reset every time on
4807 * invocation. The timer is set for 1/2 a second, hence tha NIC blinks
4808 * once every second.
4810 static void s2io_phy_id(unsigned long data)
4812 struct s2io_nic *sp = (struct s2io_nic *) data;
4813 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4814 u64 val64 = 0;
4815 u16 subid;
4817 subid = sp->pdev->subsystem_device;
4818 if ((sp->device_type == XFRAME_II_DEVICE) ||
4819 ((subid & 0xFF) >= 0x07)) {
4820 val64 = readq(&bar0->gpio_control);
4821 val64 ^= GPIO_CTRL_GPIO_0;
4822 writeq(val64, &bar0->gpio_control);
4823 } else {
4824 val64 = readq(&bar0->adapter_control);
4825 val64 ^= ADAPTER_LED_ON;
4826 writeq(val64, &bar0->adapter_control);
4829 mod_timer(&sp->id_timer, jiffies + HZ / 2);
4833 * s2io_ethtool_idnic - To physically identify the nic on the system.
4834 * @sp : private member of the device structure, which is a pointer to the
4835 * s2io_nic structure.
4836 * @id : pointer to the structure with identification parameters given by
4837 * ethtool.
4838 * Description: Used to physically identify the NIC on the system.
4839 * The Link LED will blink for a time specified by the user for
4840 * identification.
4841 * NOTE: The Link has to be Up to be able to blink the LED. Hence
4842 * identification is possible only if it's link is up.
4843 * Return value:
4844 * int , returns 0 on success
4847 static int s2io_ethtool_idnic(struct net_device *dev, u32 data)
4849 u64 val64 = 0, last_gpio_ctrl_val;
4850 struct s2io_nic *sp = dev->priv;
4851 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4852 u16 subid;
4854 subid = sp->pdev->subsystem_device;
4855 last_gpio_ctrl_val = readq(&bar0->gpio_control);
4856 if ((sp->device_type == XFRAME_I_DEVICE) &&
4857 ((subid & 0xFF) < 0x07)) {
4858 val64 = readq(&bar0->adapter_control);
4859 if (!(val64 & ADAPTER_CNTL_EN)) {
4860 printk(KERN_ERR
4861 "Adapter Link down, cannot blink LED\n");
4862 return -EFAULT;
4865 if (sp->id_timer.function == NULL) {
4866 init_timer(&sp->id_timer);
4867 sp->id_timer.function = s2io_phy_id;
4868 sp->id_timer.data = (unsigned long) sp;
4870 mod_timer(&sp->id_timer, jiffies);
4871 if (data)
4872 msleep_interruptible(data * HZ);
4873 else
4874 msleep_interruptible(MAX_FLICKER_TIME);
4875 del_timer_sync(&sp->id_timer);
4877 if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid)) {
4878 writeq(last_gpio_ctrl_val, &bar0->gpio_control);
4879 last_gpio_ctrl_val = readq(&bar0->gpio_control);
4882 return 0;
4885 static void s2io_ethtool_gringparam(struct net_device *dev,
4886 struct ethtool_ringparam *ering)
4888 struct s2io_nic *sp = dev->priv;
4889 int i,tx_desc_count=0,rx_desc_count=0;
4891 if (sp->rxd_mode == RXD_MODE_1)
4892 ering->rx_max_pending = MAX_RX_DESC_1;
4893 else if (sp->rxd_mode == RXD_MODE_3B)
4894 ering->rx_max_pending = MAX_RX_DESC_2;
4896 ering->tx_max_pending = MAX_TX_DESC;
4897 for (i = 0 ; i < sp->config.tx_fifo_num ; i++)
4898 tx_desc_count += sp->config.tx_cfg[i].fifo_len;
4900 DBG_PRINT(INFO_DBG,"\nmax txds : %d\n",sp->config.max_txds);
4901 ering->tx_pending = tx_desc_count;
4902 rx_desc_count = 0;
4903 for (i = 0 ; i < sp->config.rx_ring_num ; i++)
4904 rx_desc_count += sp->config.rx_cfg[i].num_rxd;
4906 ering->rx_pending = rx_desc_count;
4908 ering->rx_mini_max_pending = 0;
4909 ering->rx_mini_pending = 0;
4910 if(sp->rxd_mode == RXD_MODE_1)
4911 ering->rx_jumbo_max_pending = MAX_RX_DESC_1;
4912 else if (sp->rxd_mode == RXD_MODE_3B)
4913 ering->rx_jumbo_max_pending = MAX_RX_DESC_2;
4914 ering->rx_jumbo_pending = rx_desc_count;
4918 * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
4919 * @sp : private member of the device structure, which is a pointer to the
4920 * s2io_nic structure.
4921 * @ep : pointer to the structure with pause parameters given by ethtool.
4922 * Description:
4923 * Returns the Pause frame generation and reception capability of the NIC.
4924 * Return value:
4925 * void
4927 static void s2io_ethtool_getpause_data(struct net_device *dev,
4928 struct ethtool_pauseparam *ep)
4930 u64 val64;
4931 struct s2io_nic *sp = dev->priv;
4932 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4934 val64 = readq(&bar0->rmac_pause_cfg);
4935 if (val64 & RMAC_PAUSE_GEN_ENABLE)
4936 ep->tx_pause = TRUE;
4937 if (val64 & RMAC_PAUSE_RX_ENABLE)
4938 ep->rx_pause = TRUE;
4939 ep->autoneg = FALSE;
4943 * s2io_ethtool_setpause_data - set/reset pause frame generation.
4944 * @sp : private member of the device structure, which is a pointer to the
4945 * s2io_nic structure.
4946 * @ep : pointer to the structure with pause parameters given by ethtool.
4947 * Description:
4948 * It can be used to set or reset Pause frame generation or reception
4949 * support of the NIC.
4950 * Return value:
4951 * int, returns 0 on Success
4954 static int s2io_ethtool_setpause_data(struct net_device *dev,
4955 struct ethtool_pauseparam *ep)
4957 u64 val64;
4958 struct s2io_nic *sp = dev->priv;
4959 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4961 val64 = readq(&bar0->rmac_pause_cfg);
4962 if (ep->tx_pause)
4963 val64 |= RMAC_PAUSE_GEN_ENABLE;
4964 else
4965 val64 &= ~RMAC_PAUSE_GEN_ENABLE;
4966 if (ep->rx_pause)
4967 val64 |= RMAC_PAUSE_RX_ENABLE;
4968 else
4969 val64 &= ~RMAC_PAUSE_RX_ENABLE;
4970 writeq(val64, &bar0->rmac_pause_cfg);
4971 return 0;
4975 * read_eeprom - reads 4 bytes of data from user given offset.
4976 * @sp : private member of the device structure, which is a pointer to the
4977 * s2io_nic structure.
4978 * @off : offset at which the data must be written
4979 * @data : Its an output parameter where the data read at the given
4980 * offset is stored.
4981 * Description:
4982 * Will read 4 bytes of data from the user given offset and return the
4983 * read data.
4984 * NOTE: Will allow to read only part of the EEPROM visible through the
4985 * I2C bus.
4986 * Return value:
4987 * -1 on failure and 0 on success.
4990 #define S2IO_DEV_ID 5
4991 static int read_eeprom(struct s2io_nic * sp, int off, u64 * data)
4993 int ret = -1;
4994 u32 exit_cnt = 0;
4995 u64 val64;
4996 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4998 if (sp->device_type == XFRAME_I_DEVICE) {
4999 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
5000 I2C_CONTROL_BYTE_CNT(0x3) | I2C_CONTROL_READ |
5001 I2C_CONTROL_CNTL_START;
5002 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5004 while (exit_cnt < 5) {
5005 val64 = readq(&bar0->i2c_control);
5006 if (I2C_CONTROL_CNTL_END(val64)) {
5007 *data = I2C_CONTROL_GET_DATA(val64);
5008 ret = 0;
5009 break;
5011 msleep(50);
5012 exit_cnt++;
5016 if (sp->device_type == XFRAME_II_DEVICE) {
5017 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5018 SPI_CONTROL_BYTECNT(0x3) |
5019 SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
5020 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5021 val64 |= SPI_CONTROL_REQ;
5022 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5023 while (exit_cnt < 5) {
5024 val64 = readq(&bar0->spi_control);
5025 if (val64 & SPI_CONTROL_NACK) {
5026 ret = 1;
5027 break;
5028 } else if (val64 & SPI_CONTROL_DONE) {
5029 *data = readq(&bar0->spi_data);
5030 *data &= 0xffffff;
5031 ret = 0;
5032 break;
5034 msleep(50);
5035 exit_cnt++;
5038 return ret;
5042 * write_eeprom - actually writes the relevant part of the data value.
5043 * @sp : private member of the device structure, which is a pointer to the
5044 * s2io_nic structure.
5045 * @off : offset at which the data must be written
5046 * @data : The data that is to be written
5047 * @cnt : Number of bytes of the data that are actually to be written into
5048 * the Eeprom. (max of 3)
5049 * Description:
5050 * Actually writes the relevant part of the data value into the Eeprom
5051 * through the I2C bus.
5052 * Return value:
5053 * 0 on success, -1 on failure.
5056 static int write_eeprom(struct s2io_nic * sp, int off, u64 data, int cnt)
5058 int exit_cnt = 0, ret = -1;
5059 u64 val64;
5060 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5062 if (sp->device_type == XFRAME_I_DEVICE) {
5063 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
5064 I2C_CONTROL_BYTE_CNT(cnt) | I2C_CONTROL_SET_DATA((u32)data) |
5065 I2C_CONTROL_CNTL_START;
5066 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5068 while (exit_cnt < 5) {
5069 val64 = readq(&bar0->i2c_control);
5070 if (I2C_CONTROL_CNTL_END(val64)) {
5071 if (!(val64 & I2C_CONTROL_NACK))
5072 ret = 0;
5073 break;
5075 msleep(50);
5076 exit_cnt++;
5080 if (sp->device_type == XFRAME_II_DEVICE) {
5081 int write_cnt = (cnt == 8) ? 0 : cnt;
5082 writeq(SPI_DATA_WRITE(data,(cnt<<3)), &bar0->spi_data);
5084 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5085 SPI_CONTROL_BYTECNT(write_cnt) |
5086 SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
5087 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5088 val64 |= SPI_CONTROL_REQ;
5089 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5090 while (exit_cnt < 5) {
5091 val64 = readq(&bar0->spi_control);
5092 if (val64 & SPI_CONTROL_NACK) {
5093 ret = 1;
5094 break;
5095 } else if (val64 & SPI_CONTROL_DONE) {
5096 ret = 0;
5097 break;
5099 msleep(50);
5100 exit_cnt++;
5103 return ret;
5105 static void s2io_vpd_read(struct s2io_nic *nic)
5107 u8 *vpd_data;
5108 u8 data;
5109 int i=0, cnt, fail = 0;
5110 int vpd_addr = 0x80;
5112 if (nic->device_type == XFRAME_II_DEVICE) {
5113 strcpy(nic->product_name, "Xframe II 10GbE network adapter");
5114 vpd_addr = 0x80;
5116 else {
5117 strcpy(nic->product_name, "Xframe I 10GbE network adapter");
5118 vpd_addr = 0x50;
5120 strcpy(nic->serial_num, "NOT AVAILABLE");
5122 vpd_data = kmalloc(256, GFP_KERNEL);
5123 if (!vpd_data) {
5124 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
5125 return;
5127 nic->mac_control.stats_info->sw_stat.mem_allocated += 256;
5129 for (i = 0; i < 256; i +=4 ) {
5130 pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
5131 pci_read_config_byte(nic->pdev, (vpd_addr + 2), &data);
5132 pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
5133 for (cnt = 0; cnt <5; cnt++) {
5134 msleep(2);
5135 pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
5136 if (data == 0x80)
5137 break;
5139 if (cnt >= 5) {
5140 DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
5141 fail = 1;
5142 break;
5144 pci_read_config_dword(nic->pdev, (vpd_addr + 4),
5145 (u32 *)&vpd_data[i]);
5148 if(!fail) {
5149 /* read serial number of adapter */
5150 for (cnt = 0; cnt < 256; cnt++) {
5151 if ((vpd_data[cnt] == 'S') &&
5152 (vpd_data[cnt+1] == 'N') &&
5153 (vpd_data[cnt+2] < VPD_STRING_LEN)) {
5154 memset(nic->serial_num, 0, VPD_STRING_LEN);
5155 memcpy(nic->serial_num, &vpd_data[cnt + 3],
5156 vpd_data[cnt+2]);
5157 break;
5162 if ((!fail) && (vpd_data[1] < VPD_STRING_LEN)) {
5163 memset(nic->product_name, 0, vpd_data[1]);
5164 memcpy(nic->product_name, &vpd_data[3], vpd_data[1]);
5166 kfree(vpd_data);
5167 nic->mac_control.stats_info->sw_stat.mem_freed += 256;
5171 * s2io_ethtool_geeprom - reads the value stored in the Eeprom.
5172 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
5173 * @eeprom : pointer to the user level structure provided by ethtool,
5174 * containing all relevant information.
5175 * @data_buf : user defined value to be written into Eeprom.
5176 * Description: Reads the values stored in the Eeprom at given offset
5177 * for a given length. Stores these values int the input argument data
5178 * buffer 'data_buf' and returns these to the caller (ethtool.)
5179 * Return value:
5180 * int 0 on success
5183 static int s2io_ethtool_geeprom(struct net_device *dev,
5184 struct ethtool_eeprom *eeprom, u8 * data_buf)
5186 u32 i, valid;
5187 u64 data;
5188 struct s2io_nic *sp = dev->priv;
5190 eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
5192 if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
5193 eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
5195 for (i = 0; i < eeprom->len; i += 4) {
5196 if (read_eeprom(sp, (eeprom->offset + i), &data)) {
5197 DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
5198 return -EFAULT;
5200 valid = INV(data);
5201 memcpy((data_buf + i), &valid, 4);
5203 return 0;
5207 * s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
5208 * @sp : private member of the device structure, which is a pointer to the
5209 * s2io_nic structure.
5210 * @eeprom : pointer to the user level structure provided by ethtool,
5211 * containing all relevant information.
