remove ZERO_PAGE
[linux-2.6/sactl.git] / include / linux / mm.h
blobfbbc29a29dfff69e595772e8a80bfd0b6d3243c8
1 #ifndef _LINUX_MM_H
2 #define _LINUX_MM_H
4 #include <linux/errno.h>
6 #ifdef __KERNEL__
8 #include <linux/gfp.h>
9 #include <linux/list.h>
10 #include <linux/mmzone.h>
11 #include <linux/rbtree.h>
12 #include <linux/prio_tree.h>
13 #include <linux/mutex.h>
14 #include <linux/debug_locks.h>
15 #include <linux/backing-dev.h>
16 #include <linux/mm_types.h>
18 struct mempolicy;
19 struct anon_vma;
20 struct file_ra_state;
21 struct user_struct;
22 struct writeback_control;
24 #ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */
25 extern unsigned long max_mapnr;
26 #endif
28 extern unsigned long num_physpages;
29 extern void * high_memory;
30 extern int page_cluster;
32 #ifdef CONFIG_SYSCTL
33 extern int sysctl_legacy_va_layout;
34 #else
35 #define sysctl_legacy_va_layout 0
36 #endif
38 #include <asm/page.h>
39 #include <asm/pgtable.h>
40 #include <asm/processor.h>
42 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
45 * Linux kernel virtual memory manager primitives.
46 * The idea being to have a "virtual" mm in the same way
47 * we have a virtual fs - giving a cleaner interface to the
48 * mm details, and allowing different kinds of memory mappings
49 * (from shared memory to executable loading to arbitrary
50 * mmap() functions).
54 * This struct defines a memory VMM memory area. There is one of these
55 * per VM-area/task. A VM area is any part of the process virtual memory
56 * space that has a special rule for the page-fault handlers (ie a shared
57 * library, the executable area etc).
59 struct vm_area_struct {
60 struct mm_struct * vm_mm; /* The address space we belong to. */
61 unsigned long vm_start; /* Our start address within vm_mm. */
62 unsigned long vm_end; /* The first byte after our end address
63 within vm_mm. */
65 /* linked list of VM areas per task, sorted by address */
66 struct vm_area_struct *vm_next;
68 pgprot_t vm_page_prot; /* Access permissions of this VMA. */
69 unsigned long vm_flags; /* Flags, listed below. */
71 struct rb_node vm_rb;
74 * For areas with an address space and backing store,
75 * linkage into the address_space->i_mmap prio tree, or
76 * linkage to the list of like vmas hanging off its node, or
77 * linkage of vma in the address_space->i_mmap_nonlinear list.
79 union {
80 struct {
81 struct list_head list;
82 void *parent; /* aligns with prio_tree_node parent */
83 struct vm_area_struct *head;
84 } vm_set;
86 struct raw_prio_tree_node prio_tree_node;
87 } shared;
90 * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma
91 * list, after a COW of one of the file pages. A MAP_SHARED vma
92 * can only be in the i_mmap tree. An anonymous MAP_PRIVATE, stack
93 * or brk vma (with NULL file) can only be in an anon_vma list.
95 struct list_head anon_vma_node; /* Serialized by anon_vma->lock */
96 struct anon_vma *anon_vma; /* Serialized by page_table_lock */
98 /* Function pointers to deal with this struct. */
99 struct vm_operations_struct * vm_ops;
101 /* Information about our backing store: */
102 unsigned long vm_pgoff; /* Offset (within vm_file) in PAGE_SIZE
103 units, *not* PAGE_CACHE_SIZE */
104 struct file * vm_file; /* File we map to (can be NULL). */
105 void * vm_private_data; /* was vm_pte (shared mem) */
106 unsigned long vm_truncate_count;/* truncate_count or restart_addr */
108 #ifndef CONFIG_MMU
109 atomic_t vm_usage; /* refcount (VMAs shared if !MMU) */
110 #endif
111 #ifdef CONFIG_NUMA
112 struct mempolicy *vm_policy; /* NUMA policy for the VMA */
113 #endif
116 extern struct kmem_cache *vm_area_cachep;
119 * This struct defines the per-mm list of VMAs for uClinux. If CONFIG_MMU is
120 * disabled, then there's a single shared list of VMAs maintained by the
121 * system, and mm's subscribe to these individually
123 struct vm_list_struct {
124 struct vm_list_struct *next;
125 struct vm_area_struct *vma;
128 #ifndef CONFIG_MMU
129 extern struct rb_root nommu_vma_tree;
130 extern struct rw_semaphore nommu_vma_sem;
132 extern unsigned int kobjsize(const void *objp);
133 #endif
136 * vm_flags..
