PCI: Multiprobe sanitizer
[linux-2.6/sactl.git] / include / asm-avr32 / dma-mapping.h
blob4c40cb41cdf8399a188e2da74bb379f25f113dbd
1 #ifndef __ASM_AVR32_DMA_MAPPING_H
2 #define __ASM_AVR32_DMA_MAPPING_H
4 #include <linux/mm.h>
5 #include <linux/device.h>
6 #include <asm/scatterlist.h>
7 #include <asm/processor.h>
8 #include <asm/cacheflush.h>
9 #include <asm/io.h>
11 extern void dma_cache_sync(void *vaddr, size_t size, int direction);
14 * Return whether the given device DMA address mask can be supported
15 * properly. For example, if your device can only drive the low 24-bits
16 * during bus mastering, then you would pass 0x00ffffff as the mask
17 * to this function.
19 static inline int dma_supported(struct device *dev, u64 mask)
21 /* Fix when needed. I really don't know of any limitations */
22 return 1;
25 static inline int dma_set_mask(struct device *dev, u64 dma_mask)
27 if (!dev->dma_mask || !dma_supported(dev, dma_mask))
28 return -EIO;
30 *dev->dma_mask = dma_mask;
31 return 0;
34 /**
35 * dma_alloc_coherent - allocate consistent memory for DMA
36 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
37 * @size: required memory size
38 * @handle: bus-specific DMA address
40 * Allocate some uncached, unbuffered memory for a device for
41 * performing DMA. This function allocates pages, and will
42 * return the CPU-viewed address, and sets @handle to be the
43 * device-viewed address.
45 extern void *dma_alloc_coherent(struct device *dev, size_t size,
46 dma_addr_t *handle, gfp_t gfp);
48 /**
49 * dma_free_coherent - free memory allocated by dma_alloc_coherent
50 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
51 * @size: size of memory originally requested in dma_alloc_coherent
52 * @cpu_addr: CPU-view address returned from dma_alloc_coherent
53 * @handle: device-view address returned from dma_alloc_coherent
55 * Free (and unmap) a DMA buffer previously allocated by
56 * dma_alloc_coherent().
58 * References to memory and mappings associated with cpu_addr/handle
59 * during and after this call executing are illegal.
61 extern void dma_free_coherent(struct device *dev, size_t size,
62 void *cpu_addr, dma_addr_t handle);
64 /**
65 * dma_alloc_writecombine - allocate write-combining memory for DMA
66 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
67 * @size: required memory size
68 * @handle: bus-specific DMA address
70 * Allocate some uncached, buffered memory for a device for
71 * performing DMA. This function allocates pages, and will
72 * return the CPU-viewed address, and sets @handle to be the
73 * device-viewed address.
75 extern void *dma_alloc_writecombine(struct device *dev, size_t size,
76 dma_addr_t *handle, gfp_t gfp);
78 /**
79 * dma_free_coherent - free memory allocated by dma_alloc_writecombine
80 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
81 * @size: size of memory originally requested in dma_alloc_writecombine
82 * @cpu_addr: CPU-view address returned from dma_alloc_writecombine
83 * @handle: device-view address returned from dma_alloc_writecombine
85 * Free (and unmap) a DMA buffer previously allocated by
86 * dma_alloc_writecombine().
88 * References to memory and mappings associated with cpu_addr/handle
89 * during and after this call executing are illegal.
91 extern void dma_free_writecombine(struct device *dev, size_t size,
92 void *cpu_addr, dma_addr_t handle);
94 /**
95 * dma_map_single - map a single buffer for streaming DMA
96 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
97 * @cpu_addr: CPU direct mapped address of buffer
98 * @size: size of buffer to map
99 * @dir: DMA transfer direction
101 * Ensure that any data held in the cache is appropriately discarded
102 * or written back.
104 * The device owns this memory once this call has completed. The CPU
105 * can regain ownership by calling dma_unmap_single() or dma_sync_single().
107 static inline dma_addr_t
108 dma_map_single(struct device *dev, void *cpu_addr, size_t size,
109 enum dma_data_direction direction)
111 dma_cache_sync(cpu_addr, size, direction);
112 return virt_to_bus(cpu_addr);
116 * dma_unmap_single - unmap a single buffer previously mapped
117 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
118 * @handle: DMA address of buffer
119 * @size: size of buffer to map
120 * @dir: DMA transfer direction
122 * Unmap a single streaming mode DMA translation. The handle and size
123 * must match what was provided in the previous dma_map_single() call.
124 * All other usages are undefined.
126 * After this call, reads by the CPU to the buffer are guaranteed to see
127 * whatever the device wrote there.
129 static inline void
130 dma_unmap_single(struct device *dev, dma_addr_t dma_addr, size_t size,
131 enum dma_data_direction direction)
137 * dma_map_page - map a portion of a page for streaming DMA
138 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
139 * @page: page that buffer resides in
140 * @offset: offset into page for start of buffer
141 * @size: size of buffer to map
142 * @dir: DMA transfer direction
144 * Ensure that any data held in the cache is appropriately discarded
145 * or written back.
