4 * Copyright (C) 1991, 1992 Linus Torvalds
7 #include <linux/config.h>
8 #include <linux/module.h>
10 #include <linux/utsname.h>
11 #include <linux/mman.h>
12 #include <linux/smp_lock.h>
13 #include <linux/notifier.h>
14 #include <linux/reboot.h>
15 #include <linux/prctl.h>
16 #include <linux/init.h>
17 #include <linux/highuid.h>
19 #include <linux/kernel.h>
20 #include <linux/kexec.h>
21 #include <linux/workqueue.h>
22 #include <linux/device.h>
23 #include <linux/key.h>
24 #include <linux/times.h>
25 #include <linux/posix-timers.h>
26 #include <linux/security.h>
27 #include <linux/dcookies.h>
28 #include <linux/suspend.h>
29 #include <linux/tty.h>
30 #include <linux/signal.h>
32 #include <linux/compat.h>
33 #include <linux/syscalls.h>
35 #include <asm/uaccess.h>
37 #include <asm/unistd.h>
39 #ifndef SET_UNALIGN_CTL
40 # define SET_UNALIGN_CTL(a,b) (-EINVAL)
42 #ifndef GET_UNALIGN_CTL
43 # define GET_UNALIGN_CTL(a,b) (-EINVAL)
46 # define SET_FPEMU_CTL(a,b) (-EINVAL)
49 # define GET_FPEMU_CTL(a,b) (-EINVAL)
52 # define SET_FPEXC_CTL(a,b) (-EINVAL)
55 # define GET_FPEXC_CTL(a,b) (-EINVAL)
59 * this is where the system-wide overflow UID and GID are defined, for
60 * architectures that now have 32-bit UID/GID but didn't in the past
63 int overflowuid
= DEFAULT_OVERFLOWUID
;
64 int overflowgid
= DEFAULT_OVERFLOWGID
;
67 EXPORT_SYMBOL(overflowuid
);
68 EXPORT_SYMBOL(overflowgid
);
72 * the same as above, but for filesystems which can only store a 16-bit
73 * UID and GID. as such, this is needed on all architectures
76 int fs_overflowuid
= DEFAULT_FS_OVERFLOWUID
;
77 int fs_overflowgid
= DEFAULT_FS_OVERFLOWUID
;
79 EXPORT_SYMBOL(fs_overflowuid
);
80 EXPORT_SYMBOL(fs_overflowgid
);
83 * this indicates whether you can reboot with ctrl-alt-del: the default is yes
90 * Notifier list for kernel code which wants to be called
91 * at shutdown. This is used to stop any idling DMA operations
95 static struct notifier_block
*reboot_notifier_list
;
96 static DEFINE_RWLOCK(notifier_lock
);
99 * notifier_chain_register - Add notifier to a notifier chain
100 * @list: Pointer to root list pointer
101 * @n: New entry in notifier chain
103 * Adds a notifier to a notifier chain.
105 * Currently always returns zero.
108 int notifier_chain_register(struct notifier_block
**list
, struct notifier_block
*n
)
110 write_lock(¬ifier_lock
);
113 if(n
->priority
> (*list
)->priority
)
115 list
= &((*list
)->next
);
119 write_unlock(¬ifier_lock
);
123 EXPORT_SYMBOL(notifier_chain_register
);
126 * notifier_chain_unregister - Remove notifier from a notifier chain
127 * @nl: Pointer to root list pointer
128 * @n: New entry in notifier chain
130 * Removes a notifier from a notifier chain.
132 * Returns zero on success, or %-ENOENT on failure.
135 int notifier_chain_unregister(struct notifier_block
**nl
, struct notifier_block
*n
)
137 write_lock(¬ifier_lock
);
143 write_unlock(¬ifier_lock
);
148 write_unlock(¬ifier_lock
);
152 EXPORT_SYMBOL(notifier_chain_unregister
);
155 * notifier_call_chain - Call functions in a notifier chain
156 * @n: Pointer to root pointer of notifier chain
157 * @val: Value passed unmodified to notifier function
158 * @v: Pointer passed unmodified to notifier function
160 * Calls each function in a notifier chain in turn.
162 * If the return value of the notifier can be and'd
163 * with %NOTIFY_STOP_MASK, then notifier_call_chain
164 * will return immediately, with the return value of
165 * the notifier function which halted execution.
166 * Otherwise, the return value is the return value
167 * of the last notifier function called.
170 int notifier_call_chain(struct notifier_block
**n
, unsigned long val
, void *v
)
173 struct notifier_block
*nb
= *n
;
177 ret
=nb
->notifier_call(nb
,val
,v
);
178 if(ret
&NOTIFY_STOP_MASK
)
187 EXPORT_SYMBOL(notifier_call_chain
);
190 * register_reboot_notifier - Register function to be called at reboot time
191 * @nb: Info about notifier function to be called
193 * Registers a function with the list of functions
194 * to be called at reboot time.
196 * Currently always returns zero, as notifier_chain_register
197 * always returns zero.
200 int register_reboot_notifier(struct notifier_block
* nb
)
202 return notifier_chain_register(&reboot_notifier_list
, nb
);
205 EXPORT_SYMBOL(register_reboot_notifier
);
208 * unregister_reboot_notifier - Unregister previously registered reboot notifier
209 * @nb: Hook to be unregistered
211 * Unregisters a previously registered reboot
214 * Returns zero on success, or %-ENOENT on failure.