138 #define VM_READ 0x00000001 /* currently active flags */
139 #define VM_WRITE 0x00000002
140 #define VM_EXEC 0x00000004
141 #define VM_SHARED 0x00000008
143 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
144 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
145 #define VM_MAYWRITE 0x00000020
146 #define VM_MAYEXEC 0x00000040
147 #define VM_MAYSHARE 0x00000080
149 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
150 #define VM_GROWSUP 0x00000200
151 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
152 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
154 #define VM_EXECUTABLE 0x00001000
155 #define VM_LOCKED 0x00002000
156 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
158 /* Used by sys_madvise() */
159 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
160 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
162 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
163 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
164 #define VM_RESERVED 0x00080000 /* Count as reserved_vm like IO */
165 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
166 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
167 #define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
168 #define VM_MAPPED_COPY 0x01000000 /* T if mapped copy of data (nommu mmap) */
169 #define VM_INSERTPAGE 0x02000000 /* The vma has had "vm_insert_page()" done on it */
170 #define VM_ALWAYSDUMP 0x04000000 /* Always include in core dumps */
172 #define VM_CAN_NONLINEAR 0x08000000 /* Has ->fault & does nonlinear pages */
174 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
175 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
176 #endif
178 #ifdef CONFIG_STACK_GROWSUP
179 #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
180 #else
181 #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
182 #endif
184 #define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ)
185 #define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK
186 #define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK))
187 #define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ)
188 #define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ)
191 * mapping from the currently active vm_flags protection bits (the
192 * low four bits) to a page protection mask..
194 extern pgprot_t protection_map[16];
196 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
197 #define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */
201 * vm_fault is filled by the the pagefault handler and passed to the vma's
202 * ->fault function. The vma's ->fault is responsible for returning a bitmask
203 * of VM_FAULT_xxx flags that give details about how the fault was handled.
205 * pgoff should be used in favour of virtual_address, if possible. If pgoff
206 * is used, one may set VM_CAN_NONLINEAR in the vma->vm_flags to get nonlinear
207 * mapping support.
209 struct vm_fault {
210 unsigned int flags; /* FAULT_FLAG_xxx flags */
211 pgoff_t pgoff; /* Logical page offset based on vma */
212 void __user *virtual_address; /* Faulting virtual address */
214 struct page *page; /* ->fault handlers should return a
215 * page here, unless VM_FAULT_NOPAGE
216 * is set (which is also implied by
217 * VM_FAULT_ERROR).
222 * These are the virtual MM functions - opening of an area, closing and
223 * unmapping it (needed to keep files on disk up-to-date etc), pointer
224 * to the functions called when a no-page or a wp-page exception occurs.
226 struct vm_operations_struct {
227 void (*open)(struct vm_area_struct * area);
228 void (*close)(struct vm_area_struct * area);
229 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
230 struct page *(*nopage)(struct vm_area_struct *area,
231 unsigned long address, int *type);
232 unsigned long (*nopfn)(struct vm_area_struct *area,
233 unsigned long address);
235 /* notification that a previously read-only page is about to become
236 * writable, if an error is returned it will cause a SIGBUS */
237 int (*page_mkwrite)(struct vm_area_struct *vma, struct page *page);
238 #ifdef CONFIG_NUMA
239 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
240 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
241 unsigned long addr);
242 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
243 const nodemask_t *to, unsigned long flags);
244 #endif
247 struct mmu_gather;
248 struct inode;
250 #define page_private(page) ((page)->private)
251 #define set_page_private(page, v) ((page)->private = (v))
254 * FIXME: take this include out, include page-flags.h in
255 * files which need it (119 of them)
257 #include <linux/page-flags.h>
259 #ifdef CONFIG_DEBUG_VM
260 #define VM_BUG_ON(cond) BUG_ON(cond)
261 #else
262 #define VM_BUG_ON(condition) do { } while(0)
263 #endif
266 * Methods to modify the page usage count.
268 * What counts for a page usage:
269 * - cache mapping (page->mapping)
270 * - private data (page->private)
271 * - page mapped in a task's page tables, each mapping
272 * is counted separately
274 * Also, many kernel routines increase the page count before a critical
275 * routine so they can be sure the page doesn't go away from under them.
279 * Drop a ref, return true if the refcount fell to zero (the page has no users)
281 static inline int put_page_testzero(struct page *page)
283 VM_BUG_ON(atomic_read(&page->_count) == 0);
284 return atomic_dec_and_test(&page->_count);
288 * Try to grab a ref unless the page has a refcount of zero, return false if
289 * that is the case.