5212 * @data_buf ; user defined value to be written into Eeprom.
5213 * Description:
5214 * Tries to write the user provided value in the Eeprom, at the offset
5215 * given by the user.
5216 * Return value:
5217 * 0 on success, -EFAULT on failure.
5220 static int s2io_ethtool_seeprom(struct net_device *dev,
5221 struct ethtool_eeprom *eeprom,
5222 u8 * data_buf)
5224 int len = eeprom->len, cnt = 0;
5225 u64 valid = 0, data;
5226 struct s2io_nic *sp = dev->priv;
5228 if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
5229 DBG_PRINT(ERR_DBG,
5230 "ETHTOOL_WRITE_EEPROM Err: Magic value ");
5231 DBG_PRINT(ERR_DBG, "is wrong, Its not 0x%x\n",
5232 eeprom->magic);
5233 return -EFAULT;
5236 while (len) {
5237 data = (u32) data_buf[cnt] & 0x000000FF;
5238 if (data) {
5239 valid = (u32) (data << 24);
5240 } else
5241 valid = data;
5243 if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
5244 DBG_PRINT(ERR_DBG,
5245 "ETHTOOL_WRITE_EEPROM Err: Cannot ");
5246 DBG_PRINT(ERR_DBG,
5247 "write into the specified offset\n");
5248 return -EFAULT;
5250 cnt++;
5251 len--;
5254 return 0;
5258 * s2io_register_test - reads and writes into all clock domains.
5259 * @sp : private member of the device structure, which is a pointer to the
5260 * s2io_nic structure.
5261 * @data : variable that returns the result of each of the test conducted b
5262 * by the driver.
5263 * Description:
5264 * Read and write into all clock domains. The NIC has 3 clock domains,
5265 * see that registers in all the three regions are accessible.
5266 * Return value:
5267 * 0 on success.
5270 static int s2io_register_test(struct s2io_nic * sp, uint64_t * data)
5272 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5273 u64 val64 = 0, exp_val;
5274 int fail = 0;
5276 val64 = readq(&bar0->pif_rd_swapper_fb);
5277 if (val64 != 0x123456789abcdefULL) {
5278 fail = 1;
5279 DBG_PRINT(INFO_DBG, "Read Test level 1 fails\n");
5282 val64 = readq(&bar0->rmac_pause_cfg);
5283 if (val64 != 0xc000ffff00000000ULL) {
5284 fail = 1;
5285 DBG_PRINT(INFO_DBG, "Read Test level 2 fails\n");
5288 val64 = readq(&bar0->rx_queue_cfg);
5289 if (sp->device_type == XFRAME_II_DEVICE)
5290 exp_val = 0x0404040404040404ULL;
5291 else
5292 exp_val = 0x0808080808080808ULL;
5293 if (val64 != exp_val) {
5294 fail = 1;
5295 DBG_PRINT(INFO_DBG, "Read Test level 3 fails\n");
5298 val64 = readq(&bar0->xgxs_efifo_cfg);
5299 if (val64 != 0x000000001923141EULL) {
5300 fail = 1;
5301 DBG_PRINT(INFO_DBG, "Read Test level 4 fails\n");
5304 val64 = 0x5A5A5A5A5A5A5A5AULL;
5305 writeq(val64, &bar0->xmsi_data);
5306 val64 = readq(&bar0->xmsi_data);
5307 if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
5308 fail = 1;
5309 DBG_PRINT(ERR_DBG, "Write Test level 1 fails\n");
5312 val64 = 0xA5A5A5A5A5A5A5A5ULL;
5313 writeq(val64, &bar0->xmsi_data);
5314 val64 = readq(&bar0->xmsi_data);
5315 if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
5316 fail = 1;
5317 DBG_PRINT(ERR_DBG, "Write Test level 2 fails\n");
5320 *data = fail;
5321 return fail;
5325 * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
5326 * @sp : private member of the device structure, which is a pointer to the
5327 * s2io_nic structure.
5328 * @data:variable that returns the result of each of the test conducted by
5329 * the driver.
5330 * Description:
5331 * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
5332 * register.
5333 * Return value:
5334 * 0 on success.
5337 static int s2io_eeprom_test(struct s2io_nic * sp, uint64_t * data)
5339 int fail = 0;
5340 u64 ret_data, org_4F0, org_7F0;
5341 u8 saved_4F0 = 0, saved_7F0 = 0;
5342 struct net_device *dev = sp->dev;
5344 /* Test Write Error at offset 0 */
5345 /* Note that SPI interface allows write access to all areas
5346 * of EEPROM. Hence doing all negative testing only for Xframe I.
5348 if (sp->device_type == XFRAME_I_DEVICE)
5349 if (!write_eeprom(sp, 0, 0, 3))
5350 fail = 1;
5352 /* Save current values at offsets 0x4F0 and 0x7F0 */
5353 if (!read_eeprom(sp, 0x4F0, &org_4F0))
5354 saved_4F0 = 1;
5355 if (!read_eeprom(sp, 0x7F0, &org_7F0))
5356 saved_7F0 = 1;
5358 /* Test Write at offset 4f0 */
5359 if (write_eeprom(sp, 0x4F0, 0x012345, 3))
5360 fail = 1;
5361 if (read_eeprom(sp, 0x4F0, &ret_data))
5362 fail = 1;
5364 if (ret_data != 0x012345) {
5365 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
5366 "Data written %llx Data read %llx\n",
5367 dev->name, (unsigned long long)0x12345,
5368 (unsigned long long)ret_data);
5369 fail = 1;
5372 /* Reset the EEPROM data go FFFF */
5373 write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
5375 /* Test Write Request Error at offset 0x7c */
5376 if (sp->device_type == XFRAME_I_DEVICE)
5377 if (!write_eeprom(sp, 0x07C, 0, 3))
5378 fail = 1;
5380 /* Test Write Request at offset 0x7f0 */
5381 if (write_eeprom(sp, 0x7F0, 0x012345, 3))
5382 fail = 1;
5383 if (read_eeprom(sp, 0x7F0, &ret_data))
5384 fail = 1;
5386 if (ret_data != 0x012345) {
5387 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
5388 "Data written %llx Data read %llx\n",
5389 dev->name, (unsigned long long)0x12345,
5390 (unsigned long long)ret_data);
5391 fail = 1;
5394 /* Reset the EEPROM data go FFFF */
5395 write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
5397 if (sp->device_type == XFRAME_I_DEVICE) {
5398 /* Test Write Error at offset 0x80 */
5399 if (!write_eeprom(sp, 0x080, 0, 3))
5400 fail = 1;
5402 /* Test Write Error at offset 0xfc */
5403 if (!write_eeprom(sp, 0x0FC, 0, 3))
5404 fail = 1;
5406 /* Test Write Error at offset 0x100 */
5407 if (!write_eeprom(sp, 0x100, 0, 3))
5408 fail = 1;
5410 /* Test Write Error at offset 4ec */
5411 if (!write_eeprom(sp, 0x4EC, 0, 3))
5412 fail = 1;
5415 /* Restore values at offsets 0x4F0 and 0x7F0 */
5416 if (saved_4F0)
5417 write_eeprom(sp, 0x4F0, org_4F0, 3);
5418 if (saved_7F0)
5419 write_eeprom(sp, 0x7F0, org_7F0, 3);
5421 *data = fail;
5422 return fail;
5426 * s2io_bist_test - invokes the MemBist test of the card .
5427 * @sp : private member of the device structure, which is a pointer to the
5428 * s2io_nic structure.
5429 * @data:variable that returns the result of each of the test conducted by
5430 * the driver.
5431 * Description:
5432 * This invokes the MemBist test of the card. We give around
5433 * 2 secs time for the Test to complete. If it's still not complete
5434 * within this peiod, we consider that the test failed.
5435 * Return value:
5436 * 0 on success and -1 on failure.
5439 static int s2io_bist_test(struct s2io_nic * sp, uint64_t * data)
5441 u8 bist = 0;
5442 int cnt = 0, ret = -1;
5444 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
5445 bist |= PCI_BIST_START;
5446 pci_write_config_word(sp->pdev, PCI_BIST, bist);
5448 while (cnt < 20) {
5449 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
5450 if (!(bist & PCI_BIST_START)) {
5451 *data = (bist & PCI_BIST_CODE_MASK);
5452 ret = 0;
5453 break;
5455 msleep(100);
5456 cnt++;
5459 return ret;
5463 * s2io-link_test - verifies the link state of the nic
5464 * @sp ; private member of the device structure, which is a pointer to the
5465 * s2io_nic structure.
5466 * @data: variable that returns the result of each of the test conducted by
5467 * the driver.
5468 * Description:
5469 * The function verifies the link state of the NIC and updates the input
5470 * argument 'data' appropriately.
5471 * Return value:
5472 * 0 on success.
5475 static int s2io_link_test(struct s2io_nic * sp, uint64_t * data)
5477 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5478 u64 val64;
5480 val64 = readq(&bar0->adapter_status);
5481 if(!(LINK_IS_UP(val64)))
5482 *data = 1;
5483 else
5484 *data = 0;
5486 return *data;
5490 * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
5491 * @sp - private member of the device structure, which is a pointer to the
5492 * s2io_nic structure.
5493 * @data - variable that returns the result of each of the test
5494 * conducted by the driver.
5495 * Description:
5496 * This is one of the offline test that tests the read and write
5497 * access to the RldRam chip on the NIC.
5498 * Return value:
5499 * 0 on success.
5502 static int s2io_rldram_test(struct s2io_nic * sp, uint64_t * data)
5504 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5505 u64 val64;
5506 int cnt, iteration = 0, test_fail = 0;
5508 val64 = readq(&bar0->adapter_control);
5509 val64 &= ~ADAPTER_ECC_EN;
5510 writeq(val64, &bar0->adapter_control);
5512 val64 = readq(&bar0->mc_rldram_test_ctrl);
5513 val64 |= MC_RLDRAM_TEST_MODE;
5514 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
5516 val64 = readq(&bar0->mc_rldram_mrs);
5517 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
5518 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
5520 val64 |= MC_RLDRAM_MRS_ENABLE;
5521 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
5523 while (iteration < 2) {
5524 val64 = 0x55555555aaaa0000ULL;
5525 if (iteration == 1) {
5526 val64 ^= 0xFFFFFFFFFFFF0000ULL;
5528 writeq(val64, &bar0->mc_rldram_test_d0);
5530 val64 = 0xaaaa5a5555550000ULL;
5531 if (iteration == 1) {
5532 val64 ^= 0xFFFFFFFFFFFF0000ULL;
5534 writeq(val64, &bar0->mc_rldram_test_d1);
5536 val64 = 0x55aaaaaaaa5a0000ULL;
5537 if (iteration == 1) {
5538 val64 ^= 0xFFFFFFFFFFFF0000ULL;
5540 writeq(val64, &bar0->mc_rldram_test_d2);
5542 val64 = (u64) (0x0000003ffffe0100ULL);
5543 writeq(val64, &bar0->mc_rldram_test_add);
5545 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_WRITE |
5546 MC_RLDRAM_TEST_GO;
5547 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
5549 for (cnt = 0; cnt < 5; cnt++) {
5550 val64 = readq(&bar0->mc_rldram_test_ctrl);
5551 if (val64 & MC_RLDRAM_TEST_DONE)
5552 break;
5553 msleep(200);
5556 if (cnt == 5)
5557 break;
5559 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
5560 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
5562 for (cnt = 0; cnt < 5; cnt++) {
5563 val64 = readq(&bar0->mc_rldram_test_ctrl);
5564 if (val64 & MC_RLDRAM_TEST_DONE)
5565 break;
5566 msleep(500);
5569 if (cnt == 5)
5570 break;
5572 val64 = readq(&bar0->mc_rldram_test_ctrl);
5573 if (!(val64 & MC_RLDRAM_TEST_PASS))
5574 test_fail = 1;
5576 iteration++;
5579 *data = test_fail;
5581 /* Bring the adapter out of test mode */
5582 SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
5584 return test_fail;
5588 * s2io_ethtool_test - conducts 6 tsets to determine the health of card.
5589 * @sp : private member of the device structure, which is a pointer to the
5590 * s2io_nic structure.
5591 * @ethtest : pointer to a ethtool command specific structure that will be
5592 * returned to the user.
5593 * @data : variable that returns the result of each of the test
5594 * conducted by the driver.
5595 * Description:
5596 * This function conducts 6 tests ( 4 offline and 2 online) to determine
5597 * the health of the card.
