[PATCH] pktcdvd: Don't spam the kernel log when nothing is wrong
[linux-2.6/sactl.git] / drivers / block / pktcdvd.c
blob73999762582ed3734d0681d6235cc29769884bf4
1 /*
2 * Copyright (C) 2000 Jens Axboe <axboe@suse.de>
3 * Copyright (C) 2001-2004 Peter Osterlund <petero2@telia.com>
5 * May be copied or modified under the terms of the GNU General Public
6 * License. See linux/COPYING for more information.
8 * Packet writing layer for ATAPI and SCSI CD-RW, DVD+RW, DVD-RW and
9 * DVD-RAM devices.
11 * Theory of operation:
13 * At the lowest level, there is the standard driver for the CD/DVD device,
14 * typically ide-cd.c or sr.c. This driver can handle read and write requests,
15 * but it doesn't know anything about the special restrictions that apply to
16 * packet writing. One restriction is that write requests must be aligned to
17 * packet boundaries on the physical media, and the size of a write request
18 * must be equal to the packet size. Another restriction is that a
19 * GPCMD_FLUSH_CACHE command has to be issued to the drive before a read
20 * command, if the previous command was a write.
22 * The purpose of the packet writing driver is to hide these restrictions from
23 * higher layers, such as file systems, and present a block device that can be
24 * randomly read and written using 2kB-sized blocks.
26 * The lowest layer in the packet writing driver is the packet I/O scheduler.
27 * Its data is defined by the struct packet_iosched and includes two bio
28 * queues with pending read and write requests. These queues are processed
29 * by the pkt_iosched_process_queue() function. The write requests in this
30 * queue are already properly aligned and sized. This layer is responsible for
31 * issuing the flush cache commands and scheduling the I/O in a good order.
33 * The next layer transforms unaligned write requests to aligned writes. This
34 * transformation requires reading missing pieces of data from the underlying
35 * block device, assembling the pieces to full packets and queuing them to the
36 * packet I/O scheduler.
38 * At the top layer there is a custom make_request_fn function that forwards
39 * read requests directly to the iosched queue and puts write requests in the
40 * unaligned write queue. A kernel thread performs the necessary read
41 * gathering to convert the unaligned writes to aligned writes and then feeds
42 * them to the packet I/O scheduler.
44 *************************************************************************/
46 #include <linux/pktcdvd.h>
47 #include <linux/config.h>
48 #include <linux/module.h>
49 #include <linux/types.h>
50 #include <linux/kernel.h>
51 #include <linux/kthread.h>
52 #include <linux/errno.h>
53 #include <linux/spinlock.h>
54 #include <linux/file.h>
55 #include <linux/proc_fs.h>
56 #include <linux/seq_file.h>
57 #include <linux/miscdevice.h>
58 #include <linux/suspend.h>
59 #include <scsi/scsi_cmnd.h>
60 #include <scsi/scsi_ioctl.h>
62 #include <asm/uaccess.h>
64 #if PACKET_DEBUG
65 #define DPRINTK(fmt, args...) printk(KERN_NOTICE fmt, ##args)
66 #else
67 #define DPRINTK(fmt, args...)
68 #endif
70 #if PACKET_DEBUG > 1
71 #define VPRINTK(fmt, args...) printk(KERN_NOTICE fmt, ##args)
72 #else
73 #define VPRINTK(fmt, args...)
74 #endif
76 #define MAX_SPEED 0xffff
78 #define ZONE(sector, pd) (((sector) + (pd)->offset) & ~((pd)->settings.size - 1))
80 static struct pktcdvd_device *pkt_devs[MAX_WRITERS];
81 static struct proc_dir_entry *pkt_proc;
82 static int pkt_major;
83 static struct semaphore ctl_mutex; /* Serialize open/close/setup/teardown */
84 static mempool_t *psd_pool;
87 static void pkt_bio_finished(struct pktcdvd_device *pd)
89 BUG_ON(atomic_read(&pd->cdrw.pending_bios) <= 0);
90 if (atomic_dec_and_test(&pd->cdrw.pending_bios)) {
91 VPRINTK("pktcdvd: queue empty\n");
92 atomic_set(&pd->iosched.attention, 1);
93 wake_up(&pd->wqueue);
97 static void pkt_bio_destructor(struct bio *bio)
99 kfree(bio->bi_io_vec);
100 kfree(bio);
103 static struct bio *pkt_bio_alloc(int nr_iovecs)
105 struct bio_vec *bvl = NULL;
106 struct bio *bio;
108 bio = kmalloc(sizeof(struct bio), GFP_KERNEL);
109 if (!bio)
110 goto no_bio;
111 bio_init(bio);
113 bvl = kcalloc(nr_iovecs, sizeof(struct bio_vec), GFP_KERNEL);
114 if (!bvl)
115 goto no_bvl;
117 bio->bi_max_vecs = nr_iovecs;
118 bio->bi_io_vec = bvl;
119 bio->bi_destructor = pkt_bio_destructor;
121 return bio;
123 no_bvl:
124 kfree(bio);
125 no_bio:
126 return NULL;
130 * Allocate a packet_data struct
132 static struct packet_data *pkt_alloc_packet_data(int frames)
134 int i;
135 struct packet_data *pkt;
137 pkt = kzalloc(sizeof(struct packet_data), GFP_KERNEL);
138 if (!pkt)
139 goto no_pkt;
141 pkt->frames = frames;
142 pkt->w_bio = pkt_bio_alloc(frames);
143 if (!pkt->w_bio)
144 goto no_bio;
146 for (i = 0; i < frames / FRAMES_PER_PAGE; i++) {
147 pkt->pages[i] = alloc_page(GFP_KERNEL|__GFP_ZERO);
148 if (!pkt->pages[i])
149 goto no_page;
152 spin_lock_init(&pkt->lock);
154 for (i = 0; i < frames; i++) {
155 struct bio *bio = pkt_bio_alloc(1);
156 if (!bio)
157 goto no_rd_bio;
158 pkt->r_bios[i] = bio;
161 return pkt;
163 no_rd_bio:
164 for (i = 0; i < frames; i++) {
165 struct bio *bio = pkt->r_bios[i];
166 if (bio)
167 bio_put(bio);
170 no_page:
171 for (i = 0; i < frames / FRAMES_PER_PAGE; i++)
172 if (pkt->pages[i])
173 __free_page(pkt->pages[i]);
174 bio_put(pkt->w_bio);
175 no_bio:
176 kfree(pkt);
177 no_pkt:
178 return NULL;
182 * Free a packet_data struct
184 static void pkt_free_packet_data(struct packet_data *pkt)
186 int i;
188 for (i = 0; i < pkt->frames; i++) {
189 struct bio *bio = pkt->r_bios[i];
190 if (bio)
191 bio_put(bio);
193 for (i = 0; i < pkt->frames / FRAMES_PER_PAGE; i++)
194 __free_page(pkt->pages[i]);
195 bio_put(pkt->w_bio);
196 kfree(pkt);
199 static void pkt_shrink_pktlist(struct pktcdvd_device *pd)
201 struct packet_data *pkt, *next;
203 BUG_ON(!list_empty(&pd->cdrw.pkt_active_list));
205 list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_free_list, list) {
206 pkt_free_packet_data(pkt);
208 INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
211 static int pkt_grow_pktlist(struct pktcdvd_device *pd, int nr_packets)
213 struct packet_data *pkt;
215 BUG_ON(!list_empty(&pd->cdrw.pkt_free_list));
217 while (nr_packets > 0) {
218 pkt = pkt_alloc_packet_data(pd->settings.size >> 2);
219 if (!pkt) {
220 pkt_shrink_pktlist(pd);
221 return 0;
223 pkt->id = nr_packets;
224 pkt->pd = pd;
225 list_add(&pkt->list, &pd->cdrw.pkt_free_list);
226 nr_packets--;
228 return 1;
231 static void *pkt_rb_alloc(gfp_t gfp_mask, void *data)
233 return kmalloc(sizeof(struct pkt_rb_node), gfp_mask);
236 static void pkt_rb_free(void *ptr, void *data)
238 kfree(ptr);
241 static inline struct pkt_rb_node *pkt_rbtree_next(struct pkt_rb_node *node)
243 struct rb_node *n = rb_next(&node->rb_node);
244 if (!n)
245 return NULL;
246 return rb_entry(n, struct pkt_rb_node, rb_node);
249 static void pkt_rbtree_erase(struct pktcdvd_device *pd, struct pkt_rb_node *node)
251 rb_erase(&node->rb_node, &pd->bio_queue);
252 mempool_free(node, pd->rb_pool);
253 pd->bio_queue_size--;
254 BUG_ON(pd->bio_queue_size < 0);
258 * Find the first node in the pd->bio_queue rb tree with a starting sector >= s.
260 static struct pkt_rb_node *pkt_rbtree_find(struct pktcdvd_device *pd, sector_t s)
262 struct rb_node *n = pd->bio_queue.rb_node;
263 struct rb_node *next;
264 struct pkt_rb_node *tmp;
266 if (!n) {
267 BUG_ON(pd->bio_queue_size > 0);
268 return NULL;
271 for (;;) {
272 tmp = rb_entry(n, struct pkt_rb_node, rb_node);
273 if (s <= tmp->bio->bi_sector)
274 next = n->rb_left;
275 else
276 next = n->rb_right;
277 if (!next)
278 break;
279 n = next;
282 if (s > tmp->bio->bi_sector) {
283 tmp = pkt_rbtree_next(tmp);
284 if (!tmp)
285 return NULL;
287 BUG_ON(s > tmp->bio->bi_sector);
288 return tmp;
292 * Insert a node into the pd->bio_queue rb tree.
294 static void pkt_rbtree_insert(struct pktcdvd_device *pd, struct pkt_rb_node *node)
296 struct rb_node **p = &pd->bio_queue.rb_node;
297 struct rb_node *parent = NULL;
298 sector_t s = node->bio->bi_sector;
299 struct pkt_rb_node *tmp;
301 while (*p) {
302 parent = *p;
303 tmp = rb_entry(parent, struct pkt_rb_node, rb_node);
304 if (s < tmp->bio->bi_sector)
305 p = &(*p)->rb_left;
306 else
307 p = &(*p)->rb_right;
309 rb_link_node(&node->rb_node, parent, p);
310 rb_insert_color(&node->rb_node, &pd->bio_queue);
311 pd->bio_queue_size++;
315 * Add a bio to a single linked list defined by its head and tail pointers.
317 static void pkt_add_list_last(struct bio *bio, struct bio **list_head, struct bio **list_tail)
319 bio->bi_next = NULL;
320 if (*list_tail) {
321 BUG_ON((*list_head) == NULL);
322 (*list_tail)->bi_next = bio;
323 (*list_tail) = bio;
324 } else {
325 BUG_ON((*list_head) != NULL);
326 (*list_head) = bio;
327 (*list_tail) = bio;
332 * Remove and return the first bio from a single linked list defined by its
333 * head and tail pointers.
335 static inline struct bio *pkt_get_list_first(struct bio **list_head, struct bio **list_tail)
337 struct bio *bio;
339 if (*list_head == NULL)
340 return NULL;
342 bio = *list_head;
343 *list_head = bio->bi_next;
344 if (*list_head == NULL)
345 *list_tail = NULL;
347 bio->bi_next = NULL;
348 return bio;
352 * Send a packet_command to the underlying block device and
353 * wait for completion.
