[PATCH] block: disable block layer bouncing for most memory on 64bit systems
[linux-2.6/sactl.git] / mm / slab.c
blob61800b88e24159dd1cd3d193a5a824e0a9887dd3
1 /*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same intializations to
30 * kmem_cache_free.
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
68 * Further notes from the original documentation:
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
76 * At present, each engine can be growing a cache. This should be blocked.
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
89 #include <linux/config.h>
90 #include <linux/slab.h>
91 #include <linux/mm.h>
92 #include <linux/swap.h>
93 #include <linux/cache.h>
94 #include <linux/interrupt.h>
95 #include <linux/init.h>
96 #include <linux/compiler.h>
97 #include <linux/seq_file.h>
98 #include <linux/notifier.h>
99 #include <linux/kallsyms.h>
100 #include <linux/cpu.h>
101 #include <linux/sysctl.h>
102 #include <linux/module.h>
103 #include <linux/rcupdate.h>
104 #include <linux/string.h>
105 #include <linux/nodemask.h>
106 #include <linux/mempolicy.h>
107 #include <linux/mutex.h>
109 #include <asm/uaccess.h>
110 #include <asm/cacheflush.h>
111 #include <asm/tlbflush.h>
112 #include <asm/page.h>
115 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
116 * SLAB_RED_ZONE & SLAB_POISON.
117 * 0 for faster, smaller code (especially in the critical paths).
119 * STATS - 1 to collect stats for /proc/slabinfo.
120 * 0 for faster, smaller code (especially in the critical paths).
122 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
125 #ifdef CONFIG_DEBUG_SLAB
126 #define DEBUG 1
127 #define STATS 1
128 #define FORCED_DEBUG 1
129 #else
130 #define DEBUG 0
131 #define STATS 0
132 #define FORCED_DEBUG 0
133 #endif
135 /* Shouldn't this be in a header file somewhere? */
136 #define BYTES_PER_WORD sizeof(void *)
138 #ifndef cache_line_size
139 #define cache_line_size() L1_CACHE_BYTES
140 #endif
142 #ifndef ARCH_KMALLOC_MINALIGN
144 * Enforce a minimum alignment for the kmalloc caches.
145 * Usually, the kmalloc caches are cache_line_size() aligned, except when
146 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
147 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
148 * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
149 * Note that this flag disables some debug features.
151 #define ARCH_KMALLOC_MINALIGN 0
152 #endif
154 #ifndef ARCH_SLAB_MINALIGN
156 * Enforce a minimum alignment for all caches.
157 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
158 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
159 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
160 * some debug features.
162 #define ARCH_SLAB_MINALIGN 0
163 #endif
165 #ifndef ARCH_KMALLOC_FLAGS
166 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
167 #endif
169 /* Legal flag mask for kmem_cache_create(). */
170 #if DEBUG
171 # define CREATE_MASK (SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
172 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
173 SLAB_NO_REAP | SLAB_CACHE_DMA | \
174 SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
175 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
176 SLAB_DESTROY_BY_RCU)
177 #else
178 # define CREATE_MASK (SLAB_HWCACHE_ALIGN | SLAB_NO_REAP | \
179 SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
180 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
181 SLAB_DESTROY_BY_RCU)
182 #endif
185 * kmem_bufctl_t:
187 * Bufctl's are used for linking objs within a slab
188 * linked offsets.
190 * This implementation relies on "struct page" for locating the cache &
191 * slab an object belongs to.
192 * This allows the bufctl structure to be small (one int), but limits
193 * the number of objects a slab (not a cache) can contain when off-slab
194 * bufctls are used. The limit is the size of the largest general cache
195 * that does not use off-slab slabs.
196 * For 32bit archs with 4 kB pages, is this 56.
197 * This is not serious, as it is only for large objects, when it is unwise
198 * to have too many per slab.
199 * Note: This limit can be raised by introducing a general cache whose size
200 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
203 typedef unsigned int kmem_bufctl_t;
204 #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
205 #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
206 #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-2)
208 /* Max number of objs-per-slab for caches which use off-slab slabs.
209 * Needed to avoid a possible looping condition in cache_grow().
211 static unsigned long offslab_limit;
214 * struct slab
216 * Manages the objs in a slab. Placed either at the beginning of mem allocated
217 * for a slab, or allocated from an general cache.
218 * Slabs are chained into three list: fully used, partial, fully free slabs.
220 struct slab {
221 struct list_head list;
222 unsigned long colouroff;
223 void *s_mem; /* including colour offset */
224 unsigned int inuse; /* num of objs active in slab */
225 kmem_bufctl_t free;
226 unsigned short nodeid;
230 * struct slab_rcu
232 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
233 * arrange for kmem_freepages to be called via RCU. This is useful if
234 * we need to approach a kernel structure obliquely, from its address
235 * obtained without the usual locking. We can lock the structure to
236 * stabilize it and check it's still at the given address, only if we
237 * can be sure that the memory has not been meanwhile reused for some
238 * other kind of object (which our subsystem's lock might corrupt).
240 * rcu_read_lock before reading the address, then rcu_read_unlock after
241 * taking the spinlock within the structure expected at that address.
243 * We assume struct slab_rcu can overlay struct slab when destroying.
245 struct slab_rcu {
246 struct rcu_head head;
247 struct kmem_cache *cachep;
248 void *addr;
252 * struct array_cache
254 * Purpose:
255 * - LIFO ordering, to hand out cache-warm objects from _alloc
256 * - reduce the number of linked list operations
257 * - reduce spinlock operations
259 * The limit is stored in the per-cpu structure to reduce the data cache
260 * footprint.
263 struct array_cache {
264 unsigned int avail;
265 unsigned int limit;
266 unsigned int batchcount;
267 unsigned int touched;
268 spinlock_t lock;
269 void *entry[0]; /*
270 * Must have this definition in here for the proper
271 * alignment of array_cache. Also simplifies accessing
272 * the entries.
273 * [0] is for gcc 2.95. It should really be [].
277 /* bootstrap: The caches do not work without cpuarrays anymore,
278 * but the cpuarrays are allocated from the generic caches...
280 #define BOOT_CPUCACHE_ENTRIES 1
281 struct arraycache_init {
282 struct array_cache cache;
283 void *entries[BOOT_CPUCACHE_ENTRIES];
287 * The slab lists for all objects.
289 struct kmem_list3 {
290 struct list_head slabs_partial; /* partial list first, better asm code */
291 struct list_head slabs_full;
292 struct list_head slabs_free;
293 unsigned long free_objects;
294 unsigned long next_reap;
295 int free_touched;
296 unsigned int free_limit;
297 unsigned int colour_next; /* Per-node cache coloring */
298 spinlock_t list_lock;
299 struct array_cache *shared; /* shared per node */
300 struct array_cache **alien; /* on other nodes */
304 * Need this for bootstrapping a per node allocator.
306 #define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
307 struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
308 #define CACHE_CACHE 0
309 #define SIZE_AC 1
310 #define SIZE_L3 (1 + MAX_NUMNODES)
313 * This function must be completely optimized away if
314 * a constant is passed to it. Mostly the same as
315 * what is in linux/slab.h except it returns an
316 * index.
318 static __always_inline int index_of(const size_t size)
320 extern void __bad_size(void);
322 if (__builtin_constant_p(size)) {
323 int i = 0;
325 #define CACHE(x) \
326 if (size <=x) \
327 return i; \
328 else \
329 i++;
330 #include "linux/kmalloc_sizes.h"
331 #undef CACHE
332 __bad_size();
333 } else
334 __bad_size();
335 return 0;
338 #define INDEX_AC index_of(sizeof(struct arraycache_init))
339 #define INDEX_L3 index_of(sizeof(struct kmem_list3))
341 static void kmem_list3_init(struct kmem_list3 *parent)
343 INIT_LIST_HEAD(&parent->slabs_full);
344 INIT_LIST_HEAD(&parent->slabs_partial);
345 INIT_LIST_HEAD(&parent->slabs_free);
346 parent->shared = NULL;
347 parent->alien = NULL;
348 parent->colour_next = 0;
349 spin_lock_init(&parent->list_lock);
350 parent->free_objects = 0;
351 parent->free_touched = 0;
354 #define MAKE_LIST(cachep, listp, slab, nodeid) \
355 do { \
356 INIT_LIST_HEAD(listp); \
357 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
358 } while (0)
360 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
361 do { \
362 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
363 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
364 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
365 } while (0)
368 * struct kmem_cache
370 * manages a cache.
373 struct kmem_cache {
374 /* 1) per-cpu data, touched during every alloc/free */
375 struct array_cache *array[NR_CPUS];
376 unsigned int batchcount;
377 unsigned int limit;
378 unsigned int shared;
379 unsigned int buffer_size;
380 /* 2) touched by every alloc & free from the backend */
381 struct kmem_list3 *nodelists[MAX_NUMNODES];
382 unsigned int flags; /* constant flags */
383 unsigned int num; /* # of objs per slab */
384 spinlock_t spinlock;
386 /* 3) cache_grow/shrink */
387 /* order of pgs per slab (2^n) */
388 unsigned int gfporder;
390 /* force GFP flags, e.g. GFP_DMA */
391 gfp_t gfpflags;
393 size_t colour; /* cache colouring range */
394 unsigned int colour_off; /* colour offset */
395 struct kmem_cache *slabp_cache;
396 unsigned int slab_size;
397 unsigned int dflags; /* dynamic flags */
399 /* constructor func */
400 void (*ctor) (void *, struct kmem_cache *, unsigned long);
402 /* de-constructor func */
403 void (*dtor) (void *, struct kmem_cache *, unsigned long);
405 /* 4) cache creation/removal */
406 const char *name;
407 struct list_head next;
409 /* 5) statistics */
410 #if STATS
411 unsigned long num_active;
412 unsigned long num_allocations;
413 unsigned long high_mark;
414 unsigned long grown;
415 unsigned long reaped;
416 unsigned long errors;
417 unsigned long max_freeable;
418 unsigned long node_allocs;
419 unsigned long node_frees;
420 atomic_t allochit;
421 atomic_t allocmiss;
422 atomic_t freehit;
423 atomic_t freemiss;
424 #endif
425 #if DEBUG
427 * If debugging is enabled, then the allocator can add additional
428 * fields and/or padding to every object. buffer_size contains the total
429 * object size including these internal fields, the following two
430 * variables contain the offset to the user object and its size.
432 int obj_offset;
433 int obj_size;
434 #endif
437 #define CFLGS_OFF_SLAB (0x80000000UL)
438 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
440 #define BATCHREFILL_LIMIT 16
441 /* Optimization question: fewer reaps means less
442 * probability for unnessary cpucache drain/refill cycles.
444 * OTOH the cpuarrays can contain lots of objects,
445 * which could lock up otherwise freeable slabs.
447 #define REAPTIMEOUT_CPUC (2*HZ)
448 #define REAPTIMEOUT_LIST3 (4*HZ)
450 #if STATS
451 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
452 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
453 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
454 #define STATS_INC_GROWN(x) ((x)->grown++)
455 #define STATS_INC_REAPED(x) ((x)->reaped++)
456 #define STATS_SET_HIGH(x) do { if ((x)->num_active > (x)->high_mark) \
457 (x)->high_mark = (x)->num_active; \
458 } while (0)
459 #define STATS_INC_ERR(x) ((x)->errors++)
460 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
461 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
462 #define STATS_SET_FREEABLE(x, i) \
463 do { if ((x)->max_freeable < i) \
464 (x)->max_freeable = i; \
465 } while (0)
467 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
468 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
469 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
470 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
471 #else
472 #define STATS_INC_ACTIVE(x) do { } while (0)
473 #define STATS_DEC_ACTIVE(x) do { } while (0)
474 #define STATS_INC_ALLOCED(x) do { } while (0)
475 #define STATS_INC_GROWN(x) do { } while (0)
476 #define STATS_INC_REAPED(x) do { } while (0)
477 #define STATS_SET_HIGH(x) do { } while (0)
478 #define STATS_INC_ERR(x) do { } while (0)
479 #define STATS_INC_NODEALLOCS(x) do { } while (0)
480 #define STATS_INC_NODEFREES(x) do { } while (0)
481 #define STATS_SET_FREEABLE(x, i) \
482 do { } while (0)
484 #define STATS_INC_ALLOCHIT(x) do { } while (0)
485 #define STATS_INC_ALLOCMISS(x) do { } while (0)
486 #define STATS_INC_FREEHIT(x) do { } while (0)
487 #define STATS_INC_FREEMISS(x) do { } while (0)
488 #endif
490 #if DEBUG
491 /* Magic nums for obj red zoning.
492 * Placed in the first word before and the first word after an obj.
494 #define RED_INACTIVE 0x5A2CF071UL /* when obj is inactive */
495 #define RED_ACTIVE 0x170FC2A5UL /* when obj is active */
497 /* ...and for poisoning */
498 #define POISON_INUSE 0x5a /* for use-uninitialised poisoning */
499 #define POISON_FREE 0x6b /* for use-after-free poisoning */
500 #define POISON_END 0xa5 /* end-byte of poisoning */
502 /* memory layout of objects:
503 * 0 : objp
504 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
505 * the end of an object is aligned with the end of the real
506 * allocation. Catches writes behind the end of the allocation.
507 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
508 * redzone word.
509 * cachep->obj_offset: The real object.
510 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
511 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address [BYTES_PER_WORD long]
513 static int obj_offset(struct kmem_cache *cachep)
515 return cachep->obj_offset;
518 static int obj_size(struct kmem_cache *cachep)
520 return cachep->obj_size;
523 static unsigned long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
525 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
526 return (unsigned long*) (objp+obj_offset(cachep)-BYTES_PER_WORD);
529 static unsigned long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
531 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
532 if (cachep->flags & SLAB_STORE_USER)
533 return (unsigned long *)(objp + cachep->buffer_size -
534 2 * BYTES_PER_WORD);
535 return (unsigned long *)(objp + cachep->buffer_size - BYTES_PER_WORD);
538 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
540 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
541 return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
544 #else
546 #define obj_offset(x) 0
547 #define obj_size(cachep) (cachep->buffer_size)
548 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long *)NULL;})
549 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long *)NULL;})
550 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
552 #endif
555 * Maximum size of an obj (in 2^order pages)
556 * and absolute limit for the gfp order.
