md: software Raid autodetect dev list not array
[linux-2.6/sactl.git] / fs / xfs / xfs_inode.c
blobcdc4c28926d0cf62d972e807323f9ce3d92de4c0
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_imap.h"
25 #include "xfs_trans.h"
26 #include "xfs_trans_priv.h"
27 #include "xfs_sb.h"
28 #include "xfs_ag.h"
29 #include "xfs_dir2.h"
30 #include "xfs_dmapi.h"
31 #include "xfs_mount.h"
32 #include "xfs_bmap_btree.h"
33 #include "xfs_alloc_btree.h"
34 #include "xfs_ialloc_btree.h"
35 #include "xfs_dir2_sf.h"
36 #include "xfs_attr_sf.h"
37 #include "xfs_dinode.h"
38 #include "xfs_inode.h"
39 #include "xfs_buf_item.h"
40 #include "xfs_inode_item.h"
41 #include "xfs_btree.h"
42 #include "xfs_alloc.h"
43 #include "xfs_ialloc.h"
44 #include "xfs_bmap.h"
45 #include "xfs_rw.h"
46 #include "xfs_error.h"
47 #include "xfs_utils.h"
48 #include "xfs_dir2_trace.h"
49 #include "xfs_quota.h"
50 #include "xfs_acl.h"
51 #include "xfs_filestream.h"
53 #include <linux/log2.h>
55 kmem_zone_t *xfs_ifork_zone;
56 kmem_zone_t *xfs_inode_zone;
57 kmem_zone_t *xfs_chashlist_zone;
60 * Used in xfs_itruncate(). This is the maximum number of extents
61 * freed from a file in a single transaction.
63 #define XFS_ITRUNC_MAX_EXTENTS 2
65 STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
66 STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
67 STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
68 STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
71 #ifdef DEBUG
73 * Make sure that the extents in the given memory buffer
74 * are valid.
76 STATIC void
77 xfs_validate_extents(
78 xfs_ifork_t *ifp,
79 int nrecs,
80 int disk,
81 xfs_exntfmt_t fmt)
83 xfs_bmbt_rec_t *ep;
84 xfs_bmbt_irec_t irec;
85 xfs_bmbt_rec_t rec;
86 int i;
88 for (i = 0; i < nrecs; i++) {
89 ep = xfs_iext_get_ext(ifp, i);
90 rec.l0 = get_unaligned((__uint64_t*)&ep->l0);
91 rec.l1 = get_unaligned((__uint64_t*)&ep->l1);
92 if (disk)
93 xfs_bmbt_disk_get_all(&rec, &irec);
94 else
95 xfs_bmbt_get_all(&rec, &irec);
96 if (fmt == XFS_EXTFMT_NOSTATE)
97 ASSERT(irec.br_state == XFS_EXT_NORM);
100 #else /* DEBUG */
101 #define xfs_validate_extents(ifp, nrecs, disk, fmt)
102 #endif /* DEBUG */
105 * Check that none of the inode's in the buffer have a next
106 * unlinked field of 0.
108 #if defined(DEBUG)
109 void
110 xfs_inobp_check(
111 xfs_mount_t *mp,
112 xfs_buf_t *bp)
114 int i;
115 int j;
116 xfs_dinode_t *dip;
118 j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
120 for (i = 0; i < j; i++) {
121 dip = (xfs_dinode_t *)xfs_buf_offset(bp,
122 i * mp->m_sb.sb_inodesize);
123 if (!dip->di_next_unlinked) {
124 xfs_fs_cmn_err(CE_ALERT, mp,
125 "Detected a bogus zero next_unlinked field in incore inode buffer 0x%p. About to pop an ASSERT.",
126 bp);
127 ASSERT(dip->di_next_unlinked);
131 #endif
134 * This routine is called to map an inode number within a file
135 * system to the buffer containing the on-disk version of the
136 * inode. It returns a pointer to the buffer containing the
137 * on-disk inode in the bpp parameter, and in the dip parameter
138 * it returns a pointer to the on-disk inode within that buffer.
140 * If a non-zero error is returned, then the contents of bpp and
141 * dipp are undefined.
143 * Use xfs_imap() to determine the size and location of the
144 * buffer to read from disk.
146 STATIC int
147 xfs_inotobp(
148 xfs_mount_t *mp,
149 xfs_trans_t *tp,
150 xfs_ino_t ino,
151 xfs_dinode_t **dipp,
152 xfs_buf_t **bpp,
153 int *offset)
155 int di_ok;
156 xfs_imap_t imap;
157 xfs_buf_t *bp;
158 int error;
159 xfs_dinode_t *dip;
162 * Call the space management code to find the location of the
163 * inode on disk.
165 imap.im_blkno = 0;
166 error = xfs_imap(mp, tp, ino, &imap, XFS_IMAP_LOOKUP);
167 if (error != 0) {
168 cmn_err(CE_WARN,
169 "xfs_inotobp: xfs_imap() returned an "
170 "error %d on %s. Returning error.", error, mp->m_fsname);
171 return error;
175 * If the inode number maps to a block outside the bounds of the
176 * file system then return NULL rather than calling read_buf
177 * and panicing when we get an error from the driver.
179 if ((imap.im_blkno + imap.im_len) >
180 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
181 cmn_err(CE_WARN,
182 "xfs_inotobp: inode number (%llu + %d) maps to a block outside the bounds "
183 "of the file system %s. Returning EINVAL.",
184 (unsigned long long)imap.im_blkno,
185 imap.im_len, mp->m_fsname);
186 return XFS_ERROR(EINVAL);
190 * Read in the buffer. If tp is NULL, xfs_trans_read_buf() will
191 * default to just a read_buf() call.
193 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno,
194 (int)imap.im_len, XFS_BUF_LOCK, &bp);
196 if (error) {
197 cmn_err(CE_WARN,
198 "xfs_inotobp: xfs_trans_read_buf() returned an "
199 "error %d on %s. Returning error.", error, mp->m_fsname);
200 return error;
202 dip = (xfs_dinode_t *)xfs_buf_offset(bp, 0);
203 di_ok =
204 INT_GET(dip->di_core.di_magic, ARCH_CONVERT) == XFS_DINODE_MAGIC &&
205 XFS_DINODE_GOOD_VERSION(INT_GET(dip->di_core.di_version, ARCH_CONVERT));
206 if (unlikely(XFS_TEST_ERROR(!di_ok, mp, XFS_ERRTAG_ITOBP_INOTOBP,
207 XFS_RANDOM_ITOBP_INOTOBP))) {
208 XFS_CORRUPTION_ERROR("xfs_inotobp", XFS_ERRLEVEL_LOW, mp, dip);
209 xfs_trans_brelse(tp, bp);
210 cmn_err(CE_WARN,
211 "xfs_inotobp: XFS_TEST_ERROR() returned an "
212 "error on %s. Returning EFSCORRUPTED.", mp->m_fsname);
213 return XFS_ERROR(EFSCORRUPTED);
216 xfs_inobp_check(mp, bp);
219 * Set *dipp to point to the on-disk inode in the buffer.
221 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
222 *bpp = bp;
223 *offset = imap.im_boffset;
224 return 0;
229 * This routine is called to map an inode to the buffer containing
230 * the on-disk version of the inode. It returns a pointer to the
231 * buffer containing the on-disk inode in the bpp parameter, and in
232 * the dip parameter it returns a pointer to the on-disk inode within
233 * that buffer.
235 * If a non-zero error is returned, then the contents of bpp and
236 * dipp are undefined.
238 * If the inode is new and has not yet been initialized, use xfs_imap()
239 * to determine the size and location of the buffer to read from disk.
240 * If the inode has already been mapped to its buffer and read in once,
241 * then use the mapping information stored in the inode rather than
242 * calling xfs_imap(). This allows us to avoid the overhead of looking
243 * at the inode btree for small block file systems (see xfs_dilocate()).
244 * We can tell whether the inode has been mapped in before by comparing
245 * its disk block address to 0. Only uninitialized inodes will have
246 * 0 for the disk block address.
249 xfs_itobp(
250 xfs_mount_t *mp,
251 xfs_trans_t *tp,
252 xfs_inode_t *ip,
253 xfs_dinode_t **dipp,
254 xfs_buf_t **bpp,
255 xfs_daddr_t bno,
256 uint imap_flags)
258 xfs_imap_t imap;
259 xfs_buf_t *bp;
260 int error;
261 int i;
262 int ni;
264 if (ip->i_blkno == (xfs_daddr_t)0) {
266 * Call the space management code to find the location of the
267 * inode on disk.
269 imap.im_blkno = bno;
270 if ((error = xfs_imap(mp, tp, ip->i_ino, &imap,
271 XFS_IMAP_LOOKUP | imap_flags)))
272 return error;
275 * If the inode number maps to a block outside the bounds
276 * of the file system then return NULL rather than calling
277 * read_buf and panicing when we get an error from the
278 * driver.
280 if ((imap.im_blkno + imap.im_len) >
281 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
282 #ifdef DEBUG
283 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: "
284 "(imap.im_blkno (0x%llx) "
285 "+ imap.im_len (0x%llx)) > "
286 " XFS_FSB_TO_BB(mp, "
287 "mp->m_sb.sb_dblocks) (0x%llx)",
288 (unsigned long long) imap.im_blkno,
289 (unsigned long long) imap.im_len,
290 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
291 #endif /* DEBUG */
292 return XFS_ERROR(EINVAL);
296 * Fill in the fields in the inode that will be used to
297 * map the inode to its buffer from now on.
299 ip->i_blkno = imap.im_blkno;
300 ip->i_len = imap.im_len;
301 ip->i_boffset = imap.im_boffset;
302 } else {
304 * We've already mapped the inode once, so just use the
305 * mapping that we saved the first time.
307 imap.im_blkno = ip->i_blkno;
308 imap.im_len = ip->i_len;
309 imap.im_boffset = ip->i_boffset;
311 ASSERT(bno == 0 || bno == imap.im_blkno);
314 * Read in the buffer. If tp is NULL, xfs_trans_read_buf() will
315 * default to just a read_buf() call.
317 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno,
318 (int)imap.im_len, XFS_BUF_LOCK, &bp);
319 if (error) {
320 #ifdef DEBUG
321 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: "
322 "xfs_trans_read_buf() returned error %d, "
323 "imap.im_blkno 0x%llx, imap.im_len 0x%llx",
324 error, (unsigned long long) imap.im_blkno,
325 (unsigned long long) imap.im_len);
326 #endif /* DEBUG */
327 return error;
331 * Validate the magic number and version of every inode in the buffer
332 * (if DEBUG kernel) or the first inode in the buffer, otherwise.
333 * No validation is done here in userspace (xfs_repair).
335 #if !defined(__KERNEL__)
336 ni = 0;
337 #elif defined(DEBUG)
338 ni = BBTOB(imap.im_len) >> mp->m_sb.sb_inodelog;
339 #else /* usual case */
340 ni = 1;
341 #endif
343 for (i = 0; i < ni; i++) {
344 int di_ok;
345 xfs_dinode_t *dip;
347 dip = (xfs_dinode_t *)xfs_buf_offset(bp,
348 (i << mp->m_sb.sb_inodelog));
349 di_ok = INT_GET(dip->di_core.di_magic, ARCH_CONVERT) == XFS_DINODE_MAGIC &&
350 XFS_DINODE_GOOD_VERSION(INT_GET(dip->di_core.di_version, ARCH_CONVERT));
351 if (unlikely(XFS_TEST_ERROR(!di_ok, mp,
352 XFS_ERRTAG_ITOBP_INOTOBP,
353 XFS_RANDOM_ITOBP_INOTOBP))) {
354 if (imap_flags & XFS_IMAP_BULKSTAT) {
355 xfs_trans_brelse(tp, bp);
356 return XFS_ERROR(EINVAL);
358 #ifdef DEBUG
359 cmn_err(CE_ALERT,
360 "Device %s - bad inode magic/vsn "
361 "daddr %lld #%d (magic=%x)",
362 XFS_BUFTARG_NAME(mp->m_ddev_targp),
363 (unsigned long long)imap.im_blkno, i,
364 INT_GET(dip->di_core.di_magic, ARCH_CONVERT));
365 #endif
366 XFS_CORRUPTION_ERROR("xfs_itobp", XFS_ERRLEVEL_HIGH,
367 mp, dip);
368 xfs_trans_brelse(tp, bp);
369 return XFS_ERROR(EFSCORRUPTED);
373 xfs_inobp_check(mp, bp);
376 * Mark the buffer as an inode buffer now that it looks good
378 XFS_BUF_SET_VTYPE(bp, B_FS_INO);
381 * Set *dipp to point to the on-disk inode in the buffer.
383 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
384 *bpp = bp;
385 return 0;
389 * Move inode type and inode format specific information from the
390 * on-disk inode to the in-core inode. For fifos, devs, and sockets
391 * this means set if_rdev to the proper value. For files, directories,
392 * and symlinks this means to bring in the in-line data or extent
393 * pointers. For a file in B-tree format, only the root is immediately
394 * brought in-core. The rest will be in-lined in if_extents when it
395 * is first referenced (see xfs_iread_extents()).
397 STATIC int
398 xfs_iformat(
399 xfs_inode_t *ip,
400 xfs_dinode_t *dip)
402 xfs_attr_shortform_t *atp;
403 int size;
404 int error;
405 xfs_fsize_t di_size;
406 ip->i_df.if_ext_max =
407 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
408 error = 0;
410 if (unlikely(
411 INT_GET(dip->di_core.di_nextents, ARCH_CONVERT) +
412 INT_GET(dip->di_core.di_anextents, ARCH_CONVERT) >
413 INT_GET(dip->di_core.di_nblocks, ARCH_CONVERT))) {
414 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
415 "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
416 (unsigned long long)ip->i_ino,
417 (int)(INT_GET(dip->di_core.di_nextents, ARCH_CONVERT)
418 + INT_GET(dip->di_core.di_anextents, ARCH_CONVERT)),
419 (unsigned long long)
420 INT_GET(dip->di_core.di_nblocks, ARCH_CONVERT));
421 XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
422 ip->i_mount, dip);
423 return XFS_ERROR(EFSCORRUPTED);
426 if (unlikely(INT_GET(dip->di_core.di_forkoff, ARCH_CONVERT) > ip->i_mount->m_sb.sb_inodesize)) {
427 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
428 "corrupt dinode %Lu, forkoff = 0x%x.",
429 (unsigned long long)ip->i_ino,
430 (int)(INT_GET(dip->di_core.di_forkoff, ARCH_CONVERT)));
431 XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
432 ip->i_mount, dip);
433 return XFS_ERROR(EFSCORRUPTED);
436 switch (ip->i_d.di_mode & S_IFMT) {
437 case S_IFIFO:
438 case S_IFCHR:
439 case S_IFBLK:
440 case S_IFSOCK:
441 if (unlikely(INT_GET(dip->di_core.di_format, ARCH_CONVERT) != XFS_DINODE_FMT_DEV)) {
442 XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
443 ip->i_mount, dip);
444 return XFS_ERROR(EFSCORRUPTED);
446 ip->i_d.di_size = 0;
447 ip->i_size = 0;
448 ip->i_df.if_u2.if_rdev = INT_GET(dip->di_u.di_dev, ARCH_CONVERT);
449 break;
451 case S_IFREG:
452 case S_IFLNK:
453 case S_IFDIR:
454 switch (INT_GET(dip->di_core.di_format, ARCH_CONVERT)) {
455 case XFS_DINODE_FMT_LOCAL:
457 * no local regular files yet
459 if (unlikely((INT_GET(dip->di_core.di_mode, ARCH_CONVERT) & S_IFMT) == S_IFREG)) {
460 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
461 "corrupt inode %Lu "
462 "(local format for regular file).",
463 (unsigned long long) ip->i_ino);
464 XFS_CORRUPTION_ERROR("xfs_iformat(4)",
465 XFS_ERRLEVEL_LOW,
466 ip->i_mount, dip);
467 return XFS_ERROR(EFSCORRUPTED);
470 di_size = INT_GET(dip->di_core.di_size, ARCH_CONVERT);
471 if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
472 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
473 "corrupt inode %Lu "
474 "(bad size %Ld for local inode).",
475 (unsigned long long) ip->i_ino,
476 (long long) di_size);
477 XFS_CORRUPTION_ERROR("xfs_iformat(5)",
478 XFS_ERRLEVEL_LOW,
479 ip->i_mount, dip);
480 return XFS_ERROR(EFSCORRUPTED);
483 size = (int)di_size;
484 error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
485 break;
486 case XFS_DINODE_FMT_EXTENTS:
487 error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
488 break;
489 case XFS_DINODE_FMT_BTREE:
490 error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
491 break;
492 default:
493 XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
494 ip->i_mount);
495 return XFS_ERROR(EFSCORRUPTED);
497 break;
499 default:
500 XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
501 return XFS_ERROR(EFSCORRUPTED);
503 if (error) {
504 return error;
506 if (!XFS_DFORK_Q(dip))
507 return 0;
508 ASSERT(ip->i_afp == NULL);
509 ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP);
510 ip->i_afp->if_ext_max =
511 XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
512 switch (INT_GET(dip->di_core.di_aformat, ARCH_CONVERT)) {
513 case XFS_DINODE_FMT_LOCAL:
514 atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
515 size = be16_to_cpu(atp->hdr.totsize);
516 error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
517 break;
518 case XFS_DINODE_FMT_EXTENTS:
519 error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
520 break;
521 case XFS_DINODE_FMT_BTREE:
522 error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
523 break;
524 default:
525 error = XFS_ERROR(EFSCORRUPTED);
526 break;
528 if (error) {
529 kmem_zone_free(xfs_ifork_zone, ip->i_afp);
530 ip->i_afp = NULL;
531 xfs_idestroy_fork(ip, XFS_DATA_FORK);
533 return error;
537 * The file is in-lined in the on-disk inode.
538 * If it fits into if_inline_data, then copy
539 * it there, otherwise allocate a buffer for it
540 * and copy the data there. Either way, set
541 * if_data to point at the data.
542 * If we allocate a buffer for the data, make
543 * sure that its size is a multiple of 4 and
544 * record the real size in i_real_bytes.
546 STATIC int
547 xfs_iformat_local(
548 xfs_inode_t *ip,
549 xfs_dinode_t *dip,
550 int whichfork,
551 int size)
553 xfs_ifork_t *ifp;
554 int real_size;
557 * If the size is unreasonable, then something
558 * is wrong and we just bail out rather than crash in
559 * kmem_alloc() or memcpy() below.
561 if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
562 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
563 "corrupt inode %Lu "
564 "(bad size %d for local fork, size = %d).",
565 (unsigned long long) ip->i_ino, size,
566 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
567 XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
568 ip->i_mount, dip);
569 return XFS_ERROR(EFSCORRUPTED);
571 ifp = XFS_IFORK_PTR(ip, whichfork);
572 real_size = 0;
573 if (size == 0)
574 ifp->if_u1.if_data = NULL;
575 else if (size <= sizeof(ifp->if_u2.if_inline_data))
576 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
577 else {
578 real_size = roundup(size, 4);
579 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
581 ifp->if_bytes = size;
582 ifp->if_real_bytes = real_size;
583 if (size)
584 memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
585 ifp->if_flags &= ~XFS_IFEXTENTS;
586 ifp->if_flags |= XFS_IFINLINE;
587 return 0;
591 * The file consists of a set of extents all
592 * of which fit into the on-disk inode.
593 * If there are few enough extents to fit into
594 * the if_inline_ext, then copy them there.
595 * Otherwise allocate a buffer for them and copy
596 * them into it. Either way, set if_extents
597 * to point at the extents.
599 STATIC int
600 xfs_iformat_extents(
601 xfs_inode_t *ip,
602 xfs_dinode_t *dip,
603 int whichfork)
605 xfs_bmbt_rec_t *ep, *dp;
606 xfs_ifork_t *ifp;
607 int nex;
608 int size;
609 int i;
611 ifp = XFS_IFORK_PTR(ip, whichfork);
612 nex = XFS_DFORK_NEXTENTS(dip, whichfork);
613 size = nex * (uint)sizeof(xfs_bmbt_rec_t);
616 * If the number of extents is unreasonable, then something
617 * is wrong and we just bail out rather than crash in
618 * kmem_alloc() or memcpy() below.
