raid5: fix unending write sequence
[linux-2.6/sactl.git] / mm / page-writeback.c
blob81a91e6f1f99983ade59cc723bef2a07ad67f0fa
1 /*
2 * mm/page-writeback.c
4 * Copyright (C) 2002, Linus Torvalds.
5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Contains functions related to writing back dirty pages at the
8 * address_space level.
10 * 10Apr2002 akpm@zip.com.au
11 * Initial version
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/spinlock.h>
17 #include <linux/fs.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/slab.h>
21 #include <linux/pagemap.h>
22 #include <linux/writeback.h>
23 #include <linux/init.h>
24 #include <linux/backing-dev.h>
25 #include <linux/task_io_accounting_ops.h>
26 #include <linux/blkdev.h>
27 #include <linux/mpage.h>
28 #include <linux/rmap.h>
29 #include <linux/percpu.h>
30 #include <linux/notifier.h>
31 #include <linux/smp.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/syscalls.h>
35 #include <linux/buffer_head.h>
36 #include <linux/pagevec.h>
39 * The maximum number of pages to writeout in a single bdflush/kupdate
40 * operation. We do this so we don't hold I_SYNC against an inode for
41 * enormous amounts of time, which would block a userspace task which has
42 * been forced to throttle against that inode. Also, the code reevaluates
43 * the dirty each time it has written this many pages.
45 #define MAX_WRITEBACK_PAGES 1024
48 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
49 * will look to see if it needs to force writeback or throttling.
51 static long ratelimit_pages = 32;
54 * When balance_dirty_pages decides that the caller needs to perform some
55 * non-background writeback, this is how many pages it will attempt to write.
56 * It should be somewhat larger than RATELIMIT_PAGES to ensure that reasonably
57 * large amounts of I/O are submitted.
59 static inline long sync_writeback_pages(void)
61 return ratelimit_pages + ratelimit_pages / 2;
64 /* The following parameters are exported via /proc/sys/vm */
67 * Start background writeback (via pdflush) at this percentage
69 int dirty_background_ratio = 5;
72 * The generator of dirty data starts writeback at this percentage
74 int vm_dirty_ratio = 10;
77 * The interval between `kupdate'-style writebacks, in jiffies
79 int dirty_writeback_interval = 5 * HZ;
82 * The longest number of jiffies for which data is allowed to remain dirty
84 int dirty_expire_interval = 30 * HZ;
87 * Flag that makes the machine dump writes/reads and block dirtyings.
89 int block_dump;
92 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
93 * a full sync is triggered after this time elapses without any disk activity.
95 int laptop_mode;
97 EXPORT_SYMBOL(laptop_mode);
99 /* End of sysctl-exported parameters */
102 static void background_writeout(unsigned long _min_pages);
105 * Scale the writeback cache size proportional to the relative writeout speeds.
107 * We do this by keeping a floating proportion between BDIs, based on page
108 * writeback completions [end_page_writeback()]. Those devices that write out
109 * pages fastest will get the larger share, while the slower will get a smaller
110 * share.
112 * We use page writeout completions because we are interested in getting rid of
113 * dirty pages. Having them written out is the primary goal.
115 * We introduce a concept of time, a period over which we measure these events,
116 * because demand can/will vary over time. The length of this period itself is
117 * measured in page writeback completions.
120 static struct prop_descriptor vm_completions;
121 static struct prop_descriptor vm_dirties;
123 static unsigned long determine_dirtyable_memory(void);
126 * couple the period to the dirty_ratio:
128 * period/2 ~ roundup_pow_of_two(dirty limit)
130 static int calc_period_shift(void)
132 unsigned long dirty_total;
134 dirty_total = (vm_dirty_ratio * determine_dirtyable_memory()) / 100;
135 return 2 + ilog2(dirty_total - 1);
139 * update the period when the dirty ratio changes.
141 int dirty_ratio_handler(struct ctl_table *table, int write,
142 struct file *filp, void __user *buffer, size_t *lenp,
143 loff_t *ppos)
145 int old_ratio = vm_dirty_ratio;
146 int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
147 if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
148 int shift = calc_period_shift();
149 prop_change_shift(&vm_completions, shift);
150 prop_change_shift(&vm_dirties, shift);
152 return ret;
156 * Increment the BDI's writeout completion count and the global writeout
157 * completion count. Called from test_clear_page_writeback().
159 static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
161 __prop_inc_percpu(&vm_completions, &bdi->completions);
164 static inline void task_dirty_inc(struct task_struct *tsk)
166 prop_inc_single(&vm_dirties, &tsk->dirties);
170 * Obtain an accurate fraction of the BDI's portion.
172 static void bdi_writeout_fraction(struct backing_dev_info *bdi,
173 long *numerator, long *denominator)
175 if (bdi_cap_writeback_dirty(bdi)) {
176 prop_fraction_percpu(&vm_completions, &bdi->completions,
177 numerator, denominator);
178 } else {
179 *numerator = 0;
180 *denominator = 1;
185 * Clip the earned share of dirty pages to that which is actually available.
