[PATCH] kprobes: Temporary disarming of reentrant probe for ppc64
[linux-2.6/sactl.git] / arch / ppc64 / kernel / kprobes.c
blob782ce3efa2c10d04718d70157d7acb9d56786039
1 /*
2 * Kernel Probes (KProbes)
3 * arch/ppc64/kernel/kprobes.c
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 * Copyright (C) IBM Corporation, 2002, 2004
21 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22 * Probes initial implementation ( includes contributions from
23 * Rusty Russell).
24 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
25 * interface to access function arguments.
26 * 2004-Nov Ananth N Mavinakayanahalli <ananth@in.ibm.com> kprobes port
27 * for PPC64
30 #include <linux/config.h>
31 #include <linux/kprobes.h>
32 #include <linux/ptrace.h>
33 #include <linux/spinlock.h>
34 #include <linux/preempt.h>
35 #include <asm/cacheflush.h>
36 #include <asm/kdebug.h>
37 #include <asm/sstep.h>
39 static struct kprobe *current_kprobe;
40 static unsigned long kprobe_status, kprobe_saved_msr;
41 static struct kprobe *kprobe_prev;
42 static unsigned long kprobe_status_prev, kprobe_saved_msr_prev;
43 static struct pt_regs jprobe_saved_regs;
45 int arch_prepare_kprobe(struct kprobe *p)
47 int ret = 0;
48 kprobe_opcode_t insn = *p->addr;
50 if ((unsigned long)p->addr & 0x03) {
51 printk("Attempt to register kprobe at an unaligned address\n");
52 ret = -EINVAL;
53 } else if (IS_MTMSRD(insn) || IS_RFID(insn)) {
54 printk("Cannot register a kprobe on rfid or mtmsrd\n");
55 ret = -EINVAL;
57 return ret;
60 void arch_copy_kprobe(struct kprobe *p)
62 memcpy(p->ainsn.insn, p->addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
63 p->opcode = *p->addr;
66 void arch_arm_kprobe(struct kprobe *p)
68 *p->addr = BREAKPOINT_INSTRUCTION;
69 flush_icache_range((unsigned long) p->addr,
70 (unsigned long) p->addr + sizeof(kprobe_opcode_t));
73 void arch_disarm_kprobe(struct kprobe *p)
75 *p->addr = p->opcode;
76 flush_icache_range((unsigned long) p->addr,
77 (unsigned long) p->addr + sizeof(kprobe_opcode_t));
80 void arch_remove_kprobe(struct kprobe *p)
84 static inline void prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
86 regs->msr |= MSR_SE;
87 /*single step inline if it a breakpoint instruction*/
88 if (p->opcode == BREAKPOINT_INSTRUCTION)
89 regs->nip = (unsigned long)p->addr;
90 else
91 regs->nip = (unsigned long)&p->ainsn.insn;
94 static inline void save_previous_kprobe(void)
96 kprobe_prev = current_kprobe;
97 kprobe_status_prev = kprobe_status;
98 kprobe_saved_msr_prev = kprobe_saved_msr;
101 static inline void restore_previous_kprobe(void)
103 current_kprobe = kprobe_prev;
104 kprobe_status = kprobe_status_prev;
105 kprobe_saved_msr = kprobe_saved_msr_prev;
108 static inline int kprobe_handler(struct pt_regs *regs)
110 struct kprobe *p;
111 int ret = 0;
112 unsigned int *addr = (unsigned int *)regs->nip;
114 /* Check we're not actually recursing */
115 if (kprobe_running()) {
116 /* We *are* holding lock here, so this is safe.
117 Disarm the probe we just hit, and ignore it. */
118 p = get_kprobe(addr);
119 if (p) {
120 if (kprobe_status == KPROBE_HIT_SS) {
121 regs->msr &= ~MSR_SE;
122 regs->msr |= kprobe_saved_msr;
123 unlock_kprobes();
124 goto no_kprobe;
126 /* We have reentered the kprobe_handler(), since
127 * another probe was hit while within the handler.
128 * We here save the original kprobes variables and
129 * just single step on the instruction of the new probe
130 * without calling any user handlers.
132 save_previous_kprobe();
133 current_kprobe = p;
134 kprobe_saved_msr = regs->msr;
135 p->nmissed++;
136 prepare_singlestep(p, regs);
137 kprobe_status = KPROBE_REENTER;
138 return 1;
139 } else {
140 p = current_kprobe;
141 if (p->break_handler && p->break_handler(p, regs)) {
142 goto ss_probe;
145 /* If it's not ours, can't be delete race, (we hold lock). */
146 goto no_kprobe;
149 lock_kprobes();
150 p = get_kprobe(addr);
151 if (!p) {
152 unlock_kprobes();
153 if (*addr != BREAKPOINT_INSTRUCTION) {
155 * PowerPC has multiple variants of the "trap"
156 * instruction. If the current instruction is a
157 * trap variant, it could belong to someone else
159 kprobe_opcode_t cur_insn = *addr;
160 if (IS_TW(cur_insn) || IS_TD(cur_insn) ||
161 IS_TWI(cur_insn) || IS_TDI(cur_insn))
162 goto no_kprobe;
164 * The breakpoint instruction was removed right
165 * after we hit it. Another cpu has removed
166 * either a probepoint or a debugger breakpoint
167 * at this address. In either case, no further
168 * handling of this interrupt is appropriate.