620 if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
621 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
622 "corrupt inode %Lu ((a)extents = %d).",
623 (unsigned long long) ip->i_ino, nex);
624 XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
625 ip->i_mount, dip);
626 return XFS_ERROR(EFSCORRUPTED);
629 ifp->if_real_bytes = 0;
630 if (nex == 0)
631 ifp->if_u1.if_extents = NULL;
632 else if (nex <= XFS_INLINE_EXTS)
633 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
634 else
635 xfs_iext_add(ifp, 0, nex);
637 ifp->if_bytes = size;
638 if (size) {
639 dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
640 xfs_validate_extents(ifp, nex, 1, XFS_EXTFMT_INODE(ip));
641 for (i = 0; i < nex; i++, dp++) {
642 ep = xfs_iext_get_ext(ifp, i);
643 ep->l0 = INT_GET(get_unaligned((__uint64_t*)&dp->l0),
644 ARCH_CONVERT);
645 ep->l1 = INT_GET(get_unaligned((__uint64_t*)&dp->l1),
646 ARCH_CONVERT);
648 XFS_BMAP_TRACE_EXLIST(ip, nex, whichfork);
649 if (whichfork != XFS_DATA_FORK ||
650 XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
651 if (unlikely(xfs_check_nostate_extents(
652 ifp, 0, nex))) {
653 XFS_ERROR_REPORT("xfs_iformat_extents(2)",
654 XFS_ERRLEVEL_LOW,
655 ip->i_mount);
656 return XFS_ERROR(EFSCORRUPTED);
659 ifp->if_flags |= XFS_IFEXTENTS;
660 return 0;
664 * The file has too many extents to fit into
665 * the inode, so they are in B-tree format.
666 * Allocate a buffer for the root of the B-tree
667 * and copy the root into it. The i_extents
668 * field will remain NULL until all of the
669 * extents are read in (when they are needed).
671 STATIC int
672 xfs_iformat_btree(
673 xfs_inode_t *ip,
674 xfs_dinode_t *dip,
675 int whichfork)
677 xfs_bmdr_block_t *dfp;
678 xfs_ifork_t *ifp;
679 /* REFERENCED */
680 int nrecs;
681 int size;
683 ifp = XFS_IFORK_PTR(ip, whichfork);
684 dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
685 size = XFS_BMAP_BROOT_SPACE(dfp);
686 nrecs = XFS_BMAP_BROOT_NUMRECS(dfp);
689 * blow out if -- fork has less extents than can fit in
690 * fork (fork shouldn't be a btree format), root btree
691 * block has more records than can fit into the fork,
692 * or the number of extents is greater than the number of
693 * blocks.
695 if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max
696 || XFS_BMDR_SPACE_CALC(nrecs) >
697 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)
698 || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
699 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
700 "corrupt inode %Lu (btree).",
701 (unsigned long long) ip->i_ino);
702 XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
703 ip->i_mount);
704 return XFS_ERROR(EFSCORRUPTED);
707 ifp->if_broot_bytes = size;
708 ifp->if_broot = kmem_alloc(size, KM_SLEEP);
709 ASSERT(ifp->if_broot != NULL);
711 * Copy and convert from the on-disk structure
712 * to the in-memory structure.
714 xfs_bmdr_to_bmbt(dfp, XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
715 ifp->if_broot, size);
716 ifp->if_flags &= ~XFS_IFEXTENTS;
717 ifp->if_flags |= XFS_IFBROOT;
719 return 0;
723 * xfs_xlate_dinode_core - translate an xfs_inode_core_t between ondisk
724 * and native format
726 * buf = on-disk representation
727 * dip = native representation
728 * dir = direction - +ve -> disk to native
729 * -ve -> native to disk
731 void
732 xfs_xlate_dinode_core(
733 xfs_caddr_t buf,
734 xfs_dinode_core_t *dip,
735 int dir)
737 xfs_dinode_core_t *buf_core = (xfs_dinode_core_t *)buf;
738 xfs_dinode_core_t *mem_core = (xfs_dinode_core_t *)dip;
739 xfs_arch_t arch = ARCH_CONVERT;
741 ASSERT(dir);
743 INT_XLATE(buf_core->di_magic, mem_core->di_magic, dir, arch);
744 INT_XLATE(buf_core->di_mode, mem_core->di_mode, dir, arch);
745 INT_XLATE(buf_core->di_version, mem_core->di_version, dir, arch);
746 INT_XLATE(buf_core->di_format, mem_core->di_format, dir, arch);
747 INT_XLATE(buf_core->di_onlink, mem_core->di_onlink, dir, arch);
748 INT_XLATE(buf_core->di_uid, mem_core->di_uid, dir, arch);
749 INT_XLATE(buf_core->di_gid, mem_core->di_gid, dir, arch);
750 INT_XLATE(buf_core->di_nlink, mem_core->di_nlink, dir, arch);
751 INT_XLATE(buf_core->di_projid, mem_core->di_projid, dir, arch);
753 if (dir > 0) {
754 memcpy(mem_core->di_pad, buf_core->di_pad,
755 sizeof(buf_core->di_pad));
756 } else {
757 memcpy(buf_core->di_pad, mem_core->di_pad,
758 sizeof(buf_core->di_pad));
761 INT_XLATE(buf_core->di_flushiter, mem_core->di_flushiter, dir, arch);
763 INT_XLATE(buf_core->di_atime.t_sec, mem_core->di_atime.t_sec,
764 dir, arch);
765 INT_XLATE(buf_core->di_atime.t_nsec, mem_core->di_atime.t_nsec,
766 dir, arch);
767 INT_XLATE(buf_core->di_mtime.t_sec, mem_core->di_mtime.t_sec,
768 dir, arch);
769 INT_XLATE(buf_core->di_mtime.t_nsec, mem_core->di_mtime.t_nsec,
770 dir, arch);
771 INT_XLATE(buf_core->di_ctime.t_sec, mem_core->di_ctime.t_sec,
772 dir, arch);
773 INT_XLATE(buf_core->di_ctime.t_nsec, mem_core->di_ctime.t_nsec,
774 dir, arch);
775 INT_XLATE(buf_core->di_size, mem_core->di_size, dir, arch);
776 INT_XLATE(buf_core->di_nblocks, mem_core->di_nblocks, dir, arch);
777 INT_XLATE(buf_core->di_extsize, mem_core->di_extsize, dir, arch);
778 INT_XLATE(buf_core->di_nextents, mem_core->di_nextents, dir, arch);
779 INT_XLATE(buf_core->di_anextents, mem_core->di_anextents, dir, arch);
780 INT_XLATE(buf_core->di_forkoff, mem_core->di_forkoff, dir, arch);
781 INT_XLATE(buf_core->di_aformat, mem_core->di_aformat, dir, arch);
782 INT_XLATE(buf_core->di_dmevmask, mem_core->di_dmevmask, dir, arch);
783 INT_XLATE(buf_core->di_dmstate, mem_core->di_dmstate, dir, arch);
784 INT_XLATE(buf_core->di_flags, mem_core->di_flags, dir, arch);
785 INT_XLATE(buf_core->di_gen, mem_core->di_gen, dir, arch);
788 STATIC uint
789 _xfs_dic2xflags(
790 __uint16_t di_flags)
792 uint flags = 0;
794 if (di_flags & XFS_DIFLAG_ANY) {
795 if (di_flags & XFS_DIFLAG_REALTIME)
796 flags |= XFS_XFLAG_REALTIME;
797 if (di_flags & XFS_DIFLAG_PREALLOC)
798 flags |= XFS_XFLAG_PREALLOC;
799 if (di_flags & XFS_DIFLAG_IMMUTABLE)
800 flags |= XFS_XFLAG_IMMUTABLE;
801 if (di_flags & XFS_DIFLAG_APPEND)
802 flags |= XFS_XFLAG_APPEND;
803 if (di_flags & XFS_DIFLAG_SYNC)
804 flags |= XFS_XFLAG_SYNC;
805 if (di_flags & XFS_DIFLAG_NOATIME)
806 flags |= XFS_XFLAG_NOATIME;
807 if (di_flags & XFS_DIFLAG_NODUMP)
808 flags |= XFS_XFLAG_NODUMP;
809 if (di_flags & XFS_DIFLAG_RTINHERIT)
810 flags |= XFS_XFLAG_RTINHERIT;
811 if (di_flags & XFS_DIFLAG_PROJINHERIT)
812 flags |= XFS_XFLAG_PROJINHERIT;
813 if (di_flags & XFS_DIFLAG_NOSYMLINKS)
814 flags |= XFS_XFLAG_NOSYMLINKS;
815 if (di_flags & XFS_DIFLAG_EXTSIZE)
816 flags |= XFS_XFLAG_EXTSIZE;
817 if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
818 flags |= XFS_XFLAG_EXTSZINHERIT;
819 if (di_flags & XFS_DIFLAG_NODEFRAG)
820 flags |= XFS_XFLAG_NODEFRAG;
821 if (di_flags & XFS_DIFLAG_FILESTREAM)
822 flags |= XFS_XFLAG_FILESTREAM;
825 return flags;
828 uint
829 xfs_ip2xflags(
830 xfs_inode_t *ip)
832 xfs_dinode_core_t *dic = &ip->i_d;
834 return _xfs_dic2xflags(dic->di_flags) |
835 (XFS_CFORK_Q(dic) ? XFS_XFLAG_HASATTR : 0);
838 uint
839 xfs_dic2xflags(
840 xfs_dinode_core_t *dic)
842 return _xfs_dic2xflags(INT_GET(dic->di_flags, ARCH_CONVERT)) |
843 (XFS_CFORK_Q_DISK(dic) ? XFS_XFLAG_HASATTR : 0);
847 * Given a mount structure and an inode number, return a pointer
848 * to a newly allocated in-core inode corresponding to the given
849 * inode number.
851 * Initialize the inode's attributes and extent pointers if it
852 * already has them (it will not if the inode has no links).
855 xfs_iread(
856 xfs_mount_t *mp,
857 xfs_trans_t *tp,
858 xfs_ino_t ino,
859 xfs_inode_t **ipp,
860 xfs_daddr_t bno,
861 uint imap_flags)
863 xfs_buf_t *bp;
864 xfs_dinode_t *dip;
865 xfs_inode_t *ip;
866 int error;
868 ASSERT(xfs_inode_zone != NULL);
870 ip = kmem_zone_zalloc(xfs_inode_zone, KM_SLEEP);
871 ip->i_ino = ino;
872 ip->i_mount = mp;
873 spin_lock_init(&ip->i_flags_lock);
876 * Get pointer's to the on-disk inode and the buffer containing it.
877 * If the inode number refers to a block outside the file system
878 * then xfs_itobp() will return NULL. In this case we should
879 * return NULL as well. Set i_blkno to 0 so that xfs_itobp() will
880 * know that this is a new incore inode.
882 error = xfs_itobp(mp, tp, ip, &dip, &bp, bno, imap_flags);
883 if (error) {
884 kmem_zone_free(xfs_inode_zone, ip);
885 return error;
889 * Initialize inode's trace buffers.
890 * Do this before xfs_iformat in case it adds entries.
892 #ifdef XFS_BMAP_TRACE
893 ip->i_xtrace = ktrace_alloc(XFS_BMAP_KTRACE_SIZE, KM_SLEEP);
894 #endif
895 #ifdef XFS_BMBT_TRACE
896 ip->i_btrace = ktrace_alloc(XFS_BMBT_KTRACE_SIZE, KM_SLEEP);
897 #endif
898 #ifdef XFS_RW_TRACE
899 ip->i_rwtrace = ktrace_alloc(XFS_RW_KTRACE_SIZE, KM_SLEEP);
900 #endif
901 #ifdef XFS_ILOCK_TRACE
902 ip->i_lock_trace = ktrace_alloc(XFS_ILOCK_KTRACE_SIZE, KM_SLEEP);
903 #endif
904 #ifdef XFS_DIR2_TRACE
905 ip->i_dir_trace = ktrace_alloc(XFS_DIR2_KTRACE_SIZE, KM_SLEEP);
906 #endif
909 * If we got something that isn't an inode it means someone
910 * (nfs or dmi) has a stale handle.
912 if (INT_GET(dip->di_core.di_magic, ARCH_CONVERT) != XFS_DINODE_MAGIC) {
913 kmem_zone_free(xfs_inode_zone, ip);
914 xfs_trans_brelse(tp, bp);
915 #ifdef DEBUG
916 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
917 "dip->di_core.di_magic (0x%x) != "
918 "XFS_DINODE_MAGIC (0x%x)",
919 INT_GET(dip->di_core.di_magic, ARCH_CONVERT),
920 XFS_DINODE_MAGIC);
921 #endif /* DEBUG */
922 return XFS_ERROR(EINVAL);
926 * If the on-disk inode is already linked to a directory
927 * entry, copy all of the inode into the in-core inode.
928 * xfs_iformat() handles copying in the inode format
929 * specific information.
930 * Otherwise, just get the truly permanent information.
932 if (dip->di_core.di_mode) {
933 xfs_xlate_dinode_core((xfs_caddr_t)&dip->di_core,
934 &(ip->i_d), 1);
935 error = xfs_iformat(ip, dip);
936 if (error) {
937 kmem_zone_free(xfs_inode_zone, ip);
938 xfs_trans_brelse(tp, bp);
939 #ifdef DEBUG
940 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
941 "xfs_iformat() returned error %d",
942 error);
943 #endif /* DEBUG */
944 return error;
946 } else {
947 ip->i_d.di_magic = INT_GET(dip->di_core.di_magic, ARCH_CONVERT);
948 ip->i_d.di_version = INT_GET(dip->di_core.di_version, ARCH_CONVERT);
949 ip->i_d.di_gen = INT_GET(dip->di_core.di_gen, ARCH_CONVERT);
950 ip->i_d.di_flushiter = INT_GET(dip->di_core.di_flushiter, ARCH_CONVERT);
952 * Make sure to pull in the mode here as well in
953 * case the inode is released without being used.
954 * This ensures that xfs_inactive() will see that
955 * the inode is already free and not try to mess
956 * with the uninitialized part of it.
958 ip->i_d.di_mode = 0;
960 * Initialize the per-fork minima and maxima for a new
961 * inode here. xfs_iformat will do it for old inodes.
963 ip->i_df.if_ext_max =
964 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
967 INIT_LIST_HEAD(&ip->i_reclaim);
970 * The inode format changed when we moved the link count and
971 * made it 32 bits long. If this is an old format inode,
972 * convert it in memory to look like a new one. If it gets
973 * flushed to disk we will convert back before flushing or
974 * logging it. We zero out the new projid field and the old link
975 * count field. We'll handle clearing the pad field (the remains
976 * of the old uuid field) when we actually convert the inode to
977 * the new format. We don't change the version number so that we
978 * can distinguish this from a real new format inode.
980 if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
981 ip->i_d.di_nlink = ip->i_d.di_onlink;
982 ip->i_d.di_onlink = 0;
983 ip->i_d.di_projid = 0;
986 ip->i_delayed_blks = 0;
987 ip->i_size = ip->i_d.di_size;
990 * Mark the buffer containing the inode as something to keep
991 * around for a while. This helps to keep recently accessed
992 * meta-data in-core longer.
994 XFS_BUF_SET_REF(bp, XFS_INO_REF);
997 * Use xfs_trans_brelse() to release the buffer containing the
998 * on-disk inode, because it was acquired with xfs_trans_read_buf()
999 * in xfs_itobp() above. If tp is NULL, this is just a normal
1000 * brelse(). If we're within a transaction, then xfs_trans_brelse()
1001 * will only release the buffer if it is not dirty within the
1002 * transaction. It will be OK to release the buffer in this case,
1003 * because inodes on disk are never destroyed and we will be
1004 * locking the new in-core inode before putting it in the hash
1005 * table where other processes can find it. Thus we don't have
1006 * to worry about the inode being changed just because we released
1007 * the buffer.
1009 xfs_trans_brelse(tp, bp);
1010 *ipp = ip;
1011 return 0;
1015 * Read in extents from a btree-format inode.
1016 * Allocate and fill in if_extents. Real work is done in xfs_bmap.c.
1019 xfs_iread_extents(
1020 xfs_trans_t *tp,
1021 xfs_inode_t *ip,
1022 int whichfork)
1024 int error;
1025 xfs_ifork_t *ifp;
1026 xfs_extnum_t nextents;
1027 size_t size;
1029 if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
1030 XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
1031 ip->i_mount);
1032 return XFS_ERROR(EFSCORRUPTED);
1034 nextents = XFS_IFORK_NEXTENTS(ip, whichfork);
1035 size = nextents * sizeof(xfs_bmbt_rec_t);
1036 ifp = XFS_IFORK_PTR(ip, whichfork);
1039 * We know that the size is valid (it's checked in iformat_btree)
1041 ifp->if_lastex = NULLEXTNUM;
1042 ifp->if_bytes = ifp->if_real_bytes = 0;
1043 ifp->if_flags |= XFS_IFEXTENTS;
1044 xfs_iext_add(ifp, 0, nextents);
1045 error = xfs_bmap_read_extents(tp, ip, whichfork);
1046 if (error) {
1047 xfs_iext_destroy(ifp);
1048 ifp->if_flags &= ~XFS_IFEXTENTS;
1049 return error;
1051 xfs_validate_extents(ifp, nextents, 0, XFS_EXTFMT_INODE(ip));
1052 return 0;
1056 * Allocate an inode on disk and return a copy of its in-core version.
1057 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
1058 * appropriately within the inode. The uid and gid for the inode are
1059 * set according to the contents of the given cred structure.
1061 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
1062 * has a free inode available, call xfs_iget()
1063 * to obtain the in-core version of the allocated inode. Finally,
1064 * fill in the inode and log its initial contents. In this case,
1065 * ialloc_context would be set to NULL and call_again set to false.
1067 * If xfs_dialloc() does not have an available inode,
1068 * it will replenish its supply by doing an allocation. Since we can
1069 * only do one allocation within a transaction without deadlocks, we
1070 * must commit the current transaction before returning the inode itself.
1071 * In this case, therefore, we will set call_again to true and return.
1072 * The caller should then commit the current transaction, start a new
1073 * transaction, and call xfs_ialloc() again to actually get the inode.
1075 * To ensure that some other process does not grab the inode that
1076 * was allocated during the first call to xfs_ialloc(), this routine
1077 * also returns the [locked] bp pointing to the head of the freelist
1078 * as ialloc_context. The caller should hold this buffer across
1079 * the commit and pass it back into this routine on the second call.
1081 * If we are allocating quota inodes, we do not have a parent inode
1082 * to attach to or associate with (i.e. pip == NULL) because they
1083 * are not linked into the directory structure - they are attached
1084 * directly to the superblock - and so have no parent.
1087 xfs_ialloc(
1088 xfs_trans_t *tp,
1089 xfs_inode_t *pip,
1090 mode_t mode,
1091 xfs_nlink_t nlink,
1092 xfs_dev_t rdev,
1093 cred_t *cr,
1094 xfs_prid_t prid,
1095 int okalloc,
1096 xfs_buf_t **ialloc_context,
1097 boolean_t *call_again,
1098 xfs_inode_t **ipp)
1100 xfs_ino_t ino;
1101 xfs_inode_t *ip;
1102 bhv_vnode_t *vp;
1103 uint flags;
1104 int error;
1107 * Call the space management code to pick
1108 * the on-disk inode to be allocated.
1110 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
1111 ialloc_context, call_again, &ino);
1112 if (error != 0) {
1113 return error;
1115 if (*call_again || ino == NULLFSINO) {
1116 *ipp = NULL;
1117 return 0;
1119 ASSERT(*ialloc_context == NULL);
1122 * Get the in-core inode with the lock held exclusively.
1123 * This is because we're setting fields here we need
1124 * to prevent others from looking at until we're done.
1126 error = xfs_trans_iget(tp->t_mountp, tp, ino,
1127 XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip);
1128 if (error != 0) {
1129 return error;
1131 ASSERT(ip != NULL);
1133 vp = XFS_ITOV(ip);
1134 ip->i_d.di_mode = (__uint16_t)mode;
1135 ip->i_d.di_onlink = 0;
1136 ip->i_d.di_nlink = nlink;
1137 ASSERT(ip->i_d.di_nlink == nlink);
1138 ip->i_d.di_uid = current_fsuid(cr);
1139 ip->i_d.di_gid = current_fsgid(cr);
1140 ip->i_d.di_projid = prid;
1141 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
1144 * If the superblock version is up to where we support new format
1145 * inodes and this is currently an old format inode, then change
1146 * the inode version number now. This way we only do the conversion
1147 * here rather than here and in the flush/logging code.