186 * This avoids exceeding the total dirty_limit when the floating averages
187 * fluctuate too quickly.
189 static void
190 clip_bdi_dirty_limit(struct backing_dev_info *bdi, long dirty, long *pbdi_dirty)
192 long avail_dirty;
194 avail_dirty = dirty -
195 (global_page_state(NR_FILE_DIRTY) +
196 global_page_state(NR_WRITEBACK) +
197 global_page_state(NR_UNSTABLE_NFS));
199 if (avail_dirty < 0)
200 avail_dirty = 0;
202 avail_dirty += bdi_stat(bdi, BDI_RECLAIMABLE) +
203 bdi_stat(bdi, BDI_WRITEBACK);
205 *pbdi_dirty = min(*pbdi_dirty, avail_dirty);
208 static inline void task_dirties_fraction(struct task_struct *tsk,
209 long *numerator, long *denominator)
211 prop_fraction_single(&vm_dirties, &tsk->dirties,
212 numerator, denominator);
216 * scale the dirty limit
218 * task specific dirty limit:
220 * dirty -= (dirty/8) * p_{t}
222 void task_dirty_limit(struct task_struct *tsk, long *pdirty)
224 long numerator, denominator;
225 long dirty = *pdirty;
226 u64 inv = dirty >> 3;
228 task_dirties_fraction(tsk, &numerator, &denominator);
229 inv *= numerator;
230 do_div(inv, denominator);
232 dirty -= inv;
233 if (dirty < *pdirty/2)
234 dirty = *pdirty/2;
236 *pdirty = dirty;
240 * Work out the current dirty-memory clamping and background writeout
241 * thresholds.
243 * The main aim here is to lower them aggressively if there is a lot of mapped
244 * memory around. To avoid stressing page reclaim with lots of unreclaimable
245 * pages. It is better to clamp down on writers than to start swapping, and
246 * performing lots of scanning.
248 * We only allow 1/2 of the currently-unmapped memory to be dirtied.
250 * We don't permit the clamping level to fall below 5% - that is getting rather
251 * excessive.
253 * We make sure that the background writeout level is below the adjusted
254 * clamping level.
257 static unsigned long highmem_dirtyable_memory(unsigned long total)
259 #ifdef CONFIG_HIGHMEM
260 int node;
261 unsigned long x = 0;
263 for_each_node_state(node, N_HIGH_MEMORY) {
264 struct zone *z =
265 &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
267 x += zone_page_state(z, NR_FREE_PAGES)
268 + zone_page_state(z, NR_INACTIVE)
269 + zone_page_state(z, NR_ACTIVE);
272 * Make sure that the number of highmem pages is never larger
273 * than the number of the total dirtyable memory. This can only
274 * occur in very strange VM situations but we want to make sure
275 * that this does not occur.
277 return min(x, total);
278 #else
279 return 0;
280 #endif
283 static unsigned long determine_dirtyable_memory(void)
285 unsigned long x;
287 x = global_page_state(NR_FREE_PAGES)
288 + global_page_state(NR_INACTIVE)
289 + global_page_state(NR_ACTIVE);
290 x -= highmem_dirtyable_memory(x);
291 return x + 1; /* Ensure that we never return 0 */
294 static void
295 get_dirty_limits(long *pbackground, long *pdirty, long *pbdi_dirty,
296 struct backing_dev_info *bdi)
298 int background_ratio; /* Percentages */
299 int dirty_ratio;
300 int unmapped_ratio;
301 long background;
302 long dirty;
303 unsigned long available_memory = determine_dirtyable_memory();
304 struct task_struct *tsk;
306 unmapped_ratio = 100 - ((global_page_state(NR_FILE_MAPPED) +
307 global_page_state(NR_ANON_PAGES)) * 100) /
308 available_memory;
310 dirty_ratio = vm_dirty_ratio;
311 if (dirty_ratio > unmapped_ratio / 2)
312 dirty_ratio = unmapped_ratio / 2;
314 if (dirty_ratio < 5)
315 dirty_ratio = 5;
317 background_ratio = dirty_background_ratio;
318 if (background_ratio >= dirty_ratio)
319 background_ratio = dirty_ratio / 2;
321 background = (background_ratio * available_memory) / 100;
322 dirty = (dirty_ratio * available_memory) / 100;
323 tsk = current;
324 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
325 background += background / 4;
326 dirty += dirty / 4;
328 *pbackground = background;
329 *pdirty = dirty;
331 if (bdi) {
332 u64 bdi_dirty = dirty;
333 long numerator, denominator;
336 * Calculate this BDI's share of the dirty ratio.