217 int unregister_reboot_notifier(struct notifier_block
* nb
)
219 return notifier_chain_unregister(&reboot_notifier_list
, nb
);
222 EXPORT_SYMBOL(unregister_reboot_notifier
);
224 static int set_one_prio(struct task_struct
*p
, int niceval
, int error
)
228 if (p
->uid
!= current
->euid
&&
229 p
->euid
!= current
->euid
&& !capable(CAP_SYS_NICE
)) {
233 if (niceval
< task_nice(p
) && !can_nice(p
, niceval
)) {
237 no_nice
= security_task_setnice(p
, niceval
);
244 set_user_nice(p
, niceval
);
249 asmlinkage
long sys_setpriority(int which
, int who
, int niceval
)
251 struct task_struct
*g
, *p
;
252 struct user_struct
*user
;
255 if (which
> 2 || which
< 0)
258 /* normalize: avoid signed division (rounding problems) */
265 read_lock(&tasklist_lock
);
270 p
= find_task_by_pid(who
);
272 error
= set_one_prio(p
, niceval
, error
);
276 who
= process_group(current
);
277 do_each_task_pid(who
, PIDTYPE_PGID
, p
) {
278 error
= set_one_prio(p
, niceval
, error
);
279 } while_each_task_pid(who
, PIDTYPE_PGID
, p
);
282 user
= current
->user
;
286 if ((who
!= current
->uid
) && !(user
= find_user(who
)))
287 goto out_unlock
; /* No processes for this user */
291 error
= set_one_prio(p
, niceval
, error
);
292 while_each_thread(g
, p
);
293 if (who
!= current
->uid
)
294 free_uid(user
); /* For find_user() */
298 read_unlock(&tasklist_lock
);
304 * Ugh. To avoid negative return values, "getpriority()" will
305 * not return the normal nice-value, but a negated value that
306 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
307 * to stay compatible.
309 asmlinkage
long sys_getpriority(int which
, int who
)
311 struct task_struct
*g
, *p
;
312 struct user_struct
*user
;
313 long niceval
, retval
= -ESRCH
;
315 if (which
> 2 || which
< 0)
318 read_lock(&tasklist_lock
);
323 p
= find_task_by_pid(who
);
325 niceval
= 20 - task_nice(p
);
326 if (niceval
> retval
)
332 who
= process_group(current
);
333 do_each_task_pid(who
, PIDTYPE_PGID
, p
) {
334 niceval
= 20 - task_nice(p
);
335 if (niceval
> retval
)
337 } while_each_task_pid(who
, PIDTYPE_PGID
, p
);
340 user
= current
->user
;
344 if ((who
!= current
->uid
) && !(user
= find_user(who
)))
345 goto out_unlock
; /* No processes for this user */
349 niceval
= 20 - task_nice(p
);
350 if (niceval
> retval
)
353 while_each_thread(g
, p
);
354 if (who
!= current
->uid
)
355 free_uid(user
); /* for find_user() */
359 read_unlock(&tasklist_lock
);
364 void emergency_restart(void)
366 machine_emergency_restart();
368 EXPORT_SYMBOL_GPL(emergency_restart
);
370 void kernel_restart(char *cmd
)
372 notifier_call_chain(&reboot_notifier_list
, SYS_RESTART
, cmd
);
373 system_state
= SYSTEM_RESTART
;
376 printk(KERN_EMERG
"Restarting system.\n");
378 printk(KERN_EMERG
"Restarting system with command '%s'.\n", cmd
);
381 machine_restart(cmd
);
383 EXPORT_SYMBOL_GPL(kernel_restart
);
385 void kernel_kexec(void)
388 struct kimage
*image
;
389 image
= xchg(&kexec_image
, 0);
393 notifier_call_chain(&reboot_notifier_list
, SYS_RESTART
, NULL
);
394 system_state
= SYSTEM_RESTART
;
396 printk(KERN_EMERG
"Starting new kernel\n");
398 machine_kexec(image
);
401 EXPORT_SYMBOL_GPL(kernel_kexec
);
403 void kernel_halt(void)
405 notifier_call_chain(&reboot_notifier_list
, SYS_HALT
, NULL
);
406 system_state
= SYSTEM_HALT
;
408 printk(KERN_EMERG
"System halted.\n");
411 EXPORT_SYMBOL_GPL(kernel_halt
);
413 void kernel_power_off(void)
415 notifier_call_chain(&reboot_notifier_list
, SYS_POWER_OFF
, NULL
);
416 system_state
= SYSTEM_POWER_OFF
;
418 printk(KERN_EMERG
"Power down.\n");
421 EXPORT_SYMBOL_GPL(kernel_power_off
);
424 * Reboot system call: for obvious reasons only root may call it,
425 * and even root needs to set up some magic numbers in the registers
426 * so that some mistake won't make this reboot the whole machine.
427 * You can also set the meaning of the ctrl-alt-del-key here.
429 * reboot doesn't sync: do that yourself before calling this.
431 asmlinkage
long sys_reboot(int magic1
, int magic2
, unsigned int cmd
, void __user
* arg
)
435 /* We only trust the superuser with rebooting the system. */
436 if (!capable(CAP_SYS_BOOT
))
439 /* For safety, we require "magic" arguments. */
440 if (magic1
!= LINUX_REBOOT_MAGIC1
||
441 (magic2
!= LINUX_REBOOT_MAGIC2
&&
442 magic2
!= LINUX_REBOOT_MAGIC2A
&&
443 magic2
!= LINUX_REBOOT_MAGIC2B
&&
444 magic2
!= LINUX_REBOOT_MAGIC2C
))
449 case LINUX_REBOOT_CMD_RESTART
:
450 kernel_restart(NULL
);
453 case LINUX_REBOOT_CMD_CAD_ON
:
457 case LINUX_REBOOT_CMD_CAD_OFF
:
461 case LINUX_REBOOT_CMD_HALT
:
467 case LINUX_REBOOT_CMD_POWER_OFF
:
473 case LINUX_REBOOT_CMD_RESTART2
:
474 if (strncpy_from_user(&buffer
[0], arg
, sizeof(buffer
) - 1) < 0) {
478 buffer
[sizeof(buffer
) - 1] = '\0';
480 kernel_restart(buffer
);
483 case LINUX_REBOOT_CMD_KEXEC
:
488 #ifdef CONFIG_SOFTWARE_SUSPEND
489 case LINUX_REBOOT_CMD_SW_SUSPEND
:
491 int ret
= software_suspend();
505 static void deferred_cad(void *dummy
)
507 kernel_restart(NULL
);
511 * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
512 * As it's called within an interrupt, it may NOT sync: the only choice
513 * is whether to reboot at once, or just ignore the ctrl-alt-del.