1149 if (XFS_SB_VERSION_HASNLINK(&tp->t_mountp->m_sb) &&
1150 ip->i_d.di_version == XFS_DINODE_VERSION_1) {
1151 ip->i_d.di_version = XFS_DINODE_VERSION_2;
1153 * We've already zeroed the old link count, the projid field,
1154 * and the pad field.
1159 * Project ids won't be stored on disk if we are using a version 1 inode.
1161 if ((prid != 0) && (ip->i_d.di_version == XFS_DINODE_VERSION_1))
1162 xfs_bump_ino_vers2(tp, ip);
1164 if (pip && XFS_INHERIT_GID(pip, vp->v_vfsp)) {
1165 ip->i_d.di_gid = pip->i_d.di_gid;
1166 if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) {
1167 ip->i_d.di_mode |= S_ISGID;
1172 * If the group ID of the new file does not match the effective group
1173 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
1174 * (and only if the irix_sgid_inherit compatibility variable is set).
1176 if ((irix_sgid_inherit) &&
1177 (ip->i_d.di_mode & S_ISGID) &&
1178 (!in_group_p((gid_t)ip->i_d.di_gid))) {
1179 ip->i_d.di_mode &= ~S_ISGID;
1182 ip->i_d.di_size = 0;
1183 ip->i_size = 0;
1184 ip->i_d.di_nextents = 0;
1185 ASSERT(ip->i_d.di_nblocks == 0);
1186 xfs_ichgtime(ip, XFS_ICHGTIME_CHG|XFS_ICHGTIME_ACC|XFS_ICHGTIME_MOD);
1188 * di_gen will have been taken care of in xfs_iread.
1190 ip->i_d.di_extsize = 0;
1191 ip->i_d.di_dmevmask = 0;
1192 ip->i_d.di_dmstate = 0;
1193 ip->i_d.di_flags = 0;
1194 flags = XFS_ILOG_CORE;
1195 switch (mode & S_IFMT) {
1196 case S_IFIFO:
1197 case S_IFCHR:
1198 case S_IFBLK:
1199 case S_IFSOCK:
1200 ip->i_d.di_format = XFS_DINODE_FMT_DEV;
1201 ip->i_df.if_u2.if_rdev = rdev;
1202 ip->i_df.if_flags = 0;
1203 flags |= XFS_ILOG_DEV;
1204 break;
1205 case S_IFREG:
1206 if (pip && xfs_inode_is_filestream(pip)) {
1207 error = xfs_filestream_associate(pip, ip);
1208 if (error < 0)
1209 return -error;
1210 if (!error)
1211 xfs_iflags_set(ip, XFS_IFILESTREAM);
1213 /* fall through */
1214 case S_IFDIR:
1215 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
1216 uint di_flags = 0;
1218 if ((mode & S_IFMT) == S_IFDIR) {
1219 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1220 di_flags |= XFS_DIFLAG_RTINHERIT;
1221 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1222 di_flags |= XFS_DIFLAG_EXTSZINHERIT;
1223 ip->i_d.di_extsize = pip->i_d.di_extsize;
1225 } else if ((mode & S_IFMT) == S_IFREG) {
1226 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) {
1227 di_flags |= XFS_DIFLAG_REALTIME;
1228 ip->i_iocore.io_flags |= XFS_IOCORE_RT;
1230 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1231 di_flags |= XFS_DIFLAG_EXTSIZE;
1232 ip->i_d.di_extsize = pip->i_d.di_extsize;
1235 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
1236 xfs_inherit_noatime)
1237 di_flags |= XFS_DIFLAG_NOATIME;
1238 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
1239 xfs_inherit_nodump)
1240 di_flags |= XFS_DIFLAG_NODUMP;
1241 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
1242 xfs_inherit_sync)
1243 di_flags |= XFS_DIFLAG_SYNC;
1244 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
1245 xfs_inherit_nosymlinks)
1246 di_flags |= XFS_DIFLAG_NOSYMLINKS;
1247 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
1248 di_flags |= XFS_DIFLAG_PROJINHERIT;
1249 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
1250 xfs_inherit_nodefrag)
1251 di_flags |= XFS_DIFLAG_NODEFRAG;
1252 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
1253 di_flags |= XFS_DIFLAG_FILESTREAM;
1254 ip->i_d.di_flags |= di_flags;
1256 /* FALLTHROUGH */
1257 case S_IFLNK:
1258 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
1259 ip->i_df.if_flags = XFS_IFEXTENTS;
1260 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
1261 ip->i_df.if_u1.if_extents = NULL;
1262 break;
1263 default:
1264 ASSERT(0);
1267 * Attribute fork settings for new inode.
1269 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
1270 ip->i_d.di_anextents = 0;
1273 * Log the new values stuffed into the inode.
1275 xfs_trans_log_inode(tp, ip, flags);
1277 /* now that we have an i_mode we can setup inode ops and unlock */
1278 bhv_vfs_init_vnode(XFS_MTOVFS(tp->t_mountp), vp, XFS_ITOBHV(ip), 1);
1280 *ipp = ip;
1281 return 0;
1285 * Check to make sure that there are no blocks allocated to the
1286 * file beyond the size of the file. We don't check this for
1287 * files with fixed size extents or real time extents, but we
1288 * at least do it for regular files.
1290 #ifdef DEBUG
1291 void
1292 xfs_isize_check(
1293 xfs_mount_t *mp,
1294 xfs_inode_t *ip,
1295 xfs_fsize_t isize)
1297 xfs_fileoff_t map_first;
1298 int nimaps;
1299 xfs_bmbt_irec_t imaps[2];
1301 if ((ip->i_d.di_mode & S_IFMT) != S_IFREG)
1302 return;
1304 if (ip->i_d.di_flags & (XFS_DIFLAG_REALTIME | XFS_DIFLAG_EXTSIZE))
1305 return;
1307 nimaps = 2;
1308 map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
1310 * The filesystem could be shutting down, so bmapi may return
1311 * an error.
1313 if (xfs_bmapi(NULL, ip, map_first,
1314 (XFS_B_TO_FSB(mp,
1315 (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) -
1316 map_first),
1317 XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps,
1318 NULL, NULL))
1319 return;
1320 ASSERT(nimaps == 1);
1321 ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK);
1323 #endif /* DEBUG */
1326 * Calculate the last possible buffered byte in a file. This must
1327 * include data that was buffered beyond the EOF by the write code.
1328 * This also needs to deal with overflowing the xfs_fsize_t type
1329 * which can happen for sizes near the limit.
1331 * We also need to take into account any blocks beyond the EOF. It
1332 * may be the case that they were buffered by a write which failed.
1333 * In that case the pages will still be in memory, but the inode size
1334 * will never have been updated.
1336 xfs_fsize_t
1337 xfs_file_last_byte(
1338 xfs_inode_t *ip)
1340 xfs_mount_t *mp;
1341 xfs_fsize_t last_byte;
1342 xfs_fileoff_t last_block;
1343 xfs_fileoff_t size_last_block;
1344 int error;
1346 ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE | MR_ACCESS));
1348 mp = ip->i_mount;
1350 * Only check for blocks beyond the EOF if the extents have
1351 * been read in. This eliminates the need for the inode lock,
1352 * and it also saves us from looking when it really isn't
1353 * necessary.
1355 if (ip->i_df.if_flags & XFS_IFEXTENTS) {
1356 error = xfs_bmap_last_offset(NULL, ip, &last_block,
1357 XFS_DATA_FORK);
1358 if (error) {
1359 last_block = 0;
1361 } else {
1362 last_block = 0;
1364 size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_size);
1365 last_block = XFS_FILEOFF_MAX(last_block, size_last_block);
1367 last_byte = XFS_FSB_TO_B(mp, last_block);
1368 if (last_byte < 0) {
1369 return XFS_MAXIOFFSET(mp);
1371 last_byte += (1 << mp->m_writeio_log);
1372 if (last_byte < 0) {
1373 return XFS_MAXIOFFSET(mp);
1375 return last_byte;
1378 #if defined(XFS_RW_TRACE)
1379 STATIC void
1380 xfs_itrunc_trace(
1381 int tag,
1382 xfs_inode_t *ip,
1383 int flag,
1384 xfs_fsize_t new_size,
1385 xfs_off_t toss_start,
1386 xfs_off_t toss_finish)
1388 if (ip->i_rwtrace == NULL) {
1389 return;
1392 ktrace_enter(ip->i_rwtrace,
1393 (void*)((long)tag),
1394 (void*)ip,
1395 (void*)(unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff),
1396 (void*)(unsigned long)(ip->i_d.di_size & 0xffffffff),
1397 (void*)((long)flag),
1398 (void*)(unsigned long)((new_size >> 32) & 0xffffffff),
1399 (void*)(unsigned long)(new_size & 0xffffffff),
1400 (void*)(unsigned long)((toss_start >> 32) & 0xffffffff),
1401 (void*)(unsigned long)(toss_start & 0xffffffff),
1402 (void*)(unsigned long)((toss_finish >> 32) & 0xffffffff),
1403 (void*)(unsigned long)(toss_finish & 0xffffffff),
1404 (void*)(unsigned long)current_cpu(),
1405 (void*)(unsigned long)current_pid(),
1406 (void*)NULL,
1407 (void*)NULL,
1408 (void*)NULL);
1410 #else
1411 #define xfs_itrunc_trace(tag, ip, flag, new_size, toss_start, toss_finish)
1412 #endif
1415 * Start the truncation of the file to new_size. The new size
1416 * must be smaller than the current size. This routine will
1417 * clear the buffer and page caches of file data in the removed
1418 * range, and xfs_itruncate_finish() will remove the underlying
1419 * disk blocks.
1421 * The inode must have its I/O lock locked EXCLUSIVELY, and it
1422 * must NOT have the inode lock held at all. This is because we're
1423 * calling into the buffer/page cache code and we can't hold the
1424 * inode lock when we do so.
1426 * We need to wait for any direct I/Os in flight to complete before we
1427 * proceed with the truncate. This is needed to prevent the extents
1428 * being read or written by the direct I/Os from being removed while the
1429 * I/O is in flight as there is no other method of synchronising
1430 * direct I/O with the truncate operation. Also, because we hold
1431 * the IOLOCK in exclusive mode, we prevent new direct I/Os from being
1432 * started until the truncate completes and drops the lock. Essentially,
1433 * the vn_iowait() call forms an I/O barrier that provides strict ordering
1434 * between direct I/Os and the truncate operation.
1436 * The flags parameter can have either the value XFS_ITRUNC_DEFINITE
1437 * or XFS_ITRUNC_MAYBE. The XFS_ITRUNC_MAYBE value should be used
1438 * in the case that the caller is locking things out of order and
1439 * may not be able to call xfs_itruncate_finish() with the inode lock
1440 * held without dropping the I/O lock. If the caller must drop the
1441 * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start()
1442 * must be called again with all the same restrictions as the initial
1443 * call.
1446 xfs_itruncate_start(
1447 xfs_inode_t *ip,
1448 uint flags,
1449 xfs_fsize_t new_size)
1451 xfs_fsize_t last_byte;
1452 xfs_off_t toss_start;
1453 xfs_mount_t *mp;
1454 bhv_vnode_t *vp;
1455 int error = 0;
1457 ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0);
1458 ASSERT((new_size == 0) || (new_size <= ip->i_size));
1459 ASSERT((flags == XFS_ITRUNC_DEFINITE) ||
1460 (flags == XFS_ITRUNC_MAYBE));
1462 mp = ip->i_mount;
1463 vp = XFS_ITOV(ip);
1465 vn_iowait(vp); /* wait for the completion of any pending DIOs */
1468 * Call toss_pages or flushinval_pages to get rid of pages
1469 * overlapping the region being removed. We have to use
1470 * the less efficient flushinval_pages in the case that the
1471 * caller may not be able to finish the truncate without
1472 * dropping the inode's I/O lock. Make sure
1473 * to catch any pages brought in by buffers overlapping
1474 * the EOF by searching out beyond the isize by our
1475 * block size. We round new_size up to a block boundary
1476 * so that we don't toss things on the same block as
1477 * new_size but before it.
1479 * Before calling toss_page or flushinval_pages, make sure to
1480 * call remapf() over the same region if the file is mapped.
1481 * This frees up mapped file references to the pages in the
1482 * given range and for the flushinval_pages case it ensures
1483 * that we get the latest mapped changes flushed out.
1485 toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1486 toss_start = XFS_FSB_TO_B(mp, toss_start);
1487 if (toss_start < 0) {
1489 * The place to start tossing is beyond our maximum
1490 * file size, so there is no way that the data extended
1491 * out there.
1493 return 0;
1495 last_byte = xfs_file_last_byte(ip);
1496 xfs_itrunc_trace(XFS_ITRUNC_START, ip, flags, new_size, toss_start,
1497 last_byte);
1498 if (last_byte > toss_start) {
1499 if (flags & XFS_ITRUNC_DEFINITE) {
1500 bhv_vop_toss_pages(vp, toss_start, -1, FI_REMAPF_LOCKED);
1501 } else {
1502 error = bhv_vop_flushinval_pages(vp, toss_start, -1, FI_REMAPF_LOCKED);
1506 #ifdef DEBUG
1507 if (new_size == 0) {
1508 ASSERT(VN_CACHED(vp) == 0);
1510 #endif
1511 return error;
1515 * Shrink the file to the given new_size. The new
1516 * size must be smaller than the current size.
1517 * This will free up the underlying blocks
1518 * in the removed range after a call to xfs_itruncate_start()
1519 * or xfs_atruncate_start().
1521 * The transaction passed to this routine must have made
1522 * a permanent log reservation of at least XFS_ITRUNCATE_LOG_RES.
1523 * This routine may commit the given transaction and
1524 * start new ones, so make sure everything involved in
1525 * the transaction is tidy before calling here.
1526 * Some transaction will be returned to the caller to be
1527 * committed. The incoming transaction must already include
1528 * the inode, and both inode locks must be held exclusively.
1529 * The inode must also be "held" within the transaction. On
1530 * return the inode will be "held" within the returned transaction.
1531 * This routine does NOT require any disk space to be reserved
1532 * for it within the transaction.
1534 * The fork parameter must be either xfs_attr_fork or xfs_data_fork,
1535 * and it indicates the fork which is to be truncated. For the
1536 * attribute fork we only support truncation to size 0.
1538 * We use the sync parameter to indicate whether or not the first
1539 * transaction we perform might have to be synchronous. For the attr fork,
1540 * it needs to be so if the unlink of the inode is not yet known to be
1541 * permanent in the log. This keeps us from freeing and reusing the
1542 * blocks of the attribute fork before the unlink of the inode becomes
1543 * permanent.
1545 * For the data fork, we normally have to run synchronously if we're
1546 * being called out of the inactive path or we're being called
1547 * out of the create path where we're truncating an existing file.
1548 * Either way, the truncate needs to be sync so blocks don't reappear
1549 * in the file with altered data in case of a crash. wsync filesystems
1550 * can run the first case async because anything that shrinks the inode
1551 * has to run sync so by the time we're called here from inactive, the
1552 * inode size is permanently set to 0.
1554 * Calls from the truncate path always need to be sync unless we're
1555 * in a wsync filesystem and the file has already been unlinked.
1557 * The caller is responsible for correctly setting the sync parameter.
1558 * It gets too hard for us to guess here which path we're being called
1559 * out of just based on inode state.
1562 xfs_itruncate_finish(
1563 xfs_trans_t **tp,
1564 xfs_inode_t *ip,
1565 xfs_fsize_t new_size,
1566 int fork,
1567 int sync)
1569 xfs_fsblock_t first_block;
1570 xfs_fileoff_t first_unmap_block;
1571 xfs_fileoff_t last_block;
1572 xfs_filblks_t unmap_len=0;
1573 xfs_mount_t *mp;
1574 xfs_trans_t *ntp;
1575 int done;
1576 int committed;
1577 xfs_bmap_free_t free_list;
1578 int error;
1580 ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0);
1581 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE) != 0);
1582 ASSERT((new_size == 0) || (new_size <= ip->i_size));
1583 ASSERT(*tp != NULL);
1584 ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES);
1585 ASSERT(ip->i_transp == *tp);
1586 ASSERT(ip->i_itemp != NULL);
1587 ASSERT(ip->i_itemp->ili_flags & XFS_ILI_HOLD);
1590 ntp = *tp;
1591 mp = (ntp)->t_mountp;
1592 ASSERT(! XFS_NOT_DQATTACHED(mp, ip));
1595 * We only support truncating the entire attribute fork.
1597 if (fork == XFS_ATTR_FORK) {
1598 new_size = 0LL;
1600 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1601 xfs_itrunc_trace(XFS_ITRUNC_FINISH1, ip, 0, new_size, 0, 0);
1603 * The first thing we do is set the size to new_size permanently
1604 * on disk. This way we don't have to worry about anyone ever
1605 * being able to look at the data being freed even in the face
1606 * of a crash. What we're getting around here is the case where
1607 * we free a block, it is allocated to another file, it is written
1608 * to, and then we crash. If the new data gets written to the
1609 * file but the log buffers containing the free and reallocation
1610 * don't, then we'd end up with garbage in the blocks being freed.
1611 * As long as we make the new_size permanent before actually
1612 * freeing any blocks it doesn't matter if they get writtten to.
1614 * The callers must signal into us whether or not the size
1615 * setting here must be synchronous. There are a few cases
1616 * where it doesn't have to be synchronous. Those cases
1617 * occur if the file is unlinked and we know the unlink is
1618 * permanent or if the blocks being truncated are guaranteed
1619 * to be beyond the inode eof (regardless of the link count)
1620 * and the eof value is permanent. Both of these cases occur
1621 * only on wsync-mounted filesystems. In those cases, we're
1622 * guaranteed that no user will ever see the data in the blocks
1623 * that are being truncated so the truncate can run async.
1624 * In the free beyond eof case, the file may wind up with
1625 * more blocks allocated to it than it needs if we crash
1626 * and that won't get fixed until the next time the file
1627 * is re-opened and closed but that's ok as that shouldn't
1628 * be too many blocks.
1630 * However, we can't just make all wsync xactions run async
1631 * because there's one call out of the create path that needs
1632 * to run sync where it's truncating an existing file to size
1633 * 0 whose size is > 0.
1635 * It's probably possible to come up with a test in this
1636 * routine that would correctly distinguish all the above
1637 * cases from the values of the function parameters and the
1638 * inode state but for sanity's sake, I've decided to let the
1639 * layers above just tell us. It's simpler to correctly figure
1640 * out in the layer above exactly under what conditions we
1641 * can run async and I think it's easier for others read and
1642 * follow the logic in case something has to be changed.
1643 * cscope is your friend -- rcc.
1645 * The attribute fork is much simpler.
1647 * For the attribute fork we allow the caller to tell us whether
1648 * the unlink of the inode that led to this call is yet permanent
1649 * in the on disk log. If it is not and we will be freeing extents
1650 * in this inode then we make the first transaction synchronous
1651 * to make sure that the unlink is permanent by the time we free
1652 * the blocks.
1654 if (fork == XFS_DATA_FORK) {
1655 if (ip->i_d.di_nextents > 0) {
1657 * If we are not changing the file size then do
1658 * not update the on-disk file size - we may be
1659 * called from xfs_inactive_free_eofblocks(). If we
1660 * update the on-disk file size and then the system
1661 * crashes before the contents of the file are
1662 * flushed to disk then the files may be full of
1663 * holes (ie NULL files bug).
1665 if (ip->i_size != new_size) {
1666 ip->i_d.di_size = new_size;
1667 ip->i_size = new_size;
1668 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1671 } else if (sync) {
1672 ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC));
1673 if (ip->i_d.di_anextents > 0)
1674 xfs_trans_set_sync(ntp);
1676 ASSERT(fork == XFS_DATA_FORK ||
1677 (fork == XFS_ATTR_FORK &&
1678 ((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) ||
1679 (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC)))));
1682 * Since it is possible for space to become allocated beyond
1683 * the end of the file (in a crash where the space is allocated
1684 * but the inode size is not yet updated), simply remove any
1685 * blocks which show up between the new EOF and the maximum
1686 * possible file size. If the first block to be removed is
1687 * beyond the maximum file size (ie it is the same as last_block),
1688 * then there is nothing to do.