338 bdi_writeout_fraction(bdi, &numerator, &denominator);
340 bdi_dirty *= numerator;
341 do_div(bdi_dirty, denominator);
343 *pbdi_dirty = bdi_dirty;
344 clip_bdi_dirty_limit(bdi, dirty, pbdi_dirty);
345 task_dirty_limit(current, pbdi_dirty);
350 * balance_dirty_pages() must be called by processes which are generating dirty
351 * data. It looks at the number of dirty pages in the machine and will force
352 * the caller to perform writeback if the system is over `vm_dirty_ratio'.
353 * If we're over `background_thresh' then pdflush is woken to perform some
354 * writeout.
356 static void balance_dirty_pages(struct address_space *mapping)
358 long nr_reclaimable, bdi_nr_reclaimable;
359 long nr_writeback, bdi_nr_writeback;
360 long background_thresh;
361 long dirty_thresh;
362 long bdi_thresh;
363 unsigned long pages_written = 0;
364 unsigned long write_chunk = sync_writeback_pages();
366 struct backing_dev_info *bdi = mapping->backing_dev_info;
368 for (;;) {
369 struct writeback_control wbc = {
370 .bdi = bdi,
371 .sync_mode = WB_SYNC_NONE,
372 .older_than_this = NULL,
373 .nr_to_write = write_chunk,
374 .range_cyclic = 1,
377 get_dirty_limits(&background_thresh, &dirty_thresh,
378 &bdi_thresh, bdi);
380 nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
381 global_page_state(NR_UNSTABLE_NFS);
382 nr_writeback = global_page_state(NR_WRITEBACK);
384 bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
385 bdi_nr_writeback = bdi_stat(bdi, BDI_WRITEBACK);
387 if (bdi_nr_reclaimable + bdi_nr_writeback <= bdi_thresh)
388 break;
391 * Throttle it only when the background writeback cannot
392 * catch-up. This avoids (excessively) small writeouts
393 * when the bdi limits are ramping up.
395 if (nr_reclaimable + nr_writeback <
396 (background_thresh + dirty_thresh) / 2)
397 break;
399 if (!bdi->dirty_exceeded)
400 bdi->dirty_exceeded = 1;
402 /* Note: nr_reclaimable denotes nr_dirty + nr_unstable.
403 * Unstable writes are a feature of certain networked
404 * filesystems (i.e. NFS) in which data may have been
405 * written to the server's write cache, but has not yet
406 * been flushed to permanent storage.
408 if (bdi_nr_reclaimable) {
409 writeback_inodes(&wbc);
410 pages_written += write_chunk - wbc.nr_to_write;
411 get_dirty_limits(&background_thresh, &dirty_thresh,
412 &bdi_thresh, bdi);
416 * In order to avoid the stacked BDI deadlock we need
417 * to ensure we accurately count the 'dirty' pages when
418 * the threshold is low.
420 * Otherwise it would be possible to get thresh+n pages
421 * reported dirty, even though there are thresh-m pages
422 * actually dirty; with m+n sitting in the percpu
423 * deltas.
425 if (bdi_thresh < 2*bdi_stat_error(bdi)) {
426 bdi_nr_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
427 bdi_nr_writeback = bdi_stat_sum(bdi, BDI_WRITEBACK);
428 } else if (bdi_nr_reclaimable) {
429 bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
430 bdi_nr_writeback = bdi_stat(bdi, BDI_WRITEBACK);
433 if (bdi_nr_reclaimable + bdi_nr_writeback <= bdi_thresh)
434 break;
435 if (pages_written >= write_chunk)
436 break; /* We've done our duty */
438 congestion_wait(WRITE, HZ/10);
441 if (bdi_nr_reclaimable + bdi_nr_writeback < bdi_thresh &&
442 bdi->dirty_exceeded)
443 bdi->dirty_exceeded = 0;
445 if (writeback_in_progress(bdi))
446 return; /* pdflush is already working this queue */
449 * In laptop mode, we wait until hitting the higher threshold before
450 * starting background writeout, and then write out all the way down
451 * to the lower threshold. So slow writers cause minimal disk activity.
453 * In normal mode, we start background writeout at the lower
454 * background_thresh, to keep the amount of dirty memory low.
456 if ((laptop_mode && pages_written) ||
457 (!laptop_mode && (global_page_state(NR_FILE_DIRTY)
458 + global_page_state(NR_UNSTABLE_NFS)
459 > background_thresh)))
460 pdflush_operation(background_writeout, 0);
463 void set_page_dirty_balance(struct page *page, int page_mkwrite)
465 if (set_page_dirty(page) || page_mkwrite) {
466 struct address_space *mapping = page_mapping(page);
468 if (mapping)
469 balance_dirty_pages_ratelimited(mapping);
474 * balance_dirty_pages_ratelimited_nr - balance dirty memory state
475 * @mapping: address_space which was dirtied
476 * @nr_pages_dirtied: number of pages which the caller has just dirtied
478 * Processes which are dirtying memory should call in here once for each page
479 * which was newly dirtied. The function will periodically check the system's
480 * dirty state and will initiate writeback if needed.