5598 * Return value:
5599 * void
5602 static void s2io_ethtool_test(struct net_device *dev,
5603 struct ethtool_test *ethtest,
5604 uint64_t * data)
5606 struct s2io_nic *sp = dev->priv;
5607 int orig_state = netif_running(sp->dev);
5609 if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
5610 /* Offline Tests. */
5611 if (orig_state)
5612 s2io_close(sp->dev);
5614 if (s2io_register_test(sp, &data[0]))
5615 ethtest->flags |= ETH_TEST_FL_FAILED;
5617 s2io_reset(sp);
5619 if (s2io_rldram_test(sp, &data[3]))
5620 ethtest->flags |= ETH_TEST_FL_FAILED;
5622 s2io_reset(sp);
5624 if (s2io_eeprom_test(sp, &data[1]))
5625 ethtest->flags |= ETH_TEST_FL_FAILED;
5627 if (s2io_bist_test(sp, &data[4]))
5628 ethtest->flags |= ETH_TEST_FL_FAILED;
5630 if (orig_state)
5631 s2io_open(sp->dev);
5633 data[2] = 0;
5634 } else {
5635 /* Online Tests. */
5636 if (!orig_state) {
5637 DBG_PRINT(ERR_DBG,
5638 "%s: is not up, cannot run test\n",
5639 dev->name);
5640 data[0] = -1;
5641 data[1] = -1;
5642 data[2] = -1;
5643 data[3] = -1;
5644 data[4] = -1;
5647 if (s2io_link_test(sp, &data[2]))
5648 ethtest->flags |= ETH_TEST_FL_FAILED;
5650 data[0] = 0;
5651 data[1] = 0;
5652 data[3] = 0;
5653 data[4] = 0;
5657 static void s2io_get_ethtool_stats(struct net_device *dev,
5658 struct ethtool_stats *estats,
5659 u64 * tmp_stats)
5661 int i = 0;
5662 struct s2io_nic *sp = dev->priv;
5663 struct stat_block *stat_info = sp->mac_control.stats_info;
5665 s2io_updt_stats(sp);
5666 tmp_stats[i++] =
5667 (u64)le32_to_cpu(stat_info->tmac_frms_oflow) << 32 |
5668 le32_to_cpu(stat_info->tmac_frms);
5669 tmp_stats[i++] =
5670 (u64)le32_to_cpu(stat_info->tmac_data_octets_oflow) << 32 |
5671 le32_to_cpu(stat_info->tmac_data_octets);
5672 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_drop_frms);
5673 tmp_stats[i++] =
5674 (u64)le32_to_cpu(stat_info->tmac_mcst_frms_oflow) << 32 |
5675 le32_to_cpu(stat_info->tmac_mcst_frms);
5676 tmp_stats[i++] =
5677 (u64)le32_to_cpu(stat_info->tmac_bcst_frms_oflow) << 32 |
5678 le32_to_cpu(stat_info->tmac_bcst_frms);
5679 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_pause_ctrl_frms);
5680 tmp_stats[i++] =
5681 (u64)le32_to_cpu(stat_info->tmac_ttl_octets_oflow) << 32 |
5682 le32_to_cpu(stat_info->tmac_ttl_octets);
5683 tmp_stats[i++] =
5684 (u64)le32_to_cpu(stat_info->tmac_ucst_frms_oflow) << 32 |
5685 le32_to_cpu(stat_info->tmac_ucst_frms);
5686 tmp_stats[i++] =
5687 (u64)le32_to_cpu(stat_info->tmac_nucst_frms_oflow) << 32 |
5688 le32_to_cpu(stat_info->tmac_nucst_frms);
5689 tmp_stats[i++] =
5690 (u64)le32_to_cpu(stat_info->tmac_any_err_frms_oflow) << 32 |
5691 le32_to_cpu(stat_info->tmac_any_err_frms);
5692 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_ttl_less_fb_octets);
5693 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_vld_ip_octets);
5694 tmp_stats[i++] =
5695 (u64)le32_to_cpu(stat_info->tmac_vld_ip_oflow) << 32 |
5696 le32_to_cpu(stat_info->tmac_vld_ip);
5697 tmp_stats[i++] =
5698 (u64)le32_to_cpu(stat_info->tmac_drop_ip_oflow) << 32 |
5699 le32_to_cpu(stat_info->tmac_drop_ip);
5700 tmp_stats[i++] =
5701 (u64)le32_to_cpu(stat_info->tmac_icmp_oflow) << 32 |
5702 le32_to_cpu(stat_info->tmac_icmp);
5703 tmp_stats[i++] =
5704 (u64)le32_to_cpu(stat_info->tmac_rst_tcp_oflow) << 32 |
5705 le32_to_cpu(stat_info->tmac_rst_tcp);
5706 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_tcp);
5707 tmp_stats[i++] = (u64)le32_to_cpu(stat_info->tmac_udp_oflow) << 32 |
5708 le32_to_cpu(stat_info->tmac_udp);
5709 tmp_stats[i++] =
5710 (u64)le32_to_cpu(stat_info->rmac_vld_frms_oflow) << 32 |
5711 le32_to_cpu(stat_info->rmac_vld_frms);
5712 tmp_stats[i++] =
5713 (u64)le32_to_cpu(stat_info->rmac_data_octets_oflow) << 32 |
5714 le32_to_cpu(stat_info->rmac_data_octets);
5715 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_fcs_err_frms);
5716 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_drop_frms);
5717 tmp_stats[i++] =
5718 (u64)le32_to_cpu(stat_info->rmac_vld_mcst_frms_oflow) << 32 |
5719 le32_to_cpu(stat_info->rmac_vld_mcst_frms);
5720 tmp_stats[i++] =
5721 (u64)le32_to_cpu(stat_info->rmac_vld_bcst_frms_oflow) << 32 |
5722 le32_to_cpu(stat_info->rmac_vld_bcst_frms);
5723 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_in_rng_len_err_frms);
5724 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_out_rng_len_err_frms);
5725 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_long_frms);
5726 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_pause_ctrl_frms);
5727 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_unsup_ctrl_frms);
5728 tmp_stats[i++] =
5729 (u64)le32_to_cpu(stat_info->rmac_ttl_octets_oflow) << 32 |
5730 le32_to_cpu(stat_info->rmac_ttl_octets);
5731 tmp_stats[i++] =
5732 (u64)le32_to_cpu(stat_info->rmac_accepted_ucst_frms_oflow)
5733 << 32 | le32_to_cpu(stat_info->rmac_accepted_ucst_frms);
5734 tmp_stats[i++] =
5735 (u64)le32_to_cpu(stat_info->rmac_accepted_nucst_frms_oflow)
5736 << 32 | le32_to_cpu(stat_info->rmac_accepted_nucst_frms);
5737 tmp_stats[i++] =
5738 (u64)le32_to_cpu(stat_info->rmac_discarded_frms_oflow) << 32 |
5739 le32_to_cpu(stat_info->rmac_discarded_frms);
5740 tmp_stats[i++] =
5741 (u64)le32_to_cpu(stat_info->rmac_drop_events_oflow)
5742 << 32 | le32_to_cpu(stat_info->rmac_drop_events);
5743 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_less_fb_octets);
5744 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_frms);
5745 tmp_stats[i++] =
5746 (u64)le32_to_cpu(stat_info->rmac_usized_frms_oflow) << 32 |
5747 le32_to_cpu(stat_info->rmac_usized_frms);
5748 tmp_stats[i++] =
5749 (u64)le32_to_cpu(stat_info->rmac_osized_frms_oflow) << 32 |
5750 le32_to_cpu(stat_info->rmac_osized_frms);
5751 tmp_stats[i++] =
5752 (u64)le32_to_cpu(stat_info->rmac_frag_frms_oflow) << 32 |
5753 le32_to_cpu(stat_info->rmac_frag_frms);
5754 tmp_stats[i++] =
5755 (u64)le32_to_cpu(stat_info->rmac_jabber_frms_oflow) << 32 |
5756 le32_to_cpu(stat_info->rmac_jabber_frms);
5757 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_64_frms);
5758 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_65_127_frms);
5759 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_128_255_frms);
5760 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_256_511_frms);
5761 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_512_1023_frms);
5762 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_1024_1518_frms);
5763 tmp_stats[i++] =
5764 (u64)le32_to_cpu(stat_info->rmac_ip_oflow) << 32 |
5765 le32_to_cpu(stat_info->rmac_ip);
5766 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ip_octets);
5767 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_hdr_err_ip);
5768 tmp_stats[i++] =
5769 (u64)le32_to_cpu(stat_info->rmac_drop_ip_oflow) << 32 |
5770 le32_to_cpu(stat_info->rmac_drop_ip);
5771 tmp_stats[i++] =
5772 (u64)le32_to_cpu(stat_info->rmac_icmp_oflow) << 32 |
5773 le32_to_cpu(stat_info->rmac_icmp);
5774 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_tcp);
5775 tmp_stats[i++] =
5776 (u64)le32_to_cpu(stat_info->rmac_udp_oflow) << 32 |
5777 le32_to_cpu(stat_info->rmac_udp);
5778 tmp_stats[i++] =
5779 (u64)le32_to_cpu(stat_info->rmac_err_drp_udp_oflow) << 32 |
5780 le32_to_cpu(stat_info->rmac_err_drp_udp);
5781 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_err_sym);
5782 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q0);
5783 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q1);
5784 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q2);
5785 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q3);
5786 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q4);
5787 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q5);
5788 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q6);
5789 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q7);
5790 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q0);
5791 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q1);
5792 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q2);
5793 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q3);
5794 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q4);
5795 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q5);
5796 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q6);
5797 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q7);
5798 tmp_stats[i++] =
5799 (u64)le32_to_cpu(stat_info->rmac_pause_cnt_oflow) << 32 |
5800 le32_to_cpu(stat_info->rmac_pause_cnt);
5801 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_data_err_cnt);
5802 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_ctrl_err_cnt);
5803 tmp_stats[i++] =
5804 (u64)le32_to_cpu(stat_info->rmac_accepted_ip_oflow) << 32 |
5805 le32_to_cpu(stat_info->rmac_accepted_ip);
5806 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_err_tcp);
5807 tmp_stats[i++] = le32_to_cpu(stat_info->rd_req_cnt);
5808 tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_cnt);
5809 tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_rtry_cnt);
5810 tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_cnt);
5811 tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_rd_ack_cnt);
5812 tmp_stats[i++] = le32_to_cpu(stat_info->wr_req_cnt);
5813 tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_cnt);
5814 tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_rtry_cnt);
5815 tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_cnt);
5816 tmp_stats[i++] = le32_to_cpu(stat_info->wr_disc_cnt);
5817 tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_wr_ack_cnt);
5818 tmp_stats[i++] = le32_to_cpu(stat_info->txp_wr_cnt);
5819 tmp_stats[i++] = le32_to_cpu(stat_info->txd_rd_cnt);
5820 tmp_stats[i++] = le32_to_cpu(stat_info->txd_wr_cnt);
5821 tmp_stats[i++] = le32_to_cpu(stat_info->rxd_rd_cnt);
5822 tmp_stats[i++] = le32_to_cpu(stat_info->rxd_wr_cnt);
5823 tmp_stats[i++] = le32_to_cpu(stat_info->txf_rd_cnt);
5824 tmp_stats[i++] = le32_to_cpu(stat_info->rxf_wr_cnt);
5826 /* Enhanced statistics exist only for Hercules */
5827 if(sp->device_type == XFRAME_II_DEVICE) {
5828 tmp_stats[i++] =
5829 le64_to_cpu(stat_info->rmac_ttl_1519_4095_frms);
5830 tmp_stats[i++] =
5831 le64_to_cpu(stat_info->rmac_ttl_4096_8191_frms);
5832 tmp_stats[i++] =
5833 le64_to_cpu(stat_info->rmac_ttl_8192_max_frms);
5834 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_gt_max_frms);
5835 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_osized_alt_frms);
5836 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_jabber_alt_frms);
5837 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_gt_max_alt_frms);
5838 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_vlan_frms);
5839 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_len_discard);
5840 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_fcs_discard);
5841 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_pf_discard);
5842 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_da_discard);
5843 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_red_discard);
5844 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_rts_discard);
5845 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_ingm_full_discard);
5846 tmp_stats[i++] = le32_to_cpu(stat_info->link_fault_cnt);
5849 tmp_stats[i++] = 0;
5850 tmp_stats[i++] = stat_info->sw_stat.single_ecc_errs;
5851 tmp_stats[i++] = stat_info->sw_stat.double_ecc_errs;
5852 tmp_stats[i++] = stat_info->sw_stat.parity_err_cnt;
5853 tmp_stats[i++] = stat_info->sw_stat.serious_err_cnt;
5854 tmp_stats[i++] = stat_info->sw_stat.soft_reset_cnt;
5855 tmp_stats[i++] = stat_info->sw_stat.fifo_full_cnt;
5856 tmp_stats[i++] = stat_info->sw_stat.ring_full_cnt;
5857 tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_high;
5858 tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_low;
5859 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_high;
5860 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_low;
5861 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_high;
5862 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_low;
5863 tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_high;
5864 tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_low;
5865 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_high;
5866 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_low;
5867 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_high;
5868 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_low;
5869 tmp_stats[i++] = stat_info->sw_stat.clubbed_frms_cnt;
5870 tmp_stats[i++] = stat_info->sw_stat.sending_both;
5871 tmp_stats[i++] = stat_info->sw_stat.outof_sequence_pkts;
5872 tmp_stats[i++] = stat_info->sw_stat.flush_max_pkts;
5873 if (stat_info->sw_stat.num_aggregations) {
5874 u64 tmp = stat_info->sw_stat.sum_avg_pkts_aggregated;
5875 int count = 0;
5877 * Since 64-bit divide does not work on all platforms,
5878 * do repeated subtraction.