1690 last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
1691 ASSERT(first_unmap_block <= last_block);
1692 done = 0;
1693 if (last_block == first_unmap_block) {
1694 done = 1;
1695 } else {
1696 unmap_len = last_block - first_unmap_block + 1;
1698 while (!done) {
1700 * Free up up to XFS_ITRUNC_MAX_EXTENTS. xfs_bunmapi()
1701 * will tell us whether it freed the entire range or
1702 * not. If this is a synchronous mount (wsync),
1703 * then we can tell bunmapi to keep all the
1704 * transactions asynchronous since the unlink
1705 * transaction that made this inode inactive has
1706 * already hit the disk. There's no danger of
1707 * the freed blocks being reused, there being a
1708 * crash, and the reused blocks suddenly reappearing
1709 * in this file with garbage in them once recovery
1710 * runs.
1712 XFS_BMAP_INIT(&free_list, &first_block);
1713 error = XFS_BUNMAPI(mp, ntp, &ip->i_iocore,
1714 first_unmap_block, unmap_len,
1715 XFS_BMAPI_AFLAG(fork) |
1716 (sync ? 0 : XFS_BMAPI_ASYNC),
1717 XFS_ITRUNC_MAX_EXTENTS,
1718 &first_block, &free_list,
1719 NULL, &done);
1720 if (error) {
1722 * If the bunmapi call encounters an error,
1723 * return to the caller where the transaction
1724 * can be properly aborted. We just need to
1725 * make sure we're not holding any resources
1726 * that we were not when we came in.
1728 xfs_bmap_cancel(&free_list);
1729 return error;
1733 * Duplicate the transaction that has the permanent
1734 * reservation and commit the old transaction.
1736 error = xfs_bmap_finish(tp, &free_list, &committed);
1737 ntp = *tp;
1738 if (error) {
1740 * If the bmap finish call encounters an error,
1741 * return to the caller where the transaction
1742 * can be properly aborted. We just need to
1743 * make sure we're not holding any resources
1744 * that we were not when we came in.
1746 * Aborting from this point might lose some
1747 * blocks in the file system, but oh well.
1749 xfs_bmap_cancel(&free_list);
1750 if (committed) {
1752 * If the passed in transaction committed
1753 * in xfs_bmap_finish(), then we want to
1754 * add the inode to this one before returning.
1755 * This keeps things simple for the higher
1756 * level code, because it always knows that
1757 * the inode is locked and held in the
1758 * transaction that returns to it whether
1759 * errors occur or not. We don't mark the
1760 * inode dirty so that this transaction can
1761 * be easily aborted if possible.
1763 xfs_trans_ijoin(ntp, ip,
1764 XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1765 xfs_trans_ihold(ntp, ip);
1767 return error;
1770 if (committed) {
1772 * The first xact was committed,
1773 * so add the inode to the new one.
1774 * Mark it dirty so it will be logged
1775 * and moved forward in the log as
1776 * part of every commit.
1778 xfs_trans_ijoin(ntp, ip,
1779 XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1780 xfs_trans_ihold(ntp, ip);
1781 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1783 ntp = xfs_trans_dup(ntp);
1784 (void) xfs_trans_commit(*tp, 0);
1785 *tp = ntp;
1786 error = xfs_trans_reserve(ntp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0,
1787 XFS_TRANS_PERM_LOG_RES,
1788 XFS_ITRUNCATE_LOG_COUNT);
1790 * Add the inode being truncated to the next chained
1791 * transaction.
1793 xfs_trans_ijoin(ntp, ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1794 xfs_trans_ihold(ntp, ip);
1795 if (error)
1796 return (error);
1799 * Only update the size in the case of the data fork, but
1800 * always re-log the inode so that our permanent transaction
1801 * can keep on rolling it forward in the log.
1803 if (fork == XFS_DATA_FORK) {
1804 xfs_isize_check(mp, ip, new_size);
1806 * If we are not changing the file size then do
1807 * not update the on-disk file size - we may be
1808 * called from xfs_inactive_free_eofblocks(). If we
1809 * update the on-disk file size and then the system
1810 * crashes before the contents of the file are
1811 * flushed to disk then the files may be full of
1812 * holes (ie NULL files bug).
1814 if (ip->i_size != new_size) {
1815 ip->i_d.di_size = new_size;
1816 ip->i_size = new_size;
1819 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1820 ASSERT((new_size != 0) ||
1821 (fork == XFS_ATTR_FORK) ||
1822 (ip->i_delayed_blks == 0));
1823 ASSERT((new_size != 0) ||
1824 (fork == XFS_ATTR_FORK) ||
1825 (ip->i_d.di_nextents == 0));
1826 xfs_itrunc_trace(XFS_ITRUNC_FINISH2, ip, 0, new_size, 0, 0);
1827 return 0;
1832 * xfs_igrow_start
1834 * Do the first part of growing a file: zero any data in the last
1835 * block that is beyond the old EOF. We need to do this before
1836 * the inode is joined to the transaction to modify the i_size.
1837 * That way we can drop the inode lock and call into the buffer
1838 * cache to get the buffer mapping the EOF.
1841 xfs_igrow_start(
1842 xfs_inode_t *ip,
1843 xfs_fsize_t new_size,
1844 cred_t *credp)
1846 int error;
1848 ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0);
1849 ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0);
1850 ASSERT(new_size > ip->i_size);
1853 * Zero any pages that may have been created by
1854 * xfs_write_file() beyond the end of the file
1855 * and any blocks between the old and new file sizes.
1857 error = xfs_zero_eof(XFS_ITOV(ip), &ip->i_iocore, new_size,
1858 ip->i_size);
1859 return error;
1863 * xfs_igrow_finish
1865 * This routine is called to extend the size of a file.
1866 * The inode must have both the iolock and the ilock locked
1867 * for update and it must be a part of the current transaction.
1868 * The xfs_igrow_start() function must have been called previously.
1869 * If the change_flag is not zero, the inode change timestamp will
1870 * be updated.
1872 void
1873 xfs_igrow_finish(
1874 xfs_trans_t *tp,
1875 xfs_inode_t *ip,
1876 xfs_fsize_t new_size,
1877 int change_flag)
1879 ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0);
1880 ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0);
1881 ASSERT(ip->i_transp == tp);
1882 ASSERT(new_size > ip->i_size);
1885 * Update the file size. Update the inode change timestamp
1886 * if change_flag set.
1888 ip->i_d.di_size = new_size;
1889 ip->i_size = new_size;
1890 if (change_flag)
1891 xfs_ichgtime(ip, XFS_ICHGTIME_CHG);
1892 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1898 * This is called when the inode's link count goes to 0.
1899 * We place the on-disk inode on a list in the AGI. It
1900 * will be pulled from this list when the inode is freed.
1903 xfs_iunlink(
1904 xfs_trans_t *tp,
1905 xfs_inode_t *ip)
1907 xfs_mount_t *mp;
1908 xfs_agi_t *agi;
1909 xfs_dinode_t *dip;
1910 xfs_buf_t *agibp;
1911 xfs_buf_t *ibp;
1912 xfs_agnumber_t agno;
1913 xfs_daddr_t agdaddr;
1914 xfs_agino_t agino;
1915 short bucket_index;
1916 int offset;
1917 int error;
1918 int agi_ok;
1920 ASSERT(ip->i_d.di_nlink == 0);
1921 ASSERT(ip->i_d.di_mode != 0);
1922 ASSERT(ip->i_transp == tp);
1924 mp = tp->t_mountp;
1926 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1927 agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
1930 * Get the agi buffer first. It ensures lock ordering
1931 * on the list.
1933 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
1934 XFS_FSS_TO_BB(mp, 1), 0, &agibp);
1935 if (error) {
1936 return error;
1939 * Validate the magic number of the agi block.
1941 agi = XFS_BUF_TO_AGI(agibp);
1942 agi_ok =
1943 be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
1944 XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
1945 if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK,
1946 XFS_RANDOM_IUNLINK))) {
1947 XFS_CORRUPTION_ERROR("xfs_iunlink", XFS_ERRLEVEL_LOW, mp, agi);
1948 xfs_trans_brelse(tp, agibp);
1949 return XFS_ERROR(EFSCORRUPTED);
1952 * Get the index into the agi hash table for the
1953 * list this inode will go on.
1955 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1956 ASSERT(agino != 0);
1957 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1958 ASSERT(agi->agi_unlinked[bucket_index]);
1959 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1961 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO) {
1963 * There is already another inode in the bucket we need
1964 * to add ourselves to. Add us at the front of the list.
1965 * Here we put the head pointer into our next pointer,
1966 * and then we fall through to point the head at us.
1968 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
1969 if (error) {
1970 return error;
1972 ASSERT(INT_GET(dip->di_next_unlinked, ARCH_CONVERT) == NULLAGINO);
1973 ASSERT(dip->di_next_unlinked);
1974 /* both on-disk, don't endian flip twice */
1975 dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
1976 offset = ip->i_boffset +
1977 offsetof(xfs_dinode_t, di_next_unlinked);
1978 xfs_trans_inode_buf(tp, ibp);
1979 xfs_trans_log_buf(tp, ibp, offset,
1980 (offset + sizeof(xfs_agino_t) - 1));
1981 xfs_inobp_check(mp, ibp);
1985 * Point the bucket head pointer at the inode being inserted.
1987 ASSERT(agino != 0);
1988 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
1989 offset = offsetof(xfs_agi_t, agi_unlinked) +
1990 (sizeof(xfs_agino_t) * bucket_index);
1991 xfs_trans_log_buf(tp, agibp, offset,
1992 (offset + sizeof(xfs_agino_t) - 1));
1993 return 0;
1997 * Pull the on-disk inode from the AGI unlinked list.
1999 STATIC int
2000 xfs_iunlink_remove(
2001 xfs_trans_t *tp,
2002 xfs_inode_t *ip)
2004 xfs_ino_t next_ino;
2005 xfs_mount_t *mp;
2006 xfs_agi_t *agi;
2007 xfs_dinode_t *dip;
2008 xfs_buf_t *agibp;
2009 xfs_buf_t *ibp;
2010 xfs_agnumber_t agno;
2011 xfs_daddr_t agdaddr;
2012 xfs_agino_t agino;
2013 xfs_agino_t next_agino;
2014 xfs_buf_t *last_ibp;
2015 xfs_dinode_t *last_dip = NULL;
2016 short bucket_index;
2017 int offset, last_offset = 0;
2018 int error;
2019 int agi_ok;
2022 * First pull the on-disk inode from the AGI unlinked list.
2024 mp = tp->t_mountp;
2026 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
2027 agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
2030 * Get the agi buffer first. It ensures lock ordering
2031 * on the list.
2033 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
2034 XFS_FSS_TO_BB(mp, 1), 0, &agibp);
2035 if (error) {
2036 cmn_err(CE_WARN,
2037 "xfs_iunlink_remove: xfs_trans_read_buf() returned an error %d on %s. Returning error.",
2038 error, mp->m_fsname);
2039 return error;
2042 * Validate the magic number of the agi block.
2044 agi = XFS_BUF_TO_AGI(agibp);
2045 agi_ok =
2046 be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
2047 XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
2048 if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK_REMOVE,
2049 XFS_RANDOM_IUNLINK_REMOVE))) {
2050 XFS_CORRUPTION_ERROR("xfs_iunlink_remove", XFS_ERRLEVEL_LOW,
2051 mp, agi);
2052 xfs_trans_brelse(tp, agibp);
2053 cmn_err(CE_WARN,
2054 "xfs_iunlink_remove: XFS_TEST_ERROR() returned an error on %s. Returning EFSCORRUPTED.",
2055 mp->m_fsname);
2056 return XFS_ERROR(EFSCORRUPTED);
2059 * Get the index into the agi hash table for the
2060 * list this inode will go on.
2062 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2063 ASSERT(agino != 0);
2064 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2065 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO);
2066 ASSERT(agi->agi_unlinked[bucket_index]);
2068 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
2070 * We're at the head of the list. Get the inode's
2071 * on-disk buffer to see if there is anyone after us
2072 * on the list. Only modify our next pointer if it
2073 * is not already NULLAGINO. This saves us the overhead
2074 * of dealing with the buffer when there is no need to
2075 * change it.
2077 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
2078 if (error) {
2079 cmn_err(CE_WARN,
2080 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
2081 error, mp->m_fsname);
2082 return error;
2084 next_agino = INT_GET(dip->di_next_unlinked, ARCH_CONVERT);
2085 ASSERT(next_agino != 0);
2086 if (next_agino != NULLAGINO) {
2087 INT_SET(dip->di_next_unlinked, ARCH_CONVERT, NULLAGINO);
2088 offset = ip->i_boffset +
2089 offsetof(xfs_dinode_t, di_next_unlinked);
2090 xfs_trans_inode_buf(tp, ibp);
2091 xfs_trans_log_buf(tp, ibp, offset,
2092 (offset + sizeof(xfs_agino_t) - 1));
2093 xfs_inobp_check(mp, ibp);
2094 } else {
2095 xfs_trans_brelse(tp, ibp);
2098 * Point the bucket head pointer at the next inode.
2100 ASSERT(next_agino != 0);
2101 ASSERT(next_agino != agino);
2102 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
2103 offset = offsetof(xfs_agi_t, agi_unlinked) +
2104 (sizeof(xfs_agino_t) * bucket_index);
2105 xfs_trans_log_buf(tp, agibp, offset,
2106 (offset + sizeof(xfs_agino_t) - 1));
2107 } else {
2109 * We need to search the list for the inode being freed.
2111 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2112 last_ibp = NULL;
2113 while (next_agino != agino) {
2115 * If the last inode wasn't the one pointing to
2116 * us, then release its buffer since we're not
2117 * going to do anything with it.
2119 if (last_ibp != NULL) {
2120 xfs_trans_brelse(tp, last_ibp);
2122 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
2123 error = xfs_inotobp(mp, tp, next_ino, &last_dip,
2124 &last_ibp, &last_offset);
2125 if (error) {
2126 cmn_err(CE_WARN,
2127 "xfs_iunlink_remove: xfs_inotobp() returned an error %d on %s. Returning error.",
2128 error, mp->m_fsname);
2129 return error;
2131 next_agino = INT_GET(last_dip->di_next_unlinked, ARCH_CONVERT);
2132 ASSERT(next_agino != NULLAGINO);
2133 ASSERT(next_agino != 0);
2136 * Now last_ibp points to the buffer previous to us on
2137 * the unlinked list. Pull us from the list.
2139 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
2140 if (error) {
2141 cmn_err(CE_WARN,
2142 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
2143 error, mp->m_fsname);
2144 return error;
2146 next_agino = INT_GET(dip->di_next_unlinked, ARCH_CONVERT);
2147 ASSERT(next_agino != 0);
2148 ASSERT(next_agino != agino);
2149 if (next_agino != NULLAGINO) {
2150 INT_SET(dip->di_next_unlinked, ARCH_CONVERT, NULLAGINO);
2151 offset = ip->i_boffset +
2152 offsetof(xfs_dinode_t, di_next_unlinked);
2153 xfs_trans_inode_buf(tp, ibp);
2154 xfs_trans_log_buf(tp, ibp, offset,
2155 (offset + sizeof(xfs_agino_t) - 1));
2156 xfs_inobp_check(mp, ibp);
2157 } else {
2158 xfs_trans_brelse(tp, ibp);
2161 * Point the previous inode on the list to the next inode.
2163 INT_SET(last_dip->di_next_unlinked, ARCH_CONVERT, next_agino);
2164 ASSERT(next_agino != 0);
2165 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
2166 xfs_trans_inode_buf(tp, last_ibp);
2167 xfs_trans_log_buf(tp, last_ibp, offset,
2168 (offset + sizeof(xfs_agino_t) - 1));
2169 xfs_inobp_check(mp, last_ibp);
2171 return 0;
2174 STATIC_INLINE int xfs_inode_clean(xfs_inode_t *ip)
2176 return (((ip->i_itemp == NULL) ||
2177 !(ip->i_itemp->ili_format.ilf_fields & XFS_ILOG_ALL)) &&
2178 (ip->i_update_core == 0));
2181 STATIC void
2182 xfs_ifree_cluster(
2183 xfs_inode_t *free_ip,
2184 xfs_trans_t *tp,
2185 xfs_ino_t inum)
2187 xfs_mount_t *mp = free_ip->i_mount;
2188 int blks_per_cluster;
2189 int nbufs;
2190 int ninodes;
2191 int i, j, found, pre_flushed;
2192 xfs_daddr_t blkno;
2193 xfs_buf_t *bp;
2194 xfs_ihash_t *ih;
2195 xfs_inode_t *ip, **ip_found;
2196 xfs_inode_log_item_t *iip;
2197 xfs_log_item_t *lip;
2198 SPLDECL(s);
2200 if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
2201 blks_per_cluster = 1;
2202 ninodes = mp->m_sb.sb_inopblock;
2203 nbufs = XFS_IALLOC_BLOCKS(mp);
2204 } else {
2205 blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
2206 mp->m_sb.sb_blocksize;
2207 ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
2208 nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
2211 ip_found = kmem_alloc(ninodes * sizeof(xfs_inode_t *), KM_NOFS);
2213 for (j = 0; j < nbufs; j++, inum += ninodes) {
2214 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2215 XFS_INO_TO_AGBNO(mp, inum));
2219 * Look for each inode in memory and attempt to lock it,
2220 * we can be racing with flush and tail pushing here.
2221 * any inode we get the locks on, add to an array of
2222 * inode items to process later.
2224 * The get the buffer lock, we could beat a flush
2225 * or tail pushing thread to the lock here, in which
2226 * case they will go looking for the inode buffer
2227 * and fail, we need some other form of interlock
2228 * here.
2230 found = 0;
2231 for (i = 0; i < ninodes; i++) {
2232 ih = XFS_IHASH(mp, inum + i);
2233 read_lock(&ih->ih_lock);
2234 for (ip = ih->ih_next; ip != NULL; ip = ip->i_next) {
2235 if (ip->i_ino == inum + i)
2236 break;
2239 /* Inode not in memory or we found it already,
2240 * nothing to do
2242 if (!ip || xfs_iflags_test(ip, XFS_ISTALE)) {
2243 read_unlock(&ih->ih_lock);
2244 continue;
2247 if (xfs_inode_clean(ip)) {
2248 read_unlock(&ih->ih_lock);
2249 continue;
2252 /* If we can get the locks then add it to the
2253 * list, otherwise by the time we get the bp lock
2254 * below it will already be attached to the
2255 * inode buffer.
2258 /* This inode will already be locked - by us, lets
2259 * keep it that way.
2262 if (ip == free_ip) {
2263 if (xfs_iflock_nowait(ip)) {
2264 xfs_iflags_set(ip, XFS_ISTALE);
2265 if (xfs_inode_clean(ip)) {
2266 xfs_ifunlock(ip);
2267 } else {
2268 ip_found[found++] = ip;
2271 read_unlock(&ih->ih_lock);
2272 continue;
2275 if (xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2276 if (xfs_iflock_nowait(ip)) {
2277 xfs_iflags_set(ip, XFS_ISTALE);
2279 if (xfs_inode_clean(ip)) {
2280 xfs_ifunlock(ip);
2281 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2282 } else {
2283 ip_found[found++] = ip;
2285 } else {
2286 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2290 read_unlock(&ih->ih_lock);
2293 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2294 mp->m_bsize * blks_per_cluster,
2295 XFS_BUF_LOCK);
2297 pre_flushed = 0;
2298 lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
2299 while (lip) {
2300 if (lip->li_type == XFS_LI_INODE) {
2301 iip = (xfs_inode_log_item_t *)lip;
2302 ASSERT(iip->ili_logged == 1);
2303 lip->li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*)) xfs_istale_done;
2304 AIL_LOCK(mp,s);
2305 iip->ili_flush_lsn = iip->ili_item.li_lsn;
2306 AIL_UNLOCK(mp, s);
2307 xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
2308 pre_flushed++;
2310 lip = lip->li_bio_list;
2313 for (i = 0; i < found; i++) {
2314 ip = ip_found[i];
2315 iip = ip->i_itemp;
2317 if (!iip) {
2318 ip->i_update_core = 0;
2319 xfs_ifunlock(ip);
2320 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2321 continue;
2324 iip->ili_last_fields = iip->ili_format.ilf_fields;
2325 iip->ili_format.ilf_fields = 0;
2326 iip->ili_logged = 1;
2327 AIL_LOCK(mp,s);
2328 iip->ili_flush_lsn = iip->ili_item.li_lsn;
2329 AIL_UNLOCK(mp, s);
2331 xfs_buf_attach_iodone(bp,
2332 (void(*)(xfs_buf_t*,xfs_log_item_t*))
2333 xfs_istale_done, (xfs_log_item_t *)iip);
2334 if (ip != free_ip) {
2335 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2339 if (found || pre_flushed)
2340 xfs_trans_stale_inode_buf(tp, bp);
2341 xfs_trans_binval(tp, bp);
2344 kmem_free(ip_found, ninodes * sizeof(xfs_inode_t *));
2348 * This is called to return an inode to the inode free list.