291 static inline int get_page_unless_zero(struct page *page)
293 VM_BUG_ON(PageCompound(page));
294 return atomic_inc_not_zero(&page->_count);
297 static inline struct page *compound_head(struct page *page)
299 if (unlikely(PageTail(page)))
300 return page->first_page;
301 return page;
304 static inline int page_count(struct page *page)
306 return atomic_read(&compound_head(page)->_count);
309 static inline void get_page(struct page *page)
311 page = compound_head(page);
312 VM_BUG_ON(atomic_read(&page->_count) == 0);
313 atomic_inc(&page->_count);
316 static inline struct page *virt_to_head_page(const void *x)
318 struct page *page = virt_to_page(x);
319 return compound_head(page);
323 * Setup the page count before being freed into the page allocator for
324 * the first time (boot or memory hotplug)
326 static inline void init_page_count(struct page *page)
328 atomic_set(&page->_count, 1);
331 void put_page(struct page *page);
332 void put_pages_list(struct list_head *pages);
334 void split_page(struct page *page, unsigned int order);
337 * Compound pages have a destructor function. Provide a
338 * prototype for that function and accessor functions.
339 * These are _only_ valid on the head of a PG_compound page.
341 typedef void compound_page_dtor(struct page *);
343 static inline void set_compound_page_dtor(struct page *page,
344 compound_page_dtor *dtor)
346 page[1].lru.next = (void *)dtor;
349 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
351 return (compound_page_dtor *)page[1].lru.next;
354 static inline int compound_order(struct page *page)
356 if (!PageHead(page))
357 return 0;
358 return (unsigned long)page[1].lru.prev;
361 static inline void set_compound_order(struct page *page, unsigned long order)
363 page[1].lru.prev = (void *)order;
367 * Multiple processes may "see" the same page. E.g. for untouched
368 * mappings of /dev/null, all processes see the same page full of
369 * zeroes, and text pages of executables and shared libraries have
370 * only one copy in memory, at most, normally.
372 * For the non-reserved pages, page_count(page) denotes a reference count.
373 * page_count() == 0 means the page is free. page->lru is then used for
374 * freelist management in the buddy allocator.
375 * page_count() > 0 means the page has been allocated.
377 * Pages are allocated by the slab allocator in order to provide memory
378 * to kmalloc and kmem_cache_alloc. In this case, the management of the
379 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
380 * unless a particular usage is carefully commented. (the responsibility of
381 * freeing the kmalloc memory is the caller's, of course).
383 * A page may be used by anyone else who does a __get_free_page().
384 * In this case, page_count still tracks the references, and should only
385 * be used through the normal accessor functions. The top bits of page->flags
386 * and page->virtual store page management information, but all other fields
387 * are unused and could be used privately, carefully. The management of this
388 * page is the responsibility of the one who allocated it, and those who have
389 * subsequently been given references to it.
391 * The other pages (we may call them "pagecache pages") are completely
392 * managed by the Linux memory manager: I/O, buffers, swapping etc.
393 * The following discussion applies only to them.
395 * A pagecache page contains an opaque `private' member, which belongs to the
396 * page's address_space. Usually, this is the address of a circular list of
397 * the page's disk buffers. PG_private must be set to tell the VM to call
398 * into the filesystem to release these pages.
400 * A page may belong to an inode's memory mapping. In this case, page->mapping
401 * is the pointer to the inode, and page->index is the file offset of the page,
402 * in units of PAGE_CACHE_SIZE.
404 * If pagecache pages are not associated with an inode, they are said to be
405 * anonymous pages. These may become associated with the swapcache, and in that
406 * case PG_swapcache is set, and page->private is an offset into the swapcache.
408 * In either case (swapcache or inode backed), the pagecache itself holds one
409 * reference to the page. Setting PG_private should also increment the
410 * refcount. The each user mapping also has a reference to the page.
412 * The pagecache pages are stored in a per-mapping radix tree, which is
413 * rooted at mapping->page_tree, and indexed by offset.
414 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
415 * lists, we instead now tag pages as dirty/writeback in the radix tree.
417 * All pagecache pages may be subject to I/O:
418 * - inode pages may need to be read from disk,
419 * - inode pages which have been modified and are MAP_SHARED may need
420 * to be written back to the inode on disk,
421 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
422 * modified may need to be swapped out to swap space and (later) to be read
423 * back into memory.
427 * The zone field is never updated after free_area_init_core()
428 * sets it, so none of the operations on it need to be atomic.
433 * page->flags layout:
435 * There are three possibilities for how page->flags get
436 * laid out. The first is for the normal case, without
437 * sparsemem. The second is for sparsemem when there is
438 * plenty of space for node and section. The last is when
439 * we have run out of space and have to fall back to an
440 * alternate (slower) way of determining the node.
442 * No sparsemem: | NODE | ZONE | ... | FLAGS |
443 * with space for node: | SECTION | NODE | ZONE | ... | FLAGS |
444 * no space for node: | SECTION | ZONE | ... | FLAGS |
446 #ifdef CONFIG_SPARSEMEM
447 #define SECTIONS_WIDTH SECTIONS_SHIFT
448 #else
449 #define SECTIONS_WIDTH 0
450 #endif
452 #define ZONES_WIDTH ZONES_SHIFT
454 #if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= FLAGS_RESERVED
455 #define NODES_WIDTH NODES_SHIFT
456 #else
457 #define NODES_WIDTH 0
458 #endif
460 /* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */
461 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
462 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
463 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
466 * We are going to use the flags for the page to node mapping if its in
467 * there. This includes the case where there is no node, so it is implicit.