5880 while (tmp >= stat_info->sw_stat.num_aggregations) {
5881 tmp -= stat_info->sw_stat.num_aggregations;
5882 count++;
5884 tmp_stats[i++] = count;
5886 else
5887 tmp_stats[i++] = 0;
5888 tmp_stats[i++] = stat_info->sw_stat.mem_alloc_fail_cnt;
5889 tmp_stats[i++] = stat_info->sw_stat.pci_map_fail_cnt;
5890 tmp_stats[i++] = stat_info->sw_stat.watchdog_timer_cnt;
5891 tmp_stats[i++] = stat_info->sw_stat.mem_allocated;
5892 tmp_stats[i++] = stat_info->sw_stat.mem_freed;
5893 tmp_stats[i++] = stat_info->sw_stat.link_up_cnt;
5894 tmp_stats[i++] = stat_info->sw_stat.link_down_cnt;
5895 tmp_stats[i++] = stat_info->sw_stat.link_up_time;
5896 tmp_stats[i++] = stat_info->sw_stat.link_down_time;
5898 tmp_stats[i++] = stat_info->sw_stat.tx_buf_abort_cnt;
5899 tmp_stats[i++] = stat_info->sw_stat.tx_desc_abort_cnt;
5900 tmp_stats[i++] = stat_info->sw_stat.tx_parity_err_cnt;
5901 tmp_stats[i++] = stat_info->sw_stat.tx_link_loss_cnt;
5902 tmp_stats[i++] = stat_info->sw_stat.tx_list_proc_err_cnt;
5904 tmp_stats[i++] = stat_info->sw_stat.rx_parity_err_cnt;
5905 tmp_stats[i++] = stat_info->sw_stat.rx_abort_cnt;
5906 tmp_stats[i++] = stat_info->sw_stat.rx_parity_abort_cnt;
5907 tmp_stats[i++] = stat_info->sw_stat.rx_rda_fail_cnt;
5908 tmp_stats[i++] = stat_info->sw_stat.rx_unkn_prot_cnt;
5909 tmp_stats[i++] = stat_info->sw_stat.rx_fcs_err_cnt;
5910 tmp_stats[i++] = stat_info->sw_stat.rx_buf_size_err_cnt;
5911 tmp_stats[i++] = stat_info->sw_stat.rx_rxd_corrupt_cnt;
5912 tmp_stats[i++] = stat_info->sw_stat.rx_unkn_err_cnt;
5915 static int s2io_ethtool_get_regs_len(struct net_device *dev)
5917 return (XENA_REG_SPACE);
5921 static u32 s2io_ethtool_get_rx_csum(struct net_device * dev)
5923 struct s2io_nic *sp = dev->priv;
5925 return (sp->rx_csum);
5928 static int s2io_ethtool_set_rx_csum(struct net_device *dev, u32 data)
5930 struct s2io_nic *sp = dev->priv;
5932 if (data)
5933 sp->rx_csum = 1;
5934 else
5935 sp->rx_csum = 0;
5937 return 0;
5940 static int s2io_get_eeprom_len(struct net_device *dev)
5942 return (XENA_EEPROM_SPACE);
5945 static int s2io_ethtool_self_test_count(struct net_device *dev)
5947 return (S2IO_TEST_LEN);
5950 static void s2io_ethtool_get_strings(struct net_device *dev,
5951 u32 stringset, u8 * data)
5953 int stat_size = 0;
5954 struct s2io_nic *sp = dev->priv;
5956 switch (stringset) {
5957 case ETH_SS_TEST:
5958 memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
5959 break;
5960 case ETH_SS_STATS:
5961 stat_size = sizeof(ethtool_xena_stats_keys);
5962 memcpy(data, &ethtool_xena_stats_keys,stat_size);
5963 if(sp->device_type == XFRAME_II_DEVICE) {
5964 memcpy(data + stat_size,
5965 &ethtool_enhanced_stats_keys,
5966 sizeof(ethtool_enhanced_stats_keys));
5967 stat_size += sizeof(ethtool_enhanced_stats_keys);
5970 memcpy(data + stat_size, &ethtool_driver_stats_keys,
5971 sizeof(ethtool_driver_stats_keys));
5974 static int s2io_ethtool_get_stats_count(struct net_device *dev)
5976 struct s2io_nic *sp = dev->priv;
5977 int stat_count = 0;
5978 switch(sp->device_type) {
5979 case XFRAME_I_DEVICE:
5980 stat_count = XFRAME_I_STAT_LEN;
5981 break;
5983 case XFRAME_II_DEVICE:
5984 stat_count = XFRAME_II_STAT_LEN;
5985 break;
5988 return stat_count;
5991 static int s2io_ethtool_op_set_tx_csum(struct net_device *dev, u32 data)
5993 if (data)
5994 dev->features |= NETIF_F_IP_CSUM;
5995 else
5996 dev->features &= ~NETIF_F_IP_CSUM;
5998 return 0;
6001 static u32 s2io_ethtool_op_get_tso(struct net_device *dev)
6003 return (dev->features & NETIF_F_TSO) != 0;
6005 static int s2io_ethtool_op_set_tso(struct net_device *dev, u32 data)
6007 if (data)
6008 dev->features |= (NETIF_F_TSO | NETIF_F_TSO6);
6009 else
6010 dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
6012 return 0;
6015 static const struct ethtool_ops netdev_ethtool_ops = {
6016 .get_settings = s2io_ethtool_gset,
6017 .set_settings = s2io_ethtool_sset,
6018 .get_drvinfo = s2io_ethtool_gdrvinfo,
6019 .get_regs_len = s2io_ethtool_get_regs_len,
6020 .get_regs = s2io_ethtool_gregs,
6021 .get_link = ethtool_op_get_link,
6022 .get_eeprom_len = s2io_get_eeprom_len,
6023 .get_eeprom = s2io_ethtool_geeprom,
6024 .set_eeprom = s2io_ethtool_seeprom,
6025 .get_ringparam = s2io_ethtool_gringparam,
6026 .get_pauseparam = s2io_ethtool_getpause_data,
6027 .set_pauseparam = s2io_ethtool_setpause_data,
6028 .get_rx_csum = s2io_ethtool_get_rx_csum,
6029 .set_rx_csum = s2io_ethtool_set_rx_csum,
6030 .get_tx_csum = ethtool_op_get_tx_csum,
6031 .set_tx_csum = s2io_ethtool_op_set_tx_csum,
6032 .get_sg = ethtool_op_get_sg,
6033 .set_sg = ethtool_op_set_sg,
6034 .get_tso = s2io_ethtool_op_get_tso,
6035 .set_tso = s2io_ethtool_op_set_tso,
6036 .get_ufo = ethtool_op_get_ufo,
6037 .set_ufo = ethtool_op_set_ufo,
6038 .self_test_count = s2io_ethtool_self_test_count,
6039 .self_test = s2io_ethtool_test,
6040 .get_strings = s2io_ethtool_get_strings,
6041 .phys_id = s2io_ethtool_idnic,
6042 .get_stats_count = s2io_ethtool_get_stats_count,
6043 .get_ethtool_stats = s2io_get_ethtool_stats
6047 * s2io_ioctl - Entry point for the Ioctl
6048 * @dev : Device pointer.
6049 * @ifr : An IOCTL specefic structure, that can contain a pointer to
6050 * a proprietary structure used to pass information to the driver.
6051 * @cmd : This is used to distinguish between the different commands that
6052 * can be passed to the IOCTL functions.
6053 * Description:
6054 * Currently there are no special functionality supported in IOCTL, hence
6055 * function always return EOPNOTSUPPORTED
6058 static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
6060 return -EOPNOTSUPP;
6064 * s2io_change_mtu - entry point to change MTU size for the device.
6065 * @dev : device pointer.
6066 * @new_mtu : the new MTU size for the device.
6067 * Description: A driver entry point to change MTU size for the device.
6068 * Before changing the MTU the device must be stopped.
6069 * Return value:
6070 * 0 on success and an appropriate (-)ve integer as defined in errno.h
6071 * file on failure.
6074 static int s2io_change_mtu(struct net_device *dev, int new_mtu)
6076 struct s2io_nic *sp = dev->priv;
6078 if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
6079 DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n",
6080 dev->name);
6081 return -EPERM;
6084 dev->mtu = new_mtu;
6085 if (netif_running(dev)) {
6086 s2io_card_down(sp);
6087 netif_stop_queue(dev);
6088 if (s2io_card_up(sp)) {
6089 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
6090 __FUNCTION__);
6092 if (netif_queue_stopped(dev))
6093 netif_wake_queue(dev);
6094 } else { /* Device is down */
6095 struct XENA_dev_config __iomem *bar0 = sp->bar0;
6096 u64 val64 = new_mtu;
6098 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
6101 return 0;
6105 * s2io_tasklet - Bottom half of the ISR.
6106 * @dev_adr : address of the device structure in dma_addr_t format.
6107 * Description:
6108 * This is the tasklet or the bottom half of the ISR. This is
6109 * an extension of the ISR which is scheduled by the scheduler to be run
6110 * when the load on the CPU is low. All low priority tasks of the ISR can
6111 * be pushed into the tasklet. For now the tasklet is used only to
6112 * replenish the Rx buffers in the Rx buffer descriptors.
6113 * Return value:
6114 * void.
6117 static void s2io_tasklet(unsigned long dev_addr)
6119 struct net_device *dev = (struct net_device *) dev_addr;
6120 struct s2io_nic *sp = dev->priv;
6121 int i, ret;
6122 struct mac_info *mac_control;
6123 struct config_param *config;
6125 mac_control = &sp->mac_control;
6126 config = &sp->config;
6128 if (!TASKLET_IN_USE) {
6129 for (i = 0; i < config->rx_ring_num; i++) {
6130 ret = fill_rx_buffers(sp, i);
6131 if (ret == -ENOMEM) {
6132 DBG_PRINT(INFO_DBG, "%s: Out of ",
6133 dev->name);
6134 DBG_PRINT(INFO_DBG, "memory in tasklet\n");
6135 break;
6136 } else if (ret == -EFILL) {
6137 DBG_PRINT(INFO_DBG,
6138 "%s: Rx Ring %d is full\n",
6139 dev->name, i);
6140 break;
6143 clear_bit(0, (&sp->tasklet_status));
6148 * s2io_set_link - Set the LInk status
6149 * @data: long pointer to device private structue
6150 * Description: Sets the link status for the adapter
6153 static void s2io_set_link(struct work_struct *work)
6155 struct s2io_nic *nic = container_of(work, struct s2io_nic, set_link_task);
6156 struct net_device *dev = nic->dev;
6157 struct XENA_dev_config __iomem *bar0 = nic->bar0;
6158 register u64 val64;
6159 u16 subid;
6161 rtnl_lock();
6163 if (!netif_running(dev))
6164 goto out_unlock;
6166 if (test_and_set_bit(0, &(nic->link_state))) {
6167 /* The card is being reset, no point doing anything */
6168 goto out_unlock;
6171 subid = nic->pdev->subsystem_device;
6172 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
6174 * Allow a small delay for the NICs self initiated
6175 * cleanup to complete.
6177 msleep(100);
6180 val64 = readq(&bar0->adapter_status);
6181 if (LINK_IS_UP(val64)) {
6182 if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) {
6183 if (verify_xena_quiescence(nic)) {
6184 val64 = readq(&bar0->adapter_control);
6185 val64 |= ADAPTER_CNTL_EN;
6186 writeq(val64, &bar0->adapter_control);
6187 if (CARDS_WITH_FAULTY_LINK_INDICATORS(
6188 nic->device_type, subid)) {
6189 val64 = readq(&bar0->gpio_control);
6190 val64 |= GPIO_CTRL_GPIO_0;
6191 writeq(val64, &bar0->gpio_control);
6192 val64 = readq(&bar0->gpio_control);
6193 } else {
6194 val64 |= ADAPTER_LED_ON;
6195 writeq(val64, &bar0->adapter_control);
6197 nic->device_enabled_once = TRUE;
6198 } else {
6199 DBG_PRINT(ERR_DBG, "%s: Error: ", dev->name);
6200 DBG_PRINT(ERR_DBG, "device is not Quiescent\n");
6201 netif_stop_queue(dev);
6204 val64 = readq(&bar0->adapter_control);
6205 val64 |= ADAPTER_LED_ON;
6206 writeq(val64, &bar0->adapter_control);
6207 s2io_link(nic, LINK_UP);
6208 } else {
6209 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
6210 subid)) {
6211 val64 = readq(&bar0->gpio_control);
6212 val64 &= ~GPIO_CTRL_GPIO_0;
6213 writeq(val64, &bar0->gpio_control);
6214 val64 = readq(&bar0->gpio_control);
6216 /* turn off LED */
6217 val64 = readq(&bar0->adapter_control);
6218 val64 = val64 &(~ADAPTER_LED_ON);
6219 writeq(val64, &bar0->adapter_control);
6220 s2io_link(nic, LINK_DOWN);
6222 clear_bit(0, &(nic->link_state));
6224 out_unlock:
6225 rtnl_unlock();
6228 static int set_rxd_buffer_pointer(struct s2io_nic *sp, struct RxD_t *rxdp,
6229 struct buffAdd *ba,
6230 struct sk_buff **skb, u64 *temp0, u64 *temp1,
6231 u64 *temp2, int size)
6233 struct net_device *dev = sp->dev;
6234 struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
6236 if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
6237 struct RxD1 *rxdp1 = (struct RxD1 *)rxdp;
6238 /* allocate skb */
6239 if (*skb) {
6240 DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
6242 * As Rx frame are not going to be processed,
6243 * using same mapped address for the Rxd
6244 * buffer pointer
6246 rxdp1->Buffer0_ptr = *temp0;
6247 } else {
6248 *skb = dev_alloc_skb(size);
6249 if (!(*skb)) {
6250 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
6251 DBG_PRINT(INFO_DBG, "memory to allocate ");
6252 DBG_PRINT(INFO_DBG, "1 buf mode SKBs\n");
6253 sp->mac_control.stats_info->sw_stat. \
6254 mem_alloc_fail_cnt++;
6255 return -ENOMEM ;
6257 sp->mac_control.stats_info->sw_stat.mem_allocated
6258 += (*skb)->truesize;
6259 /* storing the mapped addr in a temp variable
6260 * such it will be used for next rxd whose
6261 * Host Control is NULL
6263 rxdp1->Buffer0_ptr = *temp0 =
6264 pci_map_single( sp->pdev, (*skb)->data,
6265 size - NET_IP_ALIGN,
6266 PCI_DMA_FROMDEVICE);
6267 if( (rxdp1->Buffer0_ptr == 0) ||
6268 (rxdp1->Buffer0_ptr == DMA_ERROR_CODE)) {
6269 goto memalloc_failed;
6271 rxdp->Host_Control = (unsigned long) (*skb);
6273 } else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
6274 struct RxD3 *rxdp3 = (struct RxD3 *)rxdp;
6275 /* Two buffer Mode */
6276 if (*skb) {
6277 rxdp3->Buffer2_ptr = *temp2;
6278 rxdp3->Buffer0_ptr = *temp0;
6279 rxdp3->Buffer1_ptr = *temp1;
6280 } else {
6281 *skb = dev_alloc_skb(size);
6282 if (!(*skb)) {
6283 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
6284 DBG_PRINT(INFO_DBG, "memory to allocate ");
6285 DBG_PRINT(INFO_DBG, "2 buf mode SKBs\n");
6286 sp->mac_control.stats_info->sw_stat. \
6287 mem_alloc_fail_cnt++;
6288 return -ENOMEM;
6290 sp->mac_control.stats_info->sw_stat.mem_allocated
6291 += (*skb)->truesize;
6292 rxdp3->Buffer2_ptr = *temp2 =
6293 pci_map_single(sp->pdev, (*skb)->data,
6294 dev->mtu + 4,
6295 PCI_DMA_FROMDEVICE);
6296 if( (rxdp3->Buffer2_ptr == 0) ||
6297 (rxdp3->Buffer2_ptr == DMA_ERROR_CODE)) {
6298 goto memalloc_failed;
6300 rxdp3->Buffer0_ptr = *temp0 =
6301 pci_map_single( sp->pdev, ba->ba_0, BUF0_LEN,
6302 PCI_DMA_FROMDEVICE);
6303 if( (rxdp3->Buffer0_ptr == 0) ||
6304 (rxdp3->Buffer0_ptr == DMA_ERROR_CODE)) {
6305 pci_unmap_single (sp->pdev,
6306 (dma_addr_t)rxdp3->Buffer2_ptr,
6307 dev->mtu + 4, PCI_DMA_FROMDEVICE);
6308 goto memalloc_failed;
6310 rxdp->Host_Control = (unsigned long) (*skb);
6312 /* Buffer-1 will be dummy buffer not used */
6313 rxdp3->Buffer1_ptr = *temp1 =
6314 pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN,
6315 PCI_DMA_FROMDEVICE);
6316 if( (rxdp3->Buffer1_ptr == 0) ||
6317 (rxdp3->Buffer1_ptr == DMA_ERROR_CODE)) {
6318 pci_unmap_single (sp->pdev,
6319 (dma_addr_t)rxdp3->Buffer0_ptr,
6320 BUF0_LEN, PCI_DMA_FROMDEVICE);
6321 pci_unmap_single (sp->pdev,
6322 (dma_addr_t)rxdp3->Buffer2_ptr,
6323 dev->mtu + 4, PCI_DMA_FROMDEVICE);
6324 goto memalloc_failed;
6328 return 0;
6329 memalloc_failed:
6330 stats->pci_map_fail_cnt++;
6331 stats->mem_freed += (*skb)->truesize;
6332 dev_kfree_skb(*skb);
6333 return -ENOMEM;
6336 static void set_rxd_buffer_size(struct s2io_nic *sp, struct RxD_t *rxdp,
6337 int size)
6339 struct net_device *dev = sp->dev;
6340 if (sp->rxd_mode == RXD_MODE_1) {
6341 rxdp->Control_2 = SET_BUFFER0_SIZE_1( size - NET_IP_ALIGN);
6342 } else if (sp->rxd_mode == RXD_MODE_3B) {
6343 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
6344 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
6345 rxdp->Control_2 |= SET_BUFFER2_SIZE_3( dev->mtu + 4);
6349 static int rxd_owner_bit_reset(struct s2io_nic *sp)
6351 int i, j, k, blk_cnt = 0, size;
6352 struct mac_info * mac_control = &sp->mac_control;
6353 struct config_param *config = &sp->config;
6354 struct net_device *dev = sp->dev;
6355 struct RxD_t *rxdp = NULL;
6356 struct sk_buff *skb = NULL;
6357 struct buffAdd *ba = NULL;
6358 u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
6360 /* Calculate the size based on ring mode */
6361 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
6362 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
6363 if (sp->rxd_mode == RXD_MODE_1)
6364 size += NET_IP_ALIGN;
6365 else if (sp->rxd_mode == RXD_MODE_3B)
6366 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
6368 for (i = 0; i < config->rx_ring_num; i++) {
6369 blk_cnt = config->rx_cfg[i].num_rxd /
6370 (rxd_count[sp->rxd_mode] +1);
6372 for (j = 0; j < blk_cnt; j++) {
6373 for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
6374 rxdp = mac_control->rings[i].
