1 /*---------------------------------------------------------------------------+
4 | Compute the tan of a FPU_REG, using a polynomial approximation. |
6 | Copyright (C) 1992,1993,1994,1997,1999 |
7 | W. Metzenthen, 22 Parker St, Ormond, Vic 3163, |
8 | Australia. E-mail billm@melbpc.org.au |
11 +---------------------------------------------------------------------------*/
13 #include "exception.h"
14 #include "reg_constant.h"
16 #include "fpu_system.h"
17 #include "control_w.h"
20 #define HiPOWERop 3 /* odd poly, positive terms */
21 static const unsigned long long oddplterm
[HiPOWERop
] = {
27 #define HiPOWERon 2 /* odd poly, negative terms */
28 static const unsigned long long oddnegterm
[HiPOWERon
] = {
33 #define HiPOWERep 2 /* even poly, positive terms */
34 static const unsigned long long evenplterm
[HiPOWERep
] = {
39 #define HiPOWERen 2 /* even poly, negative terms */
40 static const unsigned long long evennegterm
[HiPOWERen
] = {
45 static const unsigned long long twothirds
= 0xaaaaaaaaaaaaaaabLL
;
47 /*--- poly_tan() ------------------------------------------------------------+
49 +---------------------------------------------------------------------------*/
50 void poly_tan(FPU_REG
*st0_ptr
)
54 Xsig argSq
, argSqSq
, accumulatoro
, accumulatore
, accum
,
58 exponent
= exponent(st0_ptr
);
61 if (signnegative(st0_ptr
)) { /* Can't hack a number < 0.0 */
64 } /* Need a positive number */
67 /* Split the problem into two domains, smaller and larger than pi/4 */
69 || ((exponent
== -1) && (st0_ptr
->sigh
> 0xc90fdaa2))) {
70 /* The argument is greater than (approx) pi/4 */
73 XSIG_LL(accum
) = significand(st0_ptr
);
76 /* The argument is >= 1.0 */
77 /* Put the binary point at the left. */
80 /* pi/2 in hex is: 1.921fb54442d18469 898CC51701B839A2 52049C1 */
81 XSIG_LL(accum
) = 0x921fb54442d18469LL
- XSIG_LL(accum
);
82 /* This is a special case which arises due to rounding. */
83 if (XSIG_LL(accum
) == 0xffffffffffffffffLL
) {
84 FPU_settag0(TAG_Valid
);
85 significand(st0_ptr
) = 0x8a51e04daabda360LL
;
86 setexponent16(st0_ptr
,
87 (0x41 + EXTENDED_Ebias
) | SIGN_Negative
);
91 argSignif
.lsw
= accum
.lsw
;
92 XSIG_LL(argSignif
) = XSIG_LL(accum
);
93 exponent
= -1 + norm_Xsig(&argSignif
);
97 XSIG_LL(accum
) = XSIG_LL(argSignif
) = significand(st0_ptr
);
100 /* shift the argument right by the required places */
101 if (FPU_shrx(&XSIG_LL(accum
), -1 - exponent
) >=
103 XSIG_LL(accum
)++; /* round up */
107 XSIG_LL(argSq
) = XSIG_LL(accum
);
108 argSq
.lsw
= accum
.lsw
;
109 mul_Xsig_Xsig(&argSq
, &argSq
);
110 XSIG_LL(argSqSq
) = XSIG_LL(argSq
);
111 argSqSq
.lsw
= argSq
.lsw
;
112 mul_Xsig_Xsig(&argSqSq
, &argSqSq
);
114 /* Compute the negative terms for the numerator polynomial */
115 accumulatoro
.msw
= accumulatoro
.midw
= accumulatoro
.lsw
= 0;
116 polynomial_Xsig(&accumulatoro
, &XSIG_LL(argSqSq
), oddnegterm
,