170 ret = 1;
172 /* Not one of ours: let kernel handle it */
173 goto no_kprobe;
176 kprobe_status = KPROBE_HIT_ACTIVE;
177 current_kprobe = p;
178 kprobe_saved_msr = regs->msr;
179 if (p->pre_handler && p->pre_handler(p, regs))
180 /* handler has already set things up, so skip ss setup */
181 return 1;
183 ss_probe:
184 prepare_singlestep(p, regs);
185 kprobe_status = KPROBE_HIT_SS;
187 * This preempt_disable() matches the preempt_enable_no_resched()
188 * in post_kprobe_handler().
190 preempt_disable();
191 return 1;
193 no_kprobe:
194 return ret;
198 * Called after single-stepping. p->addr is the address of the
199 * instruction whose first byte has been replaced by the "breakpoint"
200 * instruction. To avoid the SMP problems that can occur when we
201 * temporarily put back the original opcode to single-step, we
202 * single-stepped a copy of the instruction. The address of this
203 * copy is p->ainsn.insn.
205 static void resume_execution(struct kprobe *p, struct pt_regs *regs)
207 int ret;
209 regs->nip = (unsigned long)p->addr;
210 ret = emulate_step(regs, p->ainsn.insn[0]);
211 if (ret == 0)
212 regs->nip = (unsigned long)p->addr + 4;
215 static inline int post_kprobe_handler(struct pt_regs *regs)
217 if (!kprobe_running())
218 return 0;
220 if ((kprobe_status != KPROBE_REENTER) && current_kprobe->post_handler) {
221 kprobe_status = KPROBE_HIT_SSDONE;
222 current_kprobe->post_handler(current_kprobe, regs, 0);
225 resume_execution(current_kprobe, regs);
226 regs->msr |= kprobe_saved_msr;
228 /*Restore back the original saved kprobes variables and continue. */
229 if (kprobe_status == KPROBE_REENTER) {
230 restore_previous_kprobe();
231 goto out;
233 unlock_kprobes();
234 out:
235 preempt_enable_no_resched();
238 * if somebody else is singlestepping across a probe point, msr
239 * will have SE set, in which case, continue the remaining processing
240 * of do_debug, as if this is not a probe hit.
242 if (regs->msr & MSR_SE)
243 return 0;
245 return 1;
248 /* Interrupts disabled, kprobe_lock held. */
249 static inline int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
251 if (current_kprobe->fault_handler
252 && current_kprobe->fault_handler(current_kprobe, regs, trapnr))
253 return 1;
255 if (kprobe_status & KPROBE_HIT_SS) {
256 resume_execution(current_kprobe, regs);
257 regs->msr &= ~MSR_SE;
258 regs->msr |= kprobe_saved_msr;
260 unlock_kprobes();
261 preempt_enable_no_resched();
263 return 0;
267 * Wrapper routine to for handling exceptions.
269 int kprobe_exceptions_notify(struct notifier_block *self, unsigned long val,
270 void *data)
272 struct die_args *args = (struct die_args *)data;
273 int ret = NOTIFY_DONE;
276 * Interrupts are not disabled here. We need to disable
277 * preemption, because kprobe_running() uses smp_processor_id().
279 preempt_disable();
280 switch (val) {
281 case DIE_BPT:
282 if (kprobe_handler(args->regs))
283 ret = NOTIFY_STOP;
284 break;
285 case DIE_SSTEP:
286 if (post_kprobe_handler(args->regs))
287 ret = NOTIFY_STOP;
288 break;
289 case DIE_GPF:
290 case DIE_PAGE_FAULT:
291 if (kprobe_running() &&
292 kprobe_fault_handler(args->regs, args->trapnr))
293 ret = NOTIFY_STOP;
294 break;
295 default:
296 break;
298 preempt_enable();
299 return ret;
302 int setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
304 struct jprobe *jp = container_of(p, struct jprobe, kp);
306 memcpy(&jprobe_saved_regs, regs, sizeof(struct pt_regs));
308 /* setup return addr to the jprobe handler routine */
309 regs->nip = (unsigned long)(((func_descr_t *)jp->entry)->entry);
310 regs->gpr[2] = (unsigned long)(((func_descr_t *)jp->entry)->toc);
312 return 1;
315 void jprobe_return(void)
317 asm volatile("trap" ::: "memory");
320 void jprobe_return_end(void)
324 int longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
327 * FIXME - we should ideally be validating that we got here 'cos
328 * of the "trap" in jprobe_return() above, before restoring the
329 * saved regs...
331 memcpy(regs, &jprobe_saved_regs, sizeof(struct pt_regs));
332 return 1;