6375 rx_blocks[j].rxds[k].virt_addr;
6376 if(sp->rxd_mode == RXD_MODE_3B)
6377 ba = &mac_control->rings[i].ba[j][k];
6378 if (set_rxd_buffer_pointer(sp, rxdp, ba,
6379 &skb,(u64 *)&temp0_64,
6380 (u64 *)&temp1_64,
6381 (u64 *)&temp2_64,
6382 size) == ENOMEM) {
6383 return 0;
6386 set_rxd_buffer_size(sp, rxdp, size);
6387 wmb();
6388 /* flip the Ownership bit to Hardware */
6389 rxdp->Control_1 |= RXD_OWN_XENA;
6393 return 0;
6397 static int s2io_add_isr(struct s2io_nic * sp)
6399 int ret = 0;
6400 struct net_device *dev = sp->dev;
6401 int err = 0;
6403 if (sp->intr_type == MSI_X)
6404 ret = s2io_enable_msi_x(sp);
6405 if (ret) {
6406 DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
6407 sp->intr_type = INTA;
6410 /* Store the values of the MSIX table in the struct s2io_nic structure */
6411 store_xmsi_data(sp);
6413 /* After proper initialization of H/W, register ISR */
6414 if (sp->intr_type == MSI_X) {
6415 int i, msix_tx_cnt=0,msix_rx_cnt=0;
6417 for (i=1; (sp->s2io_entries[i].in_use == MSIX_FLG); i++) {
6418 if (sp->s2io_entries[i].type == MSIX_FIFO_TYPE) {
6419 sprintf(sp->desc[i], "%s:MSI-X-%d-TX",
6420 dev->name, i);
6421 err = request_irq(sp->entries[i].vector,
6422 s2io_msix_fifo_handle, 0, sp->desc[i],
6423 sp->s2io_entries[i].arg);
6424 /* If either data or addr is zero print it */
6425 if(!(sp->msix_info[i].addr &&
6426 sp->msix_info[i].data)) {
6427 DBG_PRINT(ERR_DBG, "%s @ Addr:0x%llx"
6428 "Data:0x%lx\n",sp->desc[i],
6429 (unsigned long long)
6430 sp->msix_info[i].addr,
6431 (unsigned long)
6432 ntohl(sp->msix_info[i].data));
6433 } else {
6434 msix_tx_cnt++;
6436 } else {
6437 sprintf(sp->desc[i], "%s:MSI-X-%d-RX",
6438 dev->name, i);
6439 err = request_irq(sp->entries[i].vector,
6440 s2io_msix_ring_handle, 0, sp->desc[i],
6441 sp->s2io_entries[i].arg);
6442 /* If either data or addr is zero print it */
6443 if(!(sp->msix_info[i].addr &&
6444 sp->msix_info[i].data)) {
6445 DBG_PRINT(ERR_DBG, "%s @ Addr:0x%llx"
6446 "Data:0x%lx\n",sp->desc[i],
6447 (unsigned long long)
6448 sp->msix_info[i].addr,
6449 (unsigned long)
6450 ntohl(sp->msix_info[i].data));
6451 } else {
6452 msix_rx_cnt++;
6455 if (err) {
6456 DBG_PRINT(ERR_DBG,"%s:MSI-X-%d registration "
6457 "failed\n", dev->name, i);
6458 DBG_PRINT(ERR_DBG, "Returned: %d\n", err);
6459 return -1;
6461 sp->s2io_entries[i].in_use = MSIX_REGISTERED_SUCCESS;
6463 printk("MSI-X-TX %d entries enabled\n",msix_tx_cnt);
6464 printk("MSI-X-RX %d entries enabled\n",msix_rx_cnt);
6466 if (sp->intr_type == INTA) {
6467 err = request_irq((int) sp->pdev->irq, s2io_isr, IRQF_SHARED,
6468 sp->name, dev);
6469 if (err) {
6470 DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
6471 dev->name);
6472 return -1;
6475 return 0;
6477 static void s2io_rem_isr(struct s2io_nic * sp)
6479 int cnt = 0;
6480 struct net_device *dev = sp->dev;
6481 struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
6483 if (sp->intr_type == MSI_X) {
6484 int i;
6485 u16 msi_control;
6487 for (i=1; (sp->s2io_entries[i].in_use ==
6488 MSIX_REGISTERED_SUCCESS); i++) {
6489 int vector = sp->entries[i].vector;
6490 void *arg = sp->s2io_entries[i].arg;
6492 free_irq(vector, arg);
6495 kfree(sp->entries);
6496 stats->mem_freed +=
6497 (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
6498 kfree(sp->s2io_entries);
6499 stats->mem_freed +=
6500 (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
6501 sp->entries = NULL;
6502 sp->s2io_entries = NULL;
6504 pci_read_config_word(sp->pdev, 0x42, &msi_control);
6505 msi_control &= 0xFFFE; /* Disable MSI */
6506 pci_write_config_word(sp->pdev, 0x42, msi_control);
6508 pci_disable_msix(sp->pdev);
6509 } else {
6510 free_irq(sp->pdev->irq, dev);
6512 /* Waiting till all Interrupt handlers are complete */
6513 cnt = 0;
6514 do {
6515 msleep(10);
6516 if (!atomic_read(&sp->isr_cnt))
6517 break;
6518 cnt++;
6519 } while(cnt < 5);
6522 static void do_s2io_card_down(struct s2io_nic * sp, int do_io)
6524 int cnt = 0;
6525 struct XENA_dev_config __iomem *bar0 = sp->bar0;
6526 unsigned long flags;
6527 register u64 val64 = 0;
6529 del_timer_sync(&sp->alarm_timer);
6530 /* If s2io_set_link task is executing, wait till it completes. */
6531 while (test_and_set_bit(0, &(sp->link_state))) {
6532 msleep(50);
6534 atomic_set(&sp->card_state, CARD_DOWN);
6536 /* disable Tx and Rx traffic on the NIC */
6537 if (do_io)
6538 stop_nic(sp);
6540 s2io_rem_isr(sp);
6542 /* Kill tasklet. */
6543 tasklet_kill(&sp->task);
6545 /* Check if the device is Quiescent and then Reset the NIC */
6546 while(do_io) {
6547 /* As per the HW requirement we need to replenish the
6548 * receive buffer to avoid the ring bump. Since there is
6549 * no intention of processing the Rx frame at this pointwe are
6550 * just settting the ownership bit of rxd in Each Rx
6551 * ring to HW and set the appropriate buffer size
6552 * based on the ring mode
6554 rxd_owner_bit_reset(sp);
6556 val64 = readq(&bar0->adapter_status);
6557 if (verify_xena_quiescence(sp)) {
6558 if(verify_pcc_quiescent(sp, sp->device_enabled_once))
6559 break;
6562 msleep(50);
6563 cnt++;
6564 if (cnt == 10) {
6565 DBG_PRINT(ERR_DBG,
6566 "s2io_close:Device not Quiescent ");
6567 DBG_PRINT(ERR_DBG, "adaper status reads 0x%llx\n",
6568 (unsigned long long) val64);
6569 break;
6572 if (do_io)
6573 s2io_reset(sp);
6575 spin_lock_irqsave(&sp->tx_lock, flags);
6576 /* Free all Tx buffers */
6577 free_tx_buffers(sp);
6578 spin_unlock_irqrestore(&sp->tx_lock, flags);
6580 /* Free all Rx buffers */
6581 spin_lock_irqsave(&sp->rx_lock, flags);
6582 free_rx_buffers(sp);
6583 spin_unlock_irqrestore(&sp->rx_lock, flags);
6585 clear_bit(0, &(sp->link_state));
6588 static void s2io_card_down(struct s2io_nic * sp)
6590 do_s2io_card_down(sp, 1);
6593 static int s2io_card_up(struct s2io_nic * sp)
6595 int i, ret = 0;
6596 struct mac_info *mac_control;
6597 struct config_param *config;
6598 struct net_device *dev = (struct net_device *) sp->dev;
6599 u16 interruptible;
6601 /* Initialize the H/W I/O registers */
6602 if (init_nic(sp) != 0) {
6603 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
6604 dev->name);
6605 s2io_reset(sp);
6606 return -ENODEV;
6610 * Initializing the Rx buffers. For now we are considering only 1
6611 * Rx ring and initializing buffers into 30 Rx blocks
6613 mac_control = &sp->mac_control;
6614 config = &sp->config;
6616 for (i = 0; i < config->rx_ring_num; i++) {
6617 if ((ret = fill_rx_buffers(sp, i))) {
6618 DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
6619 dev->name);
6620 s2io_reset(sp);
6621 free_rx_buffers(sp);
6622 return -ENOMEM;
6624 DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
6625 atomic_read(&sp->rx_bufs_left[i]));
6627 /* Maintain the state prior to the open */
6628 if (sp->promisc_flg)
6629 sp->promisc_flg = 0;
6630 if (sp->m_cast_flg) {
6631 sp->m_cast_flg = 0;
6632 sp->all_multi_pos= 0;
6635 /* Setting its receive mode */
6636 s2io_set_multicast(dev);
6638 if (sp->lro) {
6639 /* Initialize max aggregatable pkts per session based on MTU */
6640 sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
6641 /* Check if we can use(if specified) user provided value */
6642 if (lro_max_pkts < sp->lro_max_aggr_per_sess)
6643 sp->lro_max_aggr_per_sess = lro_max_pkts;
6646 /* Enable Rx Traffic and interrupts on the NIC */
6647 if (start_nic(sp)) {
6648 DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
6649 s2io_reset(sp);
6650 free_rx_buffers(sp);
6651 return -ENODEV;
6654 /* Add interrupt service routine */
6655 if (s2io_add_isr(sp) != 0) {
6656 if (sp->intr_type == MSI_X)
6657 s2io_rem_isr(sp);
6658 s2io_reset(sp);
6659 free_rx_buffers(sp);
6660 return -ENODEV;
6663 S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
6665 /* Enable tasklet for the device */
6666 tasklet_init(&sp->task, s2io_tasklet, (unsigned long) dev);
6668 /* Enable select interrupts */
6669 if (sp->intr_type != INTA)
6670 en_dis_able_nic_intrs(sp, ENA_ALL_INTRS, DISABLE_INTRS);
6671 else {
6672 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
6673 interruptible |= TX_PIC_INTR | RX_PIC_INTR;
6674 interruptible |= TX_MAC_INTR | RX_MAC_INTR;
6675 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
6679 atomic_set(&sp->card_state, CARD_UP);
6680 return 0;
6684 * s2io_restart_nic - Resets the NIC.
6685 * @data : long pointer to the device private structure
6686 * Description:
6687 * This function is scheduled to be run by the s2io_tx_watchdog
6688 * function after 0.5 secs to reset the NIC. The idea is to reduce
6689 * the run time of the watch dog routine which is run holding a
6690 * spin lock.
6693 static void s2io_restart_nic(struct work_struct *work)
6695 struct s2io_nic *sp = container_of(work, struct s2io_nic, rst_timer_task);
6696 struct net_device *dev = sp->dev;
6698 rtnl_lock();
6700 if (!netif_running(dev))
6701 goto out_unlock;
6703 s2io_card_down(sp);
6704 if (s2io_card_up(sp)) {
6705 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
6706 dev->name);
6708 netif_wake_queue(dev);
6709 DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n",
6710 dev->name);
6711 out_unlock:
6712 rtnl_unlock();
6716 * s2io_tx_watchdog - Watchdog for transmit side.