515 void ctrl_alt_del(void)
517 static DECLARE_WORK(cad_work
, deferred_cad
, NULL
);
520 schedule_work(&cad_work
);
522 kill_proc(cad_pid
, SIGINT
, 1);
527 * Unprivileged users may change the real gid to the effective gid
528 * or vice versa. (BSD-style)
530 * If you set the real gid at all, or set the effective gid to a value not
531 * equal to the real gid, then the saved gid is set to the new effective gid.
533 * This makes it possible for a setgid program to completely drop its
534 * privileges, which is often a useful assertion to make when you are doing
535 * a security audit over a program.
537 * The general idea is that a program which uses just setregid() will be
538 * 100% compatible with BSD. A program which uses just setgid() will be
539 * 100% compatible with POSIX with saved IDs.
541 * SMP: There are not races, the GIDs are checked only by filesystem
542 * operations (as far as semantic preservation is concerned).
544 asmlinkage
long sys_setregid(gid_t rgid
, gid_t egid
)
546 int old_rgid
= current
->gid
;
547 int old_egid
= current
->egid
;
548 int new_rgid
= old_rgid
;
549 int new_egid
= old_egid
;
552 retval
= security_task_setgid(rgid
, egid
, (gid_t
)-1, LSM_SETID_RE
);
556 if (rgid
!= (gid_t
) -1) {
557 if ((old_rgid
== rgid
) ||
558 (current
->egid
==rgid
) ||
564 if (egid
!= (gid_t
) -1) {
565 if ((old_rgid
== egid
) ||
566 (current
->egid
== egid
) ||
567 (current
->sgid
== egid
) ||
574 if (new_egid
!= old_egid
)
576 current
->mm
->dumpable
= suid_dumpable
;
579 if (rgid
!= (gid_t
) -1 ||
580 (egid
!= (gid_t
) -1 && egid
!= old_rgid
))
581 current
->sgid
= new_egid
;
582 current
->fsgid
= new_egid
;
583 current
->egid
= new_egid
;
584 current
->gid
= new_rgid
;
585 key_fsgid_changed(current
);
590 * setgid() is implemented like SysV w/ SAVED_IDS
592 * SMP: Same implicit races as above.
594 asmlinkage
long sys_setgid(gid_t gid
)
596 int old_egid
= current
->egid
;
599 retval
= security_task_setgid(gid
, (gid_t
)-1, (gid_t
)-1, LSM_SETID_ID
);
603 if (capable(CAP_SETGID
))
607 current
->mm
->dumpable
= suid_dumpable
;
610 current
->gid
= current
->egid
= current
->sgid
= current
->fsgid
= gid
;
612 else if ((gid
== current
->gid
) || (gid
== current
->sgid
))
616 current
->mm
->dumpable
= suid_dumpable
;
619 current
->egid
= current
->fsgid
= gid
;
624 key_fsgid_changed(current
);
628 static int set_user(uid_t new_ruid
, int dumpclear
)
630 struct user_struct
*new_user
;
632 new_user
= alloc_uid(new_ruid
);
636 if (atomic_read(&new_user
->processes
) >=
637 current
->signal
->rlim
[RLIMIT_NPROC
].rlim_cur
&&
638 new_user
!= &root_user
) {
643 switch_uid(new_user
);
647 current
->mm
->dumpable
= suid_dumpable
;
650 current
->uid
= new_ruid
;
655 * Unprivileged users may change the real uid to the effective uid
656 * or vice versa. (BSD-style)
658 * If you set the real uid at all, or set the effective uid to a value not
659 * equal to the real uid, then the saved uid is set to the new effective uid.
661 * This makes it possible for a setuid program to completely drop its
662 * privileges, which is often a useful assertion to make when you are doing
663 * a security audit over a program.
665 * The general idea is that a program which uses just setreuid() will be
666 * 100% compatible with BSD. A program which uses just setuid() will be
667 * 100% compatible with POSIX with saved IDs.
669 asmlinkage
long sys_setreuid(uid_t ruid
, uid_t euid
)
671 int old_ruid
, old_euid
, old_suid
, new_ruid
, new_euid
;
674 retval
= security_task_setuid(ruid
, euid
, (uid_t
)-1, LSM_SETID_RE
);
678 new_ruid
= old_ruid
= current
->uid
;
679 new_euid
= old_euid
= current
->euid
;
680 old_suid
= current
->suid
;
682 if (ruid
!= (uid_t
) -1) {
684 if ((old_ruid
!= ruid
) &&
685 (current
->euid
!= ruid
) &&
686 !capable(CAP_SETUID
))
690 if (euid
!= (uid_t
) -1) {
692 if ((old_ruid
!= euid
) &&
693 (current
->euid
!= euid
) &&
694 (current
->suid
!= euid
) &&
695 !capable(CAP_SETUID
))
699 if (new_ruid
!= old_ruid
&& set_user(new_ruid
, new_euid
!= old_euid
) < 0)
702 if (new_euid
!= old_euid
)
704 current
->mm
->dumpable
= suid_dumpable
;
707 current
->fsuid
= current
->euid
= new_euid
;
708 if (ruid
!= (uid_t
) -1 ||
709 (euid
!= (uid_t
) -1 && euid
!= old_ruid
))
710 current
->suid
= current
->euid
;
711 current
->fsuid
= current
->euid
;
713 key_fsuid_changed(current
);
715 return security_task_post_setuid(old_ruid
, old_euid
, old_suid
, LSM_SETID_RE
);
721 * setuid() is implemented like SysV with SAVED_IDS
723 * Note that SAVED_ID's is deficient in that a setuid root program
724 * like sendmail, for example, cannot set its uid to be a normal
725 * user and then switch back, because if you're root, setuid() sets
726 * the saved uid too. If you don't like this, blame the bright people
727 * in the POSIX committee and/or USG. Note that the BSD-style setreuid()
728 * will allow a root program to temporarily drop privileges and be able to
729 * regain them by swapping the real and effective uid.