469 #if !(NODES_WIDTH > 0 || NODES_SHIFT == 0)
470 #define NODE_NOT_IN_PAGE_FLAGS
471 #endif
473 #ifndef PFN_SECTION_SHIFT
474 #define PFN_SECTION_SHIFT 0
475 #endif
478 * Define the bit shifts to access each section. For non-existant
479 * sections we define the shift as 0; that plus a 0 mask ensures
480 * the compiler will optimise away reference to them.
482 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
483 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
484 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
486 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allcator */
487 #ifdef NODE_NOT_IN_PAGEFLAGS
488 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
489 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
490 SECTIONS_PGOFF : ZONES_PGOFF)
491 #else
492 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
493 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
494 NODES_PGOFF : ZONES_PGOFF)
495 #endif
497 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
499 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > FLAGS_RESERVED
500 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > FLAGS_RESERVED
501 #endif
503 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
504 #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
505 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
506 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
508 static inline enum zone_type page_zonenum(struct page *page)
510 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
514 * The identification function is only used by the buddy allocator for
515 * determining if two pages could be buddies. We are not really
516 * identifying a zone since we could be using a the section number
517 * id if we have not node id available in page flags.
518 * We guarantee only that it will return the same value for two
519 * combinable pages in a zone.
521 static inline int page_zone_id(struct page *page)
523 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
526 static inline int zone_to_nid(struct zone *zone)
528 #ifdef CONFIG_NUMA
529 return zone->node;
530 #else
531 return 0;
532 #endif
535 #ifdef NODE_NOT_IN_PAGE_FLAGS
536 extern int page_to_nid(struct page *page);
537 #else
538 static inline int page_to_nid(struct page *page)
540 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
542 #endif
544 static inline struct zone *page_zone(struct page *page)
546 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
549 static inline unsigned long page_to_section(struct page *page)
551 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
554 static inline void set_page_zone(struct page *page, enum zone_type zone)
556 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
557 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
560 static inline void set_page_node(struct page *page, unsigned long node)
562 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
563 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
566 static inline void set_page_section(struct page *page, unsigned long section)
568 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
569 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
572 static inline void set_page_links(struct page *page, enum zone_type zone,
573 unsigned long node, unsigned long pfn)
575 set_page_zone(page, zone);
576 set_page_node(page, node);
577 set_page_section(page, pfn_to_section_nr(pfn));
581 * Some inline functions in vmstat.h depend on page_zone()
583 #include <linux/vmstat.h>
585 static __always_inline void *lowmem_page_address(struct page *page)
587 return __va(page_to_pfn(page) << PAGE_SHIFT);
590 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
591 #define HASHED_PAGE_VIRTUAL
592 #endif
594 #if defined(WANT_PAGE_VIRTUAL)
595 #define page_address(page) ((page)->virtual)
596 #define set_page_address(page, address) \
597 do { \
598 (page)->virtual = (address); \
599 } while(0)
600 #define page_address_init() do { } while(0)
601 #endif
603 #if defined(HASHED_PAGE_VIRTUAL)
604 void *page_address(struct page *page);
605 void set_page_address(struct page *page, void *virtual);
606 void page_address_init(void);
607 #endif
609 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
610 #define page_address(page) lowmem_page_address(page)
611 #define set_page_address(page, address) do { } while(0)
612 #define page_address_init() do { } while(0)
613 #endif
616 * On an anonymous page mapped into a user virtual memory area,
617 * page->mapping points to its anon_vma, not to a struct address_space;
618 * with the PAGE_MAPPING_ANON bit set to distinguish it.
620 * Please note that, confusingly, "page_mapping" refers to the inode
621 * address_space which maps the page from disk; whereas "page_mapped"
622 * refers to user virtual address space into which the page is mapped.
624 #define PAGE_MAPPING_ANON 1
626 extern struct address_space swapper_space;
627 static inline struct address_space *page_mapping(struct page *page)
629 struct address_space *mapping = page->mapping;
631 VM_BUG_ON(PageSlab(page));
632 if (unlikely(PageSwapCache(page)))
633 mapping = &swapper_space;
634 #ifdef CONFIG_SLUB
635 else if (unlikely(PageSlab(page)))
636 mapping = NULL;
637 #endif
638 else if (unlikely((unsigned long)mapping & PAGE_MAPPING_ANON))
639 mapping = NULL;
640 return mapping;
643 static inline int PageAnon(struct page *page)
645 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
649 * Return the pagecache index of the passed page. Regular pagecache pages
650 * use ->index whereas swapcache pages use ->private
652 static inline pgoff_t page_index(struct page *page)
654 if (unlikely(PageSwapCache(page)))
655 return page_private(page);
656 return page->index;
660 * The atomic page->_mapcount, like _count, starts from -1:
661 * so that transitions both from it and to it can be tracked,
662 * using atomic_inc_and_test and atomic_add_negative(-1).