6717 * @dev : Pointer to net device structure
6718 * Description:
6719 * This function is triggered if the Tx Queue is stopped
6720 * for a pre-defined amount of time when the Interface is still up.
6721 * If the Interface is jammed in such a situation, the hardware is
6722 * reset (by s2io_close) and restarted again (by s2io_open) to
6723 * overcome any problem that might have been caused in the hardware.
6724 * Return value:
6725 * void
6728 static void s2io_tx_watchdog(struct net_device *dev)
6730 struct s2io_nic *sp = dev->priv;
6732 if (netif_carrier_ok(dev)) {
6733 sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt++;
6734 schedule_work(&sp->rst_timer_task);
6735 sp->mac_control.stats_info->sw_stat.soft_reset_cnt++;
6740 * rx_osm_handler - To perform some OS related operations on SKB.
6741 * @sp: private member of the device structure,pointer to s2io_nic structure.
6742 * @skb : the socket buffer pointer.
6743 * @len : length of the packet
6744 * @cksum : FCS checksum of the frame.
6745 * @ring_no : the ring from which this RxD was extracted.
6746 * Description:
6747 * This function is called by the Rx interrupt serivce routine to perform
6748 * some OS related operations on the SKB before passing it to the upper
6749 * layers. It mainly checks if the checksum is OK, if so adds it to the
6750 * SKBs cksum variable, increments the Rx packet count and passes the SKB
6751 * to the upper layer. If the checksum is wrong, it increments the Rx
6752 * packet error count, frees the SKB and returns error.
6753 * Return value:
6754 * SUCCESS on success and -1 on failure.
6756 static int rx_osm_handler(struct ring_info *ring_data, struct RxD_t * rxdp)
6758 struct s2io_nic *sp = ring_data->nic;
6759 struct net_device *dev = (struct net_device *) sp->dev;
6760 struct sk_buff *skb = (struct sk_buff *)
6761 ((unsigned long) rxdp->Host_Control);
6762 int ring_no = ring_data->ring_no;
6763 u16 l3_csum, l4_csum;
6764 unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
6765 struct lro *lro;
6766 u8 err_mask;
6768 skb->dev = dev;
6770 if (err) {
6771 /* Check for parity error */
6772 if (err & 0x1) {
6773 sp->mac_control.stats_info->sw_stat.parity_err_cnt++;
6775 err_mask = err >> 48;
6776 switch(err_mask) {
6777 case 1:
6778 sp->mac_control.stats_info->sw_stat.
6779 rx_parity_err_cnt++;
6780 break;
6782 case 2:
6783 sp->mac_control.stats_info->sw_stat.
6784 rx_abort_cnt++;
6785 break;
6787 case 3:
6788 sp->mac_control.stats_info->sw_stat.
6789 rx_parity_abort_cnt++;
6790 break;
6792 case 4:
6793 sp->mac_control.stats_info->sw_stat.
6794 rx_rda_fail_cnt++;
6795 break;
6797 case 5:
6798 sp->mac_control.stats_info->sw_stat.
6799 rx_unkn_prot_cnt++;
6800 break;
6802 case 6:
6803 sp->mac_control.stats_info->sw_stat.
6804 rx_fcs_err_cnt++;
6805 break;
6807 case 7:
6808 sp->mac_control.stats_info->sw_stat.
6809 rx_buf_size_err_cnt++;
6810 break;
6812 case 8:
6813 sp->mac_control.stats_info->sw_stat.
6814 rx_rxd_corrupt_cnt++;
6815 break;
6817 case 15:
6818 sp->mac_control.stats_info->sw_stat.
6819 rx_unkn_err_cnt++;
6820 break;
6823 * Drop the packet if bad transfer code. Exception being
6824 * 0x5, which could be due to unsupported IPv6 extension header.
6825 * In this case, we let stack handle the packet.
6826 * Note that in this case, since checksum will be incorrect,
6827 * stack will validate the same.
6829 if (err_mask != 0x5) {
6830 DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%x\n",
6831 dev->name, err_mask);
6832 sp->stats.rx_crc_errors++;
6833 sp->mac_control.stats_info->sw_stat.mem_freed
6834 += skb->truesize;
6835 dev_kfree_skb(skb);
6836 atomic_dec(&sp->rx_bufs_left[ring_no]);
6837 rxdp->Host_Control = 0;
6838 return 0;
6842 /* Updating statistics */
6843 sp->stats.rx_packets++;
6844 rxdp->Host_Control = 0;
6845 if (sp->rxd_mode == RXD_MODE_1) {
6846 int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
6848 sp->stats.rx_bytes += len;
6849 skb_put(skb, len);
6851 } else if (sp->rxd_mode == RXD_MODE_3B) {
6852 int get_block = ring_data->rx_curr_get_info.block_index;
6853 int get_off = ring_data->rx_curr_get_info.offset;
6854 int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
6855 int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
6856 unsigned char *buff = skb_push(skb, buf0_len);
6858 struct buffAdd *ba = &ring_data->ba[get_block][get_off];
6859 sp->stats.rx_bytes += buf0_len + buf2_len;
6860 memcpy(buff, ba->ba_0, buf0_len);
6861 skb_put(skb, buf2_len);
6864 if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) && ((!sp->lro) ||
6865 (sp->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) &&
6866 (sp->rx_csum)) {
6867 l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
6868 l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
6869 if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
6871 * NIC verifies if the Checksum of the received
6872 * frame is Ok or not and accordingly returns
6873 * a flag in the RxD.
6875 skb->ip_summed = CHECKSUM_UNNECESSARY;
6876 if (sp->lro) {
6877 u32 tcp_len;
6878 u8 *tcp;
6879 int ret = 0;
6881 ret = s2io_club_tcp_session(skb->data, &tcp,
6882 &tcp_len, &lro, rxdp, sp);
6883 switch (ret) {
6884 case 3: /* Begin anew */
6885 lro->parent = skb;
6886 goto aggregate;
6887 case 1: /* Aggregate */
6889 lro_append_pkt(sp, lro,
6890 skb, tcp_len);
6891 goto aggregate;
6893 case 4: /* Flush session */
6895 lro_append_pkt(sp, lro,
6896 skb, tcp_len);
6897 queue_rx_frame(lro->parent);
6898 clear_lro_session(lro);
6899 sp->mac_control.stats_info->
6900 sw_stat.flush_max_pkts++;
6901 goto aggregate;
6903 case 2: /* Flush both */
6904 lro->parent->data_len =
6905 lro->frags_len;
6906 sp->mac_control.stats_info->
6907 sw_stat.sending_both++;
6908 queue_rx_frame(lro->parent);
6909 clear_lro_session(lro);
6910 goto send_up;
6911 case 0: /* sessions exceeded */
6912 case -1: /* non-TCP or not
6913 * L2 aggregatable
6915 case 5: /*
6916 * First pkt in session not
6917 * L3/L4 aggregatable
6919 break;
6920 default:
6921 DBG_PRINT(ERR_DBG,
6922 "%s: Samadhana!!\n",
6923 __FUNCTION__);
6924 BUG();
6927 } else {
6929 * Packet with erroneous checksum, let the
6930 * upper layers deal with it.
6932 skb->ip_summed = CHECKSUM_NONE;
6934 } else {
6935 skb->ip_summed = CHECKSUM_NONE;
6937 sp->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
6938 if (!sp->lro) {
6939 skb->protocol = eth_type_trans(skb, dev);
6940 if ((sp->vlgrp && RXD_GET_VLAN_TAG(rxdp->Control_2) &&
6941 vlan_strip_flag)) {
6942 /* Queueing the vlan frame to the upper layer */
6943 if (napi)
6944 vlan_hwaccel_receive_skb(skb, sp->vlgrp,
6945 RXD_GET_VLAN_TAG(rxdp->Control_2));
6946 else
6947 vlan_hwaccel_rx(skb, sp->vlgrp,
6948 RXD_GET_VLAN_TAG(rxdp->Control_2));
6949 } else {
6950 if (napi)
6951 netif_receive_skb(skb);
6952 else
6953 netif_rx(skb);
6955 } else {
6956 send_up:
6957 queue_rx_frame(skb);
6959 dev->last_rx = jiffies;
6960 aggregate:
6961 atomic_dec(&sp->rx_bufs_left[ring_no]);
6962 return SUCCESS;
6966 * s2io_link - stops/starts the Tx queue.
6967 * @sp : private member of the device structure, which is a pointer to the
6968 * s2io_nic structure.
6969 * @link : inidicates whether link is UP/DOWN.
6970 * Description:
6971 * This function stops/starts the Tx queue depending on whether the link
6972 * status of the NIC is is down or up. This is called by the Alarm
6973 * interrupt handler whenever a link change interrupt comes up.
6974 * Return value:
6975 * void.
6978 static void s2io_link(struct s2io_nic * sp, int link)
6980 struct net_device *dev = (struct net_device *) sp->dev;
6982 if (link != sp->last_link_state) {
6983 if (link == LINK_DOWN) {
6984 DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
6985 netif_carrier_off(dev);
6986 if(sp->mac_control.stats_info->sw_stat.link_up_cnt)
6987 sp->mac_control.stats_info->sw_stat.link_up_time =
6988 jiffies - sp->start_time;
6989 sp->mac_control.stats_info->sw_stat.link_down_cnt++;
6990 } else {
6991 DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
6992 if (sp->mac_control.stats_info->sw_stat.link_down_cnt)
6993 sp->mac_control.stats_info->sw_stat.link_down_time =
6994 jiffies - sp->start_time;
6995 sp->mac_control.stats_info->sw_stat.link_up_cnt++;
6996 netif_carrier_on(dev);
6999 sp->last_link_state = link;
7000 sp->start_time = jiffies;
7004 * s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
7005 * @sp : private member of the device structure, which is a pointer to the
7006 * s2io_nic structure.
7007 * Description:
7008 * This function initializes a few of the PCI and PCI-X configuration registers
7009 * with recommended values.
7010 * Return value:
7011 * void
7014 static void s2io_init_pci(struct s2io_nic * sp)
7016 u16 pci_cmd = 0, pcix_cmd = 0;
7018 /* Enable Data Parity Error Recovery in PCI-X command register. */
7019 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7020 &(pcix_cmd));
7021 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7022 (pcix_cmd | 1));
7023 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7024 &(pcix_cmd));
7026 /* Set the PErr Response bit in PCI command register. */
7027 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7028 pci_write_config_word(sp->pdev, PCI_COMMAND,
7029 (pci_cmd | PCI_COMMAND_PARITY));
7030 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7033 static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type)
7035 if ( tx_fifo_num > 8) {
7036 DBG_PRINT(ERR_DBG, "s2io: Requested number of Tx fifos not "
7037 "supported\n");
7038 DBG_PRINT(ERR_DBG, "s2io: Default to 8 Tx fifos\n");
7039 tx_fifo_num = 8;
7041 if ( rx_ring_num > 8) {
7042 DBG_PRINT(ERR_DBG, "s2io: Requested number of Rx rings not "
7043 "supported\n");
7044 DBG_PRINT(ERR_DBG, "s2io: Default to 8 Rx rings\n");
7045 rx_ring_num = 8;
7047 if (*dev_intr_type != INTA)
7048 napi = 0;
7050 #ifndef CONFIG_PCI_MSI
7051 if (*dev_intr_type != INTA) {
7052 DBG_PRINT(ERR_DBG, "s2io: This kernel does not support"
7053 "MSI/MSI-X. Defaulting to INTA\n");
7054 *dev_intr_type = INTA;
7056 #else
7057 if ((*dev_intr_type != INTA) && (*dev_intr_type != MSI_X)) {
7058 DBG_PRINT(ERR_DBG, "s2io: Wrong intr_type requested. "
7059 "Defaulting to INTA\n");
7060 *dev_intr_type = INTA;
7062 #endif
7063 if ((*dev_intr_type == MSI_X) &&
7064 ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
7065 (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
7066 DBG_PRINT(ERR_DBG, "s2io: Xframe I does not support MSI_X. "
7067 "Defaulting to INTA\n");
7068 *dev_intr_type = INTA;
7071 if ((rx_ring_mode != 1) && (rx_ring_mode != 2)) {
7072 DBG_PRINT(ERR_DBG, "s2io: Requested ring mode not supported\n");
7073 DBG_PRINT(ERR_DBG, "s2io: Defaulting to 1-buffer mode\n");
7074 rx_ring_mode = 1;
7076 return SUCCESS;
7080 * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS
7081 * or Traffic class respectively.
7082 * @nic: device peivate variable
7083 * Description: The function configures the receive steering to
7084 * desired receive ring.
7085 * Return Value: SUCCESS on success and
7086 * '-1' on failure (endian settings incorrect).
7088 static int rts_ds_steer(struct s2io_nic *nic, u8 ds_codepoint, u8 ring)
7090 struct XENA_dev_config __iomem *bar0 = nic->bar0;
7091 register u64 val64 = 0;
7093 if (ds_codepoint > 63)
7094 return FAILURE;
7096 val64 = RTS_DS_MEM_DATA(ring);
7097 writeq(val64, &bar0->rts_ds_mem_data);
7099 val64 = RTS_DS_MEM_CTRL_WE |
7100 RTS_DS_MEM_CTRL_STROBE_NEW_CMD |
7101 RTS_DS_MEM_CTRL_OFFSET(ds_codepoint);
7103 writeq(val64, &bar0->rts_ds_mem_ctrl);
7105 return wait_for_cmd_complete(&bar0->rts_ds_mem_ctrl,
7106 RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED,
7107 S2IO_BIT_RESET);
7111 * s2io_init_nic - Initialization of the adapter .
7112 * @pdev : structure containing the PCI related information of the device.
7113 * @pre: List of PCI devices supported by the driver listed in s2io_tbl.
7114 * Description:
7115 * The function initializes an adapter identified by the pci_dec structure.
7116 * All OS related initialization including memory and device structure and
7117 * initlaization of the device private variable is done. Also the swapper
7118 * control register is initialized to enable read and write into the I/O
7119 * registers of the device.