558 #if defined(CONFIG_LARGE_ALLOCS)
559 #define MAX_OBJ_ORDER 13 /* up to 32Mb */
560 #define MAX_GFP_ORDER 13 /* up to 32Mb */
561 #elif defined(CONFIG_MMU)
562 #define MAX_OBJ_ORDER 5 /* 32 pages */
563 #define MAX_GFP_ORDER 5 /* 32 pages */
564 #else
565 #define MAX_OBJ_ORDER 8 /* up to 1Mb */
566 #define MAX_GFP_ORDER 8 /* up to 1Mb */
567 #endif
570 * Do not go above this order unless 0 objects fit into the slab.
572 #define BREAK_GFP_ORDER_HI 1
573 #define BREAK_GFP_ORDER_LO 0
574 static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
576 /* Functions for storing/retrieving the cachep and or slab from the
577 * global 'mem_map'. These are used to find the slab an obj belongs to.
578 * With kfree(), these are used to find the cache which an obj belongs to.
580 static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
582 page->lru.next = (struct list_head *)cache;
585 static inline struct kmem_cache *page_get_cache(struct page *page)
587 return (struct kmem_cache *)page->lru.next;
590 static inline void page_set_slab(struct page *page, struct slab *slab)
592 page->lru.prev = (struct list_head *)slab;
595 static inline struct slab *page_get_slab(struct page *page)
597 return (struct slab *)page->lru.prev;
600 static inline struct kmem_cache *virt_to_cache(const void *obj)
602 struct page *page = virt_to_page(obj);
603 return page_get_cache(page);
606 static inline struct slab *virt_to_slab(const void *obj)
608 struct page *page = virt_to_page(obj);
609 return page_get_slab(page);
612 /* These are the default caches for kmalloc. Custom caches can have other sizes. */
613 struct cache_sizes malloc_sizes[] = {
614 #define CACHE(x) { .cs_size = (x) },
615 #include <linux/kmalloc_sizes.h>
616 CACHE(ULONG_MAX)
617 #undef CACHE
619 EXPORT_SYMBOL(malloc_sizes);
621 /* Must match cache_sizes above. Out of line to keep cache footprint low. */
622 struct cache_names {
623 char *name;
624 char *name_dma;
627 static struct cache_names __initdata cache_names[] = {
628 #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
629 #include <linux/kmalloc_sizes.h>
630 {NULL,}
631 #undef CACHE
634 static struct arraycache_init initarray_cache __initdata =
635 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
636 static struct arraycache_init initarray_generic =
637 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
639 /* internal cache of cache description objs */
640 static struct kmem_cache cache_cache = {
641 .batchcount = 1,
642 .limit = BOOT_CPUCACHE_ENTRIES,
643 .shared = 1,
644 .buffer_size = sizeof(struct kmem_cache),
645 .flags = SLAB_NO_REAP,
646 .spinlock = SPIN_LOCK_UNLOCKED,
647 .name = "kmem_cache",
648 #if DEBUG
649 .obj_size = sizeof(struct kmem_cache),
650 #endif
653 /* Guard access to the cache-chain. */
654 static DEFINE_MUTEX(cache_chain_mutex);
655 static struct list_head cache_chain;
658 * vm_enough_memory() looks at this to determine how many
659 * slab-allocated pages are possibly freeable under pressure
661 * SLAB_RECLAIM_ACCOUNT turns this on per-slab
663 atomic_t slab_reclaim_pages;
666 * chicken and egg problem: delay the per-cpu array allocation
667 * until the general caches are up.
669 static enum {
670 NONE,
671 PARTIAL_AC,
672 PARTIAL_L3,
673 FULL
674 } g_cpucache_up;
676 static DEFINE_PER_CPU(struct work_struct, reap_work);
678 static void free_block(struct kmem_cache *cachep, void **objpp, int len, int node);
679 static void enable_cpucache(struct kmem_cache *cachep);
680 static void cache_reap(void *unused);
681 static int __node_shrink(struct kmem_cache *cachep, int node);
683 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
685 return cachep->array[smp_processor_id()];
688 static inline struct kmem_cache *__find_general_cachep(size_t size, gfp_t gfpflags)
690 struct cache_sizes *csizep = malloc_sizes;
692 #if DEBUG
693 /* This happens if someone tries to call
694 * kmem_cache_create(), or __kmalloc(), before
695 * the generic caches are initialized.
697 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
698 #endif
699 while (size > csizep->cs_size)
700 csizep++;
703 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
704 * has cs_{dma,}cachep==NULL. Thus no special case
705 * for large kmalloc calls required.
707 if (unlikely(gfpflags & GFP_DMA))
708 return csizep->cs_dmacachep;
709 return csizep->cs_cachep;
712 struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
714 return __find_general_cachep(size, gfpflags);
716 EXPORT_SYMBOL(kmem_find_general_cachep);
718 static size_t slab_mgmt_size(size_t nr_objs, size_t align)
720 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
723 /* Calculate the number of objects and left-over bytes for a given
724 buffer size. */
725 static void cache_estimate(unsigned long gfporder, size_t buffer_size,
726 size_t align, int flags, size_t *left_over,
727 unsigned int *num)
729 int nr_objs;
730 size_t mgmt_size;
731 size_t slab_size = PAGE_SIZE << gfporder;
734 * The slab management structure can be either off the slab or
735 * on it. For the latter case, the memory allocated for a
736 * slab is used for:
738 * - The struct slab
739 * - One kmem_bufctl_t for each object
740 * - Padding to respect alignment of @align
741 * - @buffer_size bytes for each object
743 * If the slab management structure is off the slab, then the
744 * alignment will already be calculated into the size. Because
745 * the slabs are all pages aligned, the objects will be at the
746 * correct alignment when allocated.
748 if (flags & CFLGS_OFF_SLAB) {
749 mgmt_size = 0;
750 nr_objs = slab_size / buffer_size;
752 if (nr_objs > SLAB_LIMIT)
753 nr_objs = SLAB_LIMIT;
754 } else {
756 * Ignore padding for the initial guess. The padding
757 * is at most @align-1 bytes, and @buffer_size is at
758 * least @align. In the worst case, this result will
759 * be one greater than the number of objects that fit
760 * into the memory allocation when taking the padding
761 * into account.
763 nr_objs = (slab_size - sizeof(struct slab)) /
764 (buffer_size + sizeof(kmem_bufctl_t));
767 * This calculated number will be either the right
768 * amount, or one greater than what we want.
770 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
771 > slab_size)
772 nr_objs--;
774 if (nr_objs > SLAB_LIMIT)
775 nr_objs = SLAB_LIMIT;
777 mgmt_size = slab_mgmt_size(nr_objs, align);
779 *num = nr_objs;
780 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
783 #define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
785 static void __slab_error(const char *function, struct kmem_cache *cachep, char *msg)
787 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
788 function, cachep->name, msg);
789 dump_stack();
793 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
794 * via the workqueue/eventd.
795 * Add the CPU number into the expiration time to minimize the possibility of
796 * the CPUs getting into lockstep and contending for the global cache chain
797 * lock.
799 static void __devinit start_cpu_timer(int cpu)
801 struct work_struct *reap_work = &per_cpu(reap_work, cpu);
804 * When this gets called from do_initcalls via cpucache_init(),
805 * init_workqueues() has already run, so keventd will be setup
806 * at that time.
808 if (keventd_up() && reap_work->func == NULL) {
809 INIT_WORK(reap_work, cache_reap, NULL);
810 schedule_delayed_work_on(cpu, reap_work, HZ + 3 * cpu);
814 static struct array_cache *alloc_arraycache(int node, int entries,
815 int batchcount)
817 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
818 struct array_cache *nc = NULL;
820 nc = kmalloc_node(memsize, GFP_KERNEL, node);
821 if (nc) {
822 nc->avail = 0;
823 nc->limit = entries;
824 nc->batchcount = batchcount;
825 nc->touched = 0;
826 spin_lock_init(&nc->lock);
828 return nc;
831 #ifdef CONFIG_NUMA
832 static void *__cache_alloc_node(struct kmem_cache *, gfp_t, int);
834 static struct array_cache **alloc_alien_cache(int node, int limit)
836 struct array_cache **ac_ptr;
837 int memsize = sizeof(void *) * MAX_NUMNODES;
838 int i;
840 if (limit > 1)
841 limit = 12;
842 ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
843 if (ac_ptr) {
844 for_each_node(i) {
845 if (i == node || !node_online(i)) {
846 ac_ptr[i] = NULL;
847 continue;
849 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
850 if (!ac_ptr[i]) {
851 for (i--; i <= 0; i--)
852 kfree(ac_ptr[i]);
853 kfree(ac_ptr);
854 return NULL;
858 return ac_ptr;
861 static void free_alien_cache(struct array_cache **ac_ptr)
863 int i;
865 if (!ac_ptr)
866 return;
868 for_each_node(i)
869 kfree(ac_ptr[i]);
871 kfree(ac_ptr);
874 static void __drain_alien_cache(struct kmem_cache *cachep,
875 struct array_cache *ac, int node)
877 struct kmem_list3 *rl3 = cachep->nodelists[node];
879 if (ac->avail) {
880 spin_lock(&rl3->list_lock);
881 free_block(cachep, ac->entry, ac->avail, node);
882 ac->avail = 0;
883 spin_unlock(&rl3->list_lock);
887 static void drain_alien_cache(struct kmem_cache *cachep, struct array_cache **alien)
889 int i = 0;
890 struct array_cache *ac;
891 unsigned long flags;
893 for_each_online_node(i) {
894 ac = alien[i];
895 if (ac) {
896 spin_lock_irqsave(&ac->lock, flags);
897 __drain_alien_cache(cachep, ac, i);
898 spin_unlock_irqrestore(&ac->lock, flags);
902 #else
904 #define drain_alien_cache(cachep, alien) do { } while (0)
906 static inline struct array_cache **alloc_alien_cache(int node, int limit)
908 return (struct array_cache **) 0x01020304ul;
911 static inline void free_alien_cache(struct array_cache **ac_ptr)
915 #endif
917 static int __devinit cpuup_callback(struct notifier_block *nfb,
918 unsigned long action, void *hcpu)
920 long cpu = (long)hcpu;
921 struct kmem_cache *cachep;
922 struct kmem_list3 *l3 = NULL;
923 int node = cpu_to_node(cpu);
924 int memsize = sizeof(struct kmem_list3);
926 switch (action) {
927 case CPU_UP_PREPARE:
928 mutex_lock(&cache_chain_mutex);
929 /* we need to do this right in the beginning since
930 * alloc_arraycache's are going to use this list.
931 * kmalloc_node allows us to add the slab to the right
932 * kmem_list3 and not this cpu's kmem_list3
935 list_for_each_entry(cachep, &cache_chain, next) {
936 /* setup the size64 kmemlist for cpu before we can
937 * begin anything. Make sure some other cpu on this
938 * node has not already allocated this
940 if (!cachep->nodelists[node]) {
941 if (!(l3 = kmalloc_node(memsize,
942 GFP_KERNEL, node)))
943 goto bad;
944 kmem_list3_init(l3);
945 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
946 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
949 * The l3s don't come and go as CPUs come and
950 * go. cache_chain_mutex is sufficient
951 * protection here.
953 cachep->nodelists[node] = l3;
956 spin_lock_irq(&cachep->nodelists[node]->list_lock);
957 cachep->nodelists[node]->free_limit =
958 (1 + nr_cpus_node(node)) *
959 cachep->batchcount + cachep->num;
960 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
963 /* Now we can go ahead with allocating the shared array's
964 & array cache's */
965 list_for_each_entry(cachep, &cache_chain, next) {
966 struct array_cache *nc;
967 struct array_cache *shared;
968 struct array_cache **alien;
970 nc = alloc_arraycache(node, cachep->limit,
971 cachep->batchcount);
972 if (!nc)
973 goto bad;
974 shared = alloc_arraycache(node,
975 cachep->shared * cachep->batchcount,
976 0xbaadf00d);
977 if (!shared)
978 goto bad;
980 alien = alloc_alien_cache(node, cachep->limit);
981 if (!alien)
982 goto bad;
983 cachep->array[cpu] = nc;
985 l3 = cachep->nodelists[node];
986 BUG_ON(!l3);
988 spin_lock_irq(&l3->list_lock);
989 if (!l3->shared) {
991 * We are serialised from CPU_DEAD or
992 * CPU_UP_CANCELLED by the cpucontrol lock
994 l3->shared = shared;
995 shared = NULL;
997 #ifdef CONFIG_NUMA
998 if (!l3->alien) {
999 l3->alien = alien;
1000 alien = NULL;
1002 #endif
1003 spin_unlock_irq(&l3->list_lock);
1005 kfree(shared);
1006 free_alien_cache(alien);
1008 mutex_unlock(&cache_chain_mutex);
1009 break;
1010 case CPU_ONLINE:
1011 start_cpu_timer(cpu);
1012 break;
1013 #ifdef CONFIG_HOTPLUG_CPU
1014 case CPU_DEAD:
1016 * Even if all the cpus of a node are down, we don't free the
1017 * kmem_list3 of any cache. This to avoid a race between
1018 * cpu_down, and a kmalloc allocation from another cpu for
1019 * memory from the node of the cpu going down. The list3
1020 * structure is usually allocated from kmem_cache_create() and
1021 * gets destroyed at kmem_cache_destroy().