118 mul_Xsig_Xsig(&accumulatoro
, &argSq
);
119 negate_Xsig(&accumulatoro
);
120 /* Add the positive terms */
121 polynomial_Xsig(&accumulatoro
, &XSIG_LL(argSqSq
), oddplterm
,
124 /* Compute the positive terms for the denominator polynomial */
125 accumulatore
.msw
= accumulatore
.midw
= accumulatore
.lsw
= 0;
126 polynomial_Xsig(&accumulatore
, &XSIG_LL(argSqSq
), evenplterm
,
128 mul_Xsig_Xsig(&accumulatore
, &argSq
);
129 negate_Xsig(&accumulatore
);
130 /* Add the negative terms */
131 polynomial_Xsig(&accumulatore
, &XSIG_LL(argSqSq
), evennegterm
,
133 /* Multiply by arg^2 */
134 mul64_Xsig(&accumulatore
, &XSIG_LL(argSignif
));
135 mul64_Xsig(&accumulatore
, &XSIG_LL(argSignif
));
136 /* de-normalize and divide by 2 */
137 shr_Xsig(&accumulatore
, -2 * (1 + exponent
) + 1);
138 negate_Xsig(&accumulatore
); /* This does 1 - accumulator */
140 /* Now find the ratio. */
141 if (accumulatore
.msw
== 0) {
142 /* accumulatoro must contain 1.0 here, (actually, 0) but it
143 really doesn't matter what value we use because it will
144 have negligible effect in later calculations
146 XSIG_LL(accum
) = 0x8000000000000000LL
;
149 div_Xsig(&accumulatoro
, &accumulatore
, &accum
);
152 /* Multiply by 1/3 * arg^3 */
153 mul64_Xsig(&accum
, &XSIG_LL(argSignif
));
154 mul64_Xsig(&accum
, &XSIG_LL(argSignif
));
155 mul64_Xsig(&accum
, &XSIG_LL(argSignif
));
156 mul64_Xsig(&accum
, &twothirds
);
157 shr_Xsig(&accum
, -2 * (exponent
+ 1));
159 /* tan(arg) = arg + accum */
160 add_two_Xsig(&accum
, &argSignif
, &exponent
);
163 /* We now have the value of tan(pi_2 - arg) where pi_2 is an
164 approximation for pi/2
166 /* The next step is to fix the answer to compensate for the
167 error due to the approximation used for pi/2
170 /* This is (approx) delta, the error in our approx for pi/2
171 (see above). It has an exponent of -65
173 XSIG_LL(fix_up
) = 0x898cc51701b839a2LL
;
177 adj
= 0xffffffff; /* We want approx 1.0 here, but
178 this is close enough. */
179 else if (exponent
> -30) {
180 adj
= accum
.msw
>> -(exponent
+ 1); /* tan */
181 adj
= mul_32_32(adj
, adj
); /* tan^2 */
184 adj
= mul_32_32(0x898cc517, adj
); /* delta * tan^2 */
187 if (!(fix_up
.msw
& 0x80000000)) { /* did fix_up overflow ? */
188 /* Yes, we need to add an msb */
189 shr_Xsig(&fix_up
, 1);
190 fix_up
.msw
|= 0x80000000;
191 shr_Xsig(&fix_up
, 64 + exponent
);
193 shr_Xsig(&fix_up
, 65 + exponent
);
195 add_two_Xsig(&accum
, &fix_up
, &exponent
);
197 /* accum now contains tan(pi/2 - arg).
198 Use tan(arg) = 1.0 / tan(pi/2 - arg)
200 accumulatoro
.lsw
= accumulatoro
.midw
= 0;
201 accumulatoro
.msw
= 0x80000000;
202 div_Xsig(&accumulatoro
, &accum
, &accum
);
203 exponent
= -exponent
- 1;
206 /* Transfer the result */
208 FPU_settag0(TAG_Valid
);
209 significand(st0_ptr
) = XSIG_LL(accum
);
210 setexponent16(st0_ptr
, exponent
+ EXTENDED_Ebias
); /* Result is positive. */