7120 * Return value:
7121 * returns 0 on success and negative on failure.
7124 static int __devinit
7125 s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
7127 struct s2io_nic *sp;
7128 struct net_device *dev;
7129 int i, j, ret;
7130 int dma_flag = FALSE;
7131 u32 mac_up, mac_down;
7132 u64 val64 = 0, tmp64 = 0;
7133 struct XENA_dev_config __iomem *bar0 = NULL;
7134 u16 subid;
7135 struct mac_info *mac_control;
7136 struct config_param *config;
7137 int mode;
7138 u8 dev_intr_type = intr_type;
7140 if ((ret = s2io_verify_parm(pdev, &dev_intr_type)))
7141 return ret;
7143 if ((ret = pci_enable_device(pdev))) {
7144 DBG_PRINT(ERR_DBG,
7145 "s2io_init_nic: pci_enable_device failed\n");
7146 return ret;
7149 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
7150 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 64bit DMA\n");
7151 dma_flag = TRUE;
7152 if (pci_set_consistent_dma_mask
7153 (pdev, DMA_64BIT_MASK)) {
7154 DBG_PRINT(ERR_DBG,
7155 "Unable to obtain 64bit DMA for \
7156 consistent allocations\n");
7157 pci_disable_device(pdev);
7158 return -ENOMEM;
7160 } else if (!pci_set_dma_mask(pdev, DMA_32BIT_MASK)) {
7161 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 32bit DMA\n");
7162 } else {
7163 pci_disable_device(pdev);
7164 return -ENOMEM;
7166 if ((ret = pci_request_regions(pdev, s2io_driver_name))) {
7167 DBG_PRINT(ERR_DBG, "%s: Request Regions failed - %x \n", __FUNCTION__, ret);
7168 pci_disable_device(pdev);
7169 return -ENODEV;
7172 dev = alloc_etherdev(sizeof(struct s2io_nic));
7173 if (dev == NULL) {
7174 DBG_PRINT(ERR_DBG, "Device allocation failed\n");
7175 pci_disable_device(pdev);
7176 pci_release_regions(pdev);
7177 return -ENODEV;
7180 pci_set_master(pdev);
7181 pci_set_drvdata(pdev, dev);
7182 SET_MODULE_OWNER(dev);
7183 SET_NETDEV_DEV(dev, &pdev->dev);
7185 /* Private member variable initialized to s2io NIC structure */
7186 sp = dev->priv;
7187 memset(sp, 0, sizeof(struct s2io_nic));
7188 sp->dev = dev;
7189 sp->pdev = pdev;
7190 sp->high_dma_flag = dma_flag;
7191 sp->device_enabled_once = FALSE;
7192 if (rx_ring_mode == 1)
7193 sp->rxd_mode = RXD_MODE_1;
7194 if (rx_ring_mode == 2)
7195 sp->rxd_mode = RXD_MODE_3B;
7197 sp->intr_type = dev_intr_type;
7199 if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
7200 (pdev->device == PCI_DEVICE_ID_HERC_UNI))
7201 sp->device_type = XFRAME_II_DEVICE;
7202 else
7203 sp->device_type = XFRAME_I_DEVICE;
7205 sp->lro = lro;
7207 /* Initialize some PCI/PCI-X fields of the NIC. */
7208 s2io_init_pci(sp);
7211 * Setting the device configuration parameters.
7212 * Most of these parameters can be specified by the user during
7213 * module insertion as they are module loadable parameters. If
7214 * these parameters are not not specified during load time, they
7215 * are initialized with default values.
7217 mac_control = &sp->mac_control;
7218 config = &sp->config;
7220 /* Tx side parameters. */
7221 config->tx_fifo_num = tx_fifo_num;
7222 for (i = 0; i < MAX_TX_FIFOS; i++) {
7223 config->tx_cfg[i].fifo_len = tx_fifo_len[i];
7224 config->tx_cfg[i].fifo_priority = i;
7227 /* mapping the QoS priority to the configured fifos */
7228 for (i = 0; i < MAX_TX_FIFOS; i++)
7229 config->fifo_mapping[i] = fifo_map[config->tx_fifo_num][i];
7231 config->tx_intr_type = TXD_INT_TYPE_UTILZ;
7232 for (i = 0; i < config->tx_fifo_num; i++) {
7233 config->tx_cfg[i].f_no_snoop =
7234 (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
7235 if (config->tx_cfg[i].fifo_len < 65) {
7236 config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
7237 break;
7240 /* + 2 because one Txd for skb->data and one Txd for UFO */
7241 config->max_txds = MAX_SKB_FRAGS + 2;
7243 /* Rx side parameters. */
7244 config->rx_ring_num = rx_ring_num;
7245 for (i = 0; i < MAX_RX_RINGS; i++) {
7246 config->rx_cfg[i].num_rxd = rx_ring_sz[i] *
7247 (rxd_count[sp->rxd_mode] + 1);
7248 config->rx_cfg[i].ring_priority = i;
7251 for (i = 0; i < rx_ring_num; i++) {
7252 config->rx_cfg[i].ring_org = RING_ORG_BUFF1;
7253 config->rx_cfg[i].f_no_snoop =
7254 (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
7257 /* Setting Mac Control parameters */
7258 mac_control->rmac_pause_time = rmac_pause_time;
7259 mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
7260 mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
7263 /* Initialize Ring buffer parameters. */
7264 for (i = 0; i < config->rx_ring_num; i++)
7265 atomic_set(&sp->rx_bufs_left[i], 0);
7267 /* Initialize the number of ISRs currently running */
7268 atomic_set(&sp->isr_cnt, 0);
7270 /* initialize the shared memory used by the NIC and the host */
7271 if (init_shared_mem(sp)) {
7272 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n",
7273 dev->name);
7274 ret = -ENOMEM;
7275 goto mem_alloc_failed;
7278 sp->bar0 = ioremap(pci_resource_start(pdev, 0),
7279 pci_resource_len(pdev, 0));
7280 if (!sp->bar0) {
7281 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n",
7282 dev->name);
7283 ret = -ENOMEM;
7284 goto bar0_remap_failed;
7287 sp->bar1 = ioremap(pci_resource_start(pdev, 2),
7288 pci_resource_len(pdev, 2));
7289 if (!sp->bar1) {
7290 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n",
7291 dev->name);
7292 ret = -ENOMEM;
7293 goto bar1_remap_failed;
7296 dev->irq = pdev->irq;
7297 dev->base_addr = (unsigned long) sp->bar0;
7299 /* Initializing the BAR1 address as the start of the FIFO pointer. */
7300 for (j = 0; j < MAX_TX_FIFOS; j++) {
7301 mac_control->tx_FIFO_start[j] = (struct TxFIFO_element __iomem *)
7302 (sp->bar1 + (j * 0x00020000));
7305 /* Driver entry points */
7306 dev->open = &s2io_open;
7307 dev->stop = &s2io_close;
7308 dev->hard_start_xmit = &s2io_xmit;
7309 dev->get_stats = &s2io_get_stats;
7310 dev->set_multicast_list = &s2io_set_multicast;
7311 dev->do_ioctl = &s2io_ioctl;
7312 dev->change_mtu = &s2io_change_mtu;
7313 SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
7314 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
7315 dev->vlan_rx_register = s2io_vlan_rx_register;
7318 * will use eth_mac_addr() for dev->set_mac_address
7319 * mac address will be set every time dev->open() is called
7321 netif_napi_add(dev, &sp->napi, s2io_poll, 32);
7323 #ifdef CONFIG_NET_POLL_CONTROLLER
7324 dev->poll_controller = s2io_netpoll;
7325 #endif
7327 dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
7328 if (sp->high_dma_flag == TRUE)
7329 dev->features |= NETIF_F_HIGHDMA;
7330 dev->features |= NETIF_F_TSO;
7331 dev->features |= NETIF_F_TSO6;
7332 if ((sp->device_type & XFRAME_II_DEVICE) && (ufo)) {
7333 dev->features |= NETIF_F_UFO;
7334 dev->features |= NETIF_F_HW_CSUM;
7337 dev->tx_timeout = &s2io_tx_watchdog;
7338 dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
7339 INIT_WORK(&sp->rst_timer_task, s2io_restart_nic);
7340 INIT_WORK(&sp->set_link_task, s2io_set_link);
7342 pci_save_state(sp->pdev);
7344 /* Setting swapper control on the NIC, for proper reset operation */
7345 if (s2io_set_swapper(sp)) {
7346 DBG_PRINT(ERR_DBG, "%s:swapper settings are wrong\n",
7347 dev->name);
7348 ret = -EAGAIN;
7349 goto set_swap_failed;
7352 /* Verify if the Herc works on the slot its placed into */
7353 if (sp->device_type & XFRAME_II_DEVICE) {
7354 mode = s2io_verify_pci_mode(sp);
7355 if (mode < 0) {
7356 DBG_PRINT(ERR_DBG, "%s: ", __FUNCTION__);
7357 DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
7358 ret = -EBADSLT;
7359 goto set_swap_failed;
7363 /* Not needed for Herc */
7364 if (sp->device_type & XFRAME_I_DEVICE) {
7366 * Fix for all "FFs" MAC address problems observed on
7367 * Alpha platforms
7369 fix_mac_address(sp);
7370 s2io_reset(sp);
7374 * MAC address initialization.
7375 * For now only one mac address will be read and used.
7377 bar0 = sp->bar0;
7378 val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
7379 RMAC_ADDR_CMD_MEM_OFFSET(0 + MAC_MAC_ADDR_START_OFFSET);
7380 writeq(val64, &bar0->rmac_addr_cmd_mem);
7381 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
7382 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, S2IO_BIT_RESET);
7383 tmp64 = readq(&bar0->rmac_addr_data0_mem);
7384 mac_down = (u32) tmp64;
7385 mac_up = (u32) (tmp64 >> 32);
7387 sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
7388 sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
7389 sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
7390 sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
7391 sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
7392 sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
7394 /* Set the factory defined MAC address initially */
7395 dev->addr_len = ETH_ALEN;
7396 memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
7398 /* Store the values of the MSIX table in the s2io_nic structure */
7399 store_xmsi_data(sp);
7400 /* reset Nic and bring it to known state */
7401 s2io_reset(sp);
7404 * Initialize the tasklet status and link state flags
7405 * and the card state parameter
7407 atomic_set(&(sp->card_state), 0);
7408 sp->tasklet_status = 0;
7409 sp->link_state = 0;
7411 /* Initialize spinlocks */
7412 spin_lock_init(&sp->tx_lock);
7414 if (!napi)
7415 spin_lock_init(&sp->put_lock);
7416 spin_lock_init(&sp->rx_lock);
7419 * SXE-002: Configure link and activity LED to init state
7420 * on driver load.
7422 subid = sp->pdev->subsystem_device;
7423 if ((subid & 0xFF) >= 0x07) {
7424 val64 = readq(&bar0->gpio_control);
7425 val64 |= 0x0000800000000000ULL;
7426 writeq(val64, &bar0->gpio_control);
7427 val64 = 0x0411040400000000ULL;
7428 writeq(val64, (void __iomem *) bar0 + 0x2700);
7429 val64 = readq(&bar0->gpio_control);
7432 sp->rx_csum = 1; /* Rx chksum verify enabled by default */
7434 if (register_netdev(dev)) {
7435 DBG_PRINT(ERR_DBG, "Device registration failed\n");
7436 ret = -ENODEV;
7437 goto register_failed;
7439 s2io_vpd_read(sp);
7440 DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2007 Neterion Inc.\n");
7441 DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n",dev->name,
7442 sp->product_name, pdev->revision);
7443 DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name,
7444 s2io_driver_version);
7445 DBG_PRINT(ERR_DBG, "%s: MAC ADDR: "
7446 "%02x:%02x:%02x:%02x:%02x:%02x", dev->name,
7447 sp->def_mac_addr[0].mac_addr[0],
7448 sp->def_mac_addr[0].mac_addr[1],
7449 sp->def_mac_addr[0].mac_addr[2],
7450 sp->def_mac_addr[0].mac_addr[3],
7451 sp->def_mac_addr[0].mac_addr[4],
7452 sp->def_mac_addr[0].mac_addr[5]);
7453 DBG_PRINT(ERR_DBG, "SERIAL NUMBER: %s\n", sp->serial_num);
7454 if (sp->device_type & XFRAME_II_DEVICE) {
7455 mode = s2io_print_pci_mode(sp);
7456 if (mode < 0) {
7457 DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
7458 ret = -EBADSLT;
7459 unregister_netdev(dev);
7460 goto set_swap_failed;
7463 switch(sp->rxd_mode) {
7464 case RXD_MODE_1:
7465 DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
7466 dev->name);
7467 break;
7468 case RXD_MODE_3B:
7469 DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
7470 dev->name);
7471 break;
7474 if (napi)
7475 DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
7476 switch(sp->intr_type) {
7477 case INTA:
7478 DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
7479 break;
7480 case MSI_X:
7481 DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
7482 break;
7484 if (sp->lro)
7485 DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
7486 dev->name);
7487 if (ufo)
7488 DBG_PRINT(ERR_DBG, "%s: UDP Fragmentation Offload(UFO)"
7489 " enabled\n", dev->name);
7490 /* Initialize device name */
7491 sprintf(sp->name, "%s Neterion %s", dev->name, sp->product_name);
7493 /* Initialize bimodal Interrupts */
7494 sp->config.bimodal = bimodal;
7495 if (!(sp->device_type & XFRAME_II_DEVICE) && bimodal) {
7496 sp->config.bimodal = 0;
7497 DBG_PRINT(ERR_DBG,"%s:Bimodal intr not supported by Xframe I\n",
7498 dev->name);
7502 * Make Link state as off at this point, when the Link change
7503 * interrupt comes the state will be automatically changed to
7504 * the right state.
7506 netif_carrier_off(dev);
7508 return 0;
7510 register_failed:
7511 set_swap_failed:
7512 iounmap(sp->bar1);
7513 bar1_remap_failed:
7514 iounmap(sp->bar0);
7515 bar0_remap_failed:
7516 mem_alloc_failed:
7517 free_shared_mem(sp);
7518 pci_disable_device(pdev);
7519 pci_release_regions(pdev);
7520 pci_set_drvdata(pdev, NULL);
7521 free_netdev(dev);
7523 return ret;
7527 * s2io_rem_nic - Free the PCI device
7528 * @pdev: structure containing the PCI related information of the device.