1023 /* fall thru */
1024 case CPU_UP_CANCELED:
1025 mutex_lock(&cache_chain_mutex);
1027 list_for_each_entry(cachep, &cache_chain, next) {
1028 struct array_cache *nc;
1029 struct array_cache *shared;
1030 struct array_cache **alien;
1031 cpumask_t mask;
1033 mask = node_to_cpumask(node);
1034 /* cpu is dead; no one can alloc from it. */
1035 nc = cachep->array[cpu];
1036 cachep->array[cpu] = NULL;
1037 l3 = cachep->nodelists[node];
1039 if (!l3)
1040 goto free_array_cache;
1042 spin_lock_irq(&l3->list_lock);
1044 /* Free limit for this kmem_list3 */
1045 l3->free_limit -= cachep->batchcount;
1046 if (nc)
1047 free_block(cachep, nc->entry, nc->avail, node);
1049 if (!cpus_empty(mask)) {
1050 spin_unlock_irq(&l3->list_lock);
1051 goto free_array_cache;
1054 shared = l3->shared;
1055 if (shared) {
1056 free_block(cachep, l3->shared->entry,
1057 l3->shared->avail, node);
1058 l3->shared = NULL;
1061 alien = l3->alien;
1062 l3->alien = NULL;
1064 spin_unlock_irq(&l3->list_lock);
1066 kfree(shared);
1067 if (alien) {
1068 drain_alien_cache(cachep, alien);
1069 free_alien_cache(alien);
1071 free_array_cache:
1072 kfree(nc);
1075 * In the previous loop, all the objects were freed to
1076 * the respective cache's slabs, now we can go ahead and
1077 * shrink each nodelist to its limit.
1079 list_for_each_entry(cachep, &cache_chain, next) {
1080 l3 = cachep->nodelists[node];
1081 if (!l3)
1082 continue;
1083 spin_lock_irq(&l3->list_lock);
1084 /* free slabs belonging to this node */
1085 __node_shrink(cachep, node);
1086 spin_unlock_irq(&l3->list_lock);
1088 mutex_unlock(&cache_chain_mutex);
1089 break;
1090 #endif
1092 return NOTIFY_OK;
1093 bad:
1094 mutex_unlock(&cache_chain_mutex);
1095 return NOTIFY_BAD;
1098 static struct notifier_block cpucache_notifier = { &cpuup_callback, NULL, 0 };
1101 * swap the static kmem_list3 with kmalloced memory
1103 static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list, int nodeid)
1105 struct kmem_list3 *ptr;
1107 BUG_ON(cachep->nodelists[nodeid] != list);
1108 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
1109 BUG_ON(!ptr);
1111 local_irq_disable();
1112 memcpy(ptr, list, sizeof(struct kmem_list3));
1113 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1114 cachep->nodelists[nodeid] = ptr;
1115 local_irq_enable();
1118 /* Initialisation.
1119 * Called after the gfp() functions have been enabled, and before smp_init().
1121 void __init kmem_cache_init(void)
1123 size_t left_over;
1124 struct cache_sizes *sizes;
1125 struct cache_names *names;
1126 int i;
1127 int order;
1129 for (i = 0; i < NUM_INIT_LISTS; i++) {
1130 kmem_list3_init(&initkmem_list3[i]);
1131 if (i < MAX_NUMNODES)
1132 cache_cache.nodelists[i] = NULL;
1136 * Fragmentation resistance on low memory - only use bigger
1137 * page orders on machines with more than 32MB of memory.
1139 if (num_physpages > (32 << 20) >> PAGE_SHIFT)
1140 slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1142 /* Bootstrap is tricky, because several objects are allocated
1143 * from caches that do not exist yet:
1144 * 1) initialize the cache_cache cache: it contains the struct kmem_cache
1145 * structures of all caches, except cache_cache itself: cache_cache
1146 * is statically allocated.
1147 * Initially an __init data area is used for the head array and the
1148 * kmem_list3 structures, it's replaced with a kmalloc allocated
1149 * array at the end of the bootstrap.
1150 * 2) Create the first kmalloc cache.
1151 * The struct kmem_cache for the new cache is allocated normally.
1152 * An __init data area is used for the head array.
1153 * 3) Create the remaining kmalloc caches, with minimally sized
1154 * head arrays.
1155 * 4) Replace the __init data head arrays for cache_cache and the first
1156 * kmalloc cache with kmalloc allocated arrays.
1157 * 5) Replace the __init data for kmem_list3 for cache_cache and
1158 * the other cache's with kmalloc allocated memory.
1159 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1162 /* 1) create the cache_cache */
1163 INIT_LIST_HEAD(&cache_chain);
1164 list_add(&cache_cache.next, &cache_chain);
1165 cache_cache.colour_off = cache_line_size();
1166 cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1167 cache_cache.nodelists[numa_node_id()] = &initkmem_list3[CACHE_CACHE];
1169 cache_cache.buffer_size = ALIGN(cache_cache.buffer_size, cache_line_size());
1171 for (order = 0; order < MAX_ORDER; order++) {
1172 cache_estimate(order, cache_cache.buffer_size,
1173 cache_line_size(), 0, &left_over, &cache_cache.num);
1174 if (cache_cache.num)
1175 break;
1177 if (!cache_cache.num)
1178 BUG();
1179 cache_cache.gfporder = order;
1180 cache_cache.colour = left_over / cache_cache.colour_off;
1181 cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1182 sizeof(struct slab), cache_line_size());
1184 /* 2+3) create the kmalloc caches */
1185 sizes = malloc_sizes;
1186 names = cache_names;
1188 /* Initialize the caches that provide memory for the array cache
1189 * and the kmem_list3 structures first.
1190 * Without this, further allocations will bug
1193 sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
1194 sizes[INDEX_AC].cs_size,
1195 ARCH_KMALLOC_MINALIGN,
1196 (ARCH_KMALLOC_FLAGS |
1197 SLAB_PANIC), NULL, NULL);
1199 if (INDEX_AC != INDEX_L3)
1200 sizes[INDEX_L3].cs_cachep =
1201 kmem_cache_create(names[INDEX_L3].name,
1202 sizes[INDEX_L3].cs_size,
1203 ARCH_KMALLOC_MINALIGN,
1204 (ARCH_KMALLOC_FLAGS | SLAB_PANIC), NULL,
1205 NULL);
1207 while (sizes->cs_size != ULONG_MAX) {
1209 * For performance, all the general caches are L1 aligned.
1210 * This should be particularly beneficial on SMP boxes, as it
1211 * eliminates "false sharing".
1212 * Note for systems short on memory removing the alignment will
1213 * allow tighter packing of the smaller caches.
1215 if (!sizes->cs_cachep)
1216 sizes->cs_cachep = kmem_cache_create(names->name,
1217 sizes->cs_size,
1218 ARCH_KMALLOC_MINALIGN,
1219 (ARCH_KMALLOC_FLAGS
1220 | SLAB_PANIC),
1221 NULL, NULL);
1223 /* Inc off-slab bufctl limit until the ceiling is hit. */
1224 if (!(OFF_SLAB(sizes->cs_cachep))) {
1225 offslab_limit = sizes->cs_size - sizeof(struct slab);
1226 offslab_limit /= sizeof(kmem_bufctl_t);
1229 sizes->cs_dmacachep = kmem_cache_create(names->name_dma,
1230 sizes->cs_size,
1231 ARCH_KMALLOC_MINALIGN,
1232 (ARCH_KMALLOC_FLAGS |
1233 SLAB_CACHE_DMA |
1234 SLAB_PANIC), NULL,
1235 NULL);
1237 sizes++;
1238 names++;
1240 /* 4) Replace the bootstrap head arrays */
1242 void *ptr;
1244 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1246 local_irq_disable();
1247 BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1248 memcpy(ptr, cpu_cache_get(&cache_cache),
1249 sizeof(struct arraycache_init));
1250 cache_cache.array[smp_processor_id()] = ptr;
1251 local_irq_enable();
1253 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1255 local_irq_disable();
1256 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
1257 != &initarray_generic.cache);
1258 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
1259 sizeof(struct arraycache_init));
1260 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
1261 ptr;
1262 local_irq_enable();
1264 /* 5) Replace the bootstrap kmem_list3's */
1266 int node;
1267 /* Replace the static kmem_list3 structures for the boot cpu */
1268 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE],
1269 numa_node_id());
1271 for_each_online_node(node) {
1272 init_list(malloc_sizes[INDEX_AC].cs_cachep,
1273 &initkmem_list3[SIZE_AC + node], node);
1275 if (INDEX_AC != INDEX_L3) {
1276 init_list(malloc_sizes[INDEX_L3].cs_cachep,
1277 &initkmem_list3[SIZE_L3 + node],
1278 node);
1283 /* 6) resize the head arrays to their final sizes */
1285 struct kmem_cache *cachep;
1286 mutex_lock(&cache_chain_mutex);
1287 list_for_each_entry(cachep, &cache_chain, next)
1288 enable_cpucache(cachep);
1289 mutex_unlock(&cache_chain_mutex);
1292 /* Done! */
1293 g_cpucache_up = FULL;
1295 /* Register a cpu startup notifier callback
1296 * that initializes cpu_cache_get for all new cpus
1298 register_cpu_notifier(&cpucache_notifier);
1300 /* The reap timers are started later, with a module init call:
1301 * That part of the kernel is not yet operational.
1305 static int __init cpucache_init(void)
1307 int cpu;
1310 * Register the timers that return unneeded
1311 * pages to gfp.
1313 for_each_online_cpu(cpu)
1314 start_cpu_timer(cpu);
1316 return 0;
1319 __initcall(cpucache_init);
1322 * Interface to system's page allocator. No need to hold the cache-lock.
1324 * If we requested dmaable memory, we will get it. Even if we
1325 * did not request dmaable memory, we might get it, but that
1326 * would be relatively rare and ignorable.
1328 static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1330 struct page *page;
1331 void *addr;
1332 int i;
1334 flags |= cachep->gfpflags;
1335 page = alloc_pages_node(nodeid, flags, cachep->gfporder);
1336 if (!page)
1337 return NULL;
1338 addr = page_address(page);
1340 i = (1 << cachep->gfporder);
1341 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1342 atomic_add(i, &slab_reclaim_pages);
1343 add_page_state(nr_slab, i);
1344 while (i--) {
1345 SetPageSlab(page);
1346 page++;
1348 return addr;
1352 * Interface to system's page release.
1354 static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1356 unsigned long i = (1 << cachep->gfporder);
1357 struct page *page = virt_to_page(addr);
1358 const unsigned long nr_freed = i;
1360 while (i--) {
1361 if (!TestClearPageSlab(page))
1362 BUG();
1363 page++;
1365 sub_page_state(nr_slab, nr_freed);
1366 if (current->reclaim_state)
1367 current->reclaim_state->reclaimed_slab += nr_freed;
1368 free_pages((unsigned long)addr, cachep->gfporder);
1369 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1370 atomic_sub(1 << cachep->gfporder, &slab_reclaim_pages);
1373 static void kmem_rcu_free(struct rcu_head *head)
1375 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1376 struct kmem_cache *cachep = slab_rcu->cachep;
1378 kmem_freepages(cachep, slab_rcu->addr);
1379 if (OFF_SLAB(cachep))
1380 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1383 #if DEBUG
1385 #ifdef CONFIG_DEBUG_PAGEALLOC
1386 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1387 unsigned long caller)
1389 int size = obj_size(cachep);
1391 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1393 if (size < 5 * sizeof(unsigned long))
1394 return;
1396 *addr++ = 0x12345678;
1397 *addr++ = caller;
1398 *addr++ = smp_processor_id();
1399 size -= 3 * sizeof(unsigned long);
1401 unsigned long *sptr = &caller;
1402 unsigned long svalue;
1404 while (!kstack_end(sptr)) {
1405 svalue = *sptr++;
1406 if (kernel_text_address(svalue)) {
1407 *addr++ = svalue;
1408 size -= sizeof(unsigned long);
1409 if (size <= sizeof(unsigned long))
1410 break;
1415 *addr++ = 0x87654321;
1417 #endif
1419 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1421 int size = obj_size(cachep);
1422 addr = &((char *)addr)[obj_offset(cachep)];
1424 memset(addr, val, size);
1425 *(unsigned char *)(addr + size - 1) = POISON_END;
1428 static void dump_line(char *data, int offset, int limit)
1430 int i;
1431 printk(KERN_ERR "%03x:", offset);
1432 for (i = 0; i < limit; i++) {
1433 printk(" %02x", (unsigned char)data[offset + i]);
1435 printk("\n");
1437 #endif
1439 #if DEBUG
1441 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1443 int i, size;
1444 char *realobj;
1446 if (cachep->flags & SLAB_RED_ZONE) {
1447 printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n",
1448 *dbg_redzone1(cachep, objp),
1449 *dbg_redzone2(cachep, objp));
1452 if (cachep->flags & SLAB_STORE_USER) {
1453 printk(KERN_ERR "Last user: [<%p>]",
1454 *dbg_userword(cachep, objp));
1455 print_symbol("(%s)",
1456 (unsigned long)*dbg_userword(cachep, objp));
1457 printk("\n");
1459 realobj = (char *)objp + obj_offset(cachep);
1460 size = obj_size(cachep);
1461 for (i = 0; i < size && lines; i += 16, lines--) {
1462 int limit;
1463 limit = 16;
1464 if (i + limit > size)
1465 limit = size - i;
1466 dump_line(realobj, i, limit);
1470 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1472 char *realobj;
1473 int size, i;
1474 int lines = 0;
1476 realobj = (char *)objp + obj_offset(cachep);
1477 size = obj_size(cachep);
1479 for (i = 0; i < size; i++) {
1480 char exp = POISON_FREE;
1481 if (i == size - 1)
1482 exp = POISON_END;
1483 if (realobj[i] != exp) {
1484 int limit;
1485 /* Mismatch ! */
1486 /* Print header */
1487 if (lines == 0) {
1488 printk(KERN_ERR
1489 "Slab corruption: start=%p, len=%d\n",
1490 realobj, size);
1491 print_objinfo(cachep, objp, 0);
1493 /* Hexdump the affected line */
1494 i = (i / 16) * 16;
1495 limit = 16;
1496 if (i + limit > size)
1497 limit = size - i;
1498 dump_line(realobj, i, limit);
1499 i += 16;
1500 lines++;
1501 /* Limit to 5 lines */
1502 if (lines > 5)
1503 break;
1506 if (lines != 0) {
1507 /* Print some data about the neighboring objects, if they
1508 * exist:
1510 struct slab *slabp = virt_to_slab(objp);
1511 int objnr;
1513 objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
1514 if (objnr) {
1515 objp = slabp->s_mem + (objnr - 1) * cachep->buffer_size;
1516 realobj = (char *)objp + obj_offset(cachep);
1517 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
1518 realobj, size);
1519 print_objinfo(cachep, objp, 2);
1521 if (objnr + 1 < cachep->num) {
1522 objp = slabp->s_mem + (objnr + 1) * cachep->buffer_size;
1523 realobj = (char *)objp + obj_offset(cachep);
1524 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
1525 realobj, size);
1526 print_objinfo(cachep, objp, 2);
1530 #endif
1532 #if DEBUG
1534 * slab_destroy_objs - call the registered destructor for each object in
1535 * a slab that is to be destroyed.