664 static inline void reset_page_mapcount(struct page *page)
666 atomic_set(&(page)->_mapcount, -1);
669 static inline int page_mapcount(struct page *page)
671 return atomic_read(&(page)->_mapcount) + 1;
675 * Return true if this page is mapped into pagetables.
677 static inline int page_mapped(struct page *page)
679 return atomic_read(&(page)->_mapcount) >= 0;
683 * Error return values for the *_nopage functions
685 #define NOPAGE_SIGBUS (NULL)
686 #define NOPAGE_OOM ((struct page *) (-1))
689 * Error return values for the *_nopfn functions
691 #define NOPFN_SIGBUS ((unsigned long) -1)
692 #define NOPFN_OOM ((unsigned long) -2)
693 #define NOPFN_REFAULT ((unsigned long) -3)
696 * Different kinds of faults, as returned by handle_mm_fault().
697 * Used to decide whether a process gets delivered SIGBUS or
698 * just gets major/minor fault counters bumped up.
701 #define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
703 #define VM_FAULT_OOM 0x0001
704 #define VM_FAULT_SIGBUS 0x0002
705 #define VM_FAULT_MAJOR 0x0004
706 #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
708 #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
709 #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
711 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS)
713 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
715 extern void show_free_areas(void);
717 #ifdef CONFIG_SHMEM
718 int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new);
719 struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
720 unsigned long addr);
721 int shmem_lock(struct file *file, int lock, struct user_struct *user);
722 #else
723 static inline int shmem_lock(struct file *file, int lock,
724 struct user_struct *user)
726 return 0;
729 static inline int shmem_set_policy(struct vm_area_struct *vma,
730 struct mempolicy *new)
732 return 0;
735 static inline struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
736 unsigned long addr)
738 return NULL;
740 #endif
741 struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags);
743 int shmem_zero_setup(struct vm_area_struct *);
745 #ifndef CONFIG_MMU
746 extern unsigned long shmem_get_unmapped_area(struct file *file,
747 unsigned long addr,
748 unsigned long len,
749 unsigned long pgoff,
750 unsigned long flags);
751 #endif
753 extern int can_do_mlock(void);
754 extern int user_shm_lock(size_t, struct user_struct *);
755 extern void user_shm_unlock(size_t, struct user_struct *);
758 * Parameter block passed down to zap_pte_range in exceptional cases.
760 struct zap_details {
761 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
762 struct address_space *check_mapping; /* Check page->mapping if set */
763 pgoff_t first_index; /* Lowest page->index to unmap */
764 pgoff_t last_index; /* Highest page->index to unmap */
765 spinlock_t *i_mmap_lock; /* For unmap_mapping_range: */
766 unsigned long truncate_count; /* Compare vm_truncate_count */
769 struct page *vm_normal_page(struct vm_area_struct *, unsigned long, pte_t);
770 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
771 unsigned long size, struct zap_details *);
772 unsigned long unmap_vmas(struct mmu_gather **tlb,
773 struct vm_area_struct *start_vma, unsigned long start_addr,
774 unsigned long end_addr, unsigned long *nr_accounted,
775 struct zap_details *);
776 void free_pgd_range(struct mmu_gather **tlb, unsigned long addr,
777 unsigned long end, unsigned long floor, unsigned long ceiling);
778 void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *start_vma,
779 unsigned long floor, unsigned long ceiling);
780 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
781 struct vm_area_struct *vma);
782 void unmap_mapping_range(struct address_space *mapping,
783 loff_t const holebegin, loff_t const holelen, int even_cows);
785 static inline void unmap_shared_mapping_range(struct address_space *mapping,
786 loff_t const holebegin, loff_t const holelen)
788 unmap_mapping_range(mapping, holebegin, holelen, 0);
791 extern int vmtruncate(struct inode * inode, loff_t offset);
792 extern int vmtruncate_range(struct inode * inode, loff_t offset, loff_t end);
794 #ifdef CONFIG_MMU
795 extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
796 unsigned long address, int write_access);
797 #else
798 static inline int handle_mm_fault(struct mm_struct *mm,
799 struct vm_area_struct *vma, unsigned long address,
800 int write_access)
802 /* should never happen if there's no MMU */
803 BUG();
804 return VM_FAULT_SIGBUS;
806 #endif
808 extern int make_pages_present(unsigned long addr, unsigned long end);
809 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
811 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, unsigned long start,
812 int len, int write, int force, struct page **pages, struct vm_area_struct **vmas);
813 void print_bad_pte(struct vm_area_struct *, pte_t, unsigned long);
815 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
816 extern void do_invalidatepage(struct page *page, unsigned long offset);
818 int __set_page_dirty_nobuffers(struct page *page);
819 int __set_page_dirty_no_writeback(struct page *page);
820 int redirty_page_for_writepage(struct writeback_control *wbc,
821 struct page *page);
822 int FASTCALL(set_page_dirty(struct page *page));
823 int set_page_dirty_lock(struct page *page);
824 int clear_page_dirty_for_io(struct page *page);
826 extern unsigned long move_page_tables(struct vm_area_struct *vma,
827 unsigned long old_addr, struct vm_area_struct *new_vma,
828 unsigned long new_addr, unsigned long len);
829 extern unsigned long do_mremap(unsigned long addr,
830 unsigned long old_len, unsigned long new_len,
831 unsigned long flags, unsigned long new_addr);
832 extern int mprotect_fixup(struct vm_area_struct *vma,
833 struct vm_area_struct **pprev, unsigned long start,
834 unsigned long end, unsigned long newflags);
837 * A callback you can register to apply pressure to ageable caches.