731 asmlinkage
long sys_setuid(uid_t uid
)
733 int old_euid
= current
->euid
;
734 int old_ruid
, old_suid
, new_ruid
, new_suid
;
737 retval
= security_task_setuid(uid
, (uid_t
)-1, (uid_t
)-1, LSM_SETID_ID
);
741 old_ruid
= new_ruid
= current
->uid
;
742 old_suid
= current
->suid
;
745 if (capable(CAP_SETUID
)) {
746 if (uid
!= old_ruid
&& set_user(uid
, old_euid
!= uid
) < 0)
749 } else if ((uid
!= current
->uid
) && (uid
!= new_suid
))
754 current
->mm
->dumpable
= suid_dumpable
;
757 current
->fsuid
= current
->euid
= uid
;
758 current
->suid
= new_suid
;
760 key_fsuid_changed(current
);
762 return security_task_post_setuid(old_ruid
, old_euid
, old_suid
, LSM_SETID_ID
);
767 * This function implements a generic ability to update ruid, euid,
768 * and suid. This allows you to implement the 4.4 compatible seteuid().
770 asmlinkage
long sys_setresuid(uid_t ruid
, uid_t euid
, uid_t suid
)
772 int old_ruid
= current
->uid
;
773 int old_euid
= current
->euid
;
774 int old_suid
= current
->suid
;
777 retval
= security_task_setuid(ruid
, euid
, suid
, LSM_SETID_RES
);
781 if (!capable(CAP_SETUID
)) {
782 if ((ruid
!= (uid_t
) -1) && (ruid
!= current
->uid
) &&
783 (ruid
!= current
->euid
) && (ruid
!= current
->suid
))
785 if ((euid
!= (uid_t
) -1) && (euid
!= current
->uid
) &&
786 (euid
!= current
->euid
) && (euid
!= current
->suid
))
788 if ((suid
!= (uid_t
) -1) && (suid
!= current
->uid
) &&
789 (suid
!= current
->euid
) && (suid
!= current
->suid
))
792 if (ruid
!= (uid_t
) -1) {
793 if (ruid
!= current
->uid
&& set_user(ruid
, euid
!= current
->euid
) < 0)
796 if (euid
!= (uid_t
) -1) {
797 if (euid
!= current
->euid
)
799 current
->mm
->dumpable
= suid_dumpable
;
802 current
->euid
= euid
;
804 current
->fsuid
= current
->euid
;
805 if (suid
!= (uid_t
) -1)
806 current
->suid
= suid
;
808 key_fsuid_changed(current
);
810 return security_task_post_setuid(old_ruid
, old_euid
, old_suid
, LSM_SETID_RES
);
813 asmlinkage
long sys_getresuid(uid_t __user
*ruid
, uid_t __user
*euid
, uid_t __user
*suid
)
817 if (!(retval
= put_user(current
->uid
, ruid
)) &&
818 !(retval
= put_user(current
->euid
, euid
)))
819 retval
= put_user(current
->suid
, suid
);
825 * Same as above, but for rgid, egid, sgid.
827 asmlinkage
long sys_setresgid(gid_t rgid
, gid_t egid
, gid_t sgid
)
831 retval
= security_task_setgid(rgid
, egid
, sgid
, LSM_SETID_RES
);
835 if (!capable(CAP_SETGID
)) {
836 if ((rgid
!= (gid_t
) -1) && (rgid
!= current
->gid
) &&
837 (rgid
!= current
->egid
) && (rgid
!= current
->sgid
))
839 if ((egid
!= (gid_t
) -1) && (egid
!= current
->gid
) &&
840 (egid
!= current
->egid
) && (egid
!= current
->sgid
))
842 if ((sgid
!= (gid_t
) -1) && (sgid
!= current
->gid
) &&
843 (sgid
!= current
->egid
) && (sgid
!= current
->sgid
))
846 if (egid
!= (gid_t
) -1) {
847 if (egid
!= current
->egid
)
849 current
->mm
->dumpable
= suid_dumpable
;
852 current
->egid
= egid
;
854 current
->fsgid
= current
->egid
;
855 if (rgid
!= (gid_t
) -1)
857 if (sgid
!= (gid_t
) -1)
858 current
->sgid
= sgid
;
860 key_fsgid_changed(current
);
864 asmlinkage
long sys_getresgid(gid_t __user
*rgid
, gid_t __user
*egid
, gid_t __user
*sgid
)
868 if (!(retval
= put_user(current
->gid
, rgid
)) &&
869 !(retval
= put_user(current
->egid
, egid
)))
870 retval
= put_user(current
->sgid
, sgid
);
877 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
878 * is used for "access()" and for the NFS daemon (letting nfsd stay at
879 * whatever uid it wants to). It normally shadows "euid", except when
880 * explicitly set by setfsuid() or for access..
882 asmlinkage
long sys_setfsuid(uid_t uid
)
886 old_fsuid
= current
->fsuid
;
887 if (security_task_setuid(uid
, (uid_t
)-1, (uid_t
)-1, LSM_SETID_FS
))
890 if (uid
== current
->uid
|| uid
== current
->euid
||
891 uid
== current
->suid
|| uid
== current
->fsuid
||
894 if (uid
!= old_fsuid
)
896 current
->mm
->dumpable
= suid_dumpable
;
899 current
->fsuid
= uid
;
902 key_fsuid_changed(current
);
904 security_task_post_setuid(old_fsuid
, (uid_t
)-1, (uid_t
)-1, LSM_SETID_FS
);
910 * Samma på svenska..