1537 static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1539 int i;
1540 for (i = 0; i < cachep->num; i++) {
1541 void *objp = slabp->s_mem + cachep->buffer_size * i;
1543 if (cachep->flags & SLAB_POISON) {
1544 #ifdef CONFIG_DEBUG_PAGEALLOC
1545 if ((cachep->buffer_size % PAGE_SIZE) == 0
1546 && OFF_SLAB(cachep))
1547 kernel_map_pages(virt_to_page(objp),
1548 cachep->buffer_size / PAGE_SIZE,
1550 else
1551 check_poison_obj(cachep, objp);
1552 #else
1553 check_poison_obj(cachep, objp);
1554 #endif
1556 if (cachep->flags & SLAB_RED_ZONE) {
1557 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1558 slab_error(cachep, "start of a freed object "
1559 "was overwritten");
1560 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1561 slab_error(cachep, "end of a freed object "
1562 "was overwritten");
1564 if (cachep->dtor && !(cachep->flags & SLAB_POISON))
1565 (cachep->dtor) (objp + obj_offset(cachep), cachep, 0);
1568 #else
1569 static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1571 if (cachep->dtor) {
1572 int i;
1573 for (i = 0; i < cachep->num; i++) {
1574 void *objp = slabp->s_mem + cachep->buffer_size * i;
1575 (cachep->dtor) (objp, cachep, 0);
1579 #endif
1582 * Destroy all the objs in a slab, and release the mem back to the system.
1583 * Before calling the slab must have been unlinked from the cache.
1584 * The cache-lock is not held/needed.
1586 static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
1588 void *addr = slabp->s_mem - slabp->colouroff;
1590 slab_destroy_objs(cachep, slabp);
1591 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1592 struct slab_rcu *slab_rcu;
1594 slab_rcu = (struct slab_rcu *)slabp;
1595 slab_rcu->cachep = cachep;
1596 slab_rcu->addr = addr;
1597 call_rcu(&slab_rcu->head, kmem_rcu_free);
1598 } else {
1599 kmem_freepages(cachep, addr);
1600 if (OFF_SLAB(cachep))
1601 kmem_cache_free(cachep->slabp_cache, slabp);
1605 /* For setting up all the kmem_list3s for cache whose buffer_size is same
1606 as size of kmem_list3. */
1607 static void set_up_list3s(struct kmem_cache *cachep, int index)
1609 int node;
1611 for_each_online_node(node) {
1612 cachep->nodelists[node] = &initkmem_list3[index + node];
1613 cachep->nodelists[node]->next_reap = jiffies +
1614 REAPTIMEOUT_LIST3 +
1615 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1620 * calculate_slab_order - calculate size (page order) of slabs
1621 * @cachep: pointer to the cache that is being created
1622 * @size: size of objects to be created in this cache.
1623 * @align: required alignment for the objects.
1624 * @flags: slab allocation flags
1626 * Also calculates the number of objects per slab.
1628 * This could be made much more intelligent. For now, try to avoid using
1629 * high order pages for slabs. When the gfp() functions are more friendly
1630 * towards high-order requests, this should be changed.
1632 static inline size_t calculate_slab_order(struct kmem_cache *cachep,
1633 size_t size, size_t align, unsigned long flags)
1635 size_t left_over = 0;
1636 int gfporder;
1638 for (gfporder = 0 ; gfporder <= MAX_GFP_ORDER; gfporder++) {
1639 unsigned int num;
1640 size_t remainder;
1642 cache_estimate(gfporder, size, align, flags, &remainder, &num);
1643 if (!num)
1644 continue;
1646 /* More than offslab_limit objects will cause problems */
1647 if ((flags & CFLGS_OFF_SLAB) && num > offslab_limit)
1648 break;
1650 /* Found something acceptable - save it away */
1651 cachep->num = num;
1652 cachep->gfporder = gfporder;
1653 left_over = remainder;
1656 * A VFS-reclaimable slab tends to have most allocations
1657 * as GFP_NOFS and we really don't want to have to be allocating
1658 * higher-order pages when we are unable to shrink dcache.
1660 if (flags & SLAB_RECLAIM_ACCOUNT)
1661 break;
1664 * Large number of objects is good, but very large slabs are
1665 * currently bad for the gfp()s.
1667 if (gfporder >= slab_break_gfp_order)
1668 break;
1671 * Acceptable internal fragmentation?
1673 if ((left_over * 8) <= (PAGE_SIZE << gfporder))
1674 break;
1676 return left_over;
1680 * kmem_cache_create - Create a cache.
1681 * @name: A string which is used in /proc/slabinfo to identify this cache.
1682 * @size: The size of objects to be created in this cache.
1683 * @align: The required alignment for the objects.
1684 * @flags: SLAB flags
1685 * @ctor: A constructor for the objects.
1686 * @dtor: A destructor for the objects.
1688 * Returns a ptr to the cache on success, NULL on failure.
1689 * Cannot be called within a int, but can be interrupted.
1690 * The @ctor is run when new pages are allocated by the cache
1691 * and the @dtor is run before the pages are handed back.
1693 * @name must be valid until the cache is destroyed. This implies that
1694 * the module calling this has to destroy the cache before getting
1695 * unloaded.
1697 * The flags are
1699 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
1700 * to catch references to uninitialised memory.
1702 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
1703 * for buffer overruns.
1705 * %SLAB_NO_REAP - Don't automatically reap this cache when we're under
1706 * memory pressure.
1708 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
1709 * cacheline. This can be beneficial if you're counting cycles as closely
1710 * as davem.
1712 struct kmem_cache *
1713 kmem_cache_create (const char *name, size_t size, size_t align,
1714 unsigned long flags, void (*ctor)(void*, struct kmem_cache *, unsigned long),
1715 void (*dtor)(void*, struct kmem_cache *, unsigned long))
1717 size_t left_over, slab_size, ralign;
1718 struct kmem_cache *cachep = NULL;
1719 struct list_head *p;
1722 * Sanity checks... these are all serious usage bugs.
1724 if ((!name) ||
1725 in_interrupt() ||
1726 (size < BYTES_PER_WORD) ||
1727 (size > (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || (dtor && !ctor)) {
1728 printk(KERN_ERR "%s: Early error in slab %s\n",
1729 __FUNCTION__, name);
1730 BUG();
1734 * Prevent CPUs from coming and going.
1735 * lock_cpu_hotplug() nests outside cache_chain_mutex
1737 lock_cpu_hotplug();
1739 mutex_lock(&cache_chain_mutex);
1741 list_for_each(p, &cache_chain) {
1742 struct kmem_cache *pc = list_entry(p, struct kmem_cache, next);
1743 mm_segment_t old_fs = get_fs();
1744 char tmp;
1745 int res;
1748 * This happens when the module gets unloaded and doesn't
1749 * destroy its slab cache and no-one else reuses the vmalloc
1750 * area of the module. Print a warning.
1752 set_fs(KERNEL_DS);
1753 res = __get_user(tmp, pc->name);
1754 set_fs(old_fs);
1755 if (res) {
1756 printk("SLAB: cache with size %d has lost its name\n",
1757 pc->buffer_size);
1758 continue;
1761 if (!strcmp(pc->name, name)) {
1762 printk("kmem_cache_create: duplicate cache %s\n", name);
1763 dump_stack();
1764 goto oops;
1768 #if DEBUG
1769 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
1770 if ((flags & SLAB_DEBUG_INITIAL) && !ctor) {
1771 /* No constructor, but inital state check requested */
1772 printk(KERN_ERR "%s: No con, but init state check "
1773 "requested - %s\n", __FUNCTION__, name);
1774 flags &= ~SLAB_DEBUG_INITIAL;
1776 #if FORCED_DEBUG
1778 * Enable redzoning and last user accounting, except for caches with
1779 * large objects, if the increased size would increase the object size
1780 * above the next power of two: caches with object sizes just above a
1781 * power of two have a significant amount of internal fragmentation.
1783 if ((size < 4096
1784 || fls(size - 1) == fls(size - 1 + 3 * BYTES_PER_WORD)))
1785 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1786 if (!(flags & SLAB_DESTROY_BY_RCU))
1787 flags |= SLAB_POISON;
1788 #endif
1789 if (flags & SLAB_DESTROY_BY_RCU)
1790 BUG_ON(flags & SLAB_POISON);
1791 #endif
1792 if (flags & SLAB_DESTROY_BY_RCU)
1793 BUG_ON(dtor);
1796 * Always checks flags, a caller might be expecting debug
1797 * support which isn't available.
1799 if (flags & ~CREATE_MASK)
1800 BUG();
1802 /* Check that size is in terms of words. This is needed to avoid
1803 * unaligned accesses for some archs when redzoning is used, and makes
1804 * sure any on-slab bufctl's are also correctly aligned.
1806 if (size & (BYTES_PER_WORD - 1)) {
1807 size += (BYTES_PER_WORD - 1);
1808 size &= ~(BYTES_PER_WORD - 1);
1811 /* calculate out the final buffer alignment: */
1812 /* 1) arch recommendation: can be overridden for debug */
1813 if (flags & SLAB_HWCACHE_ALIGN) {
1814 /* Default alignment: as specified by the arch code.
1815 * Except if an object is really small, then squeeze multiple
1816 * objects into one cacheline.
1818 ralign = cache_line_size();
1819 while (size <= ralign / 2)
1820 ralign /= 2;
1821 } else {
1822 ralign = BYTES_PER_WORD;
1824 /* 2) arch mandated alignment: disables debug if necessary */
1825 if (ralign < ARCH_SLAB_MINALIGN) {
1826 ralign = ARCH_SLAB_MINALIGN;
1827 if (ralign > BYTES_PER_WORD)
1828 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
1830 /* 3) caller mandated alignment: disables debug if necessary */
1831 if (ralign < align) {
1832 ralign = align;
1833 if (ralign > BYTES_PER_WORD)
1834 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
1836 /* 4) Store it. Note that the debug code below can reduce
1837 * the alignment to BYTES_PER_WORD.
1839 align = ralign;
1841 /* Get cache's description obj. */
1842 cachep = kmem_cache_alloc(&cache_cache, SLAB_KERNEL);
1843 if (!cachep)
1844 goto oops;
1845 memset(cachep, 0, sizeof(struct kmem_cache));
1847 #if DEBUG
1848 cachep->obj_size = size;
1850 if (flags & SLAB_RED_ZONE) {
1851 /* redzoning only works with word aligned caches */
1852 align = BYTES_PER_WORD;
1854 /* add space for red zone words */
1855 cachep->obj_offset += BYTES_PER_WORD;
1856 size += 2 * BYTES_PER_WORD;
1858 if (flags & SLAB_STORE_USER) {
1859 /* user store requires word alignment and
1860 * one word storage behind the end of the real
1861 * object.
1863 align = BYTES_PER_WORD;
1864 size += BYTES_PER_WORD;
1866 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
1867 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
1868 && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
1869 cachep->obj_offset += PAGE_SIZE - size;
1870 size = PAGE_SIZE;
1872 #endif
1873 #endif
1875 /* Determine if the slab management is 'on' or 'off' slab. */
1876 if (size >= (PAGE_SIZE >> 3))
1878 * Size is large, assume best to place the slab management obj
1879 * off-slab (should allow better packing of objs).
1881 flags |= CFLGS_OFF_SLAB;
1883 size = ALIGN(size, align);
1885 left_over = calculate_slab_order(cachep, size, align, flags);
1887 if (!cachep->num) {
1888 printk("kmem_cache_create: couldn't create cache %s.\n", name);
1889 kmem_cache_free(&cache_cache, cachep);
1890 cachep = NULL;
1891 goto oops;
1893 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
1894 + sizeof(struct slab), align);
1897 * If the slab has been placed off-slab, and we have enough space then
1898 * move it on-slab. This is at the expense of any extra colouring.
1900 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
1901 flags &= ~CFLGS_OFF_SLAB;
1902 left_over -= slab_size;
1905 if (flags & CFLGS_OFF_SLAB) {
1906 /* really off slab. No need for manual alignment */
1907 slab_size =
1908 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
1911 cachep->colour_off = cache_line_size();
1912 /* Offset must be a multiple of the alignment. */
1913 if (cachep->colour_off < align)
1914 cachep->colour_off = align;
1915 cachep->colour = left_over / cachep->colour_off;
1916 cachep->slab_size = slab_size;
1917 cachep->flags = flags;
1918 cachep->gfpflags = 0;
1919 if (flags & SLAB_CACHE_DMA)
1920 cachep->gfpflags |= GFP_DMA;
1921 spin_lock_init(&cachep->spinlock);
1922 cachep->buffer_size = size;
1924 if (flags & CFLGS_OFF_SLAB)
1925 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
1926 cachep->ctor = ctor;
1927 cachep->dtor = dtor;
1928 cachep->name = name;
1931 if (g_cpucache_up == FULL) {
1932 enable_cpucache(cachep);
1933 } else {
1934 if (g_cpucache_up == NONE) {
1935 /* Note: the first kmem_cache_create must create
1936 * the cache that's used by kmalloc(24), otherwise
1937 * the creation of further caches will BUG().
1939 cachep->array[smp_processor_id()] =
1940 &initarray_generic.cache;
1942 /* If the cache that's used by
1943 * kmalloc(sizeof(kmem_list3)) is the first cache,
1944 * then we need to set up all its list3s, otherwise
1945 * the creation of further caches will BUG().