839 * 'shrink' is passed a count 'nr_to_scan' and a 'gfpmask'. It should
840 * look through the least-recently-used 'nr_to_scan' entries and
841 * attempt to free them up. It should return the number of objects
842 * which remain in the cache. If it returns -1, it means it cannot do
843 * any scanning at this time (eg. there is a risk of deadlock).
845 * The 'gfpmask' refers to the allocation we are currently trying to
846 * fulfil.
848 * Note that 'shrink' will be passed nr_to_scan == 0 when the VM is
849 * querying the cache size, so a fastpath for that case is appropriate.
851 struct shrinker {
852 int (*shrink)(int nr_to_scan, gfp_t gfp_mask);
853 int seeks; /* seeks to recreate an obj */
855 /* These are for internal use */
856 struct list_head list;
857 long nr; /* objs pending delete */
859 #define DEFAULT_SEEKS 2 /* A good number if you don't know better. */
860 extern void register_shrinker(struct shrinker *);
861 extern void unregister_shrinker(struct shrinker *);
863 int vma_wants_writenotify(struct vm_area_struct *vma);
865 extern pte_t *FASTCALL(get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl));
867 #ifdef __PAGETABLE_PUD_FOLDED
868 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
869 unsigned long address)
871 return 0;
873 #else
874 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
875 #endif
877 #ifdef __PAGETABLE_PMD_FOLDED
878 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
879 unsigned long address)
881 return 0;
883 #else
884 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
885 #endif
887 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
888 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
891 * The following ifdef needed to get the 4level-fixup.h header to work.
892 * Remove it when 4level-fixup.h has been removed.
894 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
895 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
897 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
898 NULL: pud_offset(pgd, address);
901 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
903 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
904 NULL: pmd_offset(pud, address);
906 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
908 #if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS
910 * We tuck a spinlock to guard each pagetable page into its struct page,
911 * at page->private, with BUILD_BUG_ON to make sure that this will not
912 * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
913 * When freeing, reset page->mapping so free_pages_check won't complain.
915 #define __pte_lockptr(page) &((page)->ptl)
916 #define pte_lock_init(_page) do { \
917 spin_lock_init(__pte_lockptr(_page)); \
918 } while (0)
919 #define pte_lock_deinit(page) ((page)->mapping = NULL)
920 #define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
921 #else
923 * We use mm->page_table_lock to guard all pagetable pages of the mm.
925 #define pte_lock_init(page) do {} while (0)
926 #define pte_lock_deinit(page) do {} while (0)
927 #define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;})
928 #endif /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */
930 #define pte_offset_map_lock(mm, pmd, address, ptlp) \
931 ({ \
932 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
933 pte_t *__pte = pte_offset_map(pmd, address); \
934 *(ptlp) = __ptl; \
935 spin_lock(__ptl); \
936 __pte; \
939 #define pte_unmap_unlock(pte, ptl) do { \
940 spin_unlock(ptl); \
941 pte_unmap(pte); \
942 } while (0)
944 #define pte_alloc_map(mm, pmd, address) \
945 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
946 NULL: pte_offset_map(pmd, address))
948 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
949 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
950 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
952 #define pte_alloc_kernel(pmd, address) \
953 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
954 NULL: pte_offset_kernel(pmd, address))
956 extern void free_area_init(unsigned long * zones_size);
957 extern void free_area_init_node(int nid, pg_data_t *pgdat,
958 unsigned long * zones_size, unsigned long zone_start_pfn,
959 unsigned long *zholes_size);
960 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
962 * With CONFIG_ARCH_POPULATES_NODE_MAP set, an architecture may initialise its
963 * zones, allocate the backing mem_map and account for memory holes in a more
964 * architecture independent manner. This is a substitute for creating the
965 * zone_sizes[] and zholes_size[] arrays and passing them to
966 * free_area_init_node()
968 * An architecture is expected to register range of page frames backed by
969 * physical memory with add_active_range() before calling
970 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
971 * usage, an architecture is expected to do something like
973 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
974 * max_highmem_pfn};
975 * for_each_valid_physical_page_range()
976 * add_active_range(node_id, start_pfn, end_pfn)
977 * free_area_init_nodes(max_zone_pfns);
979 * If the architecture guarantees that there are no holes in the ranges
980 * registered with add_active_range(), free_bootmem_active_regions()
981 * will call free_bootmem_node() for each registered physical page range.