2349 * The inode should already be truncated to 0 length and have
2350 * no pages associated with it. This routine also assumes that
2351 * the inode is already a part of the transaction.
2353 * The on-disk copy of the inode will have been added to the list
2354 * of unlinked inodes in the AGI. We need to remove the inode from
2355 * that list atomically with respect to freeing it here.
2358 xfs_ifree(
2359 xfs_trans_t *tp,
2360 xfs_inode_t *ip,
2361 xfs_bmap_free_t *flist)
2363 int error;
2364 int delete;
2365 xfs_ino_t first_ino;
2367 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
2368 ASSERT(ip->i_transp == tp);
2369 ASSERT(ip->i_d.di_nlink == 0);
2370 ASSERT(ip->i_d.di_nextents == 0);
2371 ASSERT(ip->i_d.di_anextents == 0);
2372 ASSERT((ip->i_d.di_size == 0 && ip->i_size == 0) ||
2373 ((ip->i_d.di_mode & S_IFMT) != S_IFREG));
2374 ASSERT(ip->i_d.di_nblocks == 0);
2377 * Pull the on-disk inode from the AGI unlinked list.
2379 error = xfs_iunlink_remove(tp, ip);
2380 if (error != 0) {
2381 return error;
2384 error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
2385 if (error != 0) {
2386 return error;
2388 ip->i_d.di_mode = 0; /* mark incore inode as free */
2389 ip->i_d.di_flags = 0;
2390 ip->i_d.di_dmevmask = 0;
2391 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
2392 ip->i_df.if_ext_max =
2393 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
2394 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2395 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2397 * Bump the generation count so no one will be confused
2398 * by reincarnations of this inode.
2400 ip->i_d.di_gen++;
2401 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2403 if (delete) {
2404 xfs_ifree_cluster(ip, tp, first_ino);
2407 return 0;
2411 * Reallocate the space for if_broot based on the number of records
2412 * being added or deleted as indicated in rec_diff. Move the records
2413 * and pointers in if_broot to fit the new size. When shrinking this
2414 * will eliminate holes between the records and pointers created by
2415 * the caller. When growing this will create holes to be filled in
2416 * by the caller.
2418 * The caller must not request to add more records than would fit in
2419 * the on-disk inode root. If the if_broot is currently NULL, then
2420 * if we adding records one will be allocated. The caller must also
2421 * not request that the number of records go below zero, although
2422 * it can go to zero.
2424 * ip -- the inode whose if_broot area is changing
2425 * ext_diff -- the change in the number of records, positive or negative,
2426 * requested for the if_broot array.
2428 void
2429 xfs_iroot_realloc(
2430 xfs_inode_t *ip,
2431 int rec_diff,
2432 int whichfork)
2434 int cur_max;
2435 xfs_ifork_t *ifp;
2436 xfs_bmbt_block_t *new_broot;
2437 int new_max;
2438 size_t new_size;
2439 char *np;
2440 char *op;
2443 * Handle the degenerate case quietly.
2445 if (rec_diff == 0) {
2446 return;
2449 ifp = XFS_IFORK_PTR(ip, whichfork);
2450 if (rec_diff > 0) {
2452 * If there wasn't any memory allocated before, just
2453 * allocate it now and get out.
2455 if (ifp->if_broot_bytes == 0) {
2456 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
2457 ifp->if_broot = (xfs_bmbt_block_t*)kmem_alloc(new_size,
2458 KM_SLEEP);
2459 ifp->if_broot_bytes = (int)new_size;
2460 return;
2464 * If there is already an existing if_broot, then we need
2465 * to realloc() it and shift the pointers to their new
2466 * location. The records don't change location because
2467 * they are kept butted up against the btree block header.
2469 cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
2470 new_max = cur_max + rec_diff;
2471 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2472 ifp->if_broot = (xfs_bmbt_block_t *)
2473 kmem_realloc(ifp->if_broot,
2474 new_size,
2475 (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
2476 KM_SLEEP);
2477 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2478 ifp->if_broot_bytes);
2479 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2480 (int)new_size);
2481 ifp->if_broot_bytes = (int)new_size;
2482 ASSERT(ifp->if_broot_bytes <=
2483 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2484 memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
2485 return;
2489 * rec_diff is less than 0. In this case, we are shrinking the
2490 * if_broot buffer. It must already exist. If we go to zero
2491 * records, just get rid of the root and clear the status bit.
2493 ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
2494 cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
2495 new_max = cur_max + rec_diff;
2496 ASSERT(new_max >= 0);
2497 if (new_max > 0)
2498 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2499 else
2500 new_size = 0;
2501 if (new_size > 0) {
2502 new_broot = (xfs_bmbt_block_t *)kmem_alloc(new_size, KM_SLEEP);
2504 * First copy over the btree block header.
2506 memcpy(new_broot, ifp->if_broot, sizeof(xfs_bmbt_block_t));
2507 } else {
2508 new_broot = NULL;
2509 ifp->if_flags &= ~XFS_IFBROOT;
2513 * Only copy the records and pointers if there are any.
2515 if (new_max > 0) {
2517 * First copy the records.
2519 op = (char *)XFS_BMAP_BROOT_REC_ADDR(ifp->if_broot, 1,
2520 ifp->if_broot_bytes);
2521 np = (char *)XFS_BMAP_BROOT_REC_ADDR(new_broot, 1,
2522 (int)new_size);
2523 memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
2526 * Then copy the pointers.
2528 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2529 ifp->if_broot_bytes);
2530 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(new_broot, 1,
2531 (int)new_size);
2532 memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
2534 kmem_free(ifp->if_broot, ifp->if_broot_bytes);
2535 ifp->if_broot = new_broot;
2536 ifp->if_broot_bytes = (int)new_size;
2537 ASSERT(ifp->if_broot_bytes <=
2538 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2539 return;
2544 * This is called when the amount of space needed for if_data
2545 * is increased or decreased. The change in size is indicated by
2546 * the number of bytes that need to be added or deleted in the
2547 * byte_diff parameter.
2549 * If the amount of space needed has decreased below the size of the
2550 * inline buffer, then switch to using the inline buffer. Otherwise,
2551 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
2552 * to what is needed.
2554 * ip -- the inode whose if_data area is changing
2555 * byte_diff -- the change in the number of bytes, positive or negative,
2556 * requested for the if_data array.
2558 void
2559 xfs_idata_realloc(
2560 xfs_inode_t *ip,
2561 int byte_diff,
2562 int whichfork)
2564 xfs_ifork_t *ifp;
2565 int new_size;
2566 int real_size;
2568 if (byte_diff == 0) {
2569 return;
2572 ifp = XFS_IFORK_PTR(ip, whichfork);
2573 new_size = (int)ifp->if_bytes + byte_diff;
2574 ASSERT(new_size >= 0);
2576 if (new_size == 0) {
2577 if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2578 kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2580 ifp->if_u1.if_data = NULL;
2581 real_size = 0;
2582 } else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
2584 * If the valid extents/data can fit in if_inline_ext/data,
2585 * copy them from the malloc'd vector and free it.
2587 if (ifp->if_u1.if_data == NULL) {
2588 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2589 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2590 ASSERT(ifp->if_real_bytes != 0);
2591 memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
2592 new_size);
2593 kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2594 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2596 real_size = 0;
2597 } else {
2599 * Stuck with malloc/realloc.
2600 * For inline data, the underlying buffer must be
2601 * a multiple of 4 bytes in size so that it can be
2602 * logged and stay on word boundaries. We enforce
2603 * that here.
2605 real_size = roundup(new_size, 4);
2606 if (ifp->if_u1.if_data == NULL) {
2607 ASSERT(ifp->if_real_bytes == 0);
2608 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2609 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2611 * Only do the realloc if the underlying size
2612 * is really changing.
2614 if (ifp->if_real_bytes != real_size) {
2615 ifp->if_u1.if_data =
2616 kmem_realloc(ifp->if_u1.if_data,
2617 real_size,
2618 ifp->if_real_bytes,
2619 KM_SLEEP);
2621 } else {
2622 ASSERT(ifp->if_real_bytes == 0);
2623 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2624 memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
2625 ifp->if_bytes);
2628 ifp->if_real_bytes = real_size;
2629 ifp->if_bytes = new_size;
2630 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2637 * Map inode to disk block and offset.
2639 * mp -- the mount point structure for the current file system
2640 * tp -- the current transaction
2641 * ino -- the inode number of the inode to be located
2642 * imap -- this structure is filled in with the information necessary
2643 * to retrieve the given inode from disk
2644 * flags -- flags to pass to xfs_dilocate indicating whether or not
2645 * lookups in the inode btree were OK or not
2648 xfs_imap(
2649 xfs_mount_t *mp,
2650 xfs_trans_t *tp,
2651 xfs_ino_t ino,
2652 xfs_imap_t *imap,
2653 uint flags)
2655 xfs_fsblock_t fsbno;
2656 int len;
2657 int off;
2658 int error;
2660 fsbno = imap->im_blkno ?
2661 XFS_DADDR_TO_FSB(mp, imap->im_blkno) : NULLFSBLOCK;
2662 error = xfs_dilocate(mp, tp, ino, &fsbno, &len, &off, flags);
2663 if (error != 0) {
2664 return error;
2666 imap->im_blkno = XFS_FSB_TO_DADDR(mp, fsbno);
2667 imap->im_len = XFS_FSB_TO_BB(mp, len);
2668 imap->im_agblkno = XFS_FSB_TO_AGBNO(mp, fsbno);
2669 imap->im_ioffset = (ushort)off;
2670 imap->im_boffset = (ushort)(off << mp->m_sb.sb_inodelog);
2671 return 0;
2674 void
2675 xfs_idestroy_fork(
2676 xfs_inode_t *ip,
2677 int whichfork)
2679 xfs_ifork_t *ifp;
2681 ifp = XFS_IFORK_PTR(ip, whichfork);
2682 if (ifp->if_broot != NULL) {
2683 kmem_free(ifp->if_broot, ifp->if_broot_bytes);
2684 ifp->if_broot = NULL;
2688 * If the format is local, then we can't have an extents
2689 * array so just look for an inline data array. If we're
2690 * not local then we may or may not have an extents list,
2691 * so check and free it up if we do.
2693 if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
2694 if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
2695 (ifp->if_u1.if_data != NULL)) {
2696 ASSERT(ifp->if_real_bytes != 0);
2697 kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2698 ifp->if_u1.if_data = NULL;
2699 ifp->if_real_bytes = 0;
2701 } else if ((ifp->if_flags & XFS_IFEXTENTS) &&
2702 ((ifp->if_flags & XFS_IFEXTIREC) ||
2703 ((ifp->if_u1.if_extents != NULL) &&
2704 (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) {
2705 ASSERT(ifp->if_real_bytes != 0);
2706 xfs_iext_destroy(ifp);
2708 ASSERT(ifp->if_u1.if_extents == NULL ||
2709 ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
2710 ASSERT(ifp->if_real_bytes == 0);
2711 if (whichfork == XFS_ATTR_FORK) {
2712 kmem_zone_free(xfs_ifork_zone, ip->i_afp);
2713 ip->i_afp = NULL;
2718 * This is called free all the memory associated with an inode.
2719 * It must free the inode itself and any buffers allocated for
2720 * if_extents/if_data and if_broot. It must also free the lock
2721 * associated with the inode.
2723 void
2724 xfs_idestroy(
2725 xfs_inode_t *ip)
2728 switch (ip->i_d.di_mode & S_IFMT) {
2729 case S_IFREG:
2730 case S_IFDIR:
2731 case S_IFLNK:
2732 xfs_idestroy_fork(ip, XFS_DATA_FORK);
2733 break;
2735 if (ip->i_afp)
2736 xfs_idestroy_fork(ip, XFS_ATTR_FORK);
2737 mrfree(&ip->i_lock);
2738 mrfree(&ip->i_iolock);
2739 freesema(&ip->i_flock);
2740 #ifdef XFS_BMAP_TRACE
2741 ktrace_free(ip->i_xtrace);
2742 #endif
2743 #ifdef XFS_BMBT_TRACE
2744 ktrace_free(ip->i_btrace);
2745 #endif
2746 #ifdef XFS_RW_TRACE
2747 ktrace_free(ip->i_rwtrace);
2748 #endif
2749 #ifdef XFS_ILOCK_TRACE
2750 ktrace_free(ip->i_lock_trace);
2751 #endif
2752 #ifdef XFS_DIR2_TRACE
2753 ktrace_free(ip->i_dir_trace);
2754 #endif
2755 if (ip->i_itemp) {
2757 * Only if we are shutting down the fs will we see an
2758 * inode still in the AIL. If it is there, we should remove
2759 * it to prevent a use-after-free from occurring.
2761 xfs_mount_t *mp = ip->i_mount;
2762 xfs_log_item_t *lip = &ip->i_itemp->ili_item;
2763 int s;
2765 ASSERT(((lip->li_flags & XFS_LI_IN_AIL) == 0) ||
2766 XFS_FORCED_SHUTDOWN(ip->i_mount));
2767 if (lip->li_flags & XFS_LI_IN_AIL) {
2768 AIL_LOCK(mp, s);
2769 if (lip->li_flags & XFS_LI_IN_AIL)
2770 xfs_trans_delete_ail(mp, lip, s);
2771 else
2772 AIL_UNLOCK(mp, s);
2774 xfs_inode_item_destroy(ip);
2776 kmem_zone_free(xfs_inode_zone, ip);
2781 * Increment the pin count of the given buffer.
2782 * This value is protected by ipinlock spinlock in the mount structure.
2784 void
2785 xfs_ipin(
2786 xfs_inode_t *ip)
2788 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
2790 atomic_inc(&ip->i_pincount);
2794 * Decrement the pin count of the given inode, and wake up
2795 * anyone in xfs_iwait_unpin() if the count goes to 0. The
2796 * inode must have been previously pinned with a call to xfs_ipin().
2798 void
2799 xfs_iunpin(
2800 xfs_inode_t *ip)
2802 ASSERT(atomic_read(&ip->i_pincount) > 0);
2804 if (atomic_dec_and_lock(&ip->i_pincount, &ip->i_flags_lock)) {
2807 * If the inode is currently being reclaimed, the link between
2808 * the bhv_vnode and the xfs_inode will be broken after the
2809 * XFS_IRECLAIM* flag is set. Hence, if these flags are not
2810 * set, then we can move forward and mark the linux inode dirty
2811 * knowing that it is still valid as it won't freed until after
2812 * the bhv_vnode<->xfs_inode link is broken in xfs_reclaim. The
2813 * i_flags_lock is used to synchronise the setting of the
2814 * XFS_IRECLAIM* flags and the breaking of the link, and so we
2815 * can execute atomically w.r.t to reclaim by holding this lock
2816 * here.
2818 * However, we still need to issue the unpin wakeup call as the
2819 * inode reclaim may be blocked waiting for the inode to become
2820 * unpinned.
2823 if (!__xfs_iflags_test(ip, XFS_IRECLAIM|XFS_IRECLAIMABLE)) {
2824 bhv_vnode_t *vp = XFS_ITOV_NULL(ip);
2825 struct inode *inode = NULL;
2827 BUG_ON(vp == NULL);
2828 inode = vn_to_inode(vp);
2829 BUG_ON(inode->i_state & I_CLEAR);
2831 /* make sync come back and flush this inode */
2832 if (!(inode->i_state & (I_NEW|I_FREEING)))
2833 mark_inode_dirty_sync(inode);
2835 spin_unlock(&ip->i_flags_lock);
2836 wake_up(&ip->i_ipin_wait);
2841 * This is called to wait for the given inode to be unpinned.
2842 * It will sleep until this happens. The caller must have the
2843 * inode locked in at least shared mode so that the buffer cannot
2844 * be subsequently pinned once someone is waiting for it to be
2845 * unpinned.
2847 STATIC void
2848 xfs_iunpin_wait(
2849 xfs_inode_t *ip)
2851 xfs_inode_log_item_t *iip;
2852 xfs_lsn_t lsn;
2854 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE | MR_ACCESS));
2856 if (atomic_read(&ip->i_pincount) == 0) {
2857 return;
2860 iip = ip->i_itemp;
2861 if (iip && iip->ili_last_lsn) {
2862 lsn = iip->ili_last_lsn;
2863 } else {
2864 lsn = (xfs_lsn_t)0;
2868 * Give the log a push so we don't wait here too long.
2870 xfs_log_force(ip->i_mount, lsn, XFS_LOG_FORCE);
2872 wait_event(ip->i_ipin_wait, (atomic_read(&ip->i_pincount) == 0));
2877 * xfs_iextents_copy()
2879 * This is called to copy the REAL extents (as opposed to the delayed
2880 * allocation extents) from the inode into the given buffer. It
2881 * returns the number of bytes copied into the buffer.
2883 * If there are no delayed allocation extents, then we can just
2884 * memcpy() the extents into the buffer. Otherwise, we need to
2885 * examine each extent in turn and skip those which are delayed.
2888 xfs_iextents_copy(
2889 xfs_inode_t *ip,
2890 xfs_bmbt_rec_t *buffer,
2891 int whichfork)
2893 int copied;
2894 xfs_bmbt_rec_t *dest_ep;
2895 xfs_bmbt_rec_t *ep;
2896 int i;
2897 xfs_ifork_t *ifp;
2898 int nrecs;
2899 xfs_fsblock_t start_block;
2901 ifp = XFS_IFORK_PTR(ip, whichfork);
2902 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
2903 ASSERT(ifp->if_bytes > 0);
2905 nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
2906 XFS_BMAP_TRACE_EXLIST(ip, nrecs, whichfork);
2907 ASSERT(nrecs > 0);
2910 * There are some delayed allocation extents in the
2911 * inode, so copy the extents one at a time and skip
2912 * the delayed ones. There must be at least one
2913 * non-delayed extent.
2915 dest_ep = buffer;
2916 copied = 0;
2917 for (i = 0; i < nrecs; i++) {
2918 ep = xfs_iext_get_ext(ifp, i);
2919 start_block = xfs_bmbt_get_startblock(ep);
2920 if (ISNULLSTARTBLOCK(start_block)) {
2922 * It's a delayed allocation extent, so skip it.
2924 continue;
2927 /* Translate to on disk format */
2928 put_unaligned(INT_GET(ep->l0, ARCH_CONVERT),
2929 (__uint64_t*)&dest_ep->l0);
2930 put_unaligned(INT_GET(ep->l1, ARCH_CONVERT),
2931 (__uint64_t*)&dest_ep->l1);
2932 dest_ep++;
2933 copied++;
2935 ASSERT(copied != 0);
2936 xfs_validate_extents(ifp, copied, 1, XFS_EXTFMT_INODE(ip));
2938 return (copied * (uint)sizeof(xfs_bmbt_rec_t));
2942 * Each of the following cases stores data into the same region
2943 * of the on-disk inode, so only one of them can be valid at
2944 * any given time. While it is possible to have conflicting formats
2945 * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
2946 * in EXTENTS format, this can only happen when the fork has
2947 * changed formats after being modified but before being flushed.
2948 * In these cases, the format always takes precedence, because the
2949 * format indicates the current state of the fork.
2951 /*ARGSUSED*/
2952 STATIC int
2953 xfs_iflush_fork(
2954 xfs_inode_t *ip,
2955 xfs_dinode_t *dip,
2956 xfs_inode_log_item_t *iip,
2957 int whichfork,
2958 xfs_buf_t *bp)
2960 char *cp;
2961 xfs_ifork_t *ifp;
2962 xfs_mount_t *mp;
2963 #ifdef XFS_TRANS_DEBUG
2964 int first;
2965 #endif
2966 static const short brootflag[2] =
2967 { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
2968 static const short dataflag[2] =
2969 { XFS_ILOG_DDATA, XFS_ILOG_ADATA };
2970 static const short extflag[2] =
2971 { XFS_ILOG_DEXT, XFS_ILOG_AEXT };
2973 if (iip == NULL)
2974 return 0;
2975 ifp = XFS_IFORK_PTR(ip, whichfork);
2977 * This can happen if we gave up in iformat in an error path,
2978 * for the attribute fork.