7529 * Description: This function is called by the Pci subsystem to release a
7530 * PCI device and free up all resource held up by the device. This could
7531 * be in response to a Hot plug event or when the driver is to be removed
7532 * from memory.
7535 static void __devexit s2io_rem_nic(struct pci_dev *pdev)
7537 struct net_device *dev =
7538 (struct net_device *) pci_get_drvdata(pdev);
7539 struct s2io_nic *sp;
7541 if (dev == NULL) {
7542 DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
7543 return;
7546 flush_scheduled_work();
7548 sp = dev->priv;
7549 unregister_netdev(dev);
7551 free_shared_mem(sp);
7552 iounmap(sp->bar0);
7553 iounmap(sp->bar1);
7554 pci_release_regions(pdev);
7555 pci_set_drvdata(pdev, NULL);
7556 free_netdev(dev);
7557 pci_disable_device(pdev);
7561 * s2io_starter - Entry point for the driver
7562 * Description: This function is the entry point for the driver. It verifies
7563 * the module loadable parameters and initializes PCI configuration space.
7566 int __init s2io_starter(void)
7568 return pci_register_driver(&s2io_driver);
7572 * s2io_closer - Cleanup routine for the driver
7573 * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
7576 static __exit void s2io_closer(void)
7578 pci_unregister_driver(&s2io_driver);
7579 DBG_PRINT(INIT_DBG, "cleanup done\n");
7582 module_init(s2io_starter);
7583 module_exit(s2io_closer);
7585 static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
7586 struct tcphdr **tcp, struct RxD_t *rxdp)
7588 int ip_off;
7589 u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
7591 if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
7592 DBG_PRINT(INIT_DBG,"%s: Non-TCP frames not supported for LRO\n",
7593 __FUNCTION__);
7594 return -1;
7597 /* TODO:
7598 * By default the VLAN field in the MAC is stripped by the card, if this
7599 * feature is turned off in rx_pa_cfg register, then the ip_off field
7600 * has to be shifted by a further 2 bytes
7602 switch (l2_type) {
7603 case 0: /* DIX type */
7604 case 4: /* DIX type with VLAN */
7605 ip_off = HEADER_ETHERNET_II_802_3_SIZE;
7606 break;
7607 /* LLC, SNAP etc are considered non-mergeable */
7608 default:
7609 return -1;
7612 *ip = (struct iphdr *)((u8 *)buffer + ip_off);
7613 ip_len = (u8)((*ip)->ihl);
7614 ip_len <<= 2;
7615 *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
7617 return 0;
7620 static int check_for_socket_match(struct lro *lro, struct iphdr *ip,
7621 struct tcphdr *tcp)
7623 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7624 if ((lro->iph->saddr != ip->saddr) || (lro->iph->daddr != ip->daddr) ||
7625 (lro->tcph->source != tcp->source) || (lro->tcph->dest != tcp->dest))
7626 return -1;
7627 return 0;
7630 static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
7632 return(ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2));
7635 static void initiate_new_session(struct lro *lro, u8 *l2h,
7636 struct iphdr *ip, struct tcphdr *tcp, u32 tcp_pyld_len)
7638 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7639 lro->l2h = l2h;
7640 lro->iph = ip;
7641 lro->tcph = tcp;
7642 lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
7643 lro->tcp_ack = ntohl(tcp->ack_seq);
7644 lro->sg_num = 1;
7645 lro->total_len = ntohs(ip->tot_len);
7646 lro->frags_len = 0;
7648 * check if we saw TCP timestamp. Other consistency checks have
7649 * already been done.
7651 if (tcp->doff == 8) {
7652 u32 *ptr;
7653 ptr = (u32 *)(tcp+1);
7654 lro->saw_ts = 1;
7655 lro->cur_tsval = *(ptr+1);
7656 lro->cur_tsecr = *(ptr+2);
7658 lro->in_use = 1;
7661 static void update_L3L4_header(struct s2io_nic *sp, struct lro *lro)
7663 struct iphdr *ip = lro->iph;
7664 struct tcphdr *tcp = lro->tcph;
7665 __sum16 nchk;
7666 struct stat_block *statinfo = sp->mac_control.stats_info;
7667 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7669 /* Update L3 header */
7670 ip->tot_len = htons(lro->total_len);
7671 ip->check = 0;
7672 nchk = ip_fast_csum((u8 *)lro->iph, ip->ihl);
7673 ip->check = nchk;
7675 /* Update L4 header */
7676 tcp->ack_seq = lro->tcp_ack;
7677 tcp->window = lro->window;
7679 /* Update tsecr field if this session has timestamps enabled */
7680 if (lro->saw_ts) {
7681 u32 *ptr = (u32 *)(tcp + 1);
7682 *(ptr+2) = lro->cur_tsecr;
7685 /* Update counters required for calculation of
7686 * average no. of packets aggregated.
7688 statinfo->sw_stat.sum_avg_pkts_aggregated += lro->sg_num;
7689 statinfo->sw_stat.num_aggregations++;
7692 static void aggregate_new_rx(struct lro *lro, struct iphdr *ip,
7693 struct tcphdr *tcp, u32 l4_pyld)
7695 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7696 lro->total_len += l4_pyld;
7697 lro->frags_len += l4_pyld;
7698 lro->tcp_next_seq += l4_pyld;
7699 lro->sg_num++;
7701 /* Update ack seq no. and window ad(from this pkt) in LRO object */
7702 lro->tcp_ack = tcp->ack_seq;
7703 lro->window = tcp->window;
7705 if (lro->saw_ts) {
7706 u32 *ptr;
7707 /* Update tsecr and tsval from this packet */
7708 ptr = (u32 *) (tcp + 1);
7709 lro->cur_tsval = *(ptr + 1);
7710 lro->cur_tsecr = *(ptr + 2);
7714 static int verify_l3_l4_lro_capable(struct lro *l_lro, struct iphdr *ip,
7715 struct tcphdr *tcp, u32 tcp_pyld_len)
7717 u8 *ptr;
7719 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7721 if (!tcp_pyld_len) {
7722 /* Runt frame or a pure ack */
7723 return -1;
7726 if (ip->ihl != 5) /* IP has options */
7727 return -1;
7729 /* If we see CE codepoint in IP header, packet is not mergeable */
7730 if (INET_ECN_is_ce(ipv4_get_dsfield(ip)))
7731 return -1;
7733 /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
7734 if (tcp->urg || tcp->psh || tcp->rst || tcp->syn || tcp->fin ||
7735 tcp->ece || tcp->cwr || !tcp->ack) {
7737 * Currently recognize only the ack control word and
7738 * any other control field being set would result in
7739 * flushing the LRO session
7741 return -1;
7745 * Allow only one TCP timestamp option. Don't aggregate if
7746 * any other options are detected.
7748 if (tcp->doff != 5 && tcp->doff != 8)
7749 return -1;
7751 if (tcp->doff == 8) {
7752 ptr = (u8 *)(tcp + 1);
7753 while (*ptr == TCPOPT_NOP)
7754 ptr++;
7755 if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
7756 return -1;
7758 /* Ensure timestamp value increases monotonically */
7759 if (l_lro)
7760 if (l_lro->cur_tsval > *((u32 *)(ptr+2)))
7761 return -1;
7763 /* timestamp echo reply should be non-zero */
7764 if (*((u32 *)(ptr+6)) == 0)
7765 return -1;
7768 return 0;
7771 static int
7772 s2io_club_tcp_session(u8 *buffer, u8 **tcp, u32 *tcp_len, struct lro **lro,
7773 struct RxD_t *rxdp, struct s2io_nic *sp)
7775 struct iphdr *ip;
7776 struct tcphdr *tcph;
7777 int ret = 0, i;
7779 if (!(ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
7780 rxdp))) {
7781 DBG_PRINT(INFO_DBG,"IP Saddr: %x Daddr: %x\n",
7782 ip->saddr, ip->daddr);
7783 } else {
7784 return ret;
7787 tcph = (struct tcphdr *)*tcp;
7788 *tcp_len = get_l4_pyld_length(ip, tcph);
7789 for (i=0; i<MAX_LRO_SESSIONS; i++) {
7790 struct lro *l_lro = &sp->lro0_n[i];
7791 if (l_lro->in_use) {
7792 if (check_for_socket_match(l_lro, ip, tcph))
7793 continue;
7794 /* Sock pair matched */
7795 *lro = l_lro;
7797 if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
7798 DBG_PRINT(INFO_DBG, "%s:Out of order. expected "
7799 "0x%x, actual 0x%x\n", __FUNCTION__,
7800 (*lro)->tcp_next_seq,
7801 ntohl(tcph->seq));
7803 sp->mac_control.stats_info->
7804 sw_stat.outof_sequence_pkts++;
7805 ret = 2;
7806 break;
7809 if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,*tcp_len))
7810 ret = 1; /* Aggregate */
7811 else
7812 ret = 2; /* Flush both */
7813 break;
7817 if (ret == 0) {
7818 /* Before searching for available LRO objects,
7819 * check if the pkt is L3/L4 aggregatable. If not
7820 * don't create new LRO session. Just send this
7821 * packet up.
7823 if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len)) {
7824 return 5;
7827 for (i=0; i<MAX_LRO_SESSIONS; i++) {
7828 struct lro *l_lro = &sp->lro0_n[i];
7829 if (!(l_lro->in_use)) {
7830 *lro = l_lro;
7831 ret = 3; /* Begin anew */
7832 break;
7837 if (ret == 0) { /* sessions exceeded */
7838 DBG_PRINT(INFO_DBG,"%s:All LRO sessions already in use\n",
7839 __FUNCTION__);
7840 *lro = NULL;
7841 return ret;
7844 switch (ret) {
7845 case 3:
7846 initiate_new_session(*lro, buffer, ip, tcph, *tcp_len);
7847 break;
7848 case 2:
7849 update_L3L4_header(sp, *lro);
7850 break;
7851 case 1:
7852 aggregate_new_rx(*lro, ip, tcph, *tcp_len);
7853 if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
7854 update_L3L4_header(sp, *lro);
7855 ret = 4; /* Flush the LRO */
7857 break;
7858 default:
7859 DBG_PRINT(ERR_DBG,"%s:Dont know, can't say!!\n",
7860 __FUNCTION__);
7861 break;
7864 return ret;
7867 static void clear_lro_session(struct lro *lro)
7869 static u16 lro_struct_size = sizeof(struct lro);
7871 memset(lro, 0, lro_struct_size);
7874 static void queue_rx_frame(struct sk_buff *skb)
7876 struct net_device *dev = skb->dev;
7878 skb->protocol = eth_type_trans(skb, dev);
7879 if (napi)
7880 netif_receive_skb(skb);
7881 else
7882 netif_rx(skb);
7885 static void lro_append_pkt(struct s2io_nic *sp, struct lro *lro,
7886 struct sk_buff *skb,
7887 u32 tcp_len)
7889 struct sk_buff *first = lro->parent;
7891 first->len += tcp_len;
7892 first->data_len = lro->frags_len;
7893 skb_pull(skb, (skb->len - tcp_len));
7894 if (skb_shinfo(first)->frag_list)
7895 lro->last_frag->next = skb;
7896 else
7897 skb_shinfo(first)->frag_list = skb;
7898 first->truesize += skb->truesize;
7899 lro->last_frag = skb;
7900 sp->mac_control.stats_info->sw_stat.clubbed_frms_cnt++;
7901 return;
7905 * s2io_io_error_detected - called when PCI error is detected
7906 * @pdev: Pointer to PCI device
7907 * @state: The current pci connection state
7909 * This function is called after a PCI bus error affecting
7910 * this device has been detected.
7912 static pci_ers_result_t s2io_io_error_detected(struct pci_dev *pdev,
7913 pci_channel_state_t state)
7915 struct net_device *netdev = pci_get_drvdata(pdev);
7916 struct s2io_nic *sp = netdev->priv;
7918 netif_device_detach(netdev);
7920 if (netif_running(netdev)) {
7921 /* Bring down the card, while avoiding PCI I/O */
7922 do_s2io_card_down(sp, 0);
7924 pci_disable_device(pdev);
7926 return PCI_ERS_RESULT_NEED_RESET;
7930 * s2io_io_slot_reset - called after the pci bus has been reset.
7931 * @pdev: Pointer to PCI device
7933 * Restart the card from scratch, as if from a cold-boot.
7934 * At this point, the card has exprienced a hard reset,
7935 * followed by fixups by BIOS, and has its config space
7936 * set up identically to what it was at cold boot.
7938 static pci_ers_result_t s2io_io_slot_reset(struct pci_dev *pdev)
7940 struct net_device *netdev = pci_get_drvdata(pdev);
7941 struct s2io_nic *sp = netdev->priv;
7943 if (pci_enable_device(pdev)) {
7944 printk(KERN_ERR "s2io: "
7945 "Cannot re-enable PCI device after reset.\n");
7946 return PCI_ERS_RESULT_DISCONNECT;
7949 pci_set_master(pdev);
7950 s2io_reset(sp);
7952 return PCI_ERS_RESULT_RECOVERED;
7956 * s2io_io_resume - called when traffic can start flowing again.
7957 * @pdev: Pointer to PCI device
7959 * This callback is called when the error recovery driver tells
7960 * us that its OK to resume normal operation.
7962 static void s2io_io_resume(struct pci_dev *pdev)
7964 struct net_device *netdev = pci_get_drvdata(pdev);
7965 struct s2io_nic *sp = netdev->priv;
7967 if (netif_running(netdev)) {
7968 if (s2io_card_up(sp)) {
7969 printk(KERN_ERR "s2io: "
7970 "Can't bring device back up after reset.\n");
7971 return;
7974 if (s2io_set_mac_addr(netdev, netdev->dev_addr) == FAILURE) {
7975 s2io_card_down(sp);
7976 printk(KERN_ERR "s2io: "
7977 "Can't resetore mac addr after reset.\n");
7978 return;
7982 netif_device_attach(netdev);
7983 netif_wake_queue(netdev);