1947 set_up_list3s(cachep, SIZE_AC);
1948 if (INDEX_AC == INDEX_L3)
1949 g_cpucache_up = PARTIAL_L3;
1950 else
1951 g_cpucache_up = PARTIAL_AC;
1952 } else {
1953 cachep->array[smp_processor_id()] =
1954 kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1956 if (g_cpucache_up == PARTIAL_AC) {
1957 set_up_list3s(cachep, SIZE_L3);
1958 g_cpucache_up = PARTIAL_L3;
1959 } else {
1960 int node;
1961 for_each_online_node(node) {
1963 cachep->nodelists[node] =
1964 kmalloc_node(sizeof
1965 (struct kmem_list3),
1966 GFP_KERNEL, node);
1967 BUG_ON(!cachep->nodelists[node]);
1968 kmem_list3_init(cachep->
1969 nodelists[node]);
1973 cachep->nodelists[numa_node_id()]->next_reap =
1974 jiffies + REAPTIMEOUT_LIST3 +
1975 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1977 BUG_ON(!cpu_cache_get(cachep));
1978 cpu_cache_get(cachep)->avail = 0;
1979 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1980 cpu_cache_get(cachep)->batchcount = 1;
1981 cpu_cache_get(cachep)->touched = 0;
1982 cachep->batchcount = 1;
1983 cachep->limit = BOOT_CPUCACHE_ENTRIES;
1986 /* cache setup completed, link it into the list */
1987 list_add(&cachep->next, &cache_chain);
1988 oops:
1989 if (!cachep && (flags & SLAB_PANIC))
1990 panic("kmem_cache_create(): failed to create slab `%s'\n",
1991 name);
1992 mutex_unlock(&cache_chain_mutex);
1993 unlock_cpu_hotplug();
1994 return cachep;
1996 EXPORT_SYMBOL(kmem_cache_create);
1998 #if DEBUG
1999 static void check_irq_off(void)
2001 BUG_ON(!irqs_disabled());
2004 static void check_irq_on(void)
2006 BUG_ON(irqs_disabled());
2009 static void check_spinlock_acquired(struct kmem_cache *cachep)
2011 #ifdef CONFIG_SMP
2012 check_irq_off();
2013 assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
2014 #endif
2017 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2019 #ifdef CONFIG_SMP
2020 check_irq_off();
2021 assert_spin_locked(&cachep->nodelists[node]->list_lock);
2022 #endif
2025 #else
2026 #define check_irq_off() do { } while(0)
2027 #define check_irq_on() do { } while(0)
2028 #define check_spinlock_acquired(x) do { } while(0)
2029 #define check_spinlock_acquired_node(x, y) do { } while(0)
2030 #endif
2033 * Waits for all CPUs to execute func().
2035 static void smp_call_function_all_cpus(void (*func)(void *arg), void *arg)
2037 check_irq_on();
2038 preempt_disable();
2040 local_irq_disable();
2041 func(arg);
2042 local_irq_enable();
2044 if (smp_call_function(func, arg, 1, 1))
2045 BUG();
2047 preempt_enable();
2050 static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
2051 int force, int node);
2053 static void do_drain(void *arg)
2055 struct kmem_cache *cachep = (struct kmem_cache *) arg;
2056 struct array_cache *ac;
2057 int node = numa_node_id();
2059 check_irq_off();
2060 ac = cpu_cache_get(cachep);
2061 spin_lock(&cachep->nodelists[node]->list_lock);
2062 free_block(cachep, ac->entry, ac->avail, node);
2063 spin_unlock(&cachep->nodelists[node]->list_lock);
2064 ac->avail = 0;
2067 static void drain_cpu_caches(struct kmem_cache *cachep)
2069 struct kmem_list3 *l3;
2070 int node;
2072 smp_call_function_all_cpus(do_drain, cachep);
2073 check_irq_on();
2074 for_each_online_node(node) {
2075 l3 = cachep->nodelists[node];
2076 if (l3) {
2077 spin_lock_irq(&l3->list_lock);
2078 drain_array_locked(cachep, l3->shared, 1, node);
2079 spin_unlock_irq(&l3->list_lock);
2080 if (l3->alien)
2081 drain_alien_cache(cachep, l3->alien);
2086 static int __node_shrink(struct kmem_cache *cachep, int node)
2088 struct slab *slabp;
2089 struct kmem_list3 *l3 = cachep->nodelists[node];
2090 int ret;
2092 for (;;) {
2093 struct list_head *p;
2095 p = l3->slabs_free.prev;
2096 if (p == &l3->slabs_free)
2097 break;
2099 slabp = list_entry(l3->slabs_free.prev, struct slab, list);
2100 #if DEBUG
2101 if (slabp->inuse)
2102 BUG();
2103 #endif
2104 list_del(&slabp->list);
2106 l3->free_objects -= cachep->num;
2107 spin_unlock_irq(&l3->list_lock);
2108 slab_destroy(cachep, slabp);
2109 spin_lock_irq(&l3->list_lock);
2111 ret = !list_empty(&l3->slabs_full) || !list_empty(&l3->slabs_partial);
2112 return ret;
2115 static int __cache_shrink(struct kmem_cache *cachep)
2117 int ret = 0, i = 0;
2118 struct kmem_list3 *l3;
2120 drain_cpu_caches(cachep);
2122 check_irq_on();
2123 for_each_online_node(i) {
2124 l3 = cachep->nodelists[i];
2125 if (l3) {
2126 spin_lock_irq(&l3->list_lock);
2127 ret += __node_shrink(cachep, i);
2128 spin_unlock_irq(&l3->list_lock);
2131 return (ret ? 1 : 0);
2135 * kmem_cache_shrink - Shrink a cache.
2136 * @cachep: The cache to shrink.
2138 * Releases as many slabs as possible for a cache.
2139 * To help debugging, a zero exit status indicates all slabs were released.
2141 int kmem_cache_shrink(struct kmem_cache *cachep)
2143 if (!cachep || in_interrupt())
2144 BUG();
2146 return __cache_shrink(cachep);
2148 EXPORT_SYMBOL(kmem_cache_shrink);
2151 * kmem_cache_destroy - delete a cache
2152 * @cachep: the cache to destroy
2154 * Remove a struct kmem_cache object from the slab cache.
2155 * Returns 0 on success.
2157 * It is expected this function will be called by a module when it is
2158 * unloaded. This will remove the cache completely, and avoid a duplicate
2159 * cache being allocated each time a module is loaded and unloaded, if the
2160 * module doesn't have persistent in-kernel storage across loads and unloads.
2162 * The cache must be empty before calling this function.
2164 * The caller must guarantee that noone will allocate memory from the cache
2165 * during the kmem_cache_destroy().
2167 int kmem_cache_destroy(struct kmem_cache *cachep)
2169 int i;
2170 struct kmem_list3 *l3;
2172 if (!cachep || in_interrupt())
2173 BUG();
2175 /* Don't let CPUs to come and go */
2176 lock_cpu_hotplug();
2178 /* Find the cache in the chain of caches. */
2179 mutex_lock(&cache_chain_mutex);
2181 * the chain is never empty, cache_cache is never destroyed
2183 list_del(&cachep->next);
2184 mutex_unlock(&cache_chain_mutex);
2186 if (__cache_shrink(cachep)) {
2187 slab_error(cachep, "Can't free all objects");
2188 mutex_lock(&cache_chain_mutex);
2189 list_add(&cachep->next, &cache_chain);
2190 mutex_unlock(&cache_chain_mutex);
2191 unlock_cpu_hotplug();
2192 return 1;
2195 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2196 synchronize_rcu();
2198 for_each_online_cpu(i)
2199 kfree(cachep->array[i]);
2201 /* NUMA: free the list3 structures */
2202 for_each_online_node(i) {
2203 if ((l3 = cachep->nodelists[i])) {
2204 kfree(l3->shared);
2205 free_alien_cache(l3->alien);
2206 kfree(l3);
2209 kmem_cache_free(&cache_cache, cachep);
2211 unlock_cpu_hotplug();
2213 return 0;
2215 EXPORT_SYMBOL(kmem_cache_destroy);
2217 /* Get the memory for a slab management obj. */
2218 static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2219 int colour_off, gfp_t local_flags)
2221 struct slab *slabp;
2223 if (OFF_SLAB(cachep)) {
2224 /* Slab management obj is off-slab. */
2225 slabp = kmem_cache_alloc(cachep->slabp_cache, local_flags);
2226 if (!slabp)
2227 return NULL;
2228 } else {
2229 slabp = objp + colour_off;
2230 colour_off += cachep->slab_size;
2232 slabp->inuse = 0;
2233 slabp->colouroff = colour_off;
2234 slabp->s_mem = objp + colour_off;
2236 return slabp;
2239 static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2241 return (kmem_bufctl_t *) (slabp + 1);
2244 static void cache_init_objs(struct kmem_cache *cachep,
2245 struct slab *slabp, unsigned long ctor_flags)
2247 int i;
2249 for (i = 0; i < cachep->num; i++) {
2250 void *objp = slabp->s_mem + cachep->buffer_size * i;
2251 #if DEBUG
2252 /* need to poison the objs? */
2253 if (cachep->flags & SLAB_POISON)
2254 poison_obj(cachep, objp, POISON_FREE);
2255 if (cachep->flags & SLAB_STORE_USER)
2256 *dbg_userword(cachep, objp) = NULL;
2258 if (cachep->flags & SLAB_RED_ZONE) {
2259 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2260 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2263 * Constructors are not allowed to allocate memory from
2264 * the same cache which they are a constructor for.
2265 * Otherwise, deadlock. They must also be threaded.
2267 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2268 cachep->ctor(objp + obj_offset(cachep), cachep,
2269 ctor_flags);
2271 if (cachep->flags & SLAB_RED_ZONE) {
2272 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2273 slab_error(cachep, "constructor overwrote the"
2274 " end of an object");
2275 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2276 slab_error(cachep, "constructor overwrote the"
2277 " start of an object");
2279 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep)
2280 && cachep->flags & SLAB_POISON)
2281 kernel_map_pages(virt_to_page(objp),
2282 cachep->buffer_size / PAGE_SIZE, 0);
2283 #else
2284 if (cachep->ctor)
2285 cachep->ctor(objp, cachep, ctor_flags);
2286 #endif
2287 slab_bufctl(slabp)[i] = i + 1;
2289 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
2290 slabp->free = 0;
2293 static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2295 if (flags & SLAB_DMA) {
2296 if (!(cachep->gfpflags & GFP_DMA))
2297 BUG();
2298 } else {
2299 if (cachep->gfpflags & GFP_DMA)
2300 BUG();
2304 static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp, int nodeid)
2306 void *objp = slabp->s_mem + (slabp->free * cachep->buffer_size);
2307 kmem_bufctl_t next;
2309 slabp->inuse++;
2310 next = slab_bufctl(slabp)[slabp->free];
2311 #if DEBUG
2312 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2313 WARN_ON(slabp->nodeid != nodeid);
2314 #endif
2315 slabp->free = next;
2317 return objp;
2320 static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp, void *objp,
2321 int nodeid)
2323 unsigned int objnr = (unsigned)(objp-slabp->s_mem) / cachep->buffer_size;
2325 #if DEBUG
2326 /* Verify that the slab belongs to the intended node */
2327 WARN_ON(slabp->nodeid != nodeid);
2329 if (slab_bufctl(slabp)[objnr] != BUFCTL_FREE) {
2330 printk(KERN_ERR "slab: double free detected in cache "
2331 "'%s', objp %p\n", cachep->name, objp);
2332 BUG();
2334 #endif
2335 slab_bufctl(slabp)[objnr] = slabp->free;
2336 slabp->free = objnr;
2337 slabp->inuse--;
2340 static void set_slab_attr(struct kmem_cache *cachep, struct slab *slabp, void *objp)
2342 int i;
2343 struct page *page;
2345 /* Nasty!!!!!! I hope this is OK. */
2346 i = 1 << cachep->gfporder;
2347 page = virt_to_page(objp);
2348 do {
2349 page_set_cache(page, cachep);
2350 page_set_slab(page, slabp);
2351 page++;
2352 } while (--i);
2356 * Grow (by 1) the number of slabs within a cache. This is called by
2357 * kmem_cache_alloc() when there are no active objs left in a cache.
2359 static int cache_grow(struct kmem_cache *cachep, gfp_t flags, int nodeid)
2361 struct slab *slabp;
2362 void *objp;
2363 size_t offset;
2364 gfp_t local_flags;
2365 unsigned long ctor_flags;
2366 struct kmem_list3 *l3;
2368 /* Be lazy and only check for valid flags here,
2369 * keeping it out of the critical path in kmem_cache_alloc().
2371 if (flags & ~(SLAB_DMA | SLAB_LEVEL_MASK | SLAB_NO_GROW))
2372 BUG();
2373 if (flags & SLAB_NO_GROW)
2374 return 0;
2376 ctor_flags = SLAB_CTOR_CONSTRUCTOR;
2377 local_flags = (flags & SLAB_LEVEL_MASK);
2378 if (!(local_flags & __GFP_WAIT))
2380 * Not allowed to sleep. Need to tell a constructor about
2381 * this - it might need to know...
2383 ctor_flags |= SLAB_CTOR_ATOMIC;
2385 /* Take the l3 list lock to change the colour_next on this node */
2386 check_irq_off();
2387 l3 = cachep->nodelists[nodeid];
2388 spin_lock(&l3->list_lock);
2390 /* Get colour for the slab, and cal the next value. */
2391 offset = l3->colour_next;
2392 l3->colour_next++;
2393 if (l3->colour_next >= cachep->colour)
2394 l3->colour_next = 0;
2395 spin_unlock(&l3->list_lock);
2397 offset *= cachep->colour_off;
2399 if (local_flags & __GFP_WAIT)
2400 local_irq_enable();
2403 * The test for missing atomic flag is performed here, rather than
2404 * the more obvious place, simply to reduce the critical path length
2405 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2406 * will eventually be caught here (where it matters).
2408 kmem_flagcheck(cachep, flags);
2410 /* Get mem for the objs.
2411 * Attempt to allocate a physical page from 'nodeid',
2413 if (!(objp = kmem_getpages(cachep, flags, nodeid)))
2414 goto failed;
2416 /* Get slab management. */
2417 if (!(slabp = alloc_slabmgmt(cachep, objp, offset, local_flags)))
2418 goto opps1;
2420 slabp->nodeid = nodeid;
2421 set_slab_attr(cachep, slabp, objp);
2423 cache_init_objs(cachep, slabp, ctor_flags);
2425 if (local_flags & __GFP_WAIT)
2426 local_irq_disable();
2427 check_irq_off();
2428 spin_lock(&l3->list_lock);
2430 /* Make slab active. */
2431 list_add_tail(&slabp->list, &(l3->slabs_free));
2432 STATS_INC_GROWN(cachep);
2433 l3->free_objects += cachep->num;
2434 spin_unlock(&l3->list_lock);
2435 return 1;
2436 opps1:
2437 kmem_freepages(cachep, objp);
2438 failed:
2439 if (local_flags & __GFP_WAIT)
2440 local_irq_disable();
2441 return 0;
2444 #if DEBUG
2447 * Perform extra freeing checks:
2448 * - detect bad pointers.
2449 * - POISON/RED_ZONE checking
2450 * - destructor calls, for caches with POISON+dtor
2452 static void kfree_debugcheck(const void *objp)
2454 struct page *page;
2456 if (!virt_addr_valid(objp)) {
2457 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
2458 (unsigned long)objp);
2459 BUG();
2461 page = virt_to_page(objp);
2462 if (!PageSlab(page)) {
2463 printk(KERN_ERR "kfree_debugcheck: bad ptr %lxh.\n",
2464 (unsigned long)objp);
2465 BUG();
2469 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2470 void *caller)
2472 struct page *page;
2473 unsigned int objnr;
2474 struct slab *slabp;
2476 objp -= obj_offset(cachep);
2477 kfree_debugcheck(objp);
2478 page = virt_to_page(objp);
2480 if (page_get_cache(page) != cachep) {
2481 printk(KERN_ERR
2482 "mismatch in kmem_cache_free: expected cache %p, got %p\n",
2483 page_get_cache(page), cachep);
2484 printk(KERN_ERR "%p is %s.\n", cachep, cachep->name);
2485 printk(KERN_ERR "%p is %s.\n", page_get_cache(page),
2486 page_get_cache(page)->name);
2487 WARN_ON(1);
2489 slabp = page_get_slab(page);
2491 if (cachep->flags & SLAB_RED_ZONE) {
2492 if (*dbg_redzone1(cachep, objp) != RED_ACTIVE
2493 || *dbg_redzone2(cachep, objp) != RED_ACTIVE) {
2494 slab_error(cachep,
2495 "double free, or memory outside"
2496 " object was overwritten");
2497 printk(KERN_ERR
2498 "%p: redzone 1: 0x%lx, redzone 2: 0x%lx.\n",
2499 objp, *dbg_redzone1(cachep, objp),
2500 *dbg_redzone2(cachep, objp));
2502 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2503 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2505 if (cachep->flags & SLAB_STORE_USER)
2506 *dbg_userword(cachep, objp) = caller;
2508 objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
2510 BUG_ON(objnr >= cachep->num);
2511 BUG_ON(objp != slabp->s_mem + objnr * cachep->buffer_size);
2513 if (cachep->flags & SLAB_DEBUG_INITIAL) {
2514 /* Need to call the slab's constructor so the
2515 * caller can perform a verify of its state (debugging).
2516 * Called without the cache-lock held.
2518 cachep->ctor(objp + obj_offset(cachep),
2519 cachep, SLAB_CTOR_CONSTRUCTOR | SLAB_CTOR_VERIFY);
2521 if (cachep->flags & SLAB_POISON && cachep->dtor) {
2522 /* we want to cache poison the object,
2523 * call the destruction callback
2525 cachep->dtor(objp + obj_offset(cachep), cachep, 0);
2527 if (cachep->flags & SLAB_POISON) {
2528 #ifdef CONFIG_DEBUG_PAGEALLOC
2529 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep)) {
2530 store_stackinfo(cachep, objp, (unsigned long)caller);
2531 kernel_map_pages(virt_to_page(objp),
2532 cachep->buffer_size / PAGE_SIZE, 0);
2533 } else {
2534 poison_obj(cachep, objp, POISON_FREE);
2536 #else
2537 poison_obj(cachep, objp, POISON_FREE);
2538 #endif
2540 return objp;
2543 static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
2545 kmem_bufctl_t i;
2546 int entries = 0;
2548 /* Check slab's freelist to see if this obj is there. */
2549 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2550 entries++;
2551 if (entries > cachep->num || i >= cachep->num)
2552 goto bad;
2554 if (entries != cachep->num - slabp->inuse) {
2555 bad:
2556 printk(KERN_ERR
2557 "slab: Internal list corruption detected in cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2558 cachep->name, cachep->num, slabp, slabp->inuse);
2559 for (i = 0;
2560 i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
2561 i++) {
2562 if ((i % 16) == 0)
2563 printk("\n%03x:", i);
2564 printk(" %02x", ((unsigned char *)slabp)[i]);
2566 printk("\n");
2567 BUG();
2570 #else
2571 #define kfree_debugcheck(x) do { } while(0)
2572 #define cache_free_debugcheck(x,objp,z) (objp)
2573 #define check_slabp(x,y) do { } while(0)
2574 #endif
2576 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
2578 int batchcount;
2579 struct kmem_list3 *l3;
2580 struct array_cache *ac;
2582 check_irq_off();
2583 ac = cpu_cache_get(cachep);
2584 retry:
2585 batchcount = ac->batchcount;
2586 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2587 /* if there was little recent activity on this
2588 * cache, then perform only a partial refill.
2589 * Otherwise we could generate refill bouncing.
2591 batchcount = BATCHREFILL_LIMIT;
2593 l3 = cachep->nodelists[numa_node_id()];
2595 BUG_ON(ac->avail > 0 || !l3);
2596 spin_lock(&l3->list_lock);
2598 if (l3->shared) {
2599 struct array_cache *shared_array = l3->shared;
2600 if (shared_array->avail) {
2601 if (batchcount > shared_array->avail)
2602 batchcount = shared_array->avail;
2603 shared_array->avail -= batchcount;
2604 ac->avail = batchcount;
2605 memcpy(ac->entry,
2606 &(shared_array->entry[shared_array->avail]),
2607 sizeof(void *) * batchcount);
2608 shared_array->touched = 1;
2609 goto alloc_done;
2612 while (batchcount > 0) {
2613 struct list_head *entry;
2614 struct slab *slabp;
2615 /* Get slab alloc is to come from. */
2616 entry = l3->slabs_partial.next;
2617 if (entry == &l3->slabs_partial) {
2618 l3->free_touched = 1;
2619 entry = l3->slabs_free.next;
2620 if (entry == &l3->slabs_free)
2621 goto must_grow;
2624 slabp = list_entry(entry, struct slab, list);
2625 check_slabp(cachep, slabp);
2626 check_spinlock_acquired(cachep);
2627 while (slabp->inuse < cachep->num && batchcount--) {
2628 STATS_INC_ALLOCED(cachep);
2629 STATS_INC_ACTIVE(cachep);
2630 STATS_SET_HIGH(cachep);
2632 ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
2633 numa_node_id());
2635 check_slabp(cachep, slabp);
2637 /* move slabp to correct slabp list: */
2638 list_del(&slabp->list);
2639 if (slabp->free == BUFCTL_END)
2640 list_add(&slabp->list, &l3->slabs_full);
2641 else
2642 list_add(&slabp->list, &l3->slabs_partial);
2645 must_grow:
2646 l3->free_objects -= ac->avail;
2647 alloc_done:
2648 spin_unlock(&l3->list_lock);
2650 if (unlikely(!ac->avail)) {
2651 int x;
2652 x = cache_grow(cachep, flags, numa_node_id());
2654 // cache_grow can reenable interrupts, then ac could change.
2655 ac = cpu_cache_get(cachep);
2656 if (!x && ac->avail == 0) // no objects in sight? abort
2657 return NULL;
2659 if (!ac->avail) // objects refilled by interrupt?
2660 goto retry;
2662 ac->touched = 1;
2663 return ac->entry[--ac->avail];
2666 static inline void
2667 cache_alloc_debugcheck_before(struct kmem_cache *cachep, gfp_t flags)
2669 might_sleep_if(flags & __GFP_WAIT);
2670 #if DEBUG
2671 kmem_flagcheck(cachep, flags);
2672 #endif
2675 #if DEBUG
2676 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep, gfp_t flags,
2677 void *objp, void *caller)
2679 if (!objp)
2680 return objp;
2681 if (cachep->flags & SLAB_POISON) {
2682 #ifdef CONFIG_DEBUG_PAGEALLOC
2683 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
2684 kernel_map_pages(virt_to_page(objp),
2685 cachep->buffer_size / PAGE_SIZE, 1);
2686 else
2687 check_poison_obj(cachep, objp);
2688 #else
2689 check_poison_obj(cachep, objp);
2690 #endif
2691 poison_obj(cachep, objp, POISON_INUSE);
2693 if (cachep->flags & SLAB_STORE_USER)
2694 *dbg_userword(cachep, objp) = caller;
2696 if (cachep->flags & SLAB_RED_ZONE) {
2697 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE
2698 || *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
2699 slab_error(cachep,
2700 "double free, or memory outside"
2701 " object was overwritten");
2702 printk(KERN_ERR
2703 "%p: redzone 1: 0x%lx, redzone 2: 0x%lx.\n",
2704 objp, *dbg_redzone1(cachep, objp),
2705 *dbg_redzone2(cachep, objp));
2707 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
2708 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
2710 objp += obj_offset(cachep);
2711 if (cachep->ctor && cachep->flags & SLAB_POISON) {
2712 unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR;
2714 if (!(flags & __GFP_WAIT))
2715 ctor_flags |= SLAB_CTOR_ATOMIC;
2717 cachep->ctor(objp, cachep, ctor_flags);
2719 return objp;
2721 #else
2722 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
2723 #endif
2725 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
2727 void *objp;
2728 struct array_cache *ac;
2730 #ifdef CONFIG_NUMA
2731 if (unlikely(current->mempolicy && !in_interrupt())) {
2732 int nid = slab_node(current->mempolicy);
2734 if (nid != numa_node_id())
2735 return __cache_alloc_node(cachep, flags, nid);
2737 #endif
2739 check_irq_off();
2740 ac = cpu_cache_get(cachep);
2741 if (likely(ac->avail)) {
2742 STATS_INC_ALLOCHIT(cachep);
2743 ac->touched = 1;
2744 objp = ac->entry[--ac->avail];
2745 } else {
2746 STATS_INC_ALLOCMISS(cachep);
2747 objp = cache_alloc_refill(cachep, flags);
2749 return objp;
2752 static __always_inline void *
2753 __cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
2755 unsigned long save_flags;
2756 void *objp;
2758 cache_alloc_debugcheck_before(cachep, flags);
2760 local_irq_save(save_flags);
2761 objp = ____cache_alloc(cachep, flags);
2762 local_irq_restore(save_flags);
2763 objp = cache_alloc_debugcheck_after(cachep, flags, objp,
2764 caller);
2765 prefetchw(objp);
2766 return objp;
2769 #ifdef CONFIG_NUMA
2771 * A interface to enable slab creation on nodeid
2773 static void *__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
2775 struct list_head *entry;
2776 struct slab *slabp;
2777 struct kmem_list3 *l3;
2778 void *obj;
2779 int x;
2781 l3 = cachep->nodelists[nodeid];
2782 BUG_ON(!l3);
2784 retry:
2785 check_irq_off();
2786 spin_lock(&l3->list_lock);
2787 entry = l3->slabs_partial.next;
2788 if (entry == &l3->slabs_partial) {
2789 l3->free_touched = 1;
2790 entry = l3->slabs_free.next;
2791 if (entry == &l3->slabs_free)
2792 goto must_grow;
2795 slabp = list_entry(entry, struct slab, list);
2796 check_spinlock_acquired_node(cachep, nodeid);
2797 check_slabp(cachep, slabp);
2799 STATS_INC_NODEALLOCS(cachep);
2800 STATS_INC_ACTIVE(cachep);
2801 STATS_SET_HIGH(cachep);
2803 BUG_ON(slabp->inuse == cachep->num);
2805 obj = slab_get_obj(cachep, slabp, nodeid);
2806 check_slabp(cachep, slabp);
2807 l3->free_objects--;
2808 /* move slabp to correct slabp list: */
2809 list_del(&slabp->list);
2811 if (slabp->free == BUFCTL_END) {
2812 list_add(&slabp->list, &l3->slabs_full);
2813 } else {
2814 list_add(&slabp->list, &l3->slabs_partial);
2817 spin_unlock(&l3->list_lock);
2818 goto done;
2820 must_grow:
2821 spin_unlock(&l3->list_lock);
2822 x = cache_grow(cachep, flags, nodeid);
2824 if (!x)
2825 return NULL;
2827 goto retry;
2828 done:
2829 return obj;
2831 #endif
2834 * Caller needs to acquire correct kmem_list's list_lock
2836 static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
2837 int node)
2839 int i;
2840 struct kmem_list3 *l3;
2842 for (i = 0; i < nr_objects; i++) {
2843 void *objp = objpp[i];
2844 struct slab *slabp;
2846 slabp = virt_to_slab(objp);
2847 l3 = cachep->nodelists[node];
2848 list_del(&slabp->list);
2849 check_spinlock_acquired_node(cachep, node);
2850 check_slabp(cachep, slabp);
2851 slab_put_obj(cachep, slabp, objp, node);
2852 STATS_DEC_ACTIVE(cachep);
2853 l3->free_objects++;
2854 check_slabp(cachep, slabp);
2856 /* fixup slab chains */
2857 if (slabp->inuse == 0) {
2858 if (l3->free_objects > l3->free_limit) {
2859 l3->free_objects -= cachep->num;
2860 slab_destroy(cachep, slabp);
2861 } else {
2862 list_add(&slabp->list, &l3->slabs_free);
2864 } else {
2865 /* Unconditionally move a slab to the end of the
2866 * partial list on free - maximum time for the
2867 * other objects to be freed, too.