2980 if (ifp == NULL) {
2981 ASSERT(whichfork == XFS_ATTR_FORK);
2982 return 0;
2984 cp = XFS_DFORK_PTR(dip, whichfork);
2985 mp = ip->i_mount;
2986 switch (XFS_IFORK_FORMAT(ip, whichfork)) {
2987 case XFS_DINODE_FMT_LOCAL:
2988 if ((iip->ili_format.ilf_fields & dataflag[whichfork]) &&
2989 (ifp->if_bytes > 0)) {
2990 ASSERT(ifp->if_u1.if_data != NULL);
2991 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2992 memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
2994 break;
2996 case XFS_DINODE_FMT_EXTENTS:
2997 ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
2998 !(iip->ili_format.ilf_fields & extflag[whichfork]));
2999 ASSERT((xfs_iext_get_ext(ifp, 0) != NULL) ||
3000 (ifp->if_bytes == 0));
3001 ASSERT((xfs_iext_get_ext(ifp, 0) == NULL) ||
3002 (ifp->if_bytes > 0));
3003 if ((iip->ili_format.ilf_fields & extflag[whichfork]) &&
3004 (ifp->if_bytes > 0)) {
3005 ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
3006 (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
3007 whichfork);
3009 break;
3011 case XFS_DINODE_FMT_BTREE:
3012 if ((iip->ili_format.ilf_fields & brootflag[whichfork]) &&
3013 (ifp->if_broot_bytes > 0)) {
3014 ASSERT(ifp->if_broot != NULL);
3015 ASSERT(ifp->if_broot_bytes <=
3016 (XFS_IFORK_SIZE(ip, whichfork) +
3017 XFS_BROOT_SIZE_ADJ));
3018 xfs_bmbt_to_bmdr(ifp->if_broot, ifp->if_broot_bytes,
3019 (xfs_bmdr_block_t *)cp,
3020 XFS_DFORK_SIZE(dip, mp, whichfork));
3022 break;
3024 case XFS_DINODE_FMT_DEV:
3025 if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
3026 ASSERT(whichfork == XFS_DATA_FORK);
3027 INT_SET(dip->di_u.di_dev, ARCH_CONVERT, ip->i_df.if_u2.if_rdev);
3029 break;
3031 case XFS_DINODE_FMT_UUID:
3032 if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
3033 ASSERT(whichfork == XFS_DATA_FORK);
3034 memcpy(&dip->di_u.di_muuid, &ip->i_df.if_u2.if_uuid,
3035 sizeof(uuid_t));
3037 break;
3039 default:
3040 ASSERT(0);
3041 break;
3044 return 0;
3048 * xfs_iflush() will write a modified inode's changes out to the
3049 * inode's on disk home. The caller must have the inode lock held
3050 * in at least shared mode and the inode flush semaphore must be
3051 * held as well. The inode lock will still be held upon return from
3052 * the call and the caller is free to unlock it.
3053 * The inode flush lock will be unlocked when the inode reaches the disk.
3054 * The flags indicate how the inode's buffer should be written out.
3057 xfs_iflush(
3058 xfs_inode_t *ip,
3059 uint flags)
3061 xfs_inode_log_item_t *iip;
3062 xfs_buf_t *bp;
3063 xfs_dinode_t *dip;
3064 xfs_mount_t *mp;
3065 int error;
3066 /* REFERENCED */
3067 xfs_chash_t *ch;
3068 xfs_inode_t *iq;
3069 int clcount; /* count of inodes clustered */
3070 int bufwasdelwri;
3071 enum { INT_DELWRI = (1 << 0), INT_ASYNC = (1 << 1) };
3072 SPLDECL(s);
3074 XFS_STATS_INC(xs_iflush_count);
3076 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
3077 ASSERT(issemalocked(&(ip->i_flock)));
3078 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3079 ip->i_d.di_nextents > ip->i_df.if_ext_max);
3081 iip = ip->i_itemp;
3082 mp = ip->i_mount;
3085 * If the inode isn't dirty, then just release the inode
3086 * flush lock and do nothing.
3088 if ((ip->i_update_core == 0) &&
3089 ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
3090 ASSERT((iip != NULL) ?
3091 !(iip->ili_item.li_flags & XFS_LI_IN_AIL) : 1);
3092 xfs_ifunlock(ip);
3093 return 0;
3097 * We can't flush the inode until it is unpinned, so
3098 * wait for it. We know noone new can pin it, because
3099 * we are holding the inode lock shared and you need
3100 * to hold it exclusively to pin the inode.
3102 xfs_iunpin_wait(ip);
3105 * This may have been unpinned because the filesystem is shutting
3106 * down forcibly. If that's the case we must not write this inode
3107 * to disk, because the log record didn't make it to disk!
3109 if (XFS_FORCED_SHUTDOWN(mp)) {
3110 ip->i_update_core = 0;
3111 if (iip)
3112 iip->ili_format.ilf_fields = 0;
3113 xfs_ifunlock(ip);
3114 return XFS_ERROR(EIO);
3118 * Get the buffer containing the on-disk inode.
3120 error = xfs_itobp(mp, NULL, ip, &dip, &bp, 0, 0);
3121 if (error) {
3122 xfs_ifunlock(ip);
3123 return error;
3127 * Decide how buffer will be flushed out. This is done before
3128 * the call to xfs_iflush_int because this field is zeroed by it.
3130 if (iip != NULL && iip->ili_format.ilf_fields != 0) {
3132 * Flush out the inode buffer according to the directions
3133 * of the caller. In the cases where the caller has given
3134 * us a choice choose the non-delwri case. This is because
3135 * the inode is in the AIL and we need to get it out soon.
3137 switch (flags) {
3138 case XFS_IFLUSH_SYNC:
3139 case XFS_IFLUSH_DELWRI_ELSE_SYNC:
3140 flags = 0;
3141 break;
3142 case XFS_IFLUSH_ASYNC:
3143 case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
3144 flags = INT_ASYNC;
3145 break;
3146 case XFS_IFLUSH_DELWRI:
3147 flags = INT_DELWRI;
3148 break;
3149 default:
3150 ASSERT(0);
3151 flags = 0;
3152 break;
3154 } else {
3155 switch (flags) {
3156 case XFS_IFLUSH_DELWRI_ELSE_SYNC:
3157 case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
3158 case XFS_IFLUSH_DELWRI:
3159 flags = INT_DELWRI;
3160 break;
3161 case XFS_IFLUSH_ASYNC:
3162 flags = INT_ASYNC;
3163 break;
3164 case XFS_IFLUSH_SYNC:
3165 flags = 0;
3166 break;
3167 default:
3168 ASSERT(0);
3169 flags = 0;
3170 break;
3175 * First flush out the inode that xfs_iflush was called with.
3177 error = xfs_iflush_int(ip, bp);
3178 if (error) {
3179 goto corrupt_out;
3183 * inode clustering:
3184 * see if other inodes can be gathered into this write
3187 ip->i_chash->chl_buf = bp;
3189 ch = XFS_CHASH(mp, ip->i_blkno);
3190 s = mutex_spinlock(&ch->ch_lock);
3192 clcount = 0;
3193 for (iq = ip->i_cnext; iq != ip; iq = iq->i_cnext) {
3195 * Do an un-protected check to see if the inode is dirty and
3196 * is a candidate for flushing. These checks will be repeated
3197 * later after the appropriate locks are acquired.
3199 iip = iq->i_itemp;
3200 if ((iq->i_update_core == 0) &&
3201 ((iip == NULL) ||
3202 !(iip->ili_format.ilf_fields & XFS_ILOG_ALL)) &&
3203 xfs_ipincount(iq) == 0) {
3204 continue;
3208 * Try to get locks. If any are unavailable,
3209 * then this inode cannot be flushed and is skipped.
3212 /* get inode locks (just i_lock) */
3213 if (xfs_ilock_nowait(iq, XFS_ILOCK_SHARED)) {
3214 /* get inode flush lock */
3215 if (xfs_iflock_nowait(iq)) {
3216 /* check if pinned */
3217 if (xfs_ipincount(iq) == 0) {
3218 /* arriving here means that
3219 * this inode can be flushed.
3220 * first re-check that it's
3221 * dirty
3223 iip = iq->i_itemp;
3224 if ((iq->i_update_core != 0)||
3225 ((iip != NULL) &&
3226 (iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
3227 clcount++;
3228 error = xfs_iflush_int(iq, bp);
3229 if (error) {
3230 xfs_iunlock(iq,
3231 XFS_ILOCK_SHARED);
3232 goto cluster_corrupt_out;
3234 } else {
3235 xfs_ifunlock(iq);
3237 } else {
3238 xfs_ifunlock(iq);
3241 xfs_iunlock(iq, XFS_ILOCK_SHARED);
3244 mutex_spinunlock(&ch->ch_lock, s);
3246 if (clcount) {
3247 XFS_STATS_INC(xs_icluster_flushcnt);
3248 XFS_STATS_ADD(xs_icluster_flushinode, clcount);
3252 * If the buffer is pinned then push on the log so we won't
3253 * get stuck waiting in the write for too long.
3255 if (XFS_BUF_ISPINNED(bp)){
3256 xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE);
3259 if (flags & INT_DELWRI) {
3260 xfs_bdwrite(mp, bp);
3261 } else if (flags & INT_ASYNC) {
3262 xfs_bawrite(mp, bp);
3263 } else {
3264 error = xfs_bwrite(mp, bp);
3266 return error;
3268 corrupt_out:
3269 xfs_buf_relse(bp);
3270 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3271 xfs_iflush_abort(ip);
3273 * Unlocks the flush lock
3275 return XFS_ERROR(EFSCORRUPTED);
3277 cluster_corrupt_out:
3278 /* Corruption detected in the clustering loop. Invalidate the
3279 * inode buffer and shut down the filesystem.
3281 mutex_spinunlock(&ch->ch_lock, s);
3284 * Clean up the buffer. If it was B_DELWRI, just release it --
3285 * brelse can handle it with no problems. If not, shut down the
3286 * filesystem before releasing the buffer.
3288 if ((bufwasdelwri= XFS_BUF_ISDELAYWRITE(bp))) {
3289 xfs_buf_relse(bp);
3292 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3294 if(!bufwasdelwri) {
3296 * Just like incore_relse: if we have b_iodone functions,
3297 * mark the buffer as an error and call them. Otherwise
3298 * mark it as stale and brelse.
3300 if (XFS_BUF_IODONE_FUNC(bp)) {
3301 XFS_BUF_CLR_BDSTRAT_FUNC(bp);
3302 XFS_BUF_UNDONE(bp);
3303 XFS_BUF_STALE(bp);
3304 XFS_BUF_SHUT(bp);
3305 XFS_BUF_ERROR(bp,EIO);
3306 xfs_biodone(bp);
3307 } else {
3308 XFS_BUF_STALE(bp);
3309 xfs_buf_relse(bp);
3313 xfs_iflush_abort(iq);
3315 * Unlocks the flush lock
3317 return XFS_ERROR(EFSCORRUPTED);
3321 STATIC int
3322 xfs_iflush_int(
3323 xfs_inode_t *ip,
3324 xfs_buf_t *bp)
3326 xfs_inode_log_item_t *iip;
3327 xfs_dinode_t *dip;
3328 xfs_mount_t *mp;
3329 #ifdef XFS_TRANS_DEBUG
3330 int first;
3331 #endif
3332 SPLDECL(s);
3334 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
3335 ASSERT(issemalocked(&(ip->i_flock)));
3336 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3337 ip->i_d.di_nextents > ip->i_df.if_ext_max);
3339 iip = ip->i_itemp;
3340 mp = ip->i_mount;
3344 * If the inode isn't dirty, then just release the inode
3345 * flush lock and do nothing.
3347 if ((ip->i_update_core == 0) &&
3348 ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
3349 xfs_ifunlock(ip);
3350 return 0;
3353 /* set *dip = inode's place in the buffer */
3354 dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_boffset);
3357 * Clear i_update_core before copying out the data.
3358 * This is for coordination with our timestamp updates
3359 * that don't hold the inode lock. They will always
3360 * update the timestamps BEFORE setting i_update_core,
3361 * so if we clear i_update_core after they set it we
3362 * are guaranteed to see their updates to the timestamps.
3363 * I believe that this depends on strongly ordered memory
3364 * semantics, but we have that. We use the SYNCHRONIZE
3365 * macro to make sure that the compiler does not reorder
3366 * the i_update_core access below the data copy below.
3368 ip->i_update_core = 0;
3369 SYNCHRONIZE();
3372 * Make sure to get the latest atime from the Linux inode.
3374 xfs_synchronize_atime(ip);
3376 if (XFS_TEST_ERROR(INT_GET(dip->di_core.di_magic,ARCH_CONVERT) != XFS_DINODE_MAGIC,
3377 mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
3378 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3379 "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p",
3380 ip->i_ino, (int) INT_GET(dip->di_core.di_magic, ARCH_CONVERT), dip);
3381 goto corrupt_out;
3383 if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
3384 mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
3385 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3386 "xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
3387 ip->i_ino, ip, ip->i_d.di_magic);
3388 goto corrupt_out;
3390 if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) {
3391 if (XFS_TEST_ERROR(
3392 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3393 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3394 mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
3395 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3396 "xfs_iflush: Bad regular inode %Lu, ptr 0x%p",
3397 ip->i_ino, ip);
3398 goto corrupt_out;
3400 } else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) {
3401 if (XFS_TEST_ERROR(
3402 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3403 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3404 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3405 mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
3406 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3407 "xfs_iflush: Bad directory inode %Lu, ptr 0x%p",
3408 ip->i_ino, ip);
3409 goto corrupt_out;
3412 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3413 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
3414 XFS_RANDOM_IFLUSH_5)) {
3415 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3416 "xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p",
3417 ip->i_ino,
3418 ip->i_d.di_nextents + ip->i_d.di_anextents,
3419 ip->i_d.di_nblocks,
3420 ip);
3421 goto corrupt_out;
3423 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3424 mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
3425 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3426 "xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3427 ip->i_ino, ip->i_d.di_forkoff, ip);
3428 goto corrupt_out;
3431 * bump the flush iteration count, used to detect flushes which
3432 * postdate a log record during recovery.
3435 ip->i_d.di_flushiter++;
3438 * Copy the dirty parts of the inode into the on-disk
3439 * inode. We always copy out the core of the inode,
3440 * because if the inode is dirty at all the core must
3441 * be.
3443 xfs_xlate_dinode_core((xfs_caddr_t)&(dip->di_core), &(ip->i_d), -1);
3445 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3446 if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3447 ip->i_d.di_flushiter = 0;
3450 * If this is really an old format inode and the superblock version
3451 * has not been updated to support only new format inodes, then
3452 * convert back to the old inode format. If the superblock version
3453 * has been updated, then make the conversion permanent.
3455 ASSERT(ip->i_d.di_version == XFS_DINODE_VERSION_1 ||
3456 XFS_SB_VERSION_HASNLINK(&mp->m_sb));
3457 if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
3458 if (!XFS_SB_VERSION_HASNLINK(&mp->m_sb)) {
3460 * Convert it back.
3462 ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
3463 INT_SET(dip->di_core.di_onlink, ARCH_CONVERT, ip->i_d.di_nlink);
3464 } else {
3466 * The superblock version has already been bumped,
3467 * so just make the conversion to the new inode
3468 * format permanent.
3470 ip->i_d.di_version = XFS_DINODE_VERSION_2;
3471 INT_SET(dip->di_core.di_version, ARCH_CONVERT, XFS_DINODE_VERSION_2);
3472 ip->i_d.di_onlink = 0;
3473 dip->di_core.di_onlink = 0;
3474 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
3475 memset(&(dip->di_core.di_pad[0]), 0,
3476 sizeof(dip->di_core.di_pad));
3477 ASSERT(ip->i_d.di_projid == 0);
3481 if (xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp) == EFSCORRUPTED) {
3482 goto corrupt_out;
3485 if (XFS_IFORK_Q(ip)) {
3487 * The only error from xfs_iflush_fork is on the data fork.
3489 (void) xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
3491 xfs_inobp_check(mp, bp);
3494 * We've recorded everything logged in the inode, so we'd
3495 * like to clear the ilf_fields bits so we don't log and
3496 * flush things unnecessarily. However, we can't stop
3497 * logging all this information until the data we've copied
3498 * into the disk buffer is written to disk. If we did we might
3499 * overwrite the copy of the inode in the log with all the
3500 * data after re-logging only part of it, and in the face of
3501 * a crash we wouldn't have all the data we need to recover.
3503 * What we do is move the bits to the ili_last_fields field.
3504 * When logging the inode, these bits are moved back to the
3505 * ilf_fields field. In the xfs_iflush_done() routine we
3506 * clear ili_last_fields, since we know that the information
3507 * those bits represent is permanently on disk. As long as
3508 * the flush completes before the inode is logged again, then
3509 * both ilf_fields and ili_last_fields will be cleared.
3511 * We can play with the ilf_fields bits here, because the inode
3512 * lock must be held exclusively in order to set bits there
3513 * and the flush lock protects the ili_last_fields bits.
3514 * Set ili_logged so the flush done
3515 * routine can tell whether or not to look in the AIL.
3516 * Also, store the current LSN of the inode so that we can tell
3517 * whether the item has moved in the AIL from xfs_iflush_done().
3518 * In order to read the lsn we need the AIL lock, because
3519 * it is a 64 bit value that cannot be read atomically.
3521 if (iip != NULL && iip->ili_format.ilf_fields != 0) {
3522 iip->ili_last_fields = iip->ili_format.ilf_fields;
3523 iip->ili_format.ilf_fields = 0;
3524 iip->ili_logged = 1;
3526 ASSERT(sizeof(xfs_lsn_t) == 8); /* don't lock if it shrinks */
3527 AIL_LOCK(mp,s);
3528 iip->ili_flush_lsn = iip->ili_item.li_lsn;
3529 AIL_UNLOCK(mp, s);
3532 * Attach the function xfs_iflush_done to the inode's
3533 * buffer. This will remove the inode from the AIL
3534 * and unlock the inode's flush lock when the inode is
3535 * completely written to disk.
3537 xfs_buf_attach_iodone(bp, (void(*)(xfs_buf_t*,xfs_log_item_t*))
3538 xfs_iflush_done, (xfs_log_item_t *)iip);
3540 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
3541 ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL);
3542 } else {
3544 * We're flushing an inode which is not in the AIL and has
3545 * not been logged but has i_update_core set. For this
3546 * case we can use a B_DELWRI flush and immediately drop
3547 * the inode flush lock because we can avoid the whole
3548 * AIL state thing. It's OK to drop the flush lock now,
3549 * because we've already locked the buffer and to do anything
3550 * you really need both.
3552 if (iip != NULL) {
3553 ASSERT(iip->ili_logged == 0);
3554 ASSERT(iip->ili_last_fields == 0);
3555 ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
3557 xfs_ifunlock(ip);
3560 return 0;
3562 corrupt_out:
3563 return XFS_ERROR(EFSCORRUPTED);
3568 * Flush all inactive inodes in mp.
3570 void
3571 xfs_iflush_all(
3572 xfs_mount_t *mp)
3574 xfs_inode_t *ip;
3575 bhv_vnode_t *vp;
3577 again:
3578 XFS_MOUNT_ILOCK(mp);
3579 ip = mp->m_inodes;
3580 if (ip == NULL)
3581 goto out;
3583 do {
3584 /* Make sure we skip markers inserted by sync */
3585 if (ip->i_mount == NULL) {
3586 ip = ip->i_mnext;
3587 continue;
3590 vp = XFS_ITOV_NULL(ip);
3591 if (!vp) {
3592 XFS_MOUNT_IUNLOCK(mp);
3593 xfs_finish_reclaim(ip, 0, XFS_IFLUSH_ASYNC);
3594 goto again;
3597 ASSERT(vn_count(vp) == 0);
3599 ip = ip->i_mnext;
3600 } while (ip != mp->m_inodes);
3601 out:
3602 XFS_MOUNT_IUNLOCK(mp);
3606 * xfs_iaccess: check accessibility of inode for mode.