482 * On really big machines, get_writeback_state is expensive, so try to avoid
483 * calling it too often (ratelimiting). But once we're over the dirty memory
484 * limit we decrease the ratelimiting by a lot, to prevent individual processes
485 * from overshooting the limit by (ratelimit_pages) each.
487 void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
488 unsigned long nr_pages_dirtied)
490 static DEFINE_PER_CPU(unsigned long, ratelimits) = 0;
491 unsigned long ratelimit;
492 unsigned long *p;
494 ratelimit = ratelimit_pages;
495 if (mapping->backing_dev_info->dirty_exceeded)
496 ratelimit = 8;
499 * Check the rate limiting. Also, we do not want to throttle real-time
500 * tasks in balance_dirty_pages(). Period.
502 preempt_disable();
503 p = &__get_cpu_var(ratelimits);
504 *p += nr_pages_dirtied;
505 if (unlikely(*p >= ratelimit)) {
506 *p = 0;
507 preempt_enable();
508 balance_dirty_pages(mapping);
509 return;
511 preempt_enable();
513 EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr);
515 void throttle_vm_writeout(gfp_t gfp_mask)
517 long background_thresh;
518 long dirty_thresh;
520 for ( ; ; ) {
521 get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL);
524 * Boost the allowable dirty threshold a bit for page
525 * allocators so they don't get DoS'ed by heavy writers
527 dirty_thresh += dirty_thresh / 10; /* wheeee... */
529 if (global_page_state(NR_UNSTABLE_NFS) +
530 global_page_state(NR_WRITEBACK) <= dirty_thresh)
531 break;
532 congestion_wait(WRITE, HZ/10);
535 * The caller might hold locks which can prevent IO completion
536 * or progress in the filesystem. So we cannot just sit here
537 * waiting for IO to complete.
539 if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
540 break;
545 * writeback at least _min_pages, and keep writing until the amount of dirty
546 * memory is less than the background threshold, or until we're all clean.
548 static void background_writeout(unsigned long _min_pages)
550 long min_pages = _min_pages;
551 struct writeback_control wbc = {
552 .bdi = NULL,
553 .sync_mode = WB_SYNC_NONE,
554 .older_than_this = NULL,
555 .nr_to_write = 0,
556 .nonblocking = 1,
557 .range_cyclic = 1,
560 for ( ; ; ) {
561 long background_thresh;
562 long dirty_thresh;
564 get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL);
565 if (global_page_state(NR_FILE_DIRTY) +
566 global_page_state(NR_UNSTABLE_NFS) < background_thresh
567 && min_pages <= 0)
568 break;
569 wbc.more_io = 0;
570 wbc.encountered_congestion = 0;
571 wbc.nr_to_write = MAX_WRITEBACK_PAGES;
572 wbc.pages_skipped = 0;
573 writeback_inodes(&wbc);
574 min_pages -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
575 if (wbc.nr_to_write > 0 || wbc.pages_skipped > 0) {
576 /* Wrote less than expected */
577 if (wbc.encountered_congestion || wbc.more_io)
578 congestion_wait(WRITE, HZ/10);
579 else
580 break;
586 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
587 * the whole world. Returns 0 if a pdflush thread was dispatched. Returns
588 * -1 if all pdflush threads were busy.
590 int wakeup_pdflush(long nr_pages)
592 if (nr_pages == 0)
593 nr_pages = global_page_state(NR_FILE_DIRTY) +
594 global_page_state(NR_UNSTABLE_NFS);
595 return pdflush_operation(background_writeout, nr_pages);
598 static void wb_timer_fn(unsigned long unused);
599 static void laptop_timer_fn(unsigned long unused);
601 static DEFINE_TIMER(wb_timer, wb_timer_fn, 0, 0);
602 static DEFINE_TIMER(laptop_mode_wb_timer, laptop_timer_fn, 0, 0);
605 * Periodic writeback of "old" data.
607 * Define "old": the first time one of an inode's pages is dirtied, we mark the
608 * dirtying-time in the inode's address_space. So this periodic writeback code
609 * just walks the superblock inode list, writing back any inodes which are
610 * older than a specific point in time.
612 * Try to run once per dirty_writeback_interval. But if a writeback event
613 * takes longer than a dirty_writeback_interval interval, then leave a
614 * one-second gap.
616 * older_than_this takes precedence over nr_to_write. So we'll only write back
617 * all dirty pages if they are all attached to "old" mappings.