912 asmlinkage
long sys_setfsgid(gid_t gid
)
916 old_fsgid
= current
->fsgid
;
917 if (security_task_setgid(gid
, (gid_t
)-1, (gid_t
)-1, LSM_SETID_FS
))
920 if (gid
== current
->gid
|| gid
== current
->egid
||
921 gid
== current
->sgid
|| gid
== current
->fsgid
||
924 if (gid
!= old_fsgid
)
926 current
->mm
->dumpable
= suid_dumpable
;
929 current
->fsgid
= gid
;
930 key_fsgid_changed(current
);
935 asmlinkage
long sys_times(struct tms __user
* tbuf
)
938 * In the SMP world we might just be unlucky and have one of
939 * the times increment as we use it. Since the value is an
940 * atomically safe type this is just fine. Conceptually its
941 * as if the syscall took an instant longer to occur.
945 cputime_t utime
, stime
, cutime
, cstime
;
948 if (thread_group_empty(current
)) {
950 * Single thread case without the use of any locks.
952 * We may race with release_task if two threads are
953 * executing. However, release task first adds up the
954 * counters (__exit_signal) before removing the task
955 * from the process tasklist (__unhash_process).
956 * __exit_signal also acquires and releases the
957 * siglock which results in the proper memory ordering
958 * so that the list modifications are always visible
959 * after the counters have been updated.
961 * If the counters have been updated by the second thread
962 * but the thread has not yet been removed from the list
963 * then the other branch will be executing which will
964 * block on tasklist_lock until the exit handling of the
965 * other task is finished.
967 * This also implies that the sighand->siglock cannot
968 * be held by another processor. So we can also
969 * skip acquiring that lock.
971 utime
= cputime_add(current
->signal
->utime
, current
->utime
);
972 stime
= cputime_add(current
->signal
->utime
, current
->stime
);
973 cutime
= current
->signal
->cutime
;
974 cstime
= current
->signal
->cstime
;
979 /* Process with multiple threads */
980 struct task_struct
*tsk
= current
;
981 struct task_struct
*t
;
983 read_lock(&tasklist_lock
);
984 utime
= tsk
->signal
->utime
;
985 stime
= tsk
->signal
->stime
;
988 utime
= cputime_add(utime
, t
->utime
);
989 stime
= cputime_add(stime
, t
->stime
);
994 * While we have tasklist_lock read-locked, no dying thread
995 * can be updating current->signal->[us]time. Instead,
996 * we got their counts included in the live thread loop.
997 * However, another thread can come in right now and
998 * do a wait call that updates current->signal->c[us]time.
999 * To make sure we always see that pair updated atomically,
1000 * we take the siglock around fetching them.
1002 spin_lock_irq(&tsk
->sighand
->siglock
);
1003 cutime
= tsk
->signal
->cutime
;
1004 cstime
= tsk
->signal
->cstime
;
1005 spin_unlock_irq(&tsk
->sighand
->siglock
);
1006 read_unlock(&tasklist_lock
);
1008 tmp
.tms_utime
= cputime_to_clock_t(utime
);
1009 tmp
.tms_stime
= cputime_to_clock_t(stime
);
1010 tmp
.tms_cutime
= cputime_to_clock_t(cutime
);
1011 tmp
.tms_cstime
= cputime_to_clock_t(cstime
);
1012 if (copy_to_user(tbuf
, &tmp
, sizeof(struct tms
)))
1015 return (long) jiffies_64_to_clock_t(get_jiffies_64());
1019 * This needs some heavy checking ...
1020 * I just haven't the stomach for it. I also don't fully
1021 * understand sessions/pgrp etc. Let somebody who does explain it.
1023 * OK, I think I have the protection semantics right.... this is really
1024 * only important on a multi-user system anyway, to make sure one user
1025 * can't send a signal to a process owned by another. -TYT, 12/12/91
1027 * Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
1031 asmlinkage
long sys_setpgid(pid_t pid
, pid_t pgid
)
1033 struct task_struct
*p
;
1043 /* From this point forward we keep holding onto the tasklist lock
1044 * so that our parent does not change from under us. -DaveM
1046 write_lock_irq(&tasklist_lock
);
1049 p
= find_task_by_pid(pid
);
1054 if (!thread_group_leader(p
))
1057 if (p
->parent
== current
|| p
->real_parent
== current
) {
1059 if (p
->signal
->session
!= current
->signal
->session
)
1071 if (p
->signal
->leader
)
1075 struct task_struct
*p
;
1077 do_each_task_pid(pgid
, PIDTYPE_PGID
, p
) {
1078 if (p
->signal
->session
== current
->signal
->session
)
1080 } while_each_task_pid(pgid
, PIDTYPE_PGID
, p
);
1085 err
= security_task_setpgid(p
, pgid
);
1089 if (process_group(p
) != pgid
) {
1090 detach_pid(p
, PIDTYPE_PGID
);
1091 p
->signal
->pgrp
= pgid
;
1092 attach_pid(p
, PIDTYPE_PGID
, pgid
);
1097 /* All paths lead to here, thus we are safe. -DaveM */
1098 write_unlock_irq(&tasklist_lock
);
1102 asmlinkage
long sys_getpgid(pid_t pid
)
1105 return process_group(current
);
1108 struct task_struct
*p
;
1110 read_lock(&tasklist_lock
);
1111 p
= find_task_by_pid(pid
);
1115 retval
= security_task_getpgid(p
);
1117 retval
= process_group(p
);
1119 read_unlock(&tasklist_lock
);
1124 #ifdef __ARCH_WANT_SYS_GETPGRP
1126 asmlinkage
long sys_getpgrp(void)
1128 /* SMP - assuming writes are word atomic this is fine */
1129 return process_group(current
);
1134 asmlinkage
long sys_getsid(pid_t pid
)
1137 return current
->signal
->session
;
1140 struct task_struct
*p
;
1142 read_lock(&tasklist_lock
);
1143 p
= find_task_by_pid(pid
);
1147 retval
= security_task_getsid(p
);
1149 retval
= p
->signal
->session
;
1151 read_unlock(&tasklist_lock
);
1156 asmlinkage
long sys_setsid(void)
1161 if (!thread_group_leader(current
))
1165 write_lock_irq(&tasklist_lock
);
1167 pid
= find_pid(PIDTYPE_PGID
, current
->pid
);
1171 current
->signal
->leader
= 1;
1172 __set_special_pids(current
->pid
, current
->pid
);
1173 current
->signal
->tty
= NULL
;
1174 current
->signal
->tty_old_pgrp
= 0;
1175 err
= process_group(current
);
1177 write_unlock_irq(&tasklist_lock
);
1183 * Supplementary group IDs
1186 /* init to 2 - one for init_task, one to ensure it is never freed */
1187 struct group_info init_groups
= { .usage
= ATOMIC_INIT(2) };
1189 struct group_info
*groups_alloc(int gidsetsize
)
1191 struct group_info
*group_info
;
1195 nblocks
= (gidsetsize
+ NGROUPS_PER_BLOCK
- 1) / NGROUPS_PER_BLOCK
;
1196 /* Make sure we always allocate at least one indirect block pointer */
1197 nblocks
= nblocks
? : 1;
1198 group_info
= kmalloc(sizeof(*group_info
) + nblocks
*sizeof(gid_t
*), GFP_USER
);
1201 group_info
->ngroups
= gidsetsize
;
1202 group_info
->nblocks
= nblocks
;
1203 atomic_set(&group_info
->usage
, 1);
1205 if (gidsetsize
<= NGROUPS_SMALL
) {
1206 group_info
->blocks
[0] = group_info
->small_block
;
1208 for (i
= 0; i
< nblocks
; i
++) {
1210 b
= (void *)__get_free_page(GFP_USER
);
1212 goto out_undo_partial_alloc
;
1213 group_info
->blocks
[i
] = b
;
1218 out_undo_partial_alloc
:
1220 free_page((unsigned long)group_info
->blocks
[i
]);
1226 EXPORT_SYMBOL(groups_alloc
);
1228 void groups_free(struct group_info
*group_info
)
1230 if (group_info
->blocks
[0] != group_info
->small_block
) {
1232 for (i
= 0; i
< group_info
->nblocks
; i
++)
1233 free_page((unsigned long)group_info
->blocks
[i
]);
1238 EXPORT_SYMBOL(groups_free
);
1240 /* export the group_info to a user-space array */
1241 static int groups_to_user(gid_t __user
*grouplist
,
1242 struct group_info
*group_info
)
1245 int count
= group_info
->ngroups
;
1247 for (i
= 0; i
< group_info
->nblocks
; i
++) {
1248 int cp_count
= min(NGROUPS_PER_BLOCK
, count
);
1249 int off
= i
* NGROUPS_PER_BLOCK
;
1250 int len
= cp_count
* sizeof(*grouplist
);
1252 if (copy_to_user(grouplist
+off
, group_info
->blocks
[i
], len
))
1260 /* fill a group_info from a user-space array - it must be allocated already */
1261 static int groups_from_user(struct group_info
*group_info
,
1262 gid_t __user
*grouplist
)
1265 int count
= group_info
->ngroups
;
1267 for (i
= 0; i
< group_info
->nblocks
; i
++) {
1268 int cp_count
= min(NGROUPS_PER_BLOCK
, count
);
1269 int off
= i
* NGROUPS_PER_BLOCK
;
1270 int len
= cp_count
* sizeof(*grouplist
);
1272 if (copy_from_user(group_info
->blocks
[i
], grouplist
+off
, len
))
1280 /* a simple Shell sort */
1281 static void groups_sort(struct group_info
*group_info
)
1283 int base
, max
, stride
;
1284 int gidsetsize
= group_info
->ngroups
;
1286 for (stride
= 1; stride
< gidsetsize
; stride
= 3 * stride
+ 1)
1291 max
= gidsetsize
- stride
;
1292 for (base
= 0; base
< max
; base
++) {
1294 int right
= left
+ stride
;
1295 gid_t tmp
= GROUP_AT(group_info
, right
);
1297 while (left
>= 0 && GROUP_AT(group_info
, left
) > tmp
) {
1298 GROUP_AT(group_info
, right
) =
1299 GROUP_AT(group_info
, left
);
1303 GROUP_AT(group_info
, right
) = tmp
;
1309 /* a simple bsearch */
1310 int groups_search(struct group_info
*group_info
, gid_t grp
)
1318 right
= group_info
->ngroups
;
1319 while (left
< right
) {
1320 int mid
= (left
+right
)/2;
1321 int cmp
= grp
- GROUP_AT(group_info
, mid
);
1332 /* validate and set current->group_info */
1333 int set_current_groups(struct group_info
*group_info
)
1336 struct group_info
*old_info
;
1338 retval
= security_task_setgroups(group_info
);
1342 groups_sort(group_info
);
1343 get_group_info(group_info
);
1346 old_info
= current
->group_info
;
1347 current
->group_info
= group_info
;
1348 task_unlock(current
);
1350 put_group_info(old_info
);
1355 EXPORT_SYMBOL(set_current_groups
);
1357 asmlinkage
long sys_getgroups(int gidsetsize
, gid_t __user
*grouplist
)
1362 * SMP: Nobody else can change our grouplist. Thus we are
1369 /* no need to grab task_lock here; it cannot change */
1370 get_group_info(current
->group_info
);
1371 i
= current
->group_info
->ngroups
;
1373 if (i
> gidsetsize
) {
1377 if (groups_to_user(grouplist
, current
->group_info
)) {
1383 put_group_info(current
->group_info
);
1388 * SMP: Our groups are copy-on-write. We can set them safely
1389 * without another task interfering.
1392 asmlinkage
long sys_setgroups(int gidsetsize
, gid_t __user
*grouplist
)
1394 struct group_info
*group_info
;
1397 if (!capable(CAP_SETGID
))
1399 if ((unsigned)gidsetsize
> NGROUPS_MAX
)
1402 group_info
= groups_alloc(gidsetsize
);
1405 retval
= groups_from_user(group_info
, grouplist
);
1407 put_group_info(group_info
);
1411 retval
= set_current_groups(group_info
);
1412 put_group_info(group_info
);
1418 * Check whether we're fsgid/egid or in the supplemental group..
1420 int in_group_p(gid_t grp
)
1423 if (grp
!= current
->fsgid
) {
1424 get_group_info(current
->group_info
);
1425 retval
= groups_search(current
->group_info
, grp
);
1426 put_group_info(current
->group_info
);
1431 EXPORT_SYMBOL(in_group_p
);
1433 int in_egroup_p(gid_t grp
)
1436 if (grp
!= current
->egid
) {
1437 get_group_info(current
->group_info
);
1438 retval
= groups_search(current
->group_info
, grp
);
1439 put_group_info(current
->group_info
);
1444 EXPORT_SYMBOL(in_egroup_p
);
1446 DECLARE_RWSEM(uts_sem
);
1448 EXPORT_SYMBOL(uts_sem
);
1450 asmlinkage
long sys_newuname(struct new_utsname __user
* name
)
1454 down_read(&uts_sem
);
1455 if (copy_to_user(name
,&system_utsname
,sizeof *name
))
1461 asmlinkage
long sys_sethostname(char __user
*name
, int len
)
1464 char tmp
[__NEW_UTS_LEN
];
1466 if (!capable(CAP_SYS_ADMIN
))
1468 if (len
< 0 || len
> __NEW_UTS_LEN
)
1470 down_write(&uts_sem
);
1472 if (!copy_from_user(tmp
, name
, len
)) {
1473 memcpy(system_utsname
.nodename
, tmp
, len
);
1474 system_utsname
.nodename
[len
] = 0;
1481 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1483 asmlinkage
long sys_gethostname(char __user
*name
, int len
)
1489 down_read(&uts_sem
);
1490 i
= 1 + strlen(system_utsname
.nodename
);
1494 if (copy_to_user(name
, system_utsname
.nodename
, i
))
1503 * Only setdomainname; getdomainname can be implemented by calling
1506 asmlinkage
long sys_setdomainname(char __user
*name
, int len
)
1509 char tmp
[__NEW_UTS_LEN
];
1511 if (!capable(CAP_SYS_ADMIN
))
1513 if (len
< 0 || len
> __NEW_UTS_LEN
)
1516 down_write(&uts_sem
);
1518 if (!copy_from_user(tmp
, name
, len
)) {
1519 memcpy(system_utsname
.domainname
, tmp
, len
);
1520 system_utsname
.domainname
[len
] = 0;
1527 asmlinkage
long sys_getrlimit(unsigned int resource
, struct rlimit __user
*rlim
)
1529 if (resource
>= RLIM_NLIMITS
)
1532 struct rlimit value
;
1533 task_lock(current
->group_leader
);
1534 value
= current
->signal
->rlim
[resource
];
1535 task_unlock(current
->group_leader
);
1536 return copy_to_user(rlim
, &value
, sizeof(*rlim
)) ? -EFAULT
: 0;
1540 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1543 * Back compatibility for getrlimit. Needed for some apps.
1546 asmlinkage
long sys_old_getrlimit(unsigned int resource
, struct rlimit __user
*rlim
)
1549 if (resource
>= RLIM_NLIMITS
)
1552 task_lock(current
->group_leader
);
1553 x
= current
->signal
->rlim
[resource
];
1554 task_unlock(current
->group_leader
);
1555 if(x
.rlim_cur
> 0x7FFFFFFF)
1556 x
.rlim_cur
= 0x7FFFFFFF;
1557 if(x
.rlim_max
> 0x7FFFFFFF)
1558 x
.rlim_max
= 0x7FFFFFFF;
1559 return copy_to_user(rlim
, &x
, sizeof(x
))?-EFAULT
:0;
1564 asmlinkage
long sys_setrlimit(unsigned int resource
, struct rlimit __user
*rlim
)
1566 struct rlimit new_rlim
, *old_rlim
;
1569 if (resource
>= RLIM_NLIMITS
)
1571 if(copy_from_user(&new_rlim
, rlim
, sizeof(*rlim
)))
1573 if (new_rlim
.rlim_cur
> new_rlim
.rlim_max
)
1575 old_rlim
= current
->signal
->rlim
+ resource
;
1576 if ((new_rlim
.rlim_max
> old_rlim
->rlim_max
) &&
1577 !capable(CAP_SYS_RESOURCE
))
1579 if (resource
== RLIMIT_NOFILE
&& new_rlim
.rlim_max
> NR_OPEN
)
1582 retval
= security_task_setrlimit(resource
, &new_rlim
);
1586 task_lock(current
->group_leader
);
1587 *old_rlim
= new_rlim
;
1588 task_unlock(current
->group_leader
);
1590 if (resource
== RLIMIT_CPU
&& new_rlim
.rlim_cur
!= RLIM_INFINITY
&&
1591 (cputime_eq(current
->signal
->it_prof_expires
, cputime_zero
) ||
1592 new_rlim
.rlim_cur
<= cputime_to_secs(
1593 current
->signal
->it_prof_expires
))) {
1594 cputime_t cputime
= secs_to_cputime(new_rlim
.rlim_cur
);
1595 read_lock(&tasklist_lock
);
1596 spin_lock_irq(¤t
->sighand
->siglock
);
1597 set_process_cpu_timer(current
, CPUCLOCK_PROF
,
1599 spin_unlock_irq(¤t
->sighand
->siglock
);
1600 read_unlock(&tasklist_lock
);
1607 * It would make sense to put struct rusage in the task_struct,
1608 * except that would make the task_struct be *really big*. After
1609 * task_struct gets moved into malloc'ed memory, it would
1610 * make sense to do this. It will make moving the rest of the information
1611 * a lot simpler! (Which we're not doing right now because we're not
1612 * measuring them yet).
1614 * This expects to be called with tasklist_lock read-locked or better,
1615 * and the siglock not locked. It may momentarily take the siglock.
1617 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1618 * races with threads incrementing their own counters. But since word
1619 * reads are atomic, we either get new values or old values and we don't
1620 * care which for the sums. We always take the siglock to protect reading
1621 * the c* fields from p->signal from races with exit.c updating those
1622 * fields when reaping, so a sample either gets all the additions of a
1623 * given child after it's reaped, or none so this sample is before reaping.