3609 xfs_iaccess(
3610 xfs_inode_t *ip,
3611 mode_t mode,
3612 cred_t *cr)
3614 int error;
3615 mode_t orgmode = mode;
3616 struct inode *inode = vn_to_inode(XFS_ITOV(ip));
3618 if (mode & S_IWUSR) {
3619 umode_t imode = inode->i_mode;
3621 if (IS_RDONLY(inode) &&
3622 (S_ISREG(imode) || S_ISDIR(imode) || S_ISLNK(imode)))
3623 return XFS_ERROR(EROFS);
3625 if (IS_IMMUTABLE(inode))
3626 return XFS_ERROR(EACCES);
3630 * If there's an Access Control List it's used instead of
3631 * the mode bits.
3633 if ((error = _ACL_XFS_IACCESS(ip, mode, cr)) != -1)
3634 return error ? XFS_ERROR(error) : 0;
3636 if (current_fsuid(cr) != ip->i_d.di_uid) {
3637 mode >>= 3;
3638 if (!in_group_p((gid_t)ip->i_d.di_gid))
3639 mode >>= 3;
3643 * If the DACs are ok we don't need any capability check.
3645 if ((ip->i_d.di_mode & mode) == mode)
3646 return 0;
3648 * Read/write DACs are always overridable.
3649 * Executable DACs are overridable if at least one exec bit is set.
3651 if (!(orgmode & S_IXUSR) ||
3652 (inode->i_mode & S_IXUGO) || S_ISDIR(inode->i_mode))
3653 if (capable_cred(cr, CAP_DAC_OVERRIDE))
3654 return 0;
3656 if ((orgmode == S_IRUSR) ||
3657 (S_ISDIR(inode->i_mode) && (!(orgmode & S_IWUSR)))) {
3658 if (capable_cred(cr, CAP_DAC_READ_SEARCH))
3659 return 0;
3660 #ifdef NOISE
3661 cmn_err(CE_NOTE, "Ick: mode=%o, orgmode=%o", mode, orgmode);
3662 #endif /* NOISE */
3663 return XFS_ERROR(EACCES);
3665 return XFS_ERROR(EACCES);
3669 * xfs_iroundup: round up argument to next power of two
3671 uint
3672 xfs_iroundup(
3673 uint v)
3675 int i;
3676 uint m;
3678 if ((v & (v - 1)) == 0)
3679 return v;
3680 ASSERT((v & 0x80000000) == 0);
3681 if ((v & (v + 1)) == 0)
3682 return v + 1;
3683 for (i = 0, m = 1; i < 31; i++, m <<= 1) {
3684 if (v & m)
3685 continue;
3686 v |= m;
3687 if ((v & (v + 1)) == 0)
3688 return v + 1;
3690 ASSERT(0);
3691 return( 0 );
3694 #ifdef XFS_ILOCK_TRACE
3695 ktrace_t *xfs_ilock_trace_buf;
3697 void
3698 xfs_ilock_trace(xfs_inode_t *ip, int lock, unsigned int lockflags, inst_t *ra)
3700 ktrace_enter(ip->i_lock_trace,
3701 (void *)ip,
3702 (void *)(unsigned long)lock, /* 1 = LOCK, 3=UNLOCK, etc */
3703 (void *)(unsigned long)lockflags, /* XFS_ILOCK_EXCL etc */
3704 (void *)ra, /* caller of ilock */
3705 (void *)(unsigned long)current_cpu(),
3706 (void *)(unsigned long)current_pid(),
3707 NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL);
3709 #endif
3712 * Return a pointer to the extent record at file index idx.
3714 xfs_bmbt_rec_t *
3715 xfs_iext_get_ext(
3716 xfs_ifork_t *ifp, /* inode fork pointer */
3717 xfs_extnum_t idx) /* index of target extent */
3719 ASSERT(idx >= 0);
3720 if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) {
3721 return ifp->if_u1.if_ext_irec->er_extbuf;
3722 } else if (ifp->if_flags & XFS_IFEXTIREC) {
3723 xfs_ext_irec_t *erp; /* irec pointer */
3724 int erp_idx = 0; /* irec index */
3725 xfs_extnum_t page_idx = idx; /* ext index in target list */
3727 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
3728 return &erp->er_extbuf[page_idx];
3729 } else if (ifp->if_bytes) {
3730 return &ifp->if_u1.if_extents[idx];
3731 } else {
3732 return NULL;
3737 * Insert new item(s) into the extent records for incore inode
3738 * fork 'ifp'. 'count' new items are inserted at index 'idx'.
3740 void
3741 xfs_iext_insert(
3742 xfs_ifork_t *ifp, /* inode fork pointer */
3743 xfs_extnum_t idx, /* starting index of new items */
3744 xfs_extnum_t count, /* number of inserted items */
3745 xfs_bmbt_irec_t *new) /* items to insert */
3747 xfs_bmbt_rec_t *ep; /* extent record pointer */
3748 xfs_extnum_t i; /* extent record index */
3750 ASSERT(ifp->if_flags & XFS_IFEXTENTS);
3751 xfs_iext_add(ifp, idx, count);
3752 for (i = idx; i < idx + count; i++, new++) {
3753 ep = xfs_iext_get_ext(ifp, i);
3754 xfs_bmbt_set_all(ep, new);
3759 * This is called when the amount of space required for incore file
3760 * extents needs to be increased. The ext_diff parameter stores the
3761 * number of new extents being added and the idx parameter contains
3762 * the extent index where the new extents will be added. If the new
3763 * extents are being appended, then we just need to (re)allocate and
3764 * initialize the space. Otherwise, if the new extents are being
3765 * inserted into the middle of the existing entries, a bit more work
3766 * is required to make room for the new extents to be inserted. The
3767 * caller is responsible for filling in the new extent entries upon
3768 * return.
3770 void
3771 xfs_iext_add(
3772 xfs_ifork_t *ifp, /* inode fork pointer */
3773 xfs_extnum_t idx, /* index to begin adding exts */
3774 int ext_diff) /* number of extents to add */
3776 int byte_diff; /* new bytes being added */
3777 int new_size; /* size of extents after adding */
3778 xfs_extnum_t nextents; /* number of extents in file */
3780 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3781 ASSERT((idx >= 0) && (idx <= nextents));
3782 byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t);
3783 new_size = ifp->if_bytes + byte_diff;
3785 * If the new number of extents (nextents + ext_diff)
3786 * fits inside the inode, then continue to use the inline
3787 * extent buffer.
3789 if (nextents + ext_diff <= XFS_INLINE_EXTS) {
3790 if (idx < nextents) {
3791 memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff],
3792 &ifp->if_u2.if_inline_ext[idx],
3793 (nextents - idx) * sizeof(xfs_bmbt_rec_t));
3794 memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff);
3796 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
3797 ifp->if_real_bytes = 0;
3798 ifp->if_lastex = nextents + ext_diff;
3801 * Otherwise use a linear (direct) extent list.
3802 * If the extents are currently inside the inode,
3803 * xfs_iext_realloc_direct will switch us from
3804 * inline to direct extent allocation mode.
3806 else if (nextents + ext_diff <= XFS_LINEAR_EXTS) {
3807 xfs_iext_realloc_direct(ifp, new_size);
3808 if (idx < nextents) {
3809 memmove(&ifp->if_u1.if_extents[idx + ext_diff],
3810 &ifp->if_u1.if_extents[idx],
3811 (nextents - idx) * sizeof(xfs_bmbt_rec_t));
3812 memset(&ifp->if_u1.if_extents[idx], 0, byte_diff);
3815 /* Indirection array */
3816 else {
3817 xfs_ext_irec_t *erp;
3818 int erp_idx = 0;
3819 int page_idx = idx;
3821 ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS);
3822 if (ifp->if_flags & XFS_IFEXTIREC) {
3823 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1);
3824 } else {
3825 xfs_iext_irec_init(ifp);
3826 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3827 erp = ifp->if_u1.if_ext_irec;
3829 /* Extents fit in target extent page */
3830 if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) {
3831 if (page_idx < erp->er_extcount) {
3832 memmove(&erp->er_extbuf[page_idx + ext_diff],
3833 &erp->er_extbuf[page_idx],
3834 (erp->er_extcount - page_idx) *
3835 sizeof(xfs_bmbt_rec_t));
3836 memset(&erp->er_extbuf[page_idx], 0, byte_diff);
3838 erp->er_extcount += ext_diff;
3839 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3841 /* Insert a new extent page */
3842 else if (erp) {
3843 xfs_iext_add_indirect_multi(ifp,
3844 erp_idx, page_idx, ext_diff);
3847 * If extent(s) are being appended to the last page in
3848 * the indirection array and the new extent(s) don't fit
3849 * in the page, then erp is NULL and erp_idx is set to
3850 * the next index needed in the indirection array.
3852 else {
3853 int count = ext_diff;
3855 while (count) {
3856 erp = xfs_iext_irec_new(ifp, erp_idx);
3857 erp->er_extcount = count;
3858 count -= MIN(count, (int)XFS_LINEAR_EXTS);
3859 if (count) {
3860 erp_idx++;
3865 ifp->if_bytes = new_size;
3869 * This is called when incore extents are being added to the indirection
3870 * array and the new extents do not fit in the target extent list. The
3871 * erp_idx parameter contains the irec index for the target extent list
3872 * in the indirection array, and the idx parameter contains the extent
3873 * index within the list. The number of extents being added is stored
3874 * in the count parameter.
3876 * |-------| |-------|
3877 * | | | | idx - number of extents before idx
3878 * | idx | | count |
3879 * | | | | count - number of extents being inserted at idx
3880 * |-------| |-------|
3881 * | count | | nex2 | nex2 - number of extents after idx + count
3882 * |-------| |-------|
3884 void
3885 xfs_iext_add_indirect_multi(
3886 xfs_ifork_t *ifp, /* inode fork pointer */
3887 int erp_idx, /* target extent irec index */
3888 xfs_extnum_t idx, /* index within target list */
3889 int count) /* new extents being added */
3891 int byte_diff; /* new bytes being added */
3892 xfs_ext_irec_t *erp; /* pointer to irec entry */
3893 xfs_extnum_t ext_diff; /* number of extents to add */
3894 xfs_extnum_t ext_cnt; /* new extents still needed */
3895 xfs_extnum_t nex2; /* extents after idx + count */
3896 xfs_bmbt_rec_t *nex2_ep = NULL; /* temp list for nex2 extents */
3897 int nlists; /* number of irec's (lists) */
3899 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3900 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3901 nex2 = erp->er_extcount - idx;
3902 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3905 * Save second part of target extent list
3906 * (all extents past */
3907 if (nex2) {
3908 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3909 nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_SLEEP);
3910 memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff);
3911 erp->er_extcount -= nex2;
3912 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2);
3913 memset(&erp->er_extbuf[idx], 0, byte_diff);
3917 * Add the new extents to the end of the target
3918 * list, then allocate new irec record(s) and
3919 * extent buffer(s) as needed to store the rest
3920 * of the new extents.
3922 ext_cnt = count;
3923 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount);
3924 if (ext_diff) {
3925 erp->er_extcount += ext_diff;
3926 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3927 ext_cnt -= ext_diff;
3929 while (ext_cnt) {
3930 erp_idx++;
3931 erp = xfs_iext_irec_new(ifp, erp_idx);
3932 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS);
3933 erp->er_extcount = ext_diff;
3934 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3935 ext_cnt -= ext_diff;
3938 /* Add nex2 extents back to indirection array */
3939 if (nex2) {
3940 xfs_extnum_t ext_avail;
3941 int i;
3943 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3944 ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
3945 i = 0;
3947 * If nex2 extents fit in the current page, append
3948 * nex2_ep after the new extents.
3950 if (nex2 <= ext_avail) {
3951 i = erp->er_extcount;
3954 * Otherwise, check if space is available in the
3955 * next page.
3957 else if ((erp_idx < nlists - 1) &&
3958 (nex2 <= (ext_avail = XFS_LINEAR_EXTS -
3959 ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) {
3960 erp_idx++;
3961 erp++;
3962 /* Create a hole for nex2 extents */
3963 memmove(&erp->er_extbuf[nex2], erp->er_extbuf,
3964 erp->er_extcount * sizeof(xfs_bmbt_rec_t));
3967 * Final choice, create a new extent page for
3968 * nex2 extents.
3970 else {
3971 erp_idx++;
3972 erp = xfs_iext_irec_new(ifp, erp_idx);
3974 memmove(&erp->er_extbuf[i], nex2_ep, byte_diff);
3975 kmem_free(nex2_ep, byte_diff);
3976 erp->er_extcount += nex2;
3977 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2);
3982 * This is called when the amount of space required for incore file
3983 * extents needs to be decreased. The ext_diff parameter stores the
3984 * number of extents to be removed and the idx parameter contains
3985 * the extent index where the extents will be removed from.
3987 * If the amount of space needed has decreased below the linear
3988 * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
3989 * extent array. Otherwise, use kmem_realloc() to adjust the
3990 * size to what is needed.
3992 void
3993 xfs_iext_remove(
3994 xfs_ifork_t *ifp, /* inode fork pointer */
3995 xfs_extnum_t idx, /* index to begin removing exts */
3996 int ext_diff) /* number of extents to remove */
3998 xfs_extnum_t nextents; /* number of extents in file */
3999 int new_size; /* size of extents after removal */
4001 ASSERT(ext_diff > 0);
4002 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4003 new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t);
4005 if (new_size == 0) {
4006 xfs_iext_destroy(ifp);
4007 } else if (ifp->if_flags & XFS_IFEXTIREC) {
4008 xfs_iext_remove_indirect(ifp, idx, ext_diff);
4009 } else if (ifp->if_real_bytes) {
4010 xfs_iext_remove_direct(ifp, idx, ext_diff);
4011 } else {
4012 xfs_iext_remove_inline(ifp, idx, ext_diff);
4014 ifp->if_bytes = new_size;
4018 * This removes ext_diff extents from the inline buffer, beginning
4019 * at extent index idx.
4021 void
4022 xfs_iext_remove_inline(
4023 xfs_ifork_t *ifp, /* inode fork pointer */
4024 xfs_extnum_t idx, /* index to begin removing exts */
4025 int ext_diff) /* number of extents to remove */
4027 int nextents; /* number of extents in file */
4029 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
4030 ASSERT(idx < XFS_INLINE_EXTS);
4031 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4032 ASSERT(((nextents - ext_diff) > 0) &&
4033 (nextents - ext_diff) < XFS_INLINE_EXTS);
4035 if (idx + ext_diff < nextents) {
4036 memmove(&ifp->if_u2.if_inline_ext[idx],
4037 &ifp->if_u2.if_inline_ext[idx + ext_diff],
4038 (nextents - (idx + ext_diff)) *
4039 sizeof(xfs_bmbt_rec_t));
4040 memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff],
4041 0, ext_diff * sizeof(xfs_bmbt_rec_t));
4042 } else {
4043 memset(&ifp->if_u2.if_inline_ext[idx], 0,
4044 ext_diff * sizeof(xfs_bmbt_rec_t));
4049 * This removes ext_diff extents from a linear (direct) extent list,
4050 * beginning at extent index idx. If the extents are being removed
4051 * from the end of the list (ie. truncate) then we just need to re-
4052 * allocate the list to remove the extra space. Otherwise, if the
4053 * extents are being removed from the middle of the existing extent
4054 * entries, then we first need to move the extent records beginning
4055 * at idx + ext_diff up in the list to overwrite the records being
4056 * removed, then remove the extra space via kmem_realloc.
4058 void
4059 xfs_iext_remove_direct(
4060 xfs_ifork_t *ifp, /* inode fork pointer */
4061 xfs_extnum_t idx, /* index to begin removing exts */
4062 int ext_diff) /* number of extents to remove */
4064 xfs_extnum_t nextents; /* number of extents in file */
4065 int new_size; /* size of extents after removal */
4067 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
4068 new_size = ifp->if_bytes -
4069 (ext_diff * sizeof(xfs_bmbt_rec_t));
4070 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4072 if (new_size == 0) {
4073 xfs_iext_destroy(ifp);
4074 return;
4076 /* Move extents up in the list (if needed) */
4077 if (idx + ext_diff < nextents) {
4078 memmove(&ifp->if_u1.if_extents[idx],
4079 &ifp->if_u1.if_extents[idx + ext_diff],
4080 (nextents - (idx + ext_diff)) *
4081 sizeof(xfs_bmbt_rec_t));
4083 memset(&ifp->if_u1.if_extents[nextents - ext_diff],
4084 0, ext_diff * sizeof(xfs_bmbt_rec_t));
4086 * Reallocate the direct extent list. If the extents
4087 * will fit inside the inode then xfs_iext_realloc_direct
4088 * will switch from direct to inline extent allocation
4089 * mode for us.
4091 xfs_iext_realloc_direct(ifp, new_size);
4092 ifp->if_bytes = new_size;
4096 * This is called when incore extents are being removed from the
4097 * indirection array and the extents being removed span multiple extent
4098 * buffers. The idx parameter contains the file extent index where we
4099 * want to begin removing extents, and the count parameter contains
4100 * how many extents need to be removed.
4102 * |-------| |-------|
4103 * | nex1 | | | nex1 - number of extents before idx
4104 * |-------| | count |
4105 * | | | | count - number of extents being removed at idx
4106 * | count | |-------|
4107 * | | | nex2 | nex2 - number of extents after idx + count
4108 * |-------| |-------|
4110 void
4111 xfs_iext_remove_indirect(
4112 xfs_ifork_t *ifp, /* inode fork pointer */
4113 xfs_extnum_t idx, /* index to begin removing extents */
4114 int count) /* number of extents to remove */
4116 xfs_ext_irec_t *erp; /* indirection array pointer */
4117 int erp_idx = 0; /* indirection array index */
4118 xfs_extnum_t ext_cnt; /* extents left to remove */
4119 xfs_extnum_t ext_diff; /* extents to remove in current list */
4120 xfs_extnum_t nex1; /* number of extents before idx */
4121 xfs_extnum_t nex2; /* extents after idx + count */
4122 int nlists; /* entries in indirection array */
4123 int page_idx = idx; /* index in target extent list */
4125 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4126 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
4127 ASSERT(erp != NULL);
4128 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4129 nex1 = page_idx;
4130 ext_cnt = count;
4131 while (ext_cnt) {
4132 nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0);
4133 ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1));
4135 * Check for deletion of entire list;
4136 * xfs_iext_irec_remove() updates extent offsets.
4138 if (ext_diff == erp->er_extcount) {
4139 xfs_iext_irec_remove(ifp, erp_idx);
4140 ext_cnt -= ext_diff;
4141 nex1 = 0;
4142 if (ext_cnt) {
4143 ASSERT(erp_idx < ifp->if_real_bytes /
4144 XFS_IEXT_BUFSZ);
4145 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4146 nex1 = 0;
4147 continue;
4148 } else {
4149 break;
4152 /* Move extents up (if needed) */
4153 if (nex2) {
4154 memmove(&erp->er_extbuf[nex1],
4155 &erp->er_extbuf[nex1 + ext_diff],
4156 nex2 * sizeof(xfs_bmbt_rec_t));
4158 /* Zero out rest of page */
4159 memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ -
4160 ((nex1 + nex2) * sizeof(xfs_bmbt_rec_t))));
4161 /* Update remaining counters */
4162 erp->er_extcount -= ext_diff;
4163 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff);
4164 ext_cnt -= ext_diff;
4165 nex1 = 0;
4166 erp_idx++;
4167 erp++;
4169 ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t);
4170 xfs_iext_irec_compact(ifp);
4174 * Create, destroy, or resize a linear (direct) block of extents.
4176 void
4177 xfs_iext_realloc_direct(
4178 xfs_ifork_t *ifp, /* inode fork pointer */
4179 int new_size) /* new size of extents */
4181 int rnew_size; /* real new size of extents */
4183 rnew_size = new_size;
4185 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) ||
4186 ((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) &&
4187 (new_size != ifp->if_real_bytes)));
4189 /* Free extent records */
4190 if (new_size == 0) {
4191 xfs_iext_destroy(ifp);
4193 /* Resize direct extent list and zero any new bytes */
4194 else if (ifp->if_real_bytes) {
4195 /* Check if extents will fit inside the inode */
4196 if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) {
4197 xfs_iext_direct_to_inline(ifp, new_size /
4198 (uint)sizeof(xfs_bmbt_rec_t));
4199 ifp->if_bytes = new_size;
4200 return;
4202 if (!is_power_of_2(new_size)){
4203 rnew_size = xfs_iroundup(new_size);
4205 if (rnew_size != ifp->if_real_bytes) {
4206 ifp->if_u1.if_extents = (xfs_bmbt_rec_t *)
4207 kmem_realloc(ifp->if_u1.if_extents,
4208 rnew_size,
4209 ifp->if_real_bytes,
4210 KM_SLEEP);
4212 if (rnew_size > ifp->if_real_bytes) {
4213 memset(&ifp->if_u1.if_extents[ifp->if_bytes /
4214 (uint)sizeof(xfs_bmbt_rec_t)], 0,
4215 rnew_size - ifp->if_real_bytes);
4219 * Switch from the inline extent buffer to a direct
4220 * extent list. Be sure to include the inline extent
4221 * bytes in new_size.