982 * Similarly sparse_memory_present_with_active_regions() calls
983 * memory_present() for each range when SPARSEMEM is enabled.
985 * See mm/page_alloc.c for more information on each function exposed by
986 * CONFIG_ARCH_POPULATES_NODE_MAP
988 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
989 extern void add_active_range(unsigned int nid, unsigned long start_pfn,
990 unsigned long end_pfn);
991 extern void shrink_active_range(unsigned int nid, unsigned long old_end_pfn,
992 unsigned long new_end_pfn);
993 extern void push_node_boundaries(unsigned int nid, unsigned long start_pfn,
994 unsigned long end_pfn);
995 extern void remove_all_active_ranges(void);
996 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
997 unsigned long end_pfn);
998 extern void get_pfn_range_for_nid(unsigned int nid,
999 unsigned long *start_pfn, unsigned long *end_pfn);
1000 extern unsigned long find_min_pfn_with_active_regions(void);
1001 extern unsigned long find_max_pfn_with_active_regions(void);
1002 extern void free_bootmem_with_active_regions(int nid,
1003 unsigned long max_low_pfn);
1004 extern void sparse_memory_present_with_active_regions(int nid);
1005 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1006 extern int early_pfn_to_nid(unsigned long pfn);
1007 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
1008 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
1009 extern void set_dma_reserve(unsigned long new_dma_reserve);
1010 extern void memmap_init_zone(unsigned long, int, unsigned long,
1011 unsigned long, enum memmap_context);
1012 extern void setup_per_zone_pages_min(void);
1013 extern void mem_init(void);
1014 extern void show_mem(void);
1015 extern void si_meminfo(struct sysinfo * val);
1016 extern void si_meminfo_node(struct sysinfo *val, int nid);
1018 #ifdef CONFIG_NUMA
1019 extern void setup_per_cpu_pageset(void);
1020 #else
1021 static inline void setup_per_cpu_pageset(void) {}
1022 #endif
1024 /* prio_tree.c */
1025 void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old);
1026 void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *);
1027 void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *);
1028 struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma,
1029 struct prio_tree_iter *iter);
1031 #define vma_prio_tree_foreach(vma, iter, root, begin, end) \
1032 for (prio_tree_iter_init(iter, root, begin, end), vma = NULL; \
1033 (vma = vma_prio_tree_next(vma, iter)); )
1035 static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1036 struct list_head *list)
1038 vma->shared.vm_set.parent = NULL;
1039 list_add_tail(&vma->shared.vm_set.list, list);
1042 /* mmap.c */
1043 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
1044 extern void vma_adjust(struct vm_area_struct *vma, unsigned long start,
1045 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1046 extern struct vm_area_struct *vma_merge(struct mm_struct *,
1047 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1048 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1049 struct mempolicy *);
1050 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1051 extern int split_vma(struct mm_struct *,
1052 struct vm_area_struct *, unsigned long addr, int new_below);
1053 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1054 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1055 struct rb_node **, struct rb_node *);
1056 extern void unlink_file_vma(struct vm_area_struct *);
1057 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1058 unsigned long addr, unsigned long len, pgoff_t pgoff);
1059 extern void exit_mmap(struct mm_struct *);
1060 extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
1061 extern int install_special_mapping(struct mm_struct *mm,
1062 unsigned long addr, unsigned long len,
1063 unsigned long flags, struct page **pages);
1065 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1067 extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1068 unsigned long len, unsigned long prot,
1069 unsigned long flag, unsigned long pgoff);
1070 extern unsigned long mmap_region(struct file *file, unsigned long addr,
1071 unsigned long len, unsigned long flags,
1072 unsigned int vm_flags, unsigned long pgoff,
1073 int accountable);
1075 static inline unsigned long do_mmap(struct file *file, unsigned long addr,
1076 unsigned long len, unsigned long prot,
1077 unsigned long flag, unsigned long offset)
1079 unsigned long ret = -EINVAL;
1080 if ((offset + PAGE_ALIGN(len)) < offset)
1081 goto out;
1082 if (!(offset & ~PAGE_MASK))
1083 ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
1084 out:
1085 return ret;
1088 extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1090 extern unsigned long do_brk(unsigned long, unsigned long);
1092 /* filemap.c */
1093 extern unsigned long page_unuse(struct page *);
1094 extern void truncate_inode_pages(struct address_space *, loff_t);
1095 extern void truncate_inode_pages_range(struct address_space *,
1096 loff_t lstart, loff_t lend);
1098 /* generic vm_area_ops exported for stackable file systems */
1099 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
1101 /* mm/page-writeback.c */
1102 int write_one_page(struct page *page, int wait);
1104 /* readahead.c */
1105 #define VM_MAX_READAHEAD 128 /* kbytes */
1106 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1108 int do_page_cache_readahead(struct address_space *mapping, struct file *filp,
1109 pgoff_t offset, unsigned long nr_to_read);
1110 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
1111 pgoff_t offset, unsigned long nr_to_read);
1113 void page_cache_sync_readahead(struct address_space *mapping,
1114 struct file_ra_state *ra,
1115 struct file *filp,
1116 pgoff_t offset,
1117 unsigned long size);
1119 void page_cache_async_readahead(struct address_space *mapping,
1120 struct file_ra_state *ra,
1121 struct file *filp,
1122 struct page *pg,
1123 pgoff_t offset,
1124 unsigned long size);
1126 unsigned long max_sane_readahead(unsigned long nr);
1128 /* Do stack extension */
1129 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
1130 #ifdef CONFIG_IA64
1131 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
1132 #endif
1133 extern int expand_stack_downwards(struct vm_area_struct *vma,
1134 unsigned long address);
1136 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1137 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1138 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1139 struct vm_area_struct **pprev);
1141 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1142 NULL if none. Assume start_addr < end_addr. */
1143 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1145 struct vm_area_struct * vma = find_vma(mm,start_addr);
1147 if (vma && end_addr <= vma->vm_start)
1148 vma = NULL;
1149 return vma;
1152 static inline unsigned long vma_pages(struct vm_area_struct *vma)
1154 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1157 pgprot_t vm_get_page_prot(unsigned long vm_flags);
1158 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
1159 struct page *vmalloc_to_page(void *addr);
1160 unsigned long vmalloc_to_pfn(void *addr);
1161 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1162 unsigned long pfn, unsigned long size, pgprot_t);
1163 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
1164 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1165 unsigned long pfn);
1167 struct page *follow_page(struct vm_area_struct *, unsigned long address,
1168 unsigned int foll_flags);
1169 #define FOLL_WRITE 0x01 /* check pte is writable */
1170 #define FOLL_TOUCH 0x02 /* mark page accessed */
1171 #define FOLL_GET 0x04 /* do get_page on page */
1172 #define FOLL_ANON 0x08 /* give ZERO_PAGE if no pgtable */
1174 typedef int (*pte_fn_t)(pte_t *pte, struct page *pmd_page, unsigned long addr,
1175 void *data);
1176 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
1177 unsigned long size, pte_fn_t fn, void *data);
1179 #ifdef CONFIG_PROC_FS
1180 void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1181 #else
1182 static inline void vm_stat_account(struct mm_struct *mm,
1183 unsigned long flags, struct file *file, long pages)
1186 #endif /* CONFIG_PROC_FS */
1188 #ifndef CONFIG_DEBUG_PAGEALLOC
1189 static inline void
1190 kernel_map_pages(struct page *page, int numpages, int enable) {}
1191 #endif
1193 extern struct vm_area_struct *get_gate_vma(struct task_struct *tsk);
1194 #ifdef __HAVE_ARCH_GATE_AREA
1195 int in_gate_area_no_task(unsigned long addr);
1196 int in_gate_area(struct task_struct *task, unsigned long addr);
1197 #else
1198 int in_gate_area_no_task(unsigned long addr);
1199 #define in_gate_area(task, addr) ({(void)task; in_gate_area_no_task(addr);})
1200 #endif /* __HAVE_ARCH_GATE_AREA */
1202 int drop_caches_sysctl_handler(struct ctl_table *, int, struct file *,
1203 void __user *, size_t *, loff_t *);
1204 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
1205 unsigned long lru_pages);
1206 void drop_pagecache(void);
1207 void drop_slab(void);
1209 #ifndef CONFIG_MMU
1210 #define randomize_va_space 0
1211 #else
1212 extern int randomize_va_space;
1213 #endif
1215 const char * arch_vma_name(struct vm_area_struct *vma);
1217 struct page *sparse_early_mem_map_populate(unsigned long pnum, int nid);
1218 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
1219 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
1220 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1221 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
1222 void *vmemmap_alloc_block(unsigned long size, int node);
1223 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
1224 int vmemmap_populate_basepages(struct page *start_page,
1225 unsigned long pages, int node);
1226 int vmemmap_populate(struct page *start_page, unsigned long pages, int node);
1228 #endif /* __KERNEL__ */
1229 #endif /* _LINUX_MM_H */