2869 list_add_tail(&slabp->list, &l3->slabs_partial);
2874 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
2876 int batchcount;
2877 struct kmem_list3 *l3;
2878 int node = numa_node_id();
2880 batchcount = ac->batchcount;
2881 #if DEBUG
2882 BUG_ON(!batchcount || batchcount > ac->avail);
2883 #endif
2884 check_irq_off();
2885 l3 = cachep->nodelists[node];
2886 spin_lock(&l3->list_lock);
2887 if (l3->shared) {
2888 struct array_cache *shared_array = l3->shared;
2889 int max = shared_array->limit - shared_array->avail;
2890 if (max) {
2891 if (batchcount > max)
2892 batchcount = max;
2893 memcpy(&(shared_array->entry[shared_array->avail]),
2894 ac->entry, sizeof(void *) * batchcount);
2895 shared_array->avail += batchcount;
2896 goto free_done;
2900 free_block(cachep, ac->entry, batchcount, node);
2901 free_done:
2902 #if STATS
2904 int i = 0;
2905 struct list_head *p;
2907 p = l3->slabs_free.next;
2908 while (p != &(l3->slabs_free)) {
2909 struct slab *slabp;
2911 slabp = list_entry(p, struct slab, list);
2912 BUG_ON(slabp->inuse);
2914 i++;
2915 p = p->next;
2917 STATS_SET_FREEABLE(cachep, i);
2919 #endif
2920 spin_unlock(&l3->list_lock);
2921 ac->avail -= batchcount;
2922 memmove(ac->entry, &(ac->entry[batchcount]),
2923 sizeof(void *) * ac->avail);
2927 * __cache_free
2928 * Release an obj back to its cache. If the obj has a constructed
2929 * state, it must be in this state _before_ it is released.
2931 * Called with disabled ints.
2933 static inline void __cache_free(struct kmem_cache *cachep, void *objp)
2935 struct array_cache *ac = cpu_cache_get(cachep);
2937 check_irq_off();
2938 objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
2940 /* Make sure we are not freeing a object from another
2941 * node to the array cache on this cpu.
2943 #ifdef CONFIG_NUMA
2945 struct slab *slabp;
2946 slabp = virt_to_slab(objp);
2947 if (unlikely(slabp->nodeid != numa_node_id())) {
2948 struct array_cache *alien = NULL;
2949 int nodeid = slabp->nodeid;
2950 struct kmem_list3 *l3 =
2951 cachep->nodelists[numa_node_id()];
2953 STATS_INC_NODEFREES(cachep);
2954 if (l3->alien && l3->alien[nodeid]) {
2955 alien = l3->alien[nodeid];
2956 spin_lock(&alien->lock);
2957 if (unlikely(alien->avail == alien->limit))
2958 __drain_alien_cache(cachep,
2959 alien, nodeid);
2960 alien->entry[alien->avail++] = objp;
2961 spin_unlock(&alien->lock);
2962 } else {
2963 spin_lock(&(cachep->nodelists[nodeid])->
2964 list_lock);
2965 free_block(cachep, &objp, 1, nodeid);
2966 spin_unlock(&(cachep->nodelists[nodeid])->
2967 list_lock);
2969 return;
2972 #endif
2973 if (likely(ac->avail < ac->limit)) {
2974 STATS_INC_FREEHIT(cachep);
2975 ac->entry[ac->avail++] = objp;
2976 return;
2977 } else {
2978 STATS_INC_FREEMISS(cachep);
2979 cache_flusharray(cachep, ac);
2980 ac->entry[ac->avail++] = objp;
2985 * kmem_cache_alloc - Allocate an object
2986 * @cachep: The cache to allocate from.
2987 * @flags: See kmalloc().
2989 * Allocate an object from this cache. The flags are only relevant
2990 * if the cache has no available objects.
2992 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
2994 return __cache_alloc(cachep, flags, __builtin_return_address(0));
2996 EXPORT_SYMBOL(kmem_cache_alloc);
2999 * kmem_ptr_validate - check if an untrusted pointer might
3000 * be a slab entry.
3001 * @cachep: the cache we're checking against
3002 * @ptr: pointer to validate
3004 * This verifies that the untrusted pointer looks sane:
3005 * it is _not_ a guarantee that the pointer is actually
3006 * part of the slab cache in question, but it at least
3007 * validates that the pointer can be dereferenced and
3008 * looks half-way sane.
3010 * Currently only used for dentry validation.
3012 int fastcall kmem_ptr_validate(struct kmem_cache *cachep, void *ptr)
3014 unsigned long addr = (unsigned long)ptr;
3015 unsigned long min_addr = PAGE_OFFSET;
3016 unsigned long align_mask = BYTES_PER_WORD - 1;
3017 unsigned long size = cachep->buffer_size;
3018 struct page *page;
3020 if (unlikely(addr < min_addr))
3021 goto out;
3022 if (unlikely(addr > (unsigned long)high_memory - size))
3023 goto out;
3024 if (unlikely(addr & align_mask))
3025 goto out;
3026 if (unlikely(!kern_addr_valid(addr)))
3027 goto out;
3028 if (unlikely(!kern_addr_valid(addr + size - 1)))
3029 goto out;
3030 page = virt_to_page(ptr);
3031 if (unlikely(!PageSlab(page)))
3032 goto out;
3033 if (unlikely(page_get_cache(page) != cachep))
3034 goto out;
3035 return 1;
3036 out:
3037 return 0;
3040 #ifdef CONFIG_NUMA
3042 * kmem_cache_alloc_node - Allocate an object on the specified node
3043 * @cachep: The cache to allocate from.
3044 * @flags: See kmalloc().
3045 * @nodeid: node number of the target node.
3047 * Identical to kmem_cache_alloc, except that this function is slow
3048 * and can sleep. And it will allocate memory on the given node, which
3049 * can improve the performance for cpu bound structures.
3050 * New and improved: it will now make sure that the object gets
3051 * put on the correct node list so that there is no false sharing.
3053 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3055 unsigned long save_flags;
3056 void *ptr;
3058 cache_alloc_debugcheck_before(cachep, flags);
3059 local_irq_save(save_flags);
3061 if (nodeid == -1 || nodeid == numa_node_id() ||
3062 !cachep->nodelists[nodeid])
3063 ptr = ____cache_alloc(cachep, flags);
3064 else
3065 ptr = __cache_alloc_node(cachep, flags, nodeid);
3066 local_irq_restore(save_flags);
3068 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr,
3069 __builtin_return_address(0));
3071 return ptr;
3073 EXPORT_SYMBOL(kmem_cache_alloc_node);
3075 void *kmalloc_node(size_t size, gfp_t flags, int node)
3077 struct kmem_cache *cachep;
3079 cachep = kmem_find_general_cachep(size, flags);
3080 if (unlikely(cachep == NULL))
3081 return NULL;
3082 return kmem_cache_alloc_node(cachep, flags, node);
3084 EXPORT_SYMBOL(kmalloc_node);
3085 #endif
3088 * kmalloc - allocate memory
3089 * @size: how many bytes of memory are required.
3090 * @flags: the type of memory to allocate.
3092 * kmalloc is the normal method of allocating memory
3093 * in the kernel.
3095 * The @flags argument may be one of:
3097 * %GFP_USER - Allocate memory on behalf of user. May sleep.
3099 * %GFP_KERNEL - Allocate normal kernel ram. May sleep.
3101 * %GFP_ATOMIC - Allocation will not sleep. Use inside interrupt handlers.
3103 * Additionally, the %GFP_DMA flag may be set to indicate the memory
3104 * must be suitable for DMA. This can mean different things on different
3105 * platforms. For example, on i386, it means that the memory must come
3106 * from the first 16MB.
3108 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3109 void *caller)
3111 struct kmem_cache *cachep;
3113 /* If you want to save a few bytes .text space: replace
3114 * __ with kmem_.
3115 * Then kmalloc uses the uninlined functions instead of the inline
3116 * functions.
3118 cachep = __find_general_cachep(size, flags);
3119 if (unlikely(cachep == NULL))
3120 return NULL;
3121 return __cache_alloc(cachep, flags, caller);
3124 #ifndef CONFIG_DEBUG_SLAB
3126 void *__kmalloc(size_t size, gfp_t flags)
3128 return __do_kmalloc(size, flags, NULL);
3130 EXPORT_SYMBOL(__kmalloc);
3132 #else
3134 void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
3136 return __do_kmalloc(size, flags, caller);
3138 EXPORT_SYMBOL(__kmalloc_track_caller);
3140 #endif
3142 #ifdef CONFIG_SMP
3144 * __alloc_percpu - allocate one copy of the object for every present
3145 * cpu in the system, zeroing them.
3146 * Objects should be dereferenced using the per_cpu_ptr macro only.
3148 * @size: how many bytes of memory are required.
3150 void *__alloc_percpu(size_t size)
3152 int i;
3153 struct percpu_data *pdata = kmalloc(sizeof(*pdata), GFP_KERNEL);
3155 if (!pdata)
3156 return NULL;
3159 * Cannot use for_each_online_cpu since a cpu may come online
3160 * and we have no way of figuring out how to fix the array
3161 * that we have allocated then....
3163 for_each_cpu(i) {
3164 int node = cpu_to_node(i);
3166 if (node_online(node))
3167 pdata->ptrs[i] = kmalloc_node(size, GFP_KERNEL, node);
3168 else
3169 pdata->ptrs[i] = kmalloc(size, GFP_KERNEL);
3171 if (!pdata->ptrs[i])
3172 goto unwind_oom;
3173 memset(pdata->ptrs[i], 0, size);
3176 /* Catch derefs w/o wrappers */
3177 return (void *)(~(unsigned long)pdata);
3179 unwind_oom:
3180 while (--i >= 0) {
3181 if (!cpu_possible(i))
3182 continue;
3183 kfree(pdata->ptrs[i]);
3185 kfree(pdata);
3186 return NULL;
3188 EXPORT_SYMBOL(__alloc_percpu);
3189 #endif
3192 * kmem_cache_free - Deallocate an object
3193 * @cachep: The cache the allocation was from.
3194 * @objp: The previously allocated object.
3196 * Free an object which was previously allocated from this
3197 * cache.
3199 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3201 unsigned long flags;
3203 local_irq_save(flags);
3204 __cache_free(cachep, objp);
3205 local_irq_restore(flags);
3207 EXPORT_SYMBOL(kmem_cache_free);
3210 * kfree - free previously allocated memory
3211 * @objp: pointer returned by kmalloc.
3213 * If @objp is NULL, no operation is performed.
3215 * Don't free memory not originally allocated by kmalloc()
3216 * or you will run into trouble.
3218 void kfree(const void *objp)
3220 struct kmem_cache *c;
3221 unsigned long flags;
3223 if (unlikely(!objp))
3224 return;
3225 local_irq_save(flags);
3226 kfree_debugcheck(objp);
3227 c = virt_to_cache(objp);
3228 mutex_debug_check_no_locks_freed(objp, obj_size(c));
3229 __cache_free(c, (void *)objp);
3230 local_irq_restore(flags);
3232 EXPORT_SYMBOL(kfree);
3234 #ifdef CONFIG_SMP
3236 * free_percpu - free previously allocated percpu memory
3237 * @objp: pointer returned by alloc_percpu.
3239 * Don't free memory not originally allocated by alloc_percpu()
3240 * The complemented objp is to check for that.
3242 void free_percpu(const void *objp)
3244 int i;
3245 struct percpu_data *p = (struct percpu_data *)(~(unsigned long)objp);
3248 * We allocate for all cpus so we cannot use for online cpu here.
3250 for_each_cpu(i)
3251 kfree(p->ptrs[i]);
3252 kfree(p);
3254 EXPORT_SYMBOL(free_percpu);
3255 #endif
3257 unsigned int kmem_cache_size(struct kmem_cache *cachep)
3259 return obj_size(cachep);
3261 EXPORT_SYMBOL(kmem_cache_size);
3263 const char *kmem_cache_name(struct kmem_cache *cachep)
3265 return cachep->name;
3267 EXPORT_SYMBOL_GPL(kmem_cache_name);
3270 * This initializes kmem_list3 for all nodes.
3272 static int alloc_kmemlist(struct kmem_cache *cachep)
3274 int node;
3275 struct kmem_list3 *l3;
3276 int err = 0;
3278 for_each_online_node(node) {
3279 struct array_cache *nc = NULL, *new;
3280 struct array_cache **new_alien = NULL;
3281 #ifdef CONFIG_NUMA
3282 if (!(new_alien = alloc_alien_cache(node, cachep->limit)))
3283 goto fail;
3284 #endif
3285 if (!(new = alloc_arraycache(node, (cachep->shared *
3286 cachep->batchcount),
3287 0xbaadf00d)))
3288 goto fail;
3289 if ((l3 = cachep->nodelists[node])) {
3291 spin_lock_irq(&l3->list_lock);
3293 if ((nc = cachep->nodelists[node]->shared))
3294 free_block(cachep, nc->entry, nc->avail, node);
3296 l3->shared = new;
3297 if (!cachep->nodelists[node]->alien) {
3298 l3->alien = new_alien;
3299 new_alien = NULL;
3301 l3->free_limit = (1 + nr_cpus_node(node)) *
3302 cachep->batchcount + cachep->num;
3303 spin_unlock_irq(&l3->list_lock);
3304 kfree(nc);
3305 free_alien_cache(new_alien);
3306 continue;
3308 if (!(l3 = kmalloc_node(sizeof(struct kmem_list3),
3309 GFP_KERNEL, node)))
3310 goto fail;
3312 kmem_list3_init(l3);
3313 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
3314 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3315 l3->shared = new;
3316 l3->alien = new_alien;
3317 l3->free_limit = (1 + nr_cpus_node(node)) *
3318 cachep->batchcount + cachep->num;
3319 cachep->nodelists[node] = l3;
3321 return err;
3322 fail:
3323 err = -ENOMEM;
3324 return err;
3327 struct ccupdate_struct {
3328 struct kmem_cache *cachep;
3329 struct array_cache *new[NR_CPUS];
3332 static void do_ccupdate_local(void *info)
3334 struct ccupdate_struct *new = (struct ccupdate_struct *)info;
3335 struct array_cache *old;
3337 check_irq_off();
3338 old = cpu_cache_get(new->cachep);
3340 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3341 new->new[smp_processor_id()] = old;
3344 static int do_tune_cpucache(struct kmem_cache *cachep, int limit, int batchcount,
3345 int shared)
3347 struct ccupdate_struct new;
3348 int i, err;
3350 memset(&new.new, 0, sizeof(new.new));
3351 for_each_online_cpu(i) {
3352 new.new[i] =
3353 alloc_arraycache(cpu_to_node(i), limit, batchcount);
3354 if (!new.new[i]) {
3355 for (i--; i >= 0; i--)
3356 kfree(new.new[i]);
3357 return -ENOMEM;
3360 new.cachep = cachep;
3362 smp_call_function_all_cpus(do_ccupdate_local, (void *)&new);
3364 check_irq_on();
3365 spin_lock(&cachep->spinlock);
3366 cachep->batchcount = batchcount;
3367 cachep->limit = limit;
3368 cachep->shared = shared;
3369 spin_unlock(&cachep->spinlock);
3371 for_each_online_cpu(i) {
3372 struct array_cache *ccold = new.new[i];
3373 if (!ccold)
3374 continue;
3375 spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3376 free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
3377 spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3378 kfree(ccold);
3381 err = alloc_kmemlist(cachep);
3382 if (err) {
3383 printk(KERN_ERR "alloc_kmemlist failed for %s, error %d.\n",
3384 cachep->name, -err);
3385 BUG();
3387 return 0;
3390 static void enable_cpucache(struct kmem_cache *cachep)
3392 int err;
3393 int limit, shared;
3395 /* The head array serves three purposes:
3396 * - create a LIFO ordering, i.e. return objects that are cache-warm
3397 * - reduce the number of spinlock operations.
3398 * - reduce the number of linked list operations on the slab and
3399 * bufctl chains: array operations are cheaper.
3400 * The numbers are guessed, we should auto-tune as described by
3401 * Bonwick.
3403 if (cachep->buffer_size > 131072)
3404 limit = 1;
3405 else if (cachep->buffer_size > PAGE_SIZE)
3406 limit = 8;
3407 else if (cachep->buffer_size > 1024)
3408 limit = 24;
3409 else if (cachep->buffer_size > 256)
3410 limit = 54;
3411 else
3412 limit = 120;
3414 /* Cpu bound tasks (e.g. network routing) can exhibit cpu bound
3415 * allocation behaviour: Most allocs on one cpu, most free operations
3416 * on another cpu. For these cases, an efficient object passing between
3417 * cpus is necessary. This is provided by a shared array. The array
3418 * replaces Bonwick's magazine layer.
3419 * On uniprocessor, it's functionally equivalent (but less efficient)
3420 * to a larger limit. Thus disabled by default.
3422 shared = 0;
3423 #ifdef CONFIG_SMP
3424 if (cachep->buffer_size <= PAGE_SIZE)
3425 shared = 8;
3426 #endif
3428 #if DEBUG
3429 /* With debugging enabled, large batchcount lead to excessively
3430 * long periods with disabled local interrupts. Limit the
3431 * batchcount
3433 if (limit > 32)
3434 limit = 32;
3435 #endif
3436 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
3437 if (err)
3438 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
3439 cachep->name, -err);
3442 static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
3443 int force, int node)
3445 int tofree;
3447 check_spinlock_acquired_node(cachep, node);
3448 if (ac->touched && !force) {
3449 ac->touched = 0;
3450 } else if (ac->avail) {
3451 tofree = force ? ac->avail : (ac->limit + 4) / 5;
3452 if (tofree > ac->avail) {
3453 tofree = (ac->avail + 1) / 2;
3455 free_block(cachep, ac->entry, tofree, node);
3456 ac->avail -= tofree;
3457 memmove(ac->entry, &(ac->entry[tofree]),
3458 sizeof(void *) * ac->avail);
3463 * cache_reap - Reclaim memory from caches.
3464 * @unused: unused parameter
3466 * Called from workqueue/eventd every few seconds.
3467 * Purpose:
3468 * - clear the per-cpu caches for this CPU.
3469 * - return freeable pages to the main free memory pool.
3471 * If we cannot acquire the cache chain mutex then just give up - we'll
3472 * try again on the next iteration.
3474 static void cache_reap(void *unused)
3476 struct list_head *walk;
3477 struct kmem_list3 *l3;
3479 if (!mutex_trylock(&cache_chain_mutex)) {
3480 /* Give up. Setup the next iteration. */
3481 schedule_delayed_work(&__get_cpu_var(reap_work),
3482 REAPTIMEOUT_CPUC);
3483 return;
3486 list_for_each(walk, &cache_chain) {
3487 struct kmem_cache *searchp;
3488 struct list_head *p;
3489 int tofree;
3490 struct slab *slabp;
3492 searchp = list_entry(walk, struct kmem_cache, next);
3494 if (searchp->flags & SLAB_NO_REAP)
3495 goto next;
3497 check_irq_on();
3499 l3 = searchp->nodelists[numa_node_id()];
3500 if (l3->alien)
3501 drain_alien_cache(searchp, l3->alien);
3502 spin_lock_irq(&l3->list_lock);
3504 drain_array_locked(searchp, cpu_cache_get(searchp), 0,
3505 numa_node_id());
3507 if (time_after(l3->next_reap, jiffies))
3508 goto next_unlock;
3510 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
3512 if (l3->shared)
3513 drain_array_locked(searchp, l3->shared, 0,
3514 numa_node_id());
3516 if (l3->free_touched) {
3517 l3->free_touched = 0;
3518 goto next_unlock;
3521 tofree =
3522 (l3->free_limit + 5 * searchp->num -
3523 1) / (5 * searchp->num);
3524 do {
3525 p = l3->slabs_free.next;
3526 if (p == &(l3->slabs_free))
3527 break;
3529 slabp = list_entry(p, struct slab, list);
3530 BUG_ON(slabp->inuse);
3531 list_del(&slabp->list);
3532 STATS_INC_REAPED(searchp);
3534 /* Safe to drop the lock. The slab is no longer
3535 * linked to the cache.
3536 * searchp cannot disappear, we hold
3537 * cache_chain_lock
3539 l3->free_objects -= searchp->num;
3540 spin_unlock_irq(&l3->list_lock);
3541 slab_destroy(searchp, slabp);
3542 spin_lock_irq(&l3->list_lock);
3543 } while (--tofree > 0);
3544 next_unlock:
3545 spin_unlock_irq(&l3->list_lock);
3546 next:
3547 cond_resched();
3549 check_irq_on();
3550 mutex_unlock(&cache_chain_mutex);
3551 drain_remote_pages();
3552 /* Setup the next iteration */
3553 schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC);
3556 #ifdef CONFIG_PROC_FS
3558 static void print_slabinfo_header(struct seq_file *m)
3561 * Output format version, so at least we can change it
3562 * without _too_ many complaints.
3564 #if STATS
3565 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
3566 #else
3567 seq_puts(m, "slabinfo - version: 2.1\n");
3568 #endif
3569 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
3570 "<objperslab> <pagesperslab>");
3571 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
3572 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
3573 #if STATS
3574 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
3575 "<error> <maxfreeable> <nodeallocs> <remotefrees>");
3576 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
3577 #endif
3578 seq_putc(m, '\n');
3581 static void *s_start(struct seq_file *m, loff_t *pos)
3583 loff_t n = *pos;
3584 struct list_head *p;
3586 mutex_lock(&cache_chain_mutex);
3587 if (!n)
3588 print_slabinfo_header(m);
3589 p = cache_chain.next;
3590 while (n--) {
3591 p = p->next;
3592 if (p == &cache_chain)
3593 return NULL;
3595 return list_entry(p, struct kmem_cache, next);
3598 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
3600 struct kmem_cache *cachep = p;
3601 ++*pos;
3602 return cachep->next.next == &cache_chain ? NULL
3603 : list_entry(cachep->next.next, struct kmem_cache, next);
3606 static void s_stop(struct seq_file *m, void *p)
3608 mutex_unlock(&cache_chain_mutex);
3611 static int s_show(struct seq_file *m, void *p)
3613 struct kmem_cache *cachep = p;
3614 struct list_head *q;
3615 struct slab *slabp;
3616 unsigned long active_objs;
3617 unsigned long num_objs;
3618 unsigned long active_slabs = 0;
3619 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
3620 const char *name;
3621 char *error = NULL;
3622 int node;
3623 struct kmem_list3 *l3;
3625 spin_lock(&cachep->spinlock);
3626 active_objs = 0;
3627 num_slabs = 0;
3628 for_each_online_node(node) {
3629 l3 = cachep->nodelists[node];
3630 if (!l3)
3631 continue;
3633 check_irq_on();
3634 spin_lock_irq(&l3->list_lock);
3636 list_for_each(q, &l3->slabs_full) {
3637 slabp = list_entry(q, struct slab, list);
3638 if (slabp->inuse != cachep->num && !error)
3639 error = "slabs_full accounting error";
3640 active_objs += cachep->num;
3641 active_slabs++;
3643 list_for_each(q, &l3->slabs_partial) {
3644 slabp = list_entry(q, struct slab, list);
3645 if (slabp->inuse == cachep->num && !error)
3646 error = "slabs_partial inuse accounting error";
3647 if (!slabp->inuse && !error)
3648 error = "slabs_partial/inuse accounting error";
3649 active_objs += slabp->inuse;
3650 active_slabs++;
3652 list_for_each(q, &l3->slabs_free) {
3653 slabp = list_entry(q, struct slab, list);
3654 if (slabp->inuse && !error)
3655 error = "slabs_free/inuse accounting error";
3656 num_slabs++;
3658 free_objects += l3->free_objects;
3659 if (l3->shared)
3660 shared_avail += l3->shared->avail;
3662 spin_unlock_irq(&l3->list_lock);
3664 num_slabs += active_slabs;
3665 num_objs = num_slabs * cachep->num;
3666 if (num_objs - active_objs != free_objects && !error)
3667 error = "free_objects accounting error";
3669 name = cachep->name;
3670 if (error)
3671 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
3673 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
3674 name, active_objs, num_objs, cachep->buffer_size,
3675 cachep->num, (1 << cachep->gfporder));
3676 seq_printf(m, " : tunables %4u %4u %4u",
3677 cachep->limit, cachep->batchcount, cachep->shared);
3678 seq_printf(m, " : slabdata %6lu %6lu %6lu",
3679 active_slabs, num_slabs, shared_avail);
3680 #if STATS
3681 { /* list3 stats */
3682 unsigned long high = cachep->high_mark;
3683 unsigned long allocs = cachep->num_allocations;
3684 unsigned long grown = cachep->grown;
3685 unsigned long reaped = cachep->reaped;
3686 unsigned long errors = cachep->errors;
3687 unsigned long max_freeable = cachep->max_freeable;
3688 unsigned long node_allocs = cachep->node_allocs;
3689 unsigned long node_frees = cachep->node_frees;
3691 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
3692 %4lu %4lu %4lu %4lu", allocs, high, grown, reaped, errors, max_freeable, node_allocs, node_frees);
3694 /* cpu stats */
3696 unsigned long allochit = atomic_read(&cachep->allochit);
3697 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
3698 unsigned long freehit = atomic_read(&cachep->freehit);
3699 unsigned long freemiss = atomic_read(&cachep->freemiss);
3701 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
3702 allochit, allocmiss, freehit, freemiss);
3704 #endif
3705 seq_putc(m, '\n');
3706 spin_unlock(&cachep->spinlock);
3707 return 0;
3711 * slabinfo_op - iterator that generates /proc/slabinfo
3713 * Output layout:
3714 * cache-name
3715 * num-active-objs
3716 * total-objs
3717 * object size
3718 * num-active-slabs
3719 * total-slabs
3720 * num-pages-per-slab
3721 * + further values on SMP and with statistics enabled
3724 struct seq_operations slabinfo_op = {
3725 .start = s_start,
3726 .next = s_next,
3727 .stop = s_stop,
3728 .show = s_show,
3731 #define MAX_SLABINFO_WRITE 128
3733 * slabinfo_write - Tuning for the slab allocator
3734 * @file: unused
3735 * @buffer: user buffer
3736 * @count: data length
3737 * @ppos: unused
3739 ssize_t slabinfo_write(struct file *file, const char __user * buffer,
3740 size_t count, loff_t *ppos)
3742 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
3743 int limit, batchcount, shared, res;
3744 struct list_head *p;
3746 if (count > MAX_SLABINFO_WRITE)
3747 return -EINVAL;
3748 if (copy_from_user(&kbuf, buffer, count))
3749 return -EFAULT;
3750 kbuf[MAX_SLABINFO_WRITE] = '\0';
3752 tmp = strchr(kbuf, ' ');
3753 if (!tmp)
3754 return -EINVAL;
3755 *tmp = '\0';
3756 tmp++;
3757 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
3758 return -EINVAL;
3760 /* Find the cache in the chain of caches. */
3761 mutex_lock(&cache_chain_mutex);
3762 res = -EINVAL;
3763 list_for_each(p, &cache_chain) {
3764 struct kmem_cache *cachep = list_entry(p, struct kmem_cache,
3765 next);
3767 if (!strcmp(cachep->name, kbuf)) {
3768 if (limit < 1 ||
3769 batchcount < 1 ||
3770 batchcount > limit || shared < 0) {
3771 res = 0;
3772 } else {
3773 res = do_tune_cpucache(cachep, limit,
3774 batchcount, shared);
3776 break;
3779 mutex_unlock(&cache_chain_mutex);
3780 if (res >= 0)
3781 res = count;
3782 return res;
3784 #endif
3787 * ksize - get the actual amount of memory allocated for a given object
3788 * @objp: Pointer to the object
3790 * kmalloc may internally round up allocations and return more memory
3791 * than requested. ksize() can be used to determine the actual amount of
3792 * memory allocated. The caller may use this additional memory, even though
3793 * a smaller amount of memory was initially specified with the kmalloc call.
3794 * The caller must guarantee that objp points to a valid object previously
3795 * allocated with either kmalloc() or kmem_cache_alloc(). The object
3796 * must not be freed during the duration of the call.
3798 unsigned int ksize(const void *objp)
3800 if (unlikely(objp == NULL))
3801 return 0;
3803 return obj_size(virt_to_cache(objp));