619 static void wb_kupdate(unsigned long arg)
621 unsigned long oldest_jif;
622 unsigned long start_jif;
623 unsigned long next_jif;
624 long nr_to_write;
625 struct writeback_control wbc = {
626 .bdi = NULL,
627 .sync_mode = WB_SYNC_NONE,
628 .older_than_this = &oldest_jif,
629 .nr_to_write = 0,
630 .nonblocking = 1,
631 .for_kupdate = 1,
632 .range_cyclic = 1,
635 sync_supers();
637 oldest_jif = jiffies - dirty_expire_interval;
638 start_jif = jiffies;
639 next_jif = start_jif + dirty_writeback_interval;
640 nr_to_write = global_page_state(NR_FILE_DIRTY) +
641 global_page_state(NR_UNSTABLE_NFS) +
642 (inodes_stat.nr_inodes - inodes_stat.nr_unused);
643 while (nr_to_write > 0) {
644 wbc.more_io = 0;
645 wbc.encountered_congestion = 0;
646 wbc.nr_to_write = MAX_WRITEBACK_PAGES;
647 writeback_inodes(&wbc);
648 if (wbc.nr_to_write > 0) {
649 if (wbc.encountered_congestion || wbc.more_io)
650 congestion_wait(WRITE, HZ/10);
651 else
652 break; /* All the old data is written */
654 nr_to_write -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
656 if (time_before(next_jif, jiffies + HZ))
657 next_jif = jiffies + HZ;
658 if (dirty_writeback_interval)
659 mod_timer(&wb_timer, next_jif);
663 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
665 int dirty_writeback_centisecs_handler(ctl_table *table, int write,
666 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
668 proc_dointvec_userhz_jiffies(table, write, file, buffer, length, ppos);
669 if (dirty_writeback_interval)
670 mod_timer(&wb_timer, jiffies + dirty_writeback_interval);
671 else
672 del_timer(&wb_timer);
673 return 0;
676 static void wb_timer_fn(unsigned long unused)
678 if (pdflush_operation(wb_kupdate, 0) < 0)
679 mod_timer(&wb_timer, jiffies + HZ); /* delay 1 second */
682 static void laptop_flush(unsigned long unused)
684 sys_sync();
687 static void laptop_timer_fn(unsigned long unused)
689 pdflush_operation(laptop_flush, 0);
693 * We've spun up the disk and we're in laptop mode: schedule writeback
694 * of all dirty data a few seconds from now. If the flush is already scheduled
695 * then push it back - the user is still using the disk.
697 void laptop_io_completion(void)
699 mod_timer(&laptop_mode_wb_timer, jiffies + laptop_mode);
703 * We're in laptop mode and we've just synced. The sync's writes will have
704 * caused another writeback to be scheduled by laptop_io_completion.
705 * Nothing needs to be written back anymore, so we unschedule the writeback.
707 void laptop_sync_completion(void)
709 del_timer(&laptop_mode_wb_timer);
713 * If ratelimit_pages is too high then we can get into dirty-data overload
714 * if a large number of processes all perform writes at the same time.
715 * If it is too low then SMP machines will call the (expensive)
716 * get_writeback_state too often.
718 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
719 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
720 * thresholds before writeback cuts in.
722 * But the limit should not be set too high. Because it also controls the
723 * amount of memory which the balance_dirty_pages() caller has to write back.
724 * If this is too large then the caller will block on the IO queue all the
725 * time. So limit it to four megabytes - the balance_dirty_pages() caller
726 * will write six megabyte chunks, max.
729 void writeback_set_ratelimit(void)
731 ratelimit_pages = vm_total_pages / (num_online_cpus() * 32);
732 if (ratelimit_pages < 16)
733 ratelimit_pages = 16;
734 if (ratelimit_pages * PAGE_CACHE_SIZE > 4096 * 1024)
735 ratelimit_pages = (4096 * 1024) / PAGE_CACHE_SIZE;
738 static int __cpuinit
739 ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
741 writeback_set_ratelimit();
742 return NOTIFY_DONE;
745 static struct notifier_block __cpuinitdata ratelimit_nb = {
746 .notifier_call = ratelimit_handler,
747 .next = NULL,
751 * Called early on to tune the page writeback dirty limits.
753 * We used to scale dirty pages according to how total memory
754 * related to pages that could be allocated for buffers (by
755 * comparing nr_free_buffer_pages() to vm_total_pages.
757 * However, that was when we used "dirty_ratio" to scale with
758 * all memory, and we don't do that any more. "dirty_ratio"
759 * is now applied to total non-HIGHPAGE memory (by subtracting
760 * totalhigh_pages from vm_total_pages), and as such we can't
761 * get into the old insane situation any more where we had
762 * large amounts of dirty pages compared to a small amount of
763 * non-HIGHMEM memory.
765 * But we might still want to scale the dirty_ratio by how
766 * much memory the box has..