147 * The device owns this memory once this call has completed. The CPU
148 * can regain ownership by calling dma_unmap_page() or dma_sync_single().
150 static inline dma_addr_t
151 dma_map_page(struct device *dev, struct page *page,
152 unsigned long offset, size_t size,
153 enum dma_data_direction direction)
155 return dma_map_single(dev, page_address(page) + offset,
156 size, direction);
160 * dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
161 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
162 * @handle: DMA address of buffer
163 * @size: size of buffer to map
164 * @dir: DMA transfer direction
166 * Unmap a single streaming mode DMA translation. The handle and size
167 * must match what was provided in the previous dma_map_single() call.
168 * All other usages are undefined.
170 * After this call, reads by the CPU to the buffer are guaranteed to see
171 * whatever the device wrote there.
173 static inline void
174 dma_unmap_page(struct device *dev, dma_addr_t dma_address, size_t size,
175 enum dma_data_direction direction)
177 dma_unmap_single(dev, dma_address, size, direction);
181 * dma_map_sg - map a set of SG buffers for streaming mode DMA
182 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
183 * @sg: list of buffers
184 * @nents: number of buffers to map
185 * @dir: DMA transfer direction
187 * Map a set of buffers described by scatterlist in streaming
188 * mode for DMA. This is the scatter-gather version of the
189 * above pci_map_single interface. Here the scatter gather list
190 * elements are each tagged with the appropriate dma address
191 * and length. They are obtained via sg_dma_{address,length}(SG).
193 * NOTE: An implementation may be able to use a smaller number of
194 * DMA address/length pairs than there are SG table elements.
195 * (for example via virtual mapping capabilities)
196 * The routine returns the number of addr/length pairs actually
197 * used, at most nents.
199 * Device ownership issues as mentioned above for pci_map_single are
200 * the same here.
202 static inline int
203 dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
204 enum dma_data_direction direction)
206 int i;
208 for (i = 0; i < nents; i++) {
209 char *virt;
211 sg[i].dma_address = page_to_bus(sg[i].page) + sg[i].offset;
212 virt = page_address(sg[i].page) + sg[i].offset;
213 dma_cache_sync(virt, sg[i].length, direction);
216 return nents;
220 * dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
221 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
222 * @sg: list of buffers
223 * @nents: number of buffers to map
224 * @dir: DMA transfer direction
226 * Unmap a set of streaming mode DMA translations.
227 * Again, CPU read rules concerning calls here are the same as for
228 * pci_unmap_single() above.
230 static inline void
231 dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nhwentries,
232 enum dma_data_direction direction)
238 * dma_sync_single_for_cpu
239 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
240 * @handle: DMA address of buffer
241 * @size: size of buffer to map
242 * @dir: DMA transfer direction
244 * Make physical memory consistent for a single streaming mode DMA
245 * translation after a transfer.
247 * If you perform a dma_map_single() but wish to interrogate the
248 * buffer using the cpu, yet do not wish to teardown the DMA mapping,
249 * you must call this function before doing so. At the next point you
250 * give the DMA address back to the card, you must first perform a
251 * dma_sync_single_for_device, and then the device again owns the
252 * buffer.
254 static inline void
255 dma_sync_single_for_cpu(struct device *dev, dma_addr_t dma_handle,
256 size_t size, enum dma_data_direction direction)
258 dma_cache_sync(bus_to_virt(dma_handle), size, direction);
261 static inline void
262 dma_sync_single_for_device(struct device *dev, dma_addr_t dma_handle,
263 size_t size, enum dma_data_direction direction)
265 dma_cache_sync(bus_to_virt(dma_handle), size, direction);
269 * dma_sync_sg_for_cpu
270 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
271 * @sg: list of buffers
272 * @nents: number of buffers to map
273 * @dir: DMA transfer direction
275 * Make physical memory consistent for a set of streaming
276 * mode DMA translations after a transfer.
278 * The same as dma_sync_single_for_* but for a scatter-gather list,
279 * same rules and usage.
281 static inline void
282 dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
283 int nents, enum dma_data_direction direction)
285 int i;
287 for (i = 0; i < nents; i++) {
288 dma_cache_sync(page_address(sg[i].page) + sg[i].offset,
289 sg[i].length, direction);
293 static inline void
294 dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
295 int nents, enum dma_data_direction direction)
297 int i;
299 for (i = 0; i < nents; i++) {
300 dma_cache_sync(page_address(sg[i].page) + sg[i].offset,
301 sg[i].length, direction);
305 /* Now for the API extensions over the pci_ one */
307 #define dma_alloc_noncoherent(d, s, h, f) dma_alloc_coherent(d, s, h, f)
308 #define dma_free_noncoherent(d, s, v, h) dma_free_coherent(d, s, v, h)
310 static inline int dma_is_consistent(dma_addr_t dma_addr)
312 return 1;
315 static inline int dma_get_cache_alignment(void)
317 return boot_cpu_data.dcache.linesz;
320 #endif /* __ASM_AVR32_DMA_MAPPING_H */