355 static int pkt_generic_packet(struct pktcdvd_device *pd, struct packet_command *cgc)
357 char sense[SCSI_SENSE_BUFFERSIZE];
358 request_queue_t *q;
359 struct request *rq;
360 DECLARE_COMPLETION(wait);
361 int err = 0;
363 q = bdev_get_queue(pd->bdev);
365 rq = blk_get_request(q, (cgc->data_direction == CGC_DATA_WRITE) ? WRITE : READ,
366 __GFP_WAIT);
367 rq->errors = 0;
368 rq->rq_disk = pd->bdev->bd_disk;
369 rq->bio = NULL;
370 rq->buffer = NULL;
371 rq->timeout = 60*HZ;
372 rq->data = cgc->buffer;
373 rq->data_len = cgc->buflen;
374 rq->sense = sense;
375 memset(sense, 0, sizeof(sense));
376 rq->sense_len = 0;
377 rq->flags |= REQ_BLOCK_PC | REQ_HARDBARRIER;
378 if (cgc->quiet)
379 rq->flags |= REQ_QUIET;
380 memcpy(rq->cmd, cgc->cmd, CDROM_PACKET_SIZE);
381 if (sizeof(rq->cmd) > CDROM_PACKET_SIZE)
382 memset(rq->cmd + CDROM_PACKET_SIZE, 0, sizeof(rq->cmd) - CDROM_PACKET_SIZE);
384 rq->ref_count++;
385 rq->flags |= REQ_NOMERGE;
386 rq->waiting = &wait;
387 rq->end_io = blk_end_sync_rq;
388 elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 1);
389 generic_unplug_device(q);
390 wait_for_completion(&wait);
392 if (rq->errors)
393 err = -EIO;
395 blk_put_request(rq);
396 return err;
400 * A generic sense dump / resolve mechanism should be implemented across
401 * all ATAPI + SCSI devices.
403 static void pkt_dump_sense(struct packet_command *cgc)
405 static char *info[9] = { "No sense", "Recovered error", "Not ready",
406 "Medium error", "Hardware error", "Illegal request",
407 "Unit attention", "Data protect", "Blank check" };
408 int i;
409 struct request_sense *sense = cgc->sense;
411 printk("pktcdvd:");
412 for (i = 0; i < CDROM_PACKET_SIZE; i++)
413 printk(" %02x", cgc->cmd[i]);
414 printk(" - ");
416 if (sense == NULL) {
417 printk("no sense\n");
418 return;
421 printk("sense %02x.%02x.%02x", sense->sense_key, sense->asc, sense->ascq);
423 if (sense->sense_key > 8) {
424 printk(" (INVALID)\n");
425 return;
428 printk(" (%s)\n", info[sense->sense_key]);
432 * flush the drive cache to media
434 static int pkt_flush_cache(struct pktcdvd_device *pd)
436 struct packet_command cgc;
438 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
439 cgc.cmd[0] = GPCMD_FLUSH_CACHE;
440 cgc.quiet = 1;
443 * the IMMED bit -- we default to not setting it, although that
444 * would allow a much faster close, this is safer
446 #if 0
447 cgc.cmd[1] = 1 << 1;
448 #endif
449 return pkt_generic_packet(pd, &cgc);
453 * speed is given as the normal factor, e.g. 4 for 4x
455 static int pkt_set_speed(struct pktcdvd_device *pd, unsigned write_speed, unsigned read_speed)
457 struct packet_command cgc;
458 struct request_sense sense;
459 int ret;
461 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
462 cgc.sense = &sense;
463 cgc.cmd[0] = GPCMD_SET_SPEED;
464 cgc.cmd[2] = (read_speed >> 8) & 0xff;
465 cgc.cmd[3] = read_speed & 0xff;
466 cgc.cmd[4] = (write_speed >> 8) & 0xff;
467 cgc.cmd[5] = write_speed & 0xff;
469 if ((ret = pkt_generic_packet(pd, &cgc)))
470 pkt_dump_sense(&cgc);
472 return ret;
476 * Queue a bio for processing by the low-level CD device. Must be called
477 * from process context.
479 static void pkt_queue_bio(struct pktcdvd_device *pd, struct bio *bio)
481 spin_lock(&pd->iosched.lock);
482 if (bio_data_dir(bio) == READ) {
483 pkt_add_list_last(bio, &pd->iosched.read_queue,
484 &pd->iosched.read_queue_tail);
485 } else {
486 pkt_add_list_last(bio, &pd->iosched.write_queue,
487 &pd->iosched.write_queue_tail);
489 spin_unlock(&pd->iosched.lock);
491 atomic_set(&pd->iosched.attention, 1);
492 wake_up(&pd->wqueue);
496 * Process the queued read/write requests. This function handles special
497 * requirements for CDRW drives:
498 * - A cache flush command must be inserted before a read request if the
499 * previous request was a write.
500 * - Switching between reading and writing is slow, so don't do it more often
501 * than necessary.
502 * - Optimize for throughput at the expense of latency. This means that streaming
503 * writes will never be interrupted by a read, but if the drive has to seek
504 * before the next write, switch to reading instead if there are any pending
505 * read requests.
506 * - Set the read speed according to current usage pattern. When only reading
507 * from the device, it's best to use the highest possible read speed, but
508 * when switching often between reading and writing, it's better to have the
509 * same read and write speeds.
511 static void pkt_iosched_process_queue(struct pktcdvd_device *pd)
514 if (atomic_read(&pd->iosched.attention) == 0)
515 return;
516 atomic_set(&pd->iosched.attention, 0);
518 for (;;) {
519 struct bio *bio;
520 int reads_queued, writes_queued;
522 spin_lock(&pd->iosched.lock);
523 reads_queued = (pd->iosched.read_queue != NULL);
524 writes_queued = (pd->iosched.write_queue != NULL);
525 spin_unlock(&pd->iosched.lock);
527 if (!reads_queued && !writes_queued)
528 break;
530 if (pd->iosched.writing) {
531 int need_write_seek = 1;
532 spin_lock(&pd->iosched.lock);
533 bio = pd->iosched.write_queue;
534 spin_unlock(&pd->iosched.lock);
535 if (bio && (bio->bi_sector == pd->iosched.last_write))
536 need_write_seek = 0;
537 if (need_write_seek && reads_queued) {
538 if (atomic_read(&pd->cdrw.pending_bios) > 0) {
539 VPRINTK("pktcdvd: write, waiting\n");
540 break;
542 pkt_flush_cache(pd);
543 pd->iosched.writing = 0;
545 } else {
546 if (!reads_queued && writes_queued) {
547 if (atomic_read(&pd->cdrw.pending_bios) > 0) {
548 VPRINTK("pktcdvd: read, waiting\n");
549 break;
551 pd->iosched.writing = 1;
555 spin_lock(&pd->iosched.lock);
556 if (pd->iosched.writing) {
557 bio = pkt_get_list_first(&pd->iosched.write_queue,
558 &pd->iosched.write_queue_tail);
559 } else {
560 bio = pkt_get_list_first(&pd->iosched.read_queue,
561 &pd->iosched.read_queue_tail);
563 spin_unlock(&pd->iosched.lock);
565 if (!bio)
566 continue;
568 if (bio_data_dir(bio) == READ)
569 pd->iosched.successive_reads += bio->bi_size >> 10;
570 else {
571 pd->iosched.successive_reads = 0;
572 pd->iosched.last_write = bio->bi_sector + bio_sectors(bio);
574 if (pd->iosched.successive_reads >= HI_SPEED_SWITCH) {
575 if (pd->read_speed == pd->write_speed) {
576 pd->read_speed = MAX_SPEED;
577 pkt_set_speed(pd, pd->write_speed, pd->read_speed);
579 } else {
580 if (pd->read_speed != pd->write_speed) {
581 pd->read_speed = pd->write_speed;
582 pkt_set_speed(pd, pd->write_speed, pd->read_speed);
586 atomic_inc(&pd->cdrw.pending_bios);
587 generic_make_request(bio);
592 * Special care is needed if the underlying block device has a small
593 * max_phys_segments value.
595 static int pkt_set_segment_merging(struct pktcdvd_device *pd, request_queue_t *q)
597 if ((pd->settings.size << 9) / CD_FRAMESIZE <= q->max_phys_segments) {
599 * The cdrom device can handle one segment/frame
601 clear_bit(PACKET_MERGE_SEGS, &pd->flags);
602 return 0;
603 } else if ((pd->settings.size << 9) / PAGE_SIZE <= q->max_phys_segments) {
605 * We can handle this case at the expense of some extra memory
606 * copies during write operations
608 set_bit(PACKET_MERGE_SEGS, &pd->flags);
609 return 0;
610 } else {
611 printk("pktcdvd: cdrom max_phys_segments too small\n");
612 return -EIO;
617 * Copy CD_FRAMESIZE bytes from src_bio into a destination page
619 static void pkt_copy_bio_data(struct bio *src_bio, int seg, int offs, struct page *dst_page, int dst_offs)
621 unsigned int copy_size = CD_FRAMESIZE;
623 while (copy_size > 0) {
624 struct bio_vec *src_bvl = bio_iovec_idx(src_bio, seg);
625 void *vfrom = kmap_atomic(src_bvl->bv_page, KM_USER0) +
626 src_bvl->bv_offset + offs;
627 void *vto = page_address(dst_page) + dst_offs;
628 int len = min_t(int, copy_size, src_bvl->bv_len - offs);
630 BUG_ON(len < 0);
631 memcpy(vto, vfrom, len);
632 kunmap_atomic(vfrom, KM_USER0);
634 seg++;
635 offs = 0;
636 dst_offs += len;
637 copy_size -= len;
642 * Copy all data for this packet to pkt->pages[], so that
643 * a) The number of required segments for the write bio is minimized, which
644 * is necessary for some scsi controllers.
645 * b) The data can be used as cache to avoid read requests if we receive a
646 * new write request for the same zone.
648 static void pkt_make_local_copy(struct packet_data *pkt, struct page **pages, int *offsets)
650 int f, p, offs;
652 /* Copy all data to pkt->pages[] */
653 p = 0;
654 offs = 0;
655 for (f = 0; f < pkt->frames; f++) {
656 if (pages[f] != pkt->pages[p]) {
657 void *vfrom = kmap_atomic(pages[f], KM_USER0) + offsets[f];
658 void *vto = page_address(pkt->pages[p]) + offs;
659 memcpy(vto, vfrom, CD_FRAMESIZE);
660 kunmap_atomic(vfrom, KM_USER0);
661 pages[f] = pkt->pages[p];
662 offsets[f] = offs;
663 } else {
664 BUG_ON(offsets[f] != offs);
666 offs += CD_FRAMESIZE;
667 if (offs >= PAGE_SIZE) {
668 offs = 0;
669 p++;
674 static int pkt_end_io_read(struct bio *bio, unsigned int bytes_done, int err)
676 struct packet_data *pkt = bio->bi_private;
677 struct pktcdvd_device *pd = pkt->pd;
678 BUG_ON(!pd);
680 if (bio->bi_size)
681 return 1;
683 VPRINTK("pkt_end_io_read: bio=%p sec0=%llx sec=%llx err=%d\n", bio,
684 (unsigned long long)pkt->sector, (unsigned long long)bio->bi_sector, err);
686 if (err)
687 atomic_inc(&pkt->io_errors);
688 if (atomic_dec_and_test(&pkt->io_wait)) {
689 atomic_inc(&pkt->run_sm);
690 wake_up(&pd->wqueue);
692 pkt_bio_finished(pd);
694 return 0;
697 static int pkt_end_io_packet_write(struct bio *bio, unsigned int bytes_done, int err)
699 struct packet_data *pkt = bio->bi_private;
700 struct pktcdvd_device *pd = pkt->pd;
701 BUG_ON(!pd);
703 if (bio->bi_size)
704 return 1;
706 VPRINTK("pkt_end_io_packet_write: id=%d, err=%d\n", pkt->id, err);
708 pd->stats.pkt_ended++;
710 pkt_bio_finished(pd);
711 atomic_dec(&pkt->io_wait);
712 atomic_inc(&pkt->run_sm);
713 wake_up(&pd->wqueue);
714 return 0;
718 * Schedule reads for the holes in a packet
720 static void pkt_gather_data(struct pktcdvd_device *pd, struct packet_data *pkt)
722 int frames_read = 0;
723 struct bio *bio;
724 int f;
725 char written[PACKET_MAX_SIZE];
727 BUG_ON(!pkt->orig_bios);
729 atomic_set(&pkt->io_wait, 0);
730 atomic_set(&pkt->io_errors, 0);
733 * Figure out which frames we need to read before we can write.
735 memset(written, 0, sizeof(written));
736 spin_lock(&pkt->lock);
737 for (bio = pkt->orig_bios; bio; bio = bio->bi_next) {
738 int first_frame = (bio->bi_sector - pkt->sector) / (CD_FRAMESIZE >> 9);
739 int num_frames = bio->bi_size / CD_FRAMESIZE;
740 pd->stats.secs_w += num_frames * (CD_FRAMESIZE >> 9);
741 BUG_ON(first_frame < 0);
742 BUG_ON(first_frame + num_frames > pkt->frames);
743 for (f = first_frame; f < first_frame + num_frames; f++)
744 written[f] = 1;
746 spin_unlock(&pkt->lock);
748 if (pkt->cache_valid) {
749 VPRINTK("pkt_gather_data: zone %llx cached\n",
750 (unsigned long long)pkt->sector);
751 goto out_account;
755 * Schedule reads for missing parts of the packet.
757 for (f = 0; f < pkt->frames; f++) {
758 int p, offset;
759 if (written[f])
760 continue;
761 bio = pkt->r_bios[f];
762 bio_init(bio);
763 bio->bi_max_vecs = 1;
764 bio->bi_sector = pkt->sector + f * (CD_FRAMESIZE >> 9);
765 bio->bi_bdev = pd->bdev;
766 bio->bi_end_io = pkt_end_io_read;
767 bio->bi_private = pkt;
769 p = (f * CD_FRAMESIZE) / PAGE_SIZE;
770 offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
771 VPRINTK("pkt_gather_data: Adding frame %d, page:%p offs:%d\n",
772 f, pkt->pages[p], offset);
773 if (!bio_add_page(bio, pkt->pages[p], CD_FRAMESIZE, offset))
774 BUG();
776 atomic_inc(&pkt->io_wait);
777 bio->bi_rw = READ;
778 pkt_queue_bio(pd, bio);
779 frames_read++;
782 out_account:
783 VPRINTK("pkt_gather_data: need %d frames for zone %llx\n",
784 frames_read, (unsigned long long)pkt->sector);
785 pd->stats.pkt_started++;
786 pd->stats.secs_rg += frames_read * (CD_FRAMESIZE >> 9);
790 * Find a packet matching zone, or the least recently used packet if
791 * there is no match.
793 static struct packet_data *pkt_get_packet_data(struct pktcdvd_device *pd, int zone)
795 struct packet_data *pkt;
797 list_for_each_entry(pkt, &pd->cdrw.pkt_free_list, list) {
798 if (pkt->sector == zone || pkt->list.next == &pd->cdrw.pkt_free_list) {
799 list_del_init(&pkt->list);
800 if (pkt->sector != zone)
801 pkt->cache_valid = 0;
802 return pkt;
805 BUG();
806 return NULL;
809 static void pkt_put_packet_data(struct pktcdvd_device *pd, struct packet_data *pkt)
811 if (pkt->cache_valid) {
812 list_add(&pkt->list, &pd->cdrw.pkt_free_list);
813 } else {
814 list_add_tail(&pkt->list, &pd->cdrw.pkt_free_list);
819 * recover a failed write, query for relocation if possible
821 * returns 1 if recovery is possible, or 0 if not
824 static int pkt_start_recovery(struct packet_data *pkt)
827 * FIXME. We need help from the file system to implement
828 * recovery handling.
830 return 0;
831 #if 0
832 struct request *rq = pkt->rq;
833 struct pktcdvd_device *pd = rq->rq_disk->private_data;
834 struct block_device *pkt_bdev;
835 struct super_block *sb = NULL;
836 unsigned long old_block, new_block;
837 sector_t new_sector;
839 pkt_bdev = bdget(kdev_t_to_nr(pd->pkt_dev));
840 if (pkt_bdev) {
841 sb = get_super(pkt_bdev);
842 bdput(pkt_bdev);
845 if (!sb)
846 return 0;
848 if (!sb->s_op || !sb->s_op->relocate_blocks)
849 goto out;
851 old_block = pkt->sector / (CD_FRAMESIZE >> 9);
852 if (sb->s_op->relocate_blocks(sb, old_block, &new_block))
853 goto out;
855 new_sector = new_block * (CD_FRAMESIZE >> 9);
856 pkt->sector = new_sector;
858 pkt->bio->bi_sector = new_sector;
859 pkt->bio->bi_next = NULL;
860 pkt->bio->bi_flags = 1 << BIO_UPTODATE;
861 pkt->bio->bi_idx = 0;
863 BUG_ON(pkt->bio->bi_rw != (1 << BIO_RW));
864 BUG_ON(pkt->bio->bi_vcnt != pkt->frames);
865 BUG_ON(pkt->bio->bi_size != pkt->frames * CD_FRAMESIZE);
866 BUG_ON(pkt->bio->bi_end_io != pkt_end_io_packet_write);
867 BUG_ON(pkt->bio->bi_private != pkt);
869 drop_super(sb);
870 return 1;
872 out:
873 drop_super(sb);
874 return 0;
875 #endif
878 static inline void pkt_set_state(struct packet_data *pkt, enum packet_data_state state)
880 #if PACKET_DEBUG > 1
881 static const char *state_name[] = {
882 "IDLE", "WAITING", "READ_WAIT", "WRITE_WAIT", "RECOVERY", "FINISHED"
884 enum packet_data_state old_state = pkt->state;
885 VPRINTK("pkt %2d : s=%6llx %s -> %s\n", pkt->id, (unsigned long long)pkt->sector,
886 state_name[old_state], state_name[state]);
887 #endif
888 pkt->state = state;
892 * Scan the work queue to see if we can start a new packet.
893 * returns non-zero if any work was done.
895 static int pkt_handle_queue(struct pktcdvd_device *pd)
897 struct packet_data *pkt, *p;
898 struct bio *bio = NULL;
899 sector_t zone = 0; /* Suppress gcc warning */
900 struct pkt_rb_node *node, *first_node;
901 struct rb_node *n;
903 VPRINTK("handle_queue\n");
905 atomic_set(&pd->scan_queue, 0);
907 if (list_empty(&pd->cdrw.pkt_free_list)) {
908 VPRINTK("handle_queue: no pkt\n");
909 return 0;
913 * Try to find a zone we are not already working on.
915 spin_lock(&pd->lock);
916 first_node = pkt_rbtree_find(pd, pd->current_sector);
917 if (!first_node) {
918 n = rb_first(&pd->bio_queue);
919 if (n)
920 first_node = rb_entry(n, struct pkt_rb_node, rb_node);
922 node = first_node;
923 while (node) {
924 bio = node->bio;
925 zone = ZONE(bio->bi_sector, pd);
926 list_for_each_entry(p, &pd->cdrw.pkt_active_list, list) {
927 if (p->sector == zone) {
928 bio = NULL;
929 goto try_next_bio;
932 break;
933 try_next_bio:
934 node = pkt_rbtree_next(node);
935 if (!node) {
936 n = rb_first(&pd->bio_queue);
937 if (n)
938 node = rb_entry(n, struct pkt_rb_node, rb_node);
940 if (node == first_node)
941 node = NULL;
943 spin_unlock(&pd->lock);
944 if (!bio) {
945 VPRINTK("handle_queue: no bio\n");
946 return 0;
949 pkt = pkt_get_packet_data(pd, zone);
951 pd->current_sector = zone + pd->settings.size;
952 pkt->sector = zone;
953 BUG_ON(pkt->frames != pd->settings.size >> 2);
954 pkt->write_size = 0;
957 * Scan work queue for bios in the same zone and link them
958 * to this packet.
960 spin_lock(&pd->lock);
961 VPRINTK("pkt_handle_queue: looking for zone %llx\n", (unsigned long long)zone);
962 while ((node = pkt_rbtree_find(pd, zone)) != NULL) {
963 bio = node->bio;
964 VPRINTK("pkt_handle_queue: found zone=%llx\n",
965 (unsigned long long)ZONE(bio->bi_sector, pd));
966 if (ZONE(bio->bi_sector, pd) != zone)
967 break;
968 pkt_rbtree_erase(pd, node);
969 spin_lock(&pkt->lock);
970 pkt_add_list_last(bio, &pkt->orig_bios, &pkt->orig_bios_tail);
971 pkt->write_size += bio->bi_size / CD_FRAMESIZE;
972 spin_unlock(&pkt->lock);
974 spin_unlock(&pd->lock);
976 pkt->sleep_time = max(PACKET_WAIT_TIME, 1);
977 pkt_set_state(pkt, PACKET_WAITING_STATE);
978 atomic_set(&pkt->run_sm, 1);
980 spin_lock(&pd->cdrw.active_list_lock);
981 list_add(&pkt->list, &pd->cdrw.pkt_active_list);
982 spin_unlock(&pd->cdrw.active_list_lock);
984 return 1;
988 * Assemble a bio to write one packet and queue the bio for processing
989 * by the underlying block device.
991 static void pkt_start_write(struct pktcdvd_device *pd, struct packet_data *pkt)
993 struct bio *bio;
994 struct page *pages[PACKET_MAX_SIZE];
995 int offsets[PACKET_MAX_SIZE];
996 int f;
997 int frames_write;
999 for (f = 0; f < pkt->frames; f++) {
1000 pages[f] = pkt->pages[(f * CD_FRAMESIZE) / PAGE_SIZE];
1001 offsets[f] = (f * CD_FRAMESIZE) % PAGE_SIZE;
1005 * Fill-in pages[] and offsets[] with data from orig_bios.
1007 frames_write = 0;
1008 spin_lock(&pkt->lock);
1009 for (bio = pkt->orig_bios; bio; bio = bio->bi_next) {
1010 int segment = bio->bi_idx;
1011 int src_offs = 0;
1012 int first_frame = (bio->bi_sector - pkt->sector) / (CD_FRAMESIZE >> 9);
1013 int num_frames = bio->bi_size / CD_FRAMESIZE;
1014 BUG_ON(first_frame < 0);
1015 BUG_ON(first_frame + num_frames > pkt->frames);
1016 for (f = first_frame; f < first_frame + num_frames; f++) {
1017 struct bio_vec *src_bvl = bio_iovec_idx(bio, segment);
1019 while (src_offs >= src_bvl->bv_len) {
1020 src_offs -= src_bvl->bv_len;
1021 segment++;
1022 BUG_ON(segment >= bio->bi_vcnt);
1023 src_bvl = bio_iovec_idx(bio, segment);
1026 if (src_bvl->bv_len - src_offs >= CD_FRAMESIZE) {
1027 pages[f] = src_bvl->bv_page;
1028 offsets[f] = src_bvl->bv_offset + src_offs;
1029 } else {
1030 pkt_copy_bio_data(bio, segment, src_offs,
1031 pages[f], offsets[f]);
1033 src_offs += CD_FRAMESIZE;
1034 frames_write++;
1037 pkt_set_state(pkt, PACKET_WRITE_WAIT_STATE);
1038 spin_unlock(&pkt->lock);
1040 VPRINTK("pkt_start_write: Writing %d frames for zone %llx\n",
1041 frames_write, (unsigned long long)pkt->sector);
1042 BUG_ON(frames_write != pkt->write_size);
1044 if (test_bit(PACKET_MERGE_SEGS, &pd->flags) || (pkt->write_size < pkt->frames)) {
1045 pkt_make_local_copy(pkt, pages, offsets);
1046 pkt->cache_valid = 1;
1047 } else {
1048 pkt->cache_valid = 0;
1051 /* Start the write request */
1052 bio_init(pkt->w_bio);
1053 pkt->w_bio->bi_max_vecs = PACKET_MAX_SIZE;
1054 pkt->w_bio->bi_sector = pkt->sector;
1055 pkt->w_bio->bi_bdev = pd->bdev;
1056 pkt->w_bio->bi_end_io = pkt_end_io_packet_write;
1057 pkt->w_bio->bi_private = pkt;
1058 for (f = 0; f < pkt->frames; f++) {
1059 if ((f + 1 < pkt->frames) && (pages[f + 1] == pages[f]) &&
1060 (offsets[f + 1] = offsets[f] + CD_FRAMESIZE)) {
1061 if (!bio_add_page(pkt->w_bio, pages[f], CD_FRAMESIZE * 2, offsets[f]))
1062 BUG();
1063 f++;
1064 } else {
1065 if (!bio_add_page(pkt->w_bio, pages[f], CD_FRAMESIZE, offsets[f]))
1066 BUG();
1069 VPRINTK("pktcdvd: vcnt=%d\n", pkt->w_bio->bi_vcnt);
1071 atomic_set(&pkt->io_wait, 1);
1072 pkt->w_bio->bi_rw = WRITE;
1073 pkt_queue_bio(pd, pkt->w_bio);
1076 static void pkt_finish_packet(struct packet_data *pkt, int uptodate)
1078 struct bio *bio, *next;
1080 if (!uptodate)
1081 pkt->cache_valid = 0;
1083 /* Finish all bios corresponding to this packet */
1084 bio = pkt->orig_bios;
1085 while (bio) {
1086 next = bio->bi_next;
1087 bio->bi_next = NULL;
1088 bio_endio(bio, bio->bi_size, uptodate ? 0 : -EIO);
1089 bio = next;
1091 pkt->orig_bios = pkt->orig_bios_tail = NULL;
1094 static void pkt_run_state_machine(struct pktcdvd_device *pd, struct packet_data *pkt)
1096 int uptodate;
1098 VPRINTK("run_state_machine: pkt %d\n", pkt->id);
1100 for (;;) {
1101 switch (pkt->state) {
1102 case PACKET_WAITING_STATE:
1103 if ((pkt->write_size < pkt->frames) && (pkt->sleep_time > 0))
1104 return;
1106 pkt->sleep_time = 0;
1107 pkt_gather_data(pd, pkt);
1108 pkt_set_state(pkt, PACKET_READ_WAIT_STATE);
1109 break;
1111 case PACKET_READ_WAIT_STATE:
1112 if (atomic_read(&pkt->io_wait) > 0)
1113 return;
1115 if (atomic_read(&pkt->io_errors) > 0) {
1116 pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1117 } else {
1118 pkt_start_write(pd, pkt);
1120 break;
1122 case PACKET_WRITE_WAIT_STATE:
1123 if (atomic_read(&pkt->io_wait) > 0)
1124 return;
1126 if (test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags)) {
1127 pkt_set_state(pkt, PACKET_FINISHED_STATE);
1128 } else {
1129 pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1131 break;
1133 case PACKET_RECOVERY_STATE:
1134 if (pkt_start_recovery(pkt)) {
1135 pkt_start_write(pd, pkt);
1136 } else {
1137 VPRINTK("No recovery possible\n");
1138 pkt_set_state(pkt, PACKET_FINISHED_STATE);
1140 break;
1142 case PACKET_FINISHED_STATE:
1143 uptodate = test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags);
1144 pkt_finish_packet(pkt, uptodate);
1145 return;
1147 default:
1148 BUG();
1149 break;
1154 static void pkt_handle_packets(struct pktcdvd_device *pd)
1156 struct packet_data *pkt, *next;
1158 VPRINTK("pkt_handle_packets\n");
1161 * Run state machine for active packets
1163 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1164 if (atomic_read(&pkt->run_sm) > 0) {
1165 atomic_set(&pkt->run_sm, 0);
1166 pkt_run_state_machine(pd, pkt);
1171 * Move no longer active packets to the free list
1173 spin_lock(&pd->cdrw.active_list_lock);
1174 list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_active_list, list) {
1175 if (pkt->state == PACKET_FINISHED_STATE) {
1176 list_del(&pkt->list);
1177 pkt_put_packet_data(pd, pkt);
1178 pkt_set_state(pkt, PACKET_IDLE_STATE);
1179 atomic_set(&pd->scan_queue, 1);
1182 spin_unlock(&pd->cdrw.active_list_lock);
1185 static void pkt_count_states(struct pktcdvd_device *pd, int *states)
1187 struct packet_data *pkt;
1188 int i;
1190 for (i = 0; i < PACKET_NUM_STATES; i++)
1191 states[i] = 0;
1193 spin_lock(&pd->cdrw.active_list_lock);
1194 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1195 states[pkt->state]++;
1197 spin_unlock(&pd->cdrw.active_list_lock);
1201 * kcdrwd is woken up when writes have been queued for one of our
1202 * registered devices
1204 static int kcdrwd(void *foobar)
1206 struct pktcdvd_device *pd = foobar;
1207 struct packet_data *pkt;
1208 long min_sleep_time, residue;
1210 set_user_nice(current, -20);
1212 for (;;) {
1213 DECLARE_WAITQUEUE(wait, current);
1216 * Wait until there is something to do
1218 add_wait_queue(&pd->wqueue, &wait);
1219 for (;;) {
1220 set_current_state(TASK_INTERRUPTIBLE);
1222 /* Check if we need to run pkt_handle_queue */
1223 if (atomic_read(&pd->scan_queue) > 0)
1224 goto work_to_do;
1226 /* Check if we need to run the state machine for some packet */
1227 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1228 if (atomic_read(&pkt->run_sm) > 0)
1229 goto work_to_do;
1232 /* Check if we need to process the iosched queues */
1233 if (atomic_read(&pd->iosched.attention) != 0)
1234 goto work_to_do;
1236 /* Otherwise, go to sleep */
1237 if (PACKET_DEBUG > 1) {
1238 int states[PACKET_NUM_STATES];
1239 pkt_count_states(pd, states);
1240 VPRINTK("kcdrwd: i:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
1241 states[0], states[1], states[2], states[3],
1242 states[4], states[5]);
1245 min_sleep_time = MAX_SCHEDULE_TIMEOUT;
1246 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1247 if (pkt->sleep_time && pkt->sleep_time < min_sleep_time)
1248 min_sleep_time = pkt->sleep_time;
1251 generic_unplug_device(bdev_get_queue(pd->bdev));
1253 VPRINTK("kcdrwd: sleeping\n");
1254 residue = schedule_timeout(min_sleep_time);
1255 VPRINTK("kcdrwd: wake up\n");
1257 /* make swsusp happy with our thread */
1258 try_to_freeze();
1260 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1261 if (!pkt->sleep_time)
1262 continue;
1263 pkt->sleep_time -= min_sleep_time - residue;
1264 if (pkt->sleep_time <= 0) {
1265 pkt->sleep_time = 0;
1266 atomic_inc(&pkt->run_sm);
1270 if (signal_pending(current)) {
1271 flush_signals(current);
1273 if (kthread_should_stop())
1274 break;
1276 work_to_do:
1277 set_current_state(TASK_RUNNING);
1278 remove_wait_queue(&pd->wqueue, &wait);
1280 if (kthread_should_stop())
1281 break;
1284 * if pkt_handle_queue returns true, we can queue
1285 * another request.
1287 while (pkt_handle_queue(pd))
1291 * Handle packet state machine
1293 pkt_handle_packets(pd);
1296 * Handle iosched queues
1298 pkt_iosched_process_queue(pd);
1301 return 0;
1304 static void pkt_print_settings(struct pktcdvd_device *pd)
1306 printk("pktcdvd: %s packets, ", pd->settings.fp ? "Fixed" : "Variable");
1307 printk("%u blocks, ", pd->settings.size >> 2);
1308 printk("Mode-%c disc\n", pd->settings.block_mode == 8 ? '1' : '2');
1311 static int pkt_mode_sense(struct pktcdvd_device *pd, struct packet_command *cgc, int page_code, int page_control)
1313 memset(cgc->cmd, 0, sizeof(cgc->cmd));
1315 cgc->cmd[0] = GPCMD_MODE_SENSE_10;
1316 cgc->cmd[2] = page_code | (page_control << 6);
1317 cgc->cmd[7] = cgc->buflen >> 8;
1318 cgc->cmd[8] = cgc->buflen & 0xff;
1319 cgc->data_direction = CGC_DATA_READ;
1320 return pkt_generic_packet(pd, cgc);
1323 static int pkt_mode_select(struct pktcdvd_device *pd, struct packet_command *cgc)
1325 memset(cgc->cmd, 0, sizeof(cgc->cmd));
1326 memset(cgc->buffer, 0, 2);
1327 cgc->cmd[0] = GPCMD_MODE_SELECT_10;
1328 cgc->cmd[1] = 0x10; /* PF */
1329 cgc->cmd[7] = cgc->buflen >> 8;
1330 cgc->cmd[8] = cgc->buflen & 0xff;
1331 cgc->data_direction = CGC_DATA_WRITE;
1332 return pkt_generic_packet(pd, cgc);
1335 static int pkt_get_disc_info(struct pktcdvd_device *pd, disc_information *di)
1337 struct packet_command cgc;
1338 int ret;
1340 /* set up command and get the disc info */
1341 init_cdrom_command(&cgc, di, sizeof(*di), CGC_DATA_READ);
1342 cgc.cmd[0] = GPCMD_READ_DISC_INFO;
1343 cgc.cmd[8] = cgc.buflen = 2;
1344 cgc.quiet = 1;
1346 if ((ret = pkt_generic_packet(pd, &cgc)))
1347 return ret;
1349 /* not all drives have the same disc_info length, so requeue
1350 * packet with the length the drive tells us it can supply
1352 cgc.buflen = be16_to_cpu(di->disc_information_length) +
1353 sizeof(di->disc_information_length);
1355 if (cgc.buflen > sizeof(disc_information))
1356 cgc.buflen = sizeof(disc_information);
1358 cgc.cmd[8] = cgc.buflen;
1359 return pkt_generic_packet(pd, &cgc);
1362 static int pkt_get_track_info(struct pktcdvd_device *pd, __u16 track, __u8 type, track_information *ti)
1364 struct packet_command cgc;
1365 int ret;
1367 init_cdrom_command(&cgc, ti, 8, CGC_DATA_READ);
1368 cgc.cmd[0] = GPCMD_READ_TRACK_RZONE_INFO;
1369 cgc.cmd[1] = type & 3;
1370 cgc.cmd[4] = (track & 0xff00) >> 8;
1371 cgc.cmd[5] = track & 0xff;
1372 cgc.cmd[8] = 8;
1373 cgc.quiet = 1;
1375 if ((ret = pkt_generic_packet(pd, &cgc)))
1376 return ret;
1378 cgc.buflen = be16_to_cpu(ti->track_information_length) +
1379 sizeof(ti->track_information_length);
1381 if (cgc.buflen > sizeof(track_information))
1382 cgc.buflen = sizeof(track_information);
1384 cgc.cmd[8] = cgc.buflen;
1385 return pkt_generic_packet(pd, &cgc);
1388 static int pkt_get_last_written(struct pktcdvd_device *pd, long *last_written)
1390 disc_information di;
1391 track_information ti;
1392 __u32 last_track;
1393 int ret = -1;
1395 if ((ret = pkt_get_disc_info(pd, &di)))
1396 return ret;
1398 last_track = (di.last_track_msb << 8) | di.last_track_lsb;
1399 if ((ret = pkt_get_track_info(pd, last_track, 1, &ti)))
1400 return ret;
1402 /* if this track is blank, try the previous. */
1403 if (ti.blank) {
1404 last_track--;
1405 if ((ret = pkt_get_track_info(pd, last_track, 1, &ti)))
1406 return ret;
1409 /* if last recorded field is valid, return it. */
1410 if (ti.lra_v) {
1411 *last_written = be32_to_cpu(ti.last_rec_address);
1412 } else {
1413 /* make it up instead */
1414 *last_written = be32_to_cpu(ti.track_start) +
1415 be32_to_cpu(ti.track_size);
1416 if (ti.free_blocks)
1417 *last_written -= (be32_to_cpu(ti.free_blocks) + 7);
1419 return 0;
1423 * write mode select package based on pd->settings
1425 static int pkt_set_write_settings(struct pktcdvd_device *pd)
1427 struct packet_command cgc;
1428 struct request_sense sense;
1429 write_param_page *wp;
1430 char buffer[128];
1431 int ret, size;
1433 /* doesn't apply to DVD+RW or DVD-RAM */
1434 if ((pd->mmc3_profile == 0x1a) || (pd->mmc3_profile == 0x12))
1435 return 0;
1437 memset(buffer, 0, sizeof(buffer));
1438 init_cdrom_command(&cgc, buffer, sizeof(*wp), CGC_DATA_READ);
1439 cgc.sense = &sense;
1440 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) {
1441 pkt_dump_sense(&cgc);
1442 return ret;
1445 size = 2 + ((buffer[0] << 8) | (buffer[1] & 0xff));
1446 pd->mode_offset = (buffer[6] << 8) | (buffer[7] & 0xff);
1447 if (size > sizeof(buffer))
1448 size = sizeof(buffer);
1451 * now get it all
1453 init_cdrom_command(&cgc, buffer, size, CGC_DATA_READ);
1454 cgc.sense = &sense;
1455 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) {
1456 pkt_dump_sense(&cgc);
1457 return ret;
1461 * write page is offset header + block descriptor length
1463 wp = (write_param_page *) &buffer[sizeof(struct mode_page_header) + pd->mode_offset];
1465 wp->fp = pd->settings.fp;
1466 wp->track_mode = pd->settings.track_mode;
1467 wp->write_type = pd->settings.write_type;
1468 wp->data_block_type = pd->settings.block_mode;
1470 wp->multi_session = 0;
1472 #ifdef PACKET_USE_LS
1473 wp->link_size = 7;
1474 wp->ls_v = 1;
1475 #endif
1477 if (wp->data_block_type == PACKET_BLOCK_MODE1) {
1478 wp->session_format = 0;
1479 wp->subhdr2 = 0x20;
1480 } else if (wp->data_block_type == PACKET_BLOCK_MODE2) {
1481 wp->session_format = 0x20;
1482 wp->subhdr2 = 8;
1483 #if 0
1484 wp->mcn[0] = 0x80;
1485 memcpy(&wp->mcn[1], PACKET_MCN, sizeof(wp->mcn) - 1);
1486 #endif
1487 } else {
1489 * paranoia
1491 printk("pktcdvd: write mode wrong %d\n", wp->data_block_type);
1492 return 1;
1494 wp->packet_size = cpu_to_be32(pd->settings.size >> 2);
1496 cgc.buflen = cgc.cmd[8] = size;
1497 if ((ret = pkt_mode_select(pd, &cgc))) {
1498 pkt_dump_sense(&cgc);
1499 return ret;
1502 pkt_print_settings(pd);
1503 return 0;
1507 * 0 -- we can write to this track, 1 -- we can't
1509 static int pkt_good_track(track_information *ti)
1512 * only good for CD-RW at the moment, not DVD-RW
1516 * FIXME: only for FP
1518 if (ti->fp == 0)
1519 return 0;
1522 * "good" settings as per Mt Fuji.
1524 if (ti->rt == 0 && ti->blank == 0 && ti->packet == 1)
1525 return 0;
1527 if (ti->rt == 0 && ti->blank == 1 && ti->packet == 1)
1528 return 0;
1530 if (ti->rt == 1 && ti->blank == 0 && ti->packet == 1)
1531 return 0;
1533 printk("pktcdvd: bad state %d-%d-%d\n", ti->rt, ti->blank, ti->packet);
1534 return 1;
1538 * 0 -- we can write to this disc, 1 -- we can't
1540 static int pkt_good_disc(struct pktcdvd_device *pd, disc_information *di)
1542 switch (pd->mmc3_profile) {
1543 case 0x0a: /* CD-RW */
1544 case 0xffff: /* MMC3 not supported */
1545 break;
1546 case 0x1a: /* DVD+RW */
1547 case 0x13: /* DVD-RW */
1548 case 0x12: /* DVD-RAM */
1549 return 0;
1550 default:
1551 VPRINTK("pktcdvd: Wrong disc profile (%x)\n", pd->mmc3_profile);
1552 return 1;
1556 * for disc type 0xff we should probably reserve a new track.
1557 * but i'm not sure, should we leave this to user apps? probably.
1559 if (di->disc_type == 0xff) {
1560 printk("pktcdvd: Unknown disc. No track?\n");
1561 return 1;
1564 if (di->disc_type != 0x20 && di->disc_type != 0) {
1565 printk("pktcdvd: Wrong disc type (%x)\n", di->disc_type);
1566 return 1;
1569 if (di->erasable == 0) {
1570 printk("pktcdvd: Disc not erasable\n");
1571 return 1;
1574 if (di->border_status == PACKET_SESSION_RESERVED) {
1575 printk("pktcdvd: Can't write to last track (reserved)\n");
1576 return 1;
1579 return 0;
1582 static int pkt_probe_settings(struct pktcdvd_device *pd)
1584 struct packet_command cgc;
1585 unsigned char buf[12];
1586 disc_information di;
1587 track_information ti;
1588 int ret, track;
1590 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
1591 cgc.cmd[0] = GPCMD_GET_CONFIGURATION;
1592 cgc.cmd[8] = 8;
1593 ret = pkt_generic_packet(pd, &cgc);
1594 pd->mmc3_profile = ret ? 0xffff : buf[6] << 8 | buf[7];
1596 memset(&di, 0, sizeof(disc_information));
1597 memset(&ti, 0, sizeof(track_information));
1599 if ((ret = pkt_get_disc_info(pd, &di))) {
1600 printk("failed get_disc\n");
1601 return ret;
1604 if (pkt_good_disc(pd, &di))
1605 return -ENXIO;
1607 switch (pd->mmc3_profile) {
1608 case 0x1a: /* DVD+RW */
1609 printk("pktcdvd: inserted media is DVD+RW\n");
1610 break;
1611 case 0x13: /* DVD-RW */
1612 printk("pktcdvd: inserted media is DVD-RW\n");
1613 break;
1614 case 0x12: /* DVD-RAM */
1615 printk("pktcdvd: inserted media is DVD-RAM\n");
1616 break;
1617 default:
1618 printk("pktcdvd: inserted media is CD-R%s\n", di.erasable ? "W" : "");
1619 break;
1621 pd->type = di.erasable ? PACKET_CDRW : PACKET_CDR;
1623 track = 1; /* (di.last_track_msb << 8) | di.last_track_lsb; */
1624 if ((ret = pkt_get_track_info(pd, track, 1, &ti))) {
1625 printk("pktcdvd: failed get_track\n");
1626 return ret;
1629 if (pkt_good_track(&ti)) {
1630 printk("pktcdvd: can't write to this track\n");
1631 return -ENXIO;
1635 * we keep packet size in 512 byte units, makes it easier to
1636 * deal with request calculations.
1638 pd->settings.size = be32_to_cpu(ti.fixed_packet_size) << 2;
1639 if (pd->settings.size == 0) {
1640 printk("pktcdvd: detected zero packet size!\n");
1641 return -ENXIO;
1643 if (pd->settings.size > PACKET_MAX_SECTORS) {
1644 printk("pktcdvd: packet size is too big\n");
1645 return -ENXIO;
1647 pd->settings.fp = ti.fp;
1648 pd->offset = (be32_to_cpu(ti.track_start) << 2) & (pd->settings.size - 1);
1650 if (ti.nwa_v) {
1651 pd->nwa = be32_to_cpu(ti.next_writable);
1652 set_bit(PACKET_NWA_VALID, &pd->flags);
1656 * in theory we could use lra on -RW media as well and just zero
1657 * blocks that haven't been written yet, but in practice that
1658 * is just a no-go. we'll use that for -R, naturally.
1660 if (ti.lra_v) {
1661 pd->lra = be32_to_cpu(ti.last_rec_address);
1662 set_bit(PACKET_LRA_VALID, &pd->flags);
1663 } else {
1664 pd->lra = 0xffffffff;
1665 set_bit(PACKET_LRA_VALID, &pd->flags);
1669 * fine for now
1671 pd->settings.link_loss = 7;
1672 pd->settings.write_type = 0; /* packet */
1673 pd->settings.track_mode = ti.track_mode;
1676 * mode1 or mode2 disc
1678 switch (ti.data_mode) {
1679 case PACKET_MODE1:
1680 pd->settings.block_mode = PACKET_BLOCK_MODE1;
1681 break;
1682 case PACKET_MODE2:
1683 pd->settings.block_mode = PACKET_BLOCK_MODE2;
1684 break;
1685 default:
1686 printk("pktcdvd: unknown data mode\n");
1687 return 1;
1689 return 0;
1693 * enable/disable write caching on drive
1695 static int pkt_write_caching(struct pktcdvd_device *pd, int set)
1697 struct packet_command cgc;
1698 struct request_sense sense;
1699 unsigned char buf[64];
1700 int ret;
1702 memset(buf, 0, sizeof(buf));
1703 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
1704 cgc.sense = &sense;
1705 cgc.buflen = pd->mode_offset + 12;
1708 * caching mode page might not be there, so quiet this command
1710 cgc.quiet = 1;
1712 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WCACHING_PAGE, 0)))
1713 return ret;
1715 buf[pd->mode_offset + 10] |= (!!set << 2);
1717 cgc.buflen = cgc.cmd[8] = 2 + ((buf[0] << 8) | (buf[1] & 0xff));
1718 ret = pkt_mode_select(pd, &cgc);
1719 if (ret) {
1720 printk("pktcdvd: write caching control failed\n");
1721 pkt_dump_sense(&cgc);
1722 } else if (!ret && set)
1723 printk("pktcdvd: enabled write caching on %s\n", pd->name);
1724 return ret;
1727 static int pkt_lock_door(struct pktcdvd_device *pd, int lockflag)
1729 struct packet_command cgc;
1731 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
1732 cgc.cmd[0] = GPCMD_PREVENT_ALLOW_MEDIUM_REMOVAL;
1733 cgc.cmd[4] = lockflag ? 1 : 0;
1734 return pkt_generic_packet(pd, &cgc);
1738 * Returns drive maximum write speed
1740 static int pkt_get_max_speed(struct pktcdvd_device *pd, unsigned *write_speed)
1742 struct packet_command cgc;
1743 struct request_sense sense;
1744 unsigned char buf[256+18];
1745 unsigned char *cap_buf;
1746 int ret, offset;
1748 memset(buf, 0, sizeof(buf));
1749 cap_buf = &buf[sizeof(struct mode_page_header) + pd->mode_offset];
1750 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_UNKNOWN);
1751 cgc.sense = &sense;
1753 ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
1754 if (ret) {
1755 cgc.buflen = pd->mode_offset + cap_buf[1] + 2 +
1756 sizeof(struct mode_page_header);
1757 ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
1758 if (ret) {
1759 pkt_dump_sense(&cgc);
1760 return ret;
1764 offset = 20; /* Obsoleted field, used by older drives */
1765 if (cap_buf[1] >= 28)
1766 offset = 28; /* Current write speed selected */
1767 if (cap_buf[1] >= 30) {
1768 /* If the drive reports at least one "Logical Unit Write
1769 * Speed Performance Descriptor Block", use the information
1770 * in the first block. (contains the highest speed)
1772 int num_spdb = (cap_buf[30] << 8) + cap_buf[31];
1773 if (num_spdb > 0)
1774 offset = 34;
1777 *write_speed = (cap_buf[offset] << 8) | cap_buf[offset + 1];
1778 return 0;
1781 /* These tables from cdrecord - I don't have orange book */
1782 /* standard speed CD-RW (1-4x) */
1783 static char clv_to_speed[16] = {
1784 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
1785 0, 2, 4, 6, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
1787 /* high speed CD-RW (-10x) */
1788 static char hs_clv_to_speed[16] = {
1789 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
1790 0, 2, 4, 6, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
1792 /* ultra high speed CD-RW */
1793 static char us_clv_to_speed[16] = {
1794 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
1795 0, 2, 4, 8, 0, 0,16, 0,24,32,40,48, 0, 0, 0, 0
1799 * reads the maximum media speed from ATIP
1801 static int pkt_media_speed(struct pktcdvd_device *pd, unsigned *speed)
1803 struct packet_command cgc;
1804 struct request_sense sense;
1805 unsigned char buf[64];
1806 unsigned int size, st, sp;
1807 int ret;
1809 init_cdrom_command(&cgc, buf, 2, CGC_DATA_READ);
1810 cgc.sense = &sense;
1811 cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
1812 cgc.cmd[1] = 2;
1813 cgc.cmd[2] = 4; /* READ ATIP */
1814 cgc.cmd[8] = 2;
1815 ret = pkt_generic_packet(pd, &cgc);
1816 if (ret) {
1817 pkt_dump_sense(&cgc);
1818 return ret;
1820 size = ((unsigned int) buf[0]<<8) + buf[1] + 2;
1821 if (size > sizeof(buf))
1822 size = sizeof(buf);
1824 init_cdrom_command(&cgc, buf, size, CGC_DATA_READ);
1825 cgc.sense = &sense;
1826 cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
1827 cgc.cmd[1] = 2;
1828 cgc.cmd[2] = 4;
1829 cgc.cmd[8] = size;
1830 ret = pkt_generic_packet(pd, &cgc);
1831 if (ret) {
1832 pkt_dump_sense(&cgc);
1833 return ret;
1836 if (!buf[6] & 0x40) {
1837 printk("pktcdvd: Disc type is not CD-RW\n");
1838 return 1;
1840 if (!buf[6] & 0x4) {
1841 printk("pktcdvd: A1 values on media are not valid, maybe not CDRW?\n");
1842 return 1;
1845 st = (buf[6] >> 3) & 0x7; /* disc sub-type */
1847 sp = buf[16] & 0xf; /* max speed from ATIP A1 field */
1849 /* Info from cdrecord */
1850 switch (st) {
1851 case 0: /* standard speed */
1852 *speed = clv_to_speed[sp];
1853 break;
1854 case 1: /* high speed */
1855 *speed = hs_clv_to_speed[sp];
1856 break;
1857 case 2: /* ultra high speed */
1858 *speed = us_clv_to_speed[sp];
1859 break;
1860 default:
1861 printk("pktcdvd: Unknown disc sub-type %d\n",st);
1862 return 1;
1864 if (*speed) {
1865 printk("pktcdvd: Max. media speed: %d\n",*speed);
1866 return 0;
1867 } else {
1868 printk("pktcdvd: Unknown speed %d for sub-type %d\n",sp,st);
1869 return 1;
1873 static int pkt_perform_opc(struct pktcdvd_device *pd)
1875 struct packet_command cgc;
1876 struct request_sense sense;
1877 int ret;
1879 VPRINTK("pktcdvd: Performing OPC\n");
1881 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
1882 cgc.sense = &sense;
1883 cgc.timeout = 60*HZ;
1884 cgc.cmd[0] = GPCMD_SEND_OPC;
1885 cgc.cmd[1] = 1;
1886 if ((ret = pkt_generic_packet(pd, &cgc)))
1887 pkt_dump_sense(&cgc);
1888 return ret;
1891 static int pkt_open_write(struct pktcdvd_device *pd)
1893 int ret;
1894 unsigned int write_speed, media_write_speed, read_speed;
1896 if ((ret = pkt_probe_settings(pd))) {
1897 VPRINTK("pktcdvd: %s failed probe\n", pd->name);
1898 return -EIO;
1901 if ((ret = pkt_set_write_settings(pd))) {
1902 DPRINTK("pktcdvd: %s failed saving write settings\n", pd->name);
1903 return -EIO;
1906 pkt_write_caching(pd, USE_WCACHING);
1908 if ((ret = pkt_get_max_speed(pd, &write_speed)))
1909 write_speed = 16 * 177;
1910 switch (pd->mmc3_profile) {
1911 case 0x13: /* DVD-RW */
1912 case 0x1a: /* DVD+RW */
1913 case 0x12: /* DVD-RAM */
1914 DPRINTK("pktcdvd: write speed %ukB/s\n", write_speed);
1915 break;
1916 default:
1917 if ((ret = pkt_media_speed(pd, &media_write_speed)))
1918 media_write_speed = 16;
1919 write_speed = min(write_speed, media_write_speed * 177);
1920 DPRINTK("pktcdvd: write speed %ux\n", write_speed / 176);
1921 break;
1923 read_speed = write_speed;
1925 if ((ret = pkt_set_speed(pd, write_speed, read_speed))) {
1926 DPRINTK("pktcdvd: %s couldn't set write speed\n", pd->name);
1927 return -EIO;
1929 pd->write_speed = write_speed;
1930 pd->read_speed = read_speed;
1932 if ((ret = pkt_perform_opc(pd))) {
1933 DPRINTK("pktcdvd: %s Optimum Power Calibration failed\n", pd->name);
1936 return 0;
1940 * called at open time.
1942 static int pkt_open_dev(struct pktcdvd_device *pd, int write)
1944 int ret;
1945 long lba;
1946 request_queue_t *q;
1949 * We need to re-open the cdrom device without O_NONBLOCK to be able
1950 * to read/write from/to it. It is already opened in O_NONBLOCK mode
1951 * so bdget() can't fail.
1953 bdget(pd->bdev->bd_dev);
1954 if ((ret = blkdev_get(pd->bdev, FMODE_READ, O_RDONLY)))
1955 goto out;
1957 if ((ret = bd_claim(pd->bdev, pd)))
1958 goto out_putdev;
1960 if ((ret = pkt_get_last_written(pd, &lba))) {
1961 printk("pktcdvd: pkt_get_last_written failed\n");
1962 goto out_unclaim;
1965 set_capacity(pd->disk, lba << 2);
1966 set_capacity(pd->bdev->bd_disk, lba << 2);
1967 bd_set_size(pd->bdev, (loff_t)lba << 11);
1969 q = bdev_get_queue(pd->bdev);
1970 if (write) {
1971 if ((ret = pkt_open_write(pd)))
1972 goto out_unclaim;
1974 * Some CDRW drives can not handle writes larger than one packet,
1975 * even if the size is a multiple of the packet size.
1977 spin_lock_irq(q->queue_lock);
1978 blk_queue_max_sectors(q, pd->settings.size);
1979 spin_unlock_irq(q->queue_lock);
1980 set_bit(PACKET_WRITABLE, &pd->flags);
1981 } else {
1982 pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
1983 clear_bit(PACKET_WRITABLE, &pd->flags);
1986 if ((ret = pkt_set_segment_merging(pd, q)))
1987 goto out_unclaim;
1989 if (write) {
1990 if (!pkt_grow_pktlist(pd, CONFIG_CDROM_PKTCDVD_BUFFERS)) {
1991 printk("pktcdvd: not enough memory for buffers\n");
1992 ret = -ENOMEM;
1993 goto out_unclaim;
1995 printk("pktcdvd: %lukB available on disc\n", lba << 1);
1998 return 0;
2000 out_unclaim:
2001 bd_release(pd->bdev);
2002 out_putdev:
2003 blkdev_put(pd->bdev);
2004 out:
2005 return ret;
2009 * called when the device is closed. makes sure that the device flushes
2010 * the internal cache before we close.
2012 static void pkt_release_dev(struct pktcdvd_device *pd, int flush)
2014 if (flush && pkt_flush_cache(pd))
2015 DPRINTK("pktcdvd: %s not flushing cache\n", pd->name);
2017 pkt_lock_door(pd, 0);
2019 pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2020 bd_release(pd->bdev);
2021 blkdev_put(pd->bdev);
2023 pkt_shrink_pktlist(pd);
2026 static struct pktcdvd_device *pkt_find_dev_from_minor(int dev_minor)
2028 if (dev_minor >= MAX_WRITERS)
2029 return NULL;
2030 return pkt_devs[dev_minor];
2033 static int pkt_open(struct inode *inode, struct file *file)
2035 struct pktcdvd_device *pd = NULL;
2036 int ret;
2038 VPRINTK("pktcdvd: entering open\n");
2040 down(&ctl_mutex);
2041 pd = pkt_find_dev_from_minor(iminor(inode));
2042 if (!pd) {
2043 ret = -ENODEV;
2044 goto out;
2046 BUG_ON(pd->refcnt < 0);
2048 pd->refcnt++;
2049 if (pd->refcnt > 1) {
2050 if ((file->f_mode & FMODE_WRITE) &&
2051 !test_bit(PACKET_WRITABLE, &pd->flags)) {
2052 ret = -EBUSY;
2053 goto out_dec;
2055 } else {
2056 if (pkt_open_dev(pd, file->f_mode & FMODE_WRITE)) {
2057 ret = -EIO;
2058 goto out_dec;
2061 * needed here as well, since ext2 (among others) may change
2062 * the blocksize at mount time
2064 set_blocksize(inode->i_bdev, CD_FRAMESIZE);
2067 up(&ctl_mutex);
2068 return 0;
2070 out_dec:
2071 pd->refcnt--;
2072 out:
2073 VPRINTK("pktcdvd: failed open (%d)\n", ret);
2074 up(&ctl_mutex);
2075 return ret;
2078 static int pkt_close(struct inode *inode, struct file *file)
2080 struct pktcdvd_device *pd = inode->i_bdev->bd_disk->private_data;
2081 int ret = 0;
2083 down(&ctl_mutex);
2084 pd->refcnt--;
2085 BUG_ON(pd->refcnt < 0);
2086 if (pd->refcnt == 0) {
2087 int flush = test_bit(PACKET_WRITABLE, &pd->flags);
2088 pkt_release_dev(pd, flush);
2090 up(&ctl_mutex);
2091 return ret;
2095 static void *psd_pool_alloc(gfp_t gfp_mask, void *data)
2097 return kmalloc(sizeof(struct packet_stacked_data), gfp_mask);
2100 static void psd_pool_free(void *ptr, void *data)
2102 kfree(ptr);
2105 static int pkt_end_io_read_cloned(struct bio *bio, unsigned int bytes_done, int err)
2107 struct packet_stacked_data *psd = bio->bi_private;
2108 struct pktcdvd_device *pd = psd->pd;
2110 if (bio->bi_size)
2111 return 1;
2113 bio_put(bio);
2114 bio_endio(psd->bio, psd->bio->bi_size, err);
2115 mempool_free(psd, psd_pool);
2116 pkt_bio_finished(pd);
2117 return 0;
2120 static int pkt_make_request(request_queue_t *q, struct bio *bio)
2122 struct pktcdvd_device *pd;
2123 char b[BDEVNAME_SIZE];
2124 sector_t zone;
2125 struct packet_data *pkt;
2126 int was_empty, blocked_bio;
2127 struct pkt_rb_node *node;
2129 pd = q->queuedata;
2130 if (!pd) {
2131 printk("pktcdvd: %s incorrect request queue\n", bdevname(bio->bi_bdev, b));
2132 goto end_io;
2136 * Clone READ bios so we can have our own bi_end_io callback.
2138 if (bio_data_dir(bio) == READ) {
2139 struct bio *cloned_bio = bio_clone(bio, GFP_NOIO);
2140 struct packet_stacked_data *psd = mempool_alloc(psd_pool, GFP_NOIO);
2142 psd->pd = pd;
2143 psd->bio = bio;
2144 cloned_bio->bi_bdev = pd->bdev;
2145 cloned_bio->bi_private = psd;
2146 cloned_bio->bi_end_io = pkt_end_io_read_cloned;
2147 pd->stats.secs_r += bio->bi_size >> 9;
2148 pkt_queue_bio(pd, cloned_bio);
2149 return 0;
2152 if (!test_bit(PACKET_WRITABLE, &pd->flags)) {
2153 printk("pktcdvd: WRITE for ro device %s (%llu)\n",
2154 pd->name, (unsigned long long)bio->bi_sector);
2155 goto end_io;
2158 if (!bio->bi_size || (bio->bi_size % CD_FRAMESIZE)) {
2159 printk("pktcdvd: wrong bio size\n");
2160 goto end_io;
2163 blk_queue_bounce(q, &bio);
2165 zone = ZONE(bio->bi_sector, pd);
2166 VPRINTK("pkt_make_request: start = %6llx stop = %6llx\n",
2167 (unsigned long long)bio->bi_sector,
2168 (unsigned long long)(bio->bi_sector + bio_sectors(bio)));
2170 /* Check if we have to split the bio */
2172 struct bio_pair *bp;
2173 sector_t last_zone;
2174 int first_sectors;
2176 last_zone = ZONE(bio->bi_sector + bio_sectors(bio) - 1, pd);
2177 if (last_zone != zone) {
2178 BUG_ON(last_zone != zone + pd->settings.size);
2179 first_sectors = last_zone - bio->bi_sector;
2180 bp = bio_split(bio, bio_split_pool, first_sectors);
2181 BUG_ON(!bp);
2182 pkt_make_request(q, &bp->bio1);
2183 pkt_make_request(q, &bp->bio2);
2184 bio_pair_release(bp);
2185 return 0;
2190 * If we find a matching packet in state WAITING or READ_WAIT, we can
2191 * just append this bio to that packet.
2193 spin_lock(&pd->cdrw.active_list_lock);
2194 blocked_bio = 0;
2195 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
2196 if (pkt->sector == zone) {
2197 spin_lock(&pkt->lock);
2198 if ((pkt->state == PACKET_WAITING_STATE) ||
2199 (pkt->state == PACKET_READ_WAIT_STATE)) {
2200 pkt_add_list_last(bio, &pkt->orig_bios,
2201 &pkt->orig_bios_tail);
2202 pkt->write_size += bio->bi_size / CD_FRAMESIZE;
2203 if ((pkt->write_size >= pkt->frames) &&
2204 (pkt->state == PACKET_WAITING_STATE)) {
2205 atomic_inc(&pkt->run_sm);
2206 wake_up(&pd->wqueue);
2208 spin_unlock(&pkt->lock);
2209 spin_unlock(&pd->cdrw.active_list_lock);
2210 return 0;
2211 } else {
2212 blocked_bio = 1;
2214 spin_unlock(&pkt->lock);
2217 spin_unlock(&pd->cdrw.active_list_lock);
2220 * No matching packet found. Store the bio in the work queue.
2222 node = mempool_alloc(pd->rb_pool, GFP_NOIO);
2223 node->bio = bio;
2224 spin_lock(&pd->lock);
2225 BUG_ON(pd->bio_queue_size < 0);
2226 was_empty = (pd->bio_queue_size == 0);
2227 pkt_rbtree_insert(pd, node);
2228 spin_unlock(&pd->lock);
2231 * Wake up the worker thread.
2233 atomic_set(&pd->scan_queue, 1);
2234 if (was_empty) {
2235 /* This wake_up is required for correct operation */
2236 wake_up(&pd->wqueue);
2237 } else if (!list_empty(&pd->cdrw.pkt_free_list) && !blocked_bio) {
2239 * This wake up is not required for correct operation,
2240 * but improves performance in some cases.
2242 wake_up(&pd->wqueue);
2244 return 0;
2245 end_io:
2246 bio_io_error(bio, bio->bi_size);
2247 return 0;
2252 static int pkt_merge_bvec(request_queue_t *q, struct bio *bio, struct bio_vec *bvec)
2254 struct pktcdvd_device *pd = q->queuedata;
2255 sector_t zone = ZONE(bio->bi_sector, pd);
2256 int used = ((bio->bi_sector - zone) << 9) + bio->bi_size;
2257 int remaining = (pd->settings.size << 9) - used;
2258 int remaining2;
2261 * A bio <= PAGE_SIZE must be allowed. If it crosses a packet
2262 * boundary, pkt_make_request() will split the bio.
2264 remaining2 = PAGE_SIZE - bio->bi_size;
2265 remaining = max(remaining, remaining2);
2267 BUG_ON(remaining < 0);
2268 return remaining;
2271 static void pkt_init_queue(struct pktcdvd_device *pd)
2273 request_queue_t *q = pd->disk->queue;
2275 blk_queue_make_request(q, pkt_make_request);
2276 blk_queue_hardsect_size(q, CD_FRAMESIZE);
2277 blk_queue_max_sectors(q, PACKET_MAX_SECTORS);
2278 blk_queue_merge_bvec(q, pkt_merge_bvec);
2279 q->queuedata = pd;
2282 static int pkt_seq_show(struct seq_file *m, void *p)
2284 struct pktcdvd_device *pd = m->private;
2285 char *msg;
2286 char bdev_buf[BDEVNAME_SIZE];
2287 int states[PACKET_NUM_STATES];
2289 seq_printf(m, "Writer %s mapped to %s:\n", pd->name,
2290 bdevname(pd->bdev, bdev_buf));
2292 seq_printf(m, "\nSettings:\n");
2293 seq_printf(m, "\tpacket size:\t\t%dkB\n", pd->settings.size / 2);
2295 if (pd->settings.write_type == 0)
2296 msg = "Packet";
2297 else
2298 msg = "Unknown";
2299 seq_printf(m, "\twrite type:\t\t%s\n", msg);
2301 seq_printf(m, "\tpacket type:\t\t%s\n", pd->settings.fp ? "Fixed" : "Variable");
2302 seq_printf(m, "\tlink loss:\t\t%d\n", pd->settings.link_loss);
2304 seq_printf(m, "\ttrack mode:\t\t%d\n", pd->settings.track_mode);
2306 if (pd->settings.block_mode == PACKET_BLOCK_MODE1)
2307 msg = "Mode 1";
2308 else if (pd->settings.block_mode == PACKET_BLOCK_MODE2)
2309 msg = "Mode 2";
2310 else
2311 msg = "Unknown";
2312 seq_printf(m, "\tblock mode:\t\t%s\n", msg);
2314 seq_printf(m, "\nStatistics:\n");
2315 seq_printf(m, "\tpackets started:\t%lu\n", pd->stats.pkt_started);
2316 seq_printf(m, "\tpackets ended:\t\t%lu\n", pd->stats.pkt_ended);
2317 seq_printf(m, "\twritten:\t\t%lukB\n", pd->stats.secs_w >> 1);
2318 seq_printf(m, "\tread gather:\t\t%lukB\n", pd->stats.secs_rg >> 1);
2319 seq_printf(m, "\tread:\t\t\t%lukB\n", pd->stats.secs_r >> 1);
2321 seq_printf(m, "\nMisc:\n");
2322 seq_printf(m, "\treference count:\t%d\n", pd->refcnt);
2323 seq_printf(m, "\tflags:\t\t\t0x%lx\n", pd->flags);
2324 seq_printf(m, "\tread speed:\t\t%ukB/s\n", pd->read_speed);
2325 seq_printf(m, "\twrite speed:\t\t%ukB/s\n", pd->write_speed);
2326 seq_printf(m, "\tstart offset:\t\t%lu\n", pd->offset);
2327 seq_printf(m, "\tmode page offset:\t%u\n", pd->mode_offset);
2329 seq_printf(m, "\nQueue state:\n");
2330 seq_printf(m, "\tbios queued:\t\t%d\n", pd->bio_queue_size);
2331 seq_printf(m, "\tbios pending:\t\t%d\n", atomic_read(&pd->cdrw.pending_bios));
2332 seq_printf(m, "\tcurrent sector:\t\t0x%llx\n", (unsigned long long)pd->current_sector);
2334 pkt_count_states(pd, states);
2335 seq_printf(m, "\tstate:\t\t\ti:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
2336 states[0], states[1], states[2], states[3], states[4], states[5]);
2338 return 0;
2341 static int pkt_seq_open(struct inode *inode, struct file *file)
2343 return single_open(file, pkt_seq_show, PDE(inode)->data);
2346 static struct file_operations pkt_proc_fops = {
2347 .open = pkt_seq_open,
2348 .read = seq_read,
2349 .llseek = seq_lseek,
2350 .release = single_release
2353 static int pkt_new_dev(struct pktcdvd_device *pd, dev_t dev)
2355 int i;
2356 int ret = 0;
2357 char b[BDEVNAME_SIZE];
2358 struct proc_dir_entry *proc;
2359 struct block_device *bdev;
2361 if (pd->pkt_dev == dev) {
2362 printk("pktcdvd: Recursive setup not allowed\n");
2363 return -EBUSY;
2365 for (i = 0; i < MAX_WRITERS; i++) {
2366 struct pktcdvd_device *pd2 = pkt_devs[i];
2367 if (!pd2)
2368 continue;
2369 if (pd2->bdev->bd_dev == dev) {
2370 printk("pktcdvd: %s already setup\n", bdevname(pd2->bdev, b));
2371 return -EBUSY;
2373 if (pd2->pkt_dev == dev) {
2374 printk("pktcdvd: Can't chain pktcdvd devices\n");
2375 return -EBUSY;
2379 bdev = bdget(dev);
2380 if (!bdev)
2381 return -ENOMEM;
2382 ret = blkdev_get(bdev, FMODE_READ, O_RDONLY | O_NONBLOCK);
2383 if (ret)
2384 return ret;
2386 /* This is safe, since we have a reference from open(). */
2387 __module_get(THIS_MODULE);
2389 pd->bdev = bdev;
2390 set_blocksize(bdev, CD_FRAMESIZE);
2392 pkt_init_queue(pd);
2394 atomic_set(&pd->cdrw.pending_bios, 0);
2395 pd->cdrw.thread = kthread_run(kcdrwd, pd, "%s", pd->name);
2396 if (IS_ERR(pd->cdrw.thread)) {
2397 printk("pktcdvd: can't start kernel thread\n");
2398 ret = -ENOMEM;
2399 goto out_mem;
2402 proc = create_proc_entry(pd->name, 0, pkt_proc);
2403 if (proc) {
2404 proc->data = pd;
2405 proc->proc_fops = &pkt_proc_fops;
2407 DPRINTK("pktcdvd: writer %s mapped to %s\n", pd->name, bdevname(bdev, b));
2408 return 0;
2410 out_mem:
2411 blkdev_put(bdev);
2412 /* This is safe: open() is still holding a reference. */
2413 module_put(THIS_MODULE);
2414 return ret;
2417 static int pkt_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
2419 struct pktcdvd_device *pd = inode->i_bdev->bd_disk->private_data;
2421 VPRINTK("pkt_ioctl: cmd %x, dev %d:%d\n", cmd, imajor(inode), iminor(inode));
2423 switch (cmd) {
2425 * forward selected CDROM ioctls to CD-ROM, for UDF
2427 case CDROMMULTISESSION:
2428 case CDROMREADTOCENTRY:
2429 case CDROM_LAST_WRITTEN:
2430 case CDROM_SEND_PACKET:
2431 case SCSI_IOCTL_SEND_COMMAND:
2432 return blkdev_ioctl(pd->bdev->bd_inode, file, cmd, arg);
2434 case CDROMEJECT:
2436 * The door gets locked when the device is opened, so we
2437 * have to unlock it or else the eject command fails.
2439 pkt_lock_door(pd, 0);
2440 return blkdev_ioctl(pd->bdev->bd_inode, file, cmd, arg);
2442 default:
2443 VPRINTK("pktcdvd: Unknown ioctl for %s (%x)\n", pd->name, cmd);
2444 return -ENOTTY;
2447 return 0;
2450 static int pkt_media_changed(struct gendisk *disk)
2452 struct pktcdvd_device *pd = disk->private_data;
2453 struct gendisk *attached_disk;
2455 if (!pd)
2456 return 0;
2457 if (!pd->bdev)
2458 return 0;
2459 attached_disk = pd->bdev->bd_disk;
2460 if (!attached_disk)
2461 return 0;
2462 return attached_disk->fops->media_changed(attached_disk);
2465 static struct block_device_operations pktcdvd_ops = {
2466 .owner = THIS_MODULE,
2467 .open = pkt_open,
2468 .release = pkt_close,
2469 .ioctl = pkt_ioctl,
2470 .media_changed = pkt_media_changed,
2474 * Set up mapping from pktcdvd device to CD-ROM device.
2476 static int pkt_setup_dev(struct pkt_ctrl_command *ctrl_cmd)
2478 int idx;
2479 int ret = -ENOMEM;
2480 struct pktcdvd_device *pd;
2481 struct gendisk *disk;
2482 dev_t dev = new_decode_dev(ctrl_cmd->dev);
2484 for (idx = 0; idx < MAX_WRITERS; idx++)
2485 if (!pkt_devs[idx])
2486 break;
2487 if (idx == MAX_WRITERS) {
2488 printk("pktcdvd: max %d writers supported\n", MAX_WRITERS);
2489 return -EBUSY;
2492 pd = kzalloc(sizeof(struct pktcdvd_device), GFP_KERNEL);
2493 if (!pd)
2494 return ret;
2496 pd->rb_pool = mempool_create(PKT_RB_POOL_SIZE, pkt_rb_alloc, pkt_rb_free, NULL);
2497 if (!pd->rb_pool)
2498 goto out_mem;
2500 disk = alloc_disk(1);
2501 if (!disk)
2502 goto out_mem;
2503 pd->disk = disk;
2505 INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
2506 INIT_LIST_HEAD(&pd->cdrw.pkt_active_list);
2507 spin_lock_init(&pd->cdrw.active_list_lock);
2509 spin_lock_init(&pd->lock);
2510 spin_lock_init(&pd->iosched.lock);
2511 sprintf(pd->name, "pktcdvd%d", idx);
2512 init_waitqueue_head(&pd->wqueue);
2513 pd->bio_queue = RB_ROOT;
2515 disk->major = pkt_major;
2516 disk->first_minor = idx;
2517 disk->fops = &pktcdvd_ops;
2518 disk->flags = GENHD_FL_REMOVABLE;
2519 sprintf(disk->disk_name, "pktcdvd%d", idx);
2520 disk->private_data = pd;
2521 disk->queue = blk_alloc_queue(GFP_KERNEL);
2522 if (!disk->queue)
2523 goto out_mem2;
2525 pd->pkt_dev = MKDEV(disk->major, disk->first_minor);
2526 ret = pkt_new_dev(pd, dev);
2527 if (ret)
2528 goto out_new_dev;
2530 add_disk(disk);
2531 pkt_devs[idx] = pd;
2532 ctrl_cmd->pkt_dev = new_encode_dev(pd->pkt_dev);
2533 return 0;
2535 out_new_dev:
2536 blk_put_queue(disk->queue);
2537 out_mem2:
2538 put_disk(disk);
2539 out_mem:
2540 if (pd->rb_pool)
2541 mempool_destroy(pd->rb_pool);
2542 kfree(pd);
2543 return ret;
2547 * Tear down mapping from pktcdvd device to CD-ROM device.
2549 static int pkt_remove_dev(struct pkt_ctrl_command *ctrl_cmd)
2551 struct pktcdvd_device *pd;
2552 int idx;
2553 dev_t pkt_dev = new_decode_dev(ctrl_cmd->pkt_dev);
2555 for (idx = 0; idx < MAX_WRITERS; idx++) {
2556 pd = pkt_devs[idx];
2557 if (pd && (pd->pkt_dev == pkt_dev))
2558 break;
2560 if (idx == MAX_WRITERS) {
2561 DPRINTK("pktcdvd: dev not setup\n");
2562 return -ENXIO;
2565 if (pd->refcnt > 0)
2566 return -EBUSY;
2568 if (!IS_ERR(pd->cdrw.thread))
2569 kthread_stop(pd->cdrw.thread);
2571 blkdev_put(pd->bdev);
2573 remove_proc_entry(pd->name, pkt_proc);
2574 DPRINTK("pktcdvd: writer %s unmapped\n", pd->name);
2576 del_gendisk(pd->disk);
2577 blk_put_queue(pd->disk->queue);
2578 put_disk(pd->disk);
2580 pkt_devs[idx] = NULL;
2581 mempool_destroy(pd->rb_pool);
2582 kfree(pd);
2584 /* This is safe: open() is still holding a reference. */
2585 module_put(THIS_MODULE);
2586 return 0;
2589 static void pkt_get_status(struct pkt_ctrl_command *ctrl_cmd)
2591 struct pktcdvd_device *pd = pkt_find_dev_from_minor(ctrl_cmd->dev_index);
2592 if (pd) {
2593 ctrl_cmd->dev = new_encode_dev(pd->bdev->bd_dev);
2594 ctrl_cmd->pkt_dev = new_encode_dev(pd->pkt_dev);
2595 } else {
2596 ctrl_cmd->dev = 0;
2597 ctrl_cmd->pkt_dev = 0;
2599 ctrl_cmd->num_devices = MAX_WRITERS;
2602 static int pkt_ctl_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
2604 void __user *argp = (void __user *)arg;
2605 struct pkt_ctrl_command ctrl_cmd;
2606 int ret = 0;
2608 if (cmd != PACKET_CTRL_CMD)
2609 return -ENOTTY;
2611 if (copy_from_user(&ctrl_cmd, argp, sizeof(struct pkt_ctrl_command)))
2612 return -EFAULT;
2614 switch (ctrl_cmd.command) {
2615 case PKT_CTRL_CMD_SETUP:
2616 if (!capable(CAP_SYS_ADMIN))
2617 return -EPERM;
2618 down(&ctl_mutex);
2619 ret = pkt_setup_dev(&ctrl_cmd);
2620 up(&ctl_mutex);
2621 break;
2622 case PKT_CTRL_CMD_TEARDOWN:
2623 if (!capable(CAP_SYS_ADMIN))
2624 return -EPERM;
2625 down(&ctl_mutex);
2626 ret = pkt_remove_dev(&ctrl_cmd);
2627 up(&ctl_mutex);
2628 break;
2629 case PKT_CTRL_CMD_STATUS:
2630 down(&ctl_mutex);
2631 pkt_get_status(&ctrl_cmd);
2632 up(&ctl_mutex);
2633 break;
2634 default:
2635 return -ENOTTY;
2638 if (copy_to_user(argp, &ctrl_cmd, sizeof(struct pkt_ctrl_command)))
2639 return -EFAULT;
2640 return ret;
2644 static struct file_operations pkt_ctl_fops = {
2645 .ioctl = pkt_ctl_ioctl,
2646 .owner = THIS_MODULE,
2649 static struct miscdevice pkt_misc = {
2650 .minor = MISC_DYNAMIC_MINOR,
2651 .name = "pktcdvd",
2652 .devfs_name = "pktcdvd/control",
2653 .fops = &pkt_ctl_fops
2656 static int __init pkt_init(void)
2658 int ret;
2660 psd_pool = mempool_create(PSD_POOL_SIZE, psd_pool_alloc, psd_pool_free, NULL);
2661 if (!psd_pool)
2662 return -ENOMEM;
2664 ret = register_blkdev(pkt_major, "pktcdvd");
2665 if (ret < 0) {
2666 printk("pktcdvd: Unable to register block device\n");
2667 goto out2;
2669 if (!pkt_major)
2670 pkt_major = ret;
2672 ret = misc_register(&pkt_misc);
2673 if (ret) {
2674 printk("pktcdvd: Unable to register misc device\n");
2675 goto out;
2678 init_MUTEX(&ctl_mutex);
2680 pkt_proc = proc_mkdir("pktcdvd", proc_root_driver);
2682 return 0;
2684 out:
2685 unregister_blkdev(pkt_major, "pktcdvd");
2686 out2:
2687 mempool_destroy(psd_pool);
2688 return ret;
2691 static void __exit pkt_exit(void)
2693 remove_proc_entry("pktcdvd", proc_root_driver);
2694 misc_deregister(&pkt_misc);
2695 unregister_blkdev(pkt_major, "pktcdvd");
2696 mempool_destroy(psd_pool);
2699 MODULE_DESCRIPTION("Packet writing layer for CD/DVD drives");
2700 MODULE_AUTHOR("Jens Axboe <axboe@suse.de>");
2701 MODULE_LICENSE("GPL");
2703 module_init(pkt_init);
2704 module_exit(pkt_exit);