768 void __init page_writeback_init(void)
770 int shift;
772 mod_timer(&wb_timer, jiffies + dirty_writeback_interval);
773 writeback_set_ratelimit();
774 register_cpu_notifier(&ratelimit_nb);
776 shift = calc_period_shift();
777 prop_descriptor_init(&vm_completions, shift);
778 prop_descriptor_init(&vm_dirties, shift);
782 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
783 * @mapping: address space structure to write
784 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
785 * @writepage: function called for each page
786 * @data: data passed to writepage function
788 * If a page is already under I/O, write_cache_pages() skips it, even
789 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
790 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
791 * and msync() need to guarantee that all the data which was dirty at the time
792 * the call was made get new I/O started against them. If wbc->sync_mode is
793 * WB_SYNC_ALL then we were called for data integrity and we must wait for
794 * existing IO to complete.
796 int write_cache_pages(struct address_space *mapping,
797 struct writeback_control *wbc, writepage_t writepage,
798 void *data)
800 struct backing_dev_info *bdi = mapping->backing_dev_info;
801 int ret = 0;
802 int done = 0;
803 struct pagevec pvec;
804 int nr_pages;
805 pgoff_t index;
806 pgoff_t end; /* Inclusive */
807 int scanned = 0;
808 int range_whole = 0;
810 if (wbc->nonblocking && bdi_write_congested(bdi)) {
811 wbc->encountered_congestion = 1;
812 return 0;
815 pagevec_init(&pvec, 0);
816 if (wbc->range_cyclic) {
817 index = mapping->writeback_index; /* Start from prev offset */
818 end = -1;
819 } else {
820 index = wbc->range_start >> PAGE_CACHE_SHIFT;
821 end = wbc->range_end >> PAGE_CACHE_SHIFT;
822 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
823 range_whole = 1;
824 scanned = 1;
826 retry:
827 while (!done && (index <= end) &&
828 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
829 PAGECACHE_TAG_DIRTY,
830 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
831 unsigned i;
833 scanned = 1;
834 for (i = 0; i < nr_pages; i++) {
835 struct page *page = pvec.pages[i];
838 * At this point we hold neither mapping->tree_lock nor
839 * lock on the page itself: the page may be truncated or
840 * invalidated (changing page->mapping to NULL), or even
841 * swizzled back from swapper_space to tmpfs file
842 * mapping
844 lock_page(page);
846 if (unlikely(page->mapping != mapping)) {
847 unlock_page(page);
848 continue;
851 if (!wbc->range_cyclic && page->index > end) {
852 done = 1;
853 unlock_page(page);
854 continue;
857 if (wbc->sync_mode != WB_SYNC_NONE)
858 wait_on_page_writeback(page);
860 if (PageWriteback(page) ||
861 !clear_page_dirty_for_io(page)) {
862 unlock_page(page);
863 continue;
866 ret = (*writepage)(page, wbc, data);
868 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
869 unlock_page(page);
870 ret = 0;
872 if (ret || (--(wbc->nr_to_write) <= 0))
873 done = 1;
874 if (wbc->nonblocking && bdi_write_congested(bdi)) {
875 wbc->encountered_congestion = 1;
876 done = 1;
879 pagevec_release(&pvec);
880 cond_resched();
882 if (!scanned && !done) {
884 * We hit the last page and there is more work to be done: wrap
885 * back to the start of the file
887 scanned = 1;
888 index = 0;
889 goto retry;
891 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
892 mapping->writeback_index = index;
893 return ret;
895 EXPORT_SYMBOL(write_cache_pages);
898 * Function used by generic_writepages to call the real writepage
899 * function and set the mapping flags on error
901 static int __writepage(struct page *page, struct writeback_control *wbc,
902 void *data)
904 struct address_space *mapping = data;
905 int ret = mapping->a_ops->writepage(page, wbc);
906 mapping_set_error(mapping, ret);
907 return ret;
911 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
912 * @mapping: address space structure to write
913 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
915 * This is a library function, which implements the writepages()
916 * address_space_operation.
918 int generic_writepages(struct address_space *mapping,
919 struct writeback_control *wbc)
921 /* deal with chardevs and other special file */
922 if (!mapping->a_ops->writepage)
923 return 0;
925 return write_cache_pages(mapping, wbc, __writepage, mapping);
928 EXPORT_SYMBOL(generic_writepages);
930 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
932 int ret;
934 if (wbc->nr_to_write <= 0)
935 return 0;
936 wbc->for_writepages = 1;
937 if (mapping->a_ops->writepages)
938 ret = mapping->a_ops->writepages(mapping, wbc);
939 else
940 ret = generic_writepages(mapping, wbc);
941 wbc->for_writepages = 0;
942 return ret;
946 * write_one_page - write out a single page and optionally wait on I/O
947 * @page: the page to write
948 * @wait: if true, wait on writeout
950 * The page must be locked by the caller and will be unlocked upon return.
952 * write_one_page() returns a negative error code if I/O failed.
954 int write_one_page(struct page *page, int wait)
956 struct address_space *mapping = page->mapping;
957 int ret = 0;
958 struct writeback_control wbc = {
959 .sync_mode = WB_SYNC_ALL,
960 .nr_to_write = 1,
963 BUG_ON(!PageLocked(page));
965 if (wait)
966 wait_on_page_writeback(page);
968 if (clear_page_dirty_for_io(page)) {
969 page_cache_get(page);
970 ret = mapping->a_ops->writepage(page, &wbc);
971 if (ret == 0 && wait) {
972 wait_on_page_writeback(page);
973 if (PageError(page))
974 ret = -EIO;
976 page_cache_release(page);
977 } else {
978 unlock_page(page);
980 return ret;
982 EXPORT_SYMBOL(write_one_page);
985 * For address_spaces which do not use buffers nor write back.
987 int __set_page_dirty_no_writeback(struct page *page)
989 if (!PageDirty(page))
990 SetPageDirty(page);
991 return 0;
995 * For address_spaces which do not use buffers. Just tag the page as dirty in
996 * its radix tree.
998 * This is also used when a single buffer is being dirtied: we want to set the
999 * page dirty in that case, but not all the buffers. This is a "bottom-up"
1000 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
1002 * Most callers have locked the page, which pins the address_space in memory.
1003 * But zap_pte_range() does not lock the page, however in that case the
1004 * mapping is pinned by the vma's ->vm_file reference.
1006 * We take care to handle the case where the page was truncated from the
1007 * mapping by re-checking page_mapping() inside tree_lock.
1009 int __set_page_dirty_nobuffers(struct page *page)
1011 if (!TestSetPageDirty(page)) {
1012 struct address_space *mapping = page_mapping(page);
1013 struct address_space *mapping2;
1015 if (!mapping)
1016 return 1;
1018 write_lock_irq(&mapping->tree_lock);
1019 mapping2 = page_mapping(page);
1020 if (mapping2) { /* Race with truncate? */
1021 BUG_ON(mapping2 != mapping);
1022 WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
1023 if (mapping_cap_account_dirty(mapping)) {
1024 __inc_zone_page_state(page, NR_FILE_DIRTY);
1025 __inc_bdi_stat(mapping->backing_dev_info,
1026 BDI_RECLAIMABLE);
1027 task_io_account_write(PAGE_CACHE_SIZE);
1029 radix_tree_tag_set(&mapping->page_tree,
1030 page_index(page), PAGECACHE_TAG_DIRTY);
1032 write_unlock_irq(&mapping->tree_lock);
1033 if (mapping->host) {
1034 /* !PageAnon && !swapper_space */
1035 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1037 return 1;
1039 return 0;
1041 EXPORT_SYMBOL(__set_page_dirty_nobuffers);
1044 * When a writepage implementation decides that it doesn't want to write this
1045 * page for some reason, it should redirty the locked page via
1046 * redirty_page_for_writepage() and it should then unlock the page and return 0
1048 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
1050 wbc->pages_skipped++;
1051 return __set_page_dirty_nobuffers(page);
1053 EXPORT_SYMBOL(redirty_page_for_writepage);
1056 * If the mapping doesn't provide a set_page_dirty a_op, then
1057 * just fall through and assume that it wants buffer_heads.
1059 static int __set_page_dirty(struct page *page)
1061 struct address_space *mapping = page_mapping(page);
1063 if (likely(mapping)) {
1064 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
1065 #ifdef CONFIG_BLOCK
1066 if (!spd)
1067 spd = __set_page_dirty_buffers;
1068 #endif
1069 return (*spd)(page);
1071 if (!PageDirty(page)) {
1072 if (!TestSetPageDirty(page))
1073 return 1;
1075 return 0;
1078 int fastcall set_page_dirty(struct page *page)
1080 int ret = __set_page_dirty(page);
1081 if (ret)
1082 task_dirty_inc(current);
1083 return ret;
1085 EXPORT_SYMBOL(set_page_dirty);
1088 * set_page_dirty() is racy if the caller has no reference against
1089 * page->mapping->host, and if the page is unlocked. This is because another
1090 * CPU could truncate the page off the mapping and then free the mapping.
1092 * Usually, the page _is_ locked, or the caller is a user-space process which
1093 * holds a reference on the inode by having an open file.
1095 * In other cases, the page should be locked before running set_page_dirty().
1097 int set_page_dirty_lock(struct page *page)
1099 int ret;
1101 lock_page_nosync(page);
1102 ret = set_page_dirty(page);
1103 unlock_page(page);
1104 return ret;
1106 EXPORT_SYMBOL(set_page_dirty_lock);
1109 * Clear a page's dirty flag, while caring for dirty memory accounting.
1110 * Returns true if the page was previously dirty.
1112 * This is for preparing to put the page under writeout. We leave the page
1113 * tagged as dirty in the radix tree so that a concurrent write-for-sync
1114 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
1115 * implementation will run either set_page_writeback() or set_page_dirty(),
1116 * at which stage we bring the page's dirty flag and radix-tree dirty tag
1117 * back into sync.
1119 * This incoherency between the page's dirty flag and radix-tree tag is
1120 * unfortunate, but it only exists while the page is locked.
1122 int clear_page_dirty_for_io(struct page *page)
1124 struct address_space *mapping = page_mapping(page);
1126 BUG_ON(!PageLocked(page));
1128 ClearPageReclaim(page);
1129 if (mapping && mapping_cap_account_dirty(mapping)) {
1131 * Yes, Virginia, this is indeed insane.
1133 * We use this sequence to make sure that
1134 * (a) we account for dirty stats properly
1135 * (b) we tell the low-level filesystem to
1136 * mark the whole page dirty if it was
1137 * dirty in a pagetable. Only to then
1138 * (c) clean the page again and return 1 to
1139 * cause the writeback.
1141 * This way we avoid all nasty races with the
1142 * dirty bit in multiple places and clearing
1143 * them concurrently from different threads.
1145 * Note! Normally the "set_page_dirty(page)"
1146 * has no effect on the actual dirty bit - since
1147 * that will already usually be set. But we
1148 * need the side effects, and it can help us
1149 * avoid races.
1151 * We basically use the page "master dirty bit"
1152 * as a serialization point for all the different
1153 * threads doing their things.
1155 if (page_mkclean(page))
1156 set_page_dirty(page);
1158 * We carefully synchronise fault handlers against
1159 * installing a dirty pte and marking the page dirty
1160 * at this point. We do this by having them hold the
1161 * page lock at some point after installing their
1162 * pte, but before marking the page dirty.
1163 * Pages are always locked coming in here, so we get
1164 * the desired exclusion. See mm/memory.c:do_wp_page()
1165 * for more comments.
1167 if (TestClearPageDirty(page)) {
1168 dec_zone_page_state(page, NR_FILE_DIRTY);
1169 dec_bdi_stat(mapping->backing_dev_info,
1170 BDI_RECLAIMABLE);
1171 return 1;
1173 return 0;
1175 return TestClearPageDirty(page);
1177 EXPORT_SYMBOL(clear_page_dirty_for_io);
1179 int test_clear_page_writeback(struct page *page)
1181 struct address_space *mapping = page_mapping(page);
1182 int ret;
1184 if (mapping) {
1185 struct backing_dev_info *bdi = mapping->backing_dev_info;
1186 unsigned long flags;
1188 write_lock_irqsave(&mapping->tree_lock, flags);
1189 ret = TestClearPageWriteback(page);
1190 if (ret) {
1191 radix_tree_tag_clear(&mapping->page_tree,
1192 page_index(page),
1193 PAGECACHE_TAG_WRITEBACK);
1194 if (bdi_cap_writeback_dirty(bdi)) {
1195 __dec_bdi_stat(bdi, BDI_WRITEBACK);
1196 __bdi_writeout_inc(bdi);
1199 write_unlock_irqrestore(&mapping->tree_lock, flags);
1200 } else {
1201 ret = TestClearPageWriteback(page);
1203 if (ret)
1204 dec_zone_page_state(page, NR_WRITEBACK);
1205 return ret;
1208 int test_set_page_writeback(struct page *page)
1210 struct address_space *mapping = page_mapping(page);
1211 int ret;
1213 if (mapping) {
1214 struct backing_dev_info *bdi = mapping->backing_dev_info;
1215 unsigned long flags;
1217 write_lock_irqsave(&mapping->tree_lock, flags);
1218 ret = TestSetPageWriteback(page);
1219 if (!ret) {
1220 radix_tree_tag_set(&mapping->page_tree,
1221 page_index(page),
1222 PAGECACHE_TAG_WRITEBACK);
1223 if (bdi_cap_writeback_dirty(bdi))
1224 __inc_bdi_stat(bdi, BDI_WRITEBACK);
1226 if (!PageDirty(page))
1227 radix_tree_tag_clear(&mapping->page_tree,
1228 page_index(page),
1229 PAGECACHE_TAG_DIRTY);
1230 write_unlock_irqrestore(&mapping->tree_lock, flags);
1231 } else {
1232 ret = TestSetPageWriteback(page);
1234 if (!ret)
1235 inc_zone_page_state(page, NR_WRITEBACK);
1236 return ret;
1239 EXPORT_SYMBOL(test_set_page_writeback);
1242 * Return true if any of the pages in the mapping are marked with the
1243 * passed tag.
1245 int mapping_tagged(struct address_space *mapping, int tag)
1247 int ret;
1248 rcu_read_lock();
1249 ret = radix_tree_tagged(&mapping->page_tree, tag);
1250 rcu_read_unlock();
1251 return ret;
1253 EXPORT_SYMBOL(mapping_tagged);