1626 static void k_getrusage(struct task_struct
*p
, int who
, struct rusage
*r
)
1628 struct task_struct
*t
;
1629 unsigned long flags
;
1630 cputime_t utime
, stime
;
1632 memset((char *) r
, 0, sizeof *r
);
1634 if (unlikely(!p
->signal
))
1638 case RUSAGE_CHILDREN
:
1639 spin_lock_irqsave(&p
->sighand
->siglock
, flags
);
1640 utime
= p
->signal
->cutime
;
1641 stime
= p
->signal
->cstime
;
1642 r
->ru_nvcsw
= p
->signal
->cnvcsw
;
1643 r
->ru_nivcsw
= p
->signal
->cnivcsw
;
1644 r
->ru_minflt
= p
->signal
->cmin_flt
;
1645 r
->ru_majflt
= p
->signal
->cmaj_flt
;
1646 spin_unlock_irqrestore(&p
->sighand
->siglock
, flags
);
1647 cputime_to_timeval(utime
, &r
->ru_utime
);
1648 cputime_to_timeval(stime
, &r
->ru_stime
);
1651 spin_lock_irqsave(&p
->sighand
->siglock
, flags
);
1652 utime
= stime
= cputime_zero
;
1655 spin_lock_irqsave(&p
->sighand
->siglock
, flags
);
1656 utime
= p
->signal
->cutime
;
1657 stime
= p
->signal
->cstime
;
1658 r
->ru_nvcsw
= p
->signal
->cnvcsw
;
1659 r
->ru_nivcsw
= p
->signal
->cnivcsw
;
1660 r
->ru_minflt
= p
->signal
->cmin_flt
;
1661 r
->ru_majflt
= p
->signal
->cmaj_flt
;
1663 utime
= cputime_add(utime
, p
->signal
->utime
);
1664 stime
= cputime_add(stime
, p
->signal
->stime
);
1665 r
->ru_nvcsw
+= p
->signal
->nvcsw
;
1666 r
->ru_nivcsw
+= p
->signal
->nivcsw
;
1667 r
->ru_minflt
+= p
->signal
->min_flt
;
1668 r
->ru_majflt
+= p
->signal
->maj_flt
;
1671 utime
= cputime_add(utime
, t
->utime
);
1672 stime
= cputime_add(stime
, t
->stime
);
1673 r
->ru_nvcsw
+= t
->nvcsw
;
1674 r
->ru_nivcsw
+= t
->nivcsw
;
1675 r
->ru_minflt
+= t
->min_flt
;
1676 r
->ru_majflt
+= t
->maj_flt
;
1679 spin_unlock_irqrestore(&p
->sighand
->siglock
, flags
);
1680 cputime_to_timeval(utime
, &r
->ru_utime
);
1681 cputime_to_timeval(stime
, &r
->ru_stime
);
1688 int getrusage(struct task_struct
*p
, int who
, struct rusage __user
*ru
)
1691 read_lock(&tasklist_lock
);
1692 k_getrusage(p
, who
, &r
);
1693 read_unlock(&tasklist_lock
);
1694 return copy_to_user(ru
, &r
, sizeof(r
)) ? -EFAULT
: 0;
1697 asmlinkage
long sys_getrusage(int who
, struct rusage __user
*ru
)
1699 if (who
!= RUSAGE_SELF
&& who
!= RUSAGE_CHILDREN
)
1701 return getrusage(current
, who
, ru
);
1704 asmlinkage
long sys_umask(int mask
)
1706 mask
= xchg(¤t
->fs
->umask
, mask
& S_IRWXUGO
);
1710 asmlinkage
long sys_prctl(int option
, unsigned long arg2
, unsigned long arg3
,
1711 unsigned long arg4
, unsigned long arg5
)
1715 error
= security_task_prctl(option
, arg2
, arg3
, arg4
, arg5
);
1720 case PR_SET_PDEATHSIG
:
1721 if (!valid_signal(arg2
)) {
1725 current
->pdeath_signal
= arg2
;
1727 case PR_GET_PDEATHSIG
:
1728 error
= put_user(current
->pdeath_signal
, (int __user
*)arg2
);
1730 case PR_GET_DUMPABLE
:
1731 if (current
->mm
->dumpable
)
1734 case PR_SET_DUMPABLE
:
1735 if (arg2
< 0 || arg2
> 2) {
1739 current
->mm
->dumpable
= arg2
;
1742 case PR_SET_UNALIGN
:
1743 error
= SET_UNALIGN_CTL(current
, arg2
);
1745 case PR_GET_UNALIGN
:
1746 error
= GET_UNALIGN_CTL(current
, arg2
);
1749 error
= SET_FPEMU_CTL(current
, arg2
);
1752 error
= GET_FPEMU_CTL(current
, arg2
);
1755 error
= SET_FPEXC_CTL(current
, arg2
);
1758 error
= GET_FPEXC_CTL(current
, arg2
);
1761 error
= PR_TIMING_STATISTICAL
;
1764 if (arg2
== PR_TIMING_STATISTICAL
)
1770 case PR_GET_KEEPCAPS
:
1771 if (current
->keep_capabilities
)
1774 case PR_SET_KEEPCAPS
:
1775 if (arg2
!= 0 && arg2
!= 1) {
1779 current
->keep_capabilities
= arg2
;
1782 struct task_struct
*me
= current
;
1783 unsigned char ncomm
[sizeof(me
->comm
)];
1785 ncomm
[sizeof(me
->comm
)-1] = 0;
1786 if (strncpy_from_user(ncomm
, (char __user
*)arg2
,
1787 sizeof(me
->comm
)-1) < 0)
1789 set_task_comm(me
, ncomm
);
1793 struct task_struct
*me
= current
;
1794 unsigned char tcomm
[sizeof(me
->comm
)];
1796 get_task_comm(tcomm
, me
);
1797 if (copy_to_user((char __user
*)arg2
, tcomm
, sizeof(tcomm
)))