4223 else {
4224 new_size += ifp->if_bytes;
4225 if (!is_power_of_2(new_size)) {
4226 rnew_size = xfs_iroundup(new_size);
4228 xfs_iext_inline_to_direct(ifp, rnew_size);
4230 ifp->if_real_bytes = rnew_size;
4231 ifp->if_bytes = new_size;
4235 * Switch from linear (direct) extent records to inline buffer.
4237 void
4238 xfs_iext_direct_to_inline(
4239 xfs_ifork_t *ifp, /* inode fork pointer */
4240 xfs_extnum_t nextents) /* number of extents in file */
4242 ASSERT(ifp->if_flags & XFS_IFEXTENTS);
4243 ASSERT(nextents <= XFS_INLINE_EXTS);
4245 * The inline buffer was zeroed when we switched
4246 * from inline to direct extent allocation mode,
4247 * so we don't need to clear it here.
4249 memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents,
4250 nextents * sizeof(xfs_bmbt_rec_t));
4251 kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes);
4252 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
4253 ifp->if_real_bytes = 0;
4257 * Switch from inline buffer to linear (direct) extent records.
4258 * new_size should already be rounded up to the next power of 2
4259 * by the caller (when appropriate), so use new_size as it is.
4260 * However, since new_size may be rounded up, we can't update
4261 * if_bytes here. It is the caller's responsibility to update
4262 * if_bytes upon return.
4264 void
4265 xfs_iext_inline_to_direct(
4266 xfs_ifork_t *ifp, /* inode fork pointer */
4267 int new_size) /* number of extents in file */
4269 ifp->if_u1.if_extents = (xfs_bmbt_rec_t *)
4270 kmem_alloc(new_size, KM_SLEEP);
4271 memset(ifp->if_u1.if_extents, 0, new_size);
4272 if (ifp->if_bytes) {
4273 memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
4274 ifp->if_bytes);
4275 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
4276 sizeof(xfs_bmbt_rec_t));
4278 ifp->if_real_bytes = new_size;
4282 * Resize an extent indirection array to new_size bytes.
4284 void
4285 xfs_iext_realloc_indirect(
4286 xfs_ifork_t *ifp, /* inode fork pointer */
4287 int new_size) /* new indirection array size */
4289 int nlists; /* number of irec's (ex lists) */
4290 int size; /* current indirection array size */
4292 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4293 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4294 size = nlists * sizeof(xfs_ext_irec_t);
4295 ASSERT(ifp->if_real_bytes);
4296 ASSERT((new_size >= 0) && (new_size != size));
4297 if (new_size == 0) {
4298 xfs_iext_destroy(ifp);
4299 } else {
4300 ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *)
4301 kmem_realloc(ifp->if_u1.if_ext_irec,
4302 new_size, size, KM_SLEEP);
4307 * Switch from indirection array to linear (direct) extent allocations.
4309 void
4310 xfs_iext_indirect_to_direct(
4311 xfs_ifork_t *ifp) /* inode fork pointer */
4313 xfs_bmbt_rec_t *ep; /* extent record pointer */
4314 xfs_extnum_t nextents; /* number of extents in file */
4315 int size; /* size of file extents */
4317 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4318 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4319 ASSERT(nextents <= XFS_LINEAR_EXTS);
4320 size = nextents * sizeof(xfs_bmbt_rec_t);
4322 xfs_iext_irec_compact_full(ifp);
4323 ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ);
4325 ep = ifp->if_u1.if_ext_irec->er_extbuf;
4326 kmem_free(ifp->if_u1.if_ext_irec, sizeof(xfs_ext_irec_t));
4327 ifp->if_flags &= ~XFS_IFEXTIREC;
4328 ifp->if_u1.if_extents = ep;
4329 ifp->if_bytes = size;
4330 if (nextents < XFS_LINEAR_EXTS) {
4331 xfs_iext_realloc_direct(ifp, size);
4336 * Free incore file extents.
4338 void
4339 xfs_iext_destroy(
4340 xfs_ifork_t *ifp) /* inode fork pointer */
4342 if (ifp->if_flags & XFS_IFEXTIREC) {
4343 int erp_idx;
4344 int nlists;
4346 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4347 for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) {
4348 xfs_iext_irec_remove(ifp, erp_idx);
4350 ifp->if_flags &= ~XFS_IFEXTIREC;
4351 } else if (ifp->if_real_bytes) {
4352 kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes);
4353 } else if (ifp->if_bytes) {
4354 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
4355 sizeof(xfs_bmbt_rec_t));
4357 ifp->if_u1.if_extents = NULL;
4358 ifp->if_real_bytes = 0;
4359 ifp->if_bytes = 0;
4363 * Return a pointer to the extent record for file system block bno.
4365 xfs_bmbt_rec_t * /* pointer to found extent record */
4366 xfs_iext_bno_to_ext(
4367 xfs_ifork_t *ifp, /* inode fork pointer */
4368 xfs_fileoff_t bno, /* block number to search for */
4369 xfs_extnum_t *idxp) /* index of target extent */
4371 xfs_bmbt_rec_t *base; /* pointer to first extent */
4372 xfs_filblks_t blockcount = 0; /* number of blocks in extent */
4373 xfs_bmbt_rec_t *ep = NULL; /* pointer to target extent */
4374 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
4375 int high; /* upper boundary in search */
4376 xfs_extnum_t idx = 0; /* index of target extent */
4377 int low; /* lower boundary in search */
4378 xfs_extnum_t nextents; /* number of file extents */
4379 xfs_fileoff_t startoff = 0; /* start offset of extent */
4381 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4382 if (nextents == 0) {
4383 *idxp = 0;
4384 return NULL;
4386 low = 0;
4387 if (ifp->if_flags & XFS_IFEXTIREC) {
4388 /* Find target extent list */
4389 int erp_idx = 0;
4390 erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx);
4391 base = erp->er_extbuf;
4392 high = erp->er_extcount - 1;
4393 } else {
4394 base = ifp->if_u1.if_extents;
4395 high = nextents - 1;
4397 /* Binary search extent records */
4398 while (low <= high) {
4399 idx = (low + high) >> 1;
4400 ep = base + idx;
4401 startoff = xfs_bmbt_get_startoff(ep);
4402 blockcount = xfs_bmbt_get_blockcount(ep);
4403 if (bno < startoff) {
4404 high = idx - 1;
4405 } else if (bno >= startoff + blockcount) {
4406 low = idx + 1;
4407 } else {
4408 /* Convert back to file-based extent index */
4409 if (ifp->if_flags & XFS_IFEXTIREC) {
4410 idx += erp->er_extoff;
4412 *idxp = idx;
4413 return ep;
4416 /* Convert back to file-based extent index */
4417 if (ifp->if_flags & XFS_IFEXTIREC) {
4418 idx += erp->er_extoff;
4420 if (bno >= startoff + blockcount) {
4421 if (++idx == nextents) {
4422 ep = NULL;
4423 } else {
4424 ep = xfs_iext_get_ext(ifp, idx);
4427 *idxp = idx;
4428 return ep;
4432 * Return a pointer to the indirection array entry containing the
4433 * extent record for filesystem block bno. Store the index of the
4434 * target irec in *erp_idxp.
4436 xfs_ext_irec_t * /* pointer to found extent record */
4437 xfs_iext_bno_to_irec(
4438 xfs_ifork_t *ifp, /* inode fork pointer */
4439 xfs_fileoff_t bno, /* block number to search for */
4440 int *erp_idxp) /* irec index of target ext list */
4442 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
4443 xfs_ext_irec_t *erp_next; /* next indirection array entry */
4444 int erp_idx; /* indirection array index */
4445 int nlists; /* number of extent irec's (lists) */
4446 int high; /* binary search upper limit */
4447 int low; /* binary search lower limit */
4449 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4450 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4451 erp_idx = 0;
4452 low = 0;
4453 high = nlists - 1;
4454 while (low <= high) {
4455 erp_idx = (low + high) >> 1;
4456 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4457 erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL;
4458 if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) {
4459 high = erp_idx - 1;
4460 } else if (erp_next && bno >=
4461 xfs_bmbt_get_startoff(erp_next->er_extbuf)) {
4462 low = erp_idx + 1;
4463 } else {
4464 break;
4467 *erp_idxp = erp_idx;
4468 return erp;
4472 * Return a pointer to the indirection array entry containing the
4473 * extent record at file extent index *idxp. Store the index of the
4474 * target irec in *erp_idxp and store the page index of the target
4475 * extent record in *idxp.
4477 xfs_ext_irec_t *
4478 xfs_iext_idx_to_irec(
4479 xfs_ifork_t *ifp, /* inode fork pointer */
4480 xfs_extnum_t *idxp, /* extent index (file -> page) */
4481 int *erp_idxp, /* pointer to target irec */
4482 int realloc) /* new bytes were just added */
4484 xfs_ext_irec_t *prev; /* pointer to previous irec */
4485 xfs_ext_irec_t *erp = NULL; /* pointer to current irec */
4486 int erp_idx; /* indirection array index */
4487 int nlists; /* number of irec's (ex lists) */
4488 int high; /* binary search upper limit */
4489 int low; /* binary search lower limit */
4490 xfs_extnum_t page_idx = *idxp; /* extent index in target list */
4492 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4493 ASSERT(page_idx >= 0 && page_idx <=
4494 ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t));
4495 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4496 erp_idx = 0;
4497 low = 0;
4498 high = nlists - 1;
4500 /* Binary search extent irec's */
4501 while (low <= high) {
4502 erp_idx = (low + high) >> 1;
4503 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4504 prev = erp_idx > 0 ? erp - 1 : NULL;
4505 if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff &&
4506 realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) {
4507 high = erp_idx - 1;
4508 } else if (page_idx > erp->er_extoff + erp->er_extcount ||
4509 (page_idx == erp->er_extoff + erp->er_extcount &&
4510 !realloc)) {
4511 low = erp_idx + 1;
4512 } else if (page_idx == erp->er_extoff + erp->er_extcount &&
4513 erp->er_extcount == XFS_LINEAR_EXTS) {
4514 ASSERT(realloc);
4515 page_idx = 0;
4516 erp_idx++;
4517 erp = erp_idx < nlists ? erp + 1 : NULL;
4518 break;
4519 } else {
4520 page_idx -= erp->er_extoff;
4521 break;
4524 *idxp = page_idx;
4525 *erp_idxp = erp_idx;
4526 return(erp);
4530 * Allocate and initialize an indirection array once the space needed
4531 * for incore extents increases above XFS_IEXT_BUFSZ.
4533 void
4534 xfs_iext_irec_init(
4535 xfs_ifork_t *ifp) /* inode fork pointer */
4537 xfs_ext_irec_t *erp; /* indirection array pointer */
4538 xfs_extnum_t nextents; /* number of extents in file */
4540 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
4541 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4542 ASSERT(nextents <= XFS_LINEAR_EXTS);
4544 erp = (xfs_ext_irec_t *)
4545 kmem_alloc(sizeof(xfs_ext_irec_t), KM_SLEEP);
4547 if (nextents == 0) {
4548 ifp->if_u1.if_extents = (xfs_bmbt_rec_t *)
4549 kmem_alloc(XFS_IEXT_BUFSZ, KM_SLEEP);
4550 } else if (!ifp->if_real_bytes) {
4551 xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ);
4552 } else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) {
4553 xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ);
4555 erp->er_extbuf = ifp->if_u1.if_extents;
4556 erp->er_extcount = nextents;
4557 erp->er_extoff = 0;
4559 ifp->if_flags |= XFS_IFEXTIREC;
4560 ifp->if_real_bytes = XFS_IEXT_BUFSZ;
4561 ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t);
4562 ifp->if_u1.if_ext_irec = erp;
4564 return;
4568 * Allocate and initialize a new entry in the indirection array.
4570 xfs_ext_irec_t *
4571 xfs_iext_irec_new(
4572 xfs_ifork_t *ifp, /* inode fork pointer */
4573 int erp_idx) /* index for new irec */
4575 xfs_ext_irec_t *erp; /* indirection array pointer */
4576 int i; /* loop counter */
4577 int nlists; /* number of irec's (ex lists) */
4579 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4580 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4582 /* Resize indirection array */
4583 xfs_iext_realloc_indirect(ifp, ++nlists *
4584 sizeof(xfs_ext_irec_t));
4586 * Move records down in the array so the
4587 * new page can use erp_idx.
4589 erp = ifp->if_u1.if_ext_irec;
4590 for (i = nlists - 1; i > erp_idx; i--) {
4591 memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t));
4593 ASSERT(i == erp_idx);
4595 /* Initialize new extent record */
4596 erp = ifp->if_u1.if_ext_irec;
4597 erp[erp_idx].er_extbuf = (xfs_bmbt_rec_t *)
4598 kmem_alloc(XFS_IEXT_BUFSZ, KM_SLEEP);
4599 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
4600 memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ);
4601 erp[erp_idx].er_extcount = 0;
4602 erp[erp_idx].er_extoff = erp_idx > 0 ?
4603 erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0;
4604 return (&erp[erp_idx]);
4608 * Remove a record from the indirection array.
4610 void
4611 xfs_iext_irec_remove(
4612 xfs_ifork_t *ifp, /* inode fork pointer */
4613 int erp_idx) /* irec index to remove */
4615 xfs_ext_irec_t *erp; /* indirection array pointer */
4616 int i; /* loop counter */
4617 int nlists; /* number of irec's (ex lists) */
4619 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4620 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4621 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4622 if (erp->er_extbuf) {
4623 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1,
4624 -erp->er_extcount);
4625 kmem_free(erp->er_extbuf, XFS_IEXT_BUFSZ);
4627 /* Compact extent records */
4628 erp = ifp->if_u1.if_ext_irec;
4629 for (i = erp_idx; i < nlists - 1; i++) {
4630 memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t));
4633 * Manually free the last extent record from the indirection
4634 * array. A call to xfs_iext_realloc_indirect() with a size
4635 * of zero would result in a call to xfs_iext_destroy() which
4636 * would in turn call this function again, creating a nasty
4637 * infinite loop.
4639 if (--nlists) {
4640 xfs_iext_realloc_indirect(ifp,
4641 nlists * sizeof(xfs_ext_irec_t));
4642 } else {
4643 kmem_free(ifp->if_u1.if_ext_irec,
4644 sizeof(xfs_ext_irec_t));
4646 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
4650 * This is called to clean up large amounts of unused memory allocated
4651 * by the indirection array. Before compacting anything though, verify
4652 * that the indirection array is still needed and switch back to the
4653 * linear extent list (or even the inline buffer) if possible. The
4654 * compaction policy is as follows:
4656 * Full Compaction: Extents fit into a single page (or inline buffer)
4657 * Full Compaction: Extents occupy less than 10% of allocated space
4658 * Partial Compaction: Extents occupy > 10% and < 50% of allocated space
4659 * No Compaction: Extents occupy at least 50% of allocated space
4661 void
4662 xfs_iext_irec_compact(
4663 xfs_ifork_t *ifp) /* inode fork pointer */
4665 xfs_extnum_t nextents; /* number of extents in file */
4666 int nlists; /* number of irec's (ex lists) */
4668 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4669 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4670 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4672 if (nextents == 0) {
4673 xfs_iext_destroy(ifp);
4674 } else if (nextents <= XFS_INLINE_EXTS) {
4675 xfs_iext_indirect_to_direct(ifp);
4676 xfs_iext_direct_to_inline(ifp, nextents);
4677 } else if (nextents <= XFS_LINEAR_EXTS) {
4678 xfs_iext_indirect_to_direct(ifp);
4679 } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 3) {
4680 xfs_iext_irec_compact_full(ifp);
4681 } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) {
4682 xfs_iext_irec_compact_pages(ifp);
4687 * Combine extents from neighboring extent pages.
4689 void
4690 xfs_iext_irec_compact_pages(
4691 xfs_ifork_t *ifp) /* inode fork pointer */
4693 xfs_ext_irec_t *erp, *erp_next;/* pointers to irec entries */
4694 int erp_idx = 0; /* indirection array index */
4695 int nlists; /* number of irec's (ex lists) */
4697 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4698 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4699 while (erp_idx < nlists - 1) {
4700 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4701 erp_next = erp + 1;
4702 if (erp_next->er_extcount <=
4703 (XFS_LINEAR_EXTS - erp->er_extcount)) {
4704 memmove(&erp->er_extbuf[erp->er_extcount],
4705 erp_next->er_extbuf, erp_next->er_extcount *
4706 sizeof(xfs_bmbt_rec_t));
4707 erp->er_extcount += erp_next->er_extcount;
4709 * Free page before removing extent record
4710 * so er_extoffs don't get modified in
4711 * xfs_iext_irec_remove.
4713 kmem_free(erp_next->er_extbuf, XFS_IEXT_BUFSZ);
4714 erp_next->er_extbuf = NULL;
4715 xfs_iext_irec_remove(ifp, erp_idx + 1);
4716 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4717 } else {
4718 erp_idx++;
4724 * Fully compact the extent records managed by the indirection array.
4726 void
4727 xfs_iext_irec_compact_full(
4728 xfs_ifork_t *ifp) /* inode fork pointer */
4730 xfs_bmbt_rec_t *ep, *ep_next; /* extent record pointers */
4731 xfs_ext_irec_t *erp, *erp_next; /* extent irec pointers */
4732 int erp_idx = 0; /* extent irec index */
4733 int ext_avail; /* empty entries in ex list */
4734 int ext_diff; /* number of exts to add */
4735 int nlists; /* number of irec's (ex lists) */
4737 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4738 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4739 erp = ifp->if_u1.if_ext_irec;
4740 ep = &erp->er_extbuf[erp->er_extcount];
4741 erp_next = erp + 1;
4742 ep_next = erp_next->er_extbuf;
4743 while (erp_idx < nlists - 1) {
4744 ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
4745 ext_diff = MIN(ext_avail, erp_next->er_extcount);
4746 memcpy(ep, ep_next, ext_diff * sizeof(xfs_bmbt_rec_t));
4747 erp->er_extcount += ext_diff;
4748 erp_next->er_extcount -= ext_diff;
4749 /* Remove next page */
4750 if (erp_next->er_extcount == 0) {
4752 * Free page before removing extent record
4753 * so er_extoffs don't get modified in
4754 * xfs_iext_irec_remove.
4756 kmem_free(erp_next->er_extbuf,
4757 erp_next->er_extcount * sizeof(xfs_bmbt_rec_t));
4758 erp_next->er_extbuf = NULL;
4759 xfs_iext_irec_remove(ifp, erp_idx + 1);
4760 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4761 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4762 /* Update next page */
4763 } else {
4764 /* Move rest of page up to become next new page */
4765 memmove(erp_next->er_extbuf, ep_next,
4766 erp_next->er_extcount * sizeof(xfs_bmbt_rec_t));
4767 ep_next = erp_next->er_extbuf;
4768 memset(&ep_next[erp_next->er_extcount], 0,
4769 (XFS_LINEAR_EXTS - erp_next->er_extcount) *
4770 sizeof(xfs_bmbt_rec_t));
4772 if (erp->er_extcount == XFS_LINEAR_EXTS) {
4773 erp_idx++;
4774 if (erp_idx < nlists)
4775 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4776 else
4777 break;
4779 ep = &erp->er_extbuf[erp->er_extcount];
4780 erp_next = erp + 1;
4781 ep_next = erp_next->er_extbuf;
4786 * This is called to update the er_extoff field in the indirection
4787 * array when extents have been added or removed from one of the
4788 * extent lists. erp_idx contains the irec index to begin updating
4789 * at and ext_diff contains the number of extents that were added
4790 * or removed.
4792 void
4793 xfs_iext_irec_update_extoffs(
4794 xfs_ifork_t *ifp, /* inode fork pointer */
4795 int erp_idx, /* irec index to update */
4796 int ext_diff) /* number of new extents */
4798 int i; /* loop counter */
4799 int nlists; /* number of irec's (ex lists */
4801 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4802 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4803 for (i = erp_idx; i < nlists; i++) {
4804 ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff;