4 * Copyright (C) 1991, 1992 Linus Torvalds
7 #include <linux/module.h>
9 #include <linux/utsname.h>
10 #include <linux/mman.h>
11 #include <linux/smp_lock.h>
12 #include <linux/notifier.h>
13 #include <linux/reboot.h>
14 #include <linux/prctl.h>
15 #include <linux/highuid.h>
17 #include <linux/resource.h>
18 #include <linux/kernel.h>
19 #include <linux/kexec.h>
20 #include <linux/workqueue.h>
21 #include <linux/capability.h>
22 #include <linux/device.h>
23 #include <linux/key.h>
24 #include <linux/times.h>
25 #include <linux/posix-timers.h>
26 #include <linux/security.h>
27 #include <linux/dcookies.h>
28 #include <linux/suspend.h>
29 #include <linux/tty.h>
30 #include <linux/signal.h>
31 #include <linux/cn_proc.h>
32 #include <linux/getcpu.h>
33 #include <linux/task_io_accounting_ops.h>
34 #include <linux/seccomp.h>
35 #include <linux/cpu.h>
37 #include <linux/compat.h>
38 #include <linux/syscalls.h>
39 #include <linux/kprobes.h>
40 #include <linux/user_namespace.h>
42 #include <asm/uaccess.h>
44 #include <asm/unistd.h>
46 #ifndef SET_UNALIGN_CTL
47 # define SET_UNALIGN_CTL(a,b) (-EINVAL)
49 #ifndef GET_UNALIGN_CTL
50 # define GET_UNALIGN_CTL(a,b) (-EINVAL)
53 # define SET_FPEMU_CTL(a,b) (-EINVAL)
56 # define GET_FPEMU_CTL(a,b) (-EINVAL)
59 # define SET_FPEXC_CTL(a,b) (-EINVAL)
62 # define GET_FPEXC_CTL(a,b) (-EINVAL)
65 # define GET_ENDIAN(a,b) (-EINVAL)
68 # define SET_ENDIAN(a,b) (-EINVAL)
72 * this is where the system-wide overflow UID and GID are defined, for
73 * architectures that now have 32-bit UID/GID but didn't in the past
76 int overflowuid
= DEFAULT_OVERFLOWUID
;
77 int overflowgid
= DEFAULT_OVERFLOWGID
;
80 EXPORT_SYMBOL(overflowuid
);
81 EXPORT_SYMBOL(overflowgid
);
85 * the same as above, but for filesystems which can only store a 16-bit
86 * UID and GID. as such, this is needed on all architectures
89 int fs_overflowuid
= DEFAULT_FS_OVERFLOWUID
;
90 int fs_overflowgid
= DEFAULT_FS_OVERFLOWUID
;
92 EXPORT_SYMBOL(fs_overflowuid
);
93 EXPORT_SYMBOL(fs_overflowgid
);
96 * this indicates whether you can reboot with ctrl-alt-del: the default is yes
101 EXPORT_SYMBOL(cad_pid
);
104 * If set, this is used for preparing the system to power off.
107 void (*pm_power_off_prepare
)(void);
109 static int set_one_prio(struct task_struct
*p
, int niceval
, int error
)
113 if (p
->uid
!= current
->euid
&&
114 p
->euid
!= current
->euid
&& !capable(CAP_SYS_NICE
)) {
118 if (niceval
< task_nice(p
) && !can_nice(p
, niceval
)) {
122 no_nice
= security_task_setnice(p
, niceval
);
129 set_user_nice(p
, niceval
);
134 asmlinkage
long sys_setpriority(int which
, int who
, int niceval
)
136 struct task_struct
*g
, *p
;
137 struct user_struct
*user
;
141 if (which
> PRIO_USER
|| which
< PRIO_PROCESS
)
144 /* normalize: avoid signed division (rounding problems) */
151 read_lock(&tasklist_lock
);
155 p
= find_task_by_vpid(who
);
159 error
= set_one_prio(p
, niceval
, error
);
163 pgrp
= find_vpid(who
);
165 pgrp
= task_pgrp(current
);
166 do_each_pid_task(pgrp
, PIDTYPE_PGID
, p
) {
167 error
= set_one_prio(p
, niceval
, error
);
168 } while_each_pid_task(pgrp
, PIDTYPE_PGID
, p
);
171 user
= current
->user
;
175 if ((who
!= current
->uid
) && !(user
= find_user(who
)))
176 goto out_unlock
; /* No processes for this user */
180 error
= set_one_prio(p
, niceval
, error
);
181 while_each_thread(g
, p
);
182 if (who
!= current
->uid
)
183 free_uid(user
); /* For find_user() */
187 read_unlock(&tasklist_lock
);
193 * Ugh. To avoid negative return values, "getpriority()" will
194 * not return the normal nice-value, but a negated value that
195 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
196 * to stay compatible.
198 asmlinkage
long sys_getpriority(int which
, int who
)
200 struct task_struct
*g
, *p
;
201 struct user_struct
*user
;
202 long niceval
, retval
= -ESRCH
;
205 if (which
> PRIO_USER
|| which
< PRIO_PROCESS
)
208 read_lock(&tasklist_lock
);
212 p
= find_task_by_vpid(who
);
216 niceval
= 20 - task_nice(p
);
217 if (niceval
> retval
)
223 pgrp
= find_vpid(who
);
225 pgrp
= task_pgrp(current
);
226 do_each_pid_task(pgrp
, PIDTYPE_PGID
, p
) {
227 niceval
= 20 - task_nice(p
);
228 if (niceval
> retval
)
230 } while_each_pid_task(pgrp
, PIDTYPE_PGID
, p
);
233 user
= current
->user
;
237 if ((who
!= current
->uid
) && !(user
= find_user(who
)))
238 goto out_unlock
; /* No processes for this user */
242 niceval
= 20 - task_nice(p
);
243 if (niceval
> retval
)
246 while_each_thread(g
, p
);
247 if (who
!= current
->uid
)
248 free_uid(user
); /* for find_user() */
252 read_unlock(&tasklist_lock
);
258 * emergency_restart - reboot the system
260 * Without shutting down any hardware or taking any locks
261 * reboot the system. This is called when we know we are in
262 * trouble so this is our best effort to reboot. This is
263 * safe to call in interrupt context.
265 void emergency_restart(void)
267 machine_emergency_restart();
269 EXPORT_SYMBOL_GPL(emergency_restart
);
271 static void kernel_restart_prepare(char *cmd
)
273 blocking_notifier_call_chain(&reboot_notifier_list
, SYS_RESTART
, cmd
);
274 system_state
= SYSTEM_RESTART
;
280 * kernel_restart - reboot the system
281 * @cmd: pointer to buffer containing command to execute for restart
284 * Shutdown everything and perform a clean reboot.
285 * This is not safe to call in interrupt context.
287 void kernel_restart(char *cmd
)
289 kernel_restart_prepare(cmd
);
291 printk(KERN_EMERG
"Restarting system.\n");
293 printk(KERN_EMERG
"Restarting system with command '%s'.\n", cmd
);
294 machine_restart(cmd
);
296 EXPORT_SYMBOL_GPL(kernel_restart
);
299 * kernel_kexec - reboot the system
301 * Move into place and start executing a preloaded standalone
302 * executable. If nothing was preloaded return an error.
304 static void kernel_kexec(void)
307 struct kimage
*image
;
308 image
= xchg(&kexec_image
, NULL
);
311 kernel_restart_prepare(NULL
);
312 printk(KERN_EMERG
"Starting new kernel\n");
314 machine_kexec(image
);
318 void kernel_shutdown_prepare(enum system_states state
)
320 blocking_notifier_call_chain(&reboot_notifier_list
,
321 (state
== SYSTEM_HALT
)?SYS_HALT
:SYS_POWER_OFF
, NULL
);
322 system_state
= state
;
326 * kernel_halt - halt the system
328 * Shutdown everything and perform a clean system halt.
330 void kernel_halt(void)
332 kernel_shutdown_prepare(SYSTEM_HALT
);
334 printk(KERN_EMERG
"System halted.\n");
338 EXPORT_SYMBOL_GPL(kernel_halt
);
341 * kernel_power_off - power_off the system
343 * Shutdown everything and perform a clean system power_off.
345 void kernel_power_off(void)
347 kernel_shutdown_prepare(SYSTEM_POWER_OFF
);
348 if (pm_power_off_prepare
)
349 pm_power_off_prepare();
350 disable_nonboot_cpus();
352 printk(KERN_EMERG
"Power down.\n");
355 EXPORT_SYMBOL_GPL(kernel_power_off
);
357 * Reboot system call: for obvious reasons only root may call it,
358 * and even root needs to set up some magic numbers in the registers
359 * so that some mistake won't make this reboot the whole machine.
360 * You can also set the meaning of the ctrl-alt-del-key here.
362 * reboot doesn't sync: do that yourself before calling this.
364 asmlinkage
long sys_reboot(int magic1
, int magic2
, unsigned int cmd
, void __user
* arg
)
368 /* We only trust the superuser with rebooting the system. */
369 if (!capable(CAP_SYS_BOOT
))
372 /* For safety, we require "magic" arguments. */
373 if (magic1
!= LINUX_REBOOT_MAGIC1
||
374 (magic2
!= LINUX_REBOOT_MAGIC2
&&
375 magic2
!= LINUX_REBOOT_MAGIC2A
&&
376 magic2
!= LINUX_REBOOT_MAGIC2B
&&
377 magic2
!= LINUX_REBOOT_MAGIC2C
))
380 /* Instead of trying to make the power_off code look like
381 * halt when pm_power_off is not set do it the easy way.
383 if ((cmd
== LINUX_REBOOT_CMD_POWER_OFF
) && !pm_power_off
)
384 cmd
= LINUX_REBOOT_CMD_HALT
;
388 case LINUX_REBOOT_CMD_RESTART
:
389 kernel_restart(NULL
);
392 case LINUX_REBOOT_CMD_CAD_ON
:
396 case LINUX_REBOOT_CMD_CAD_OFF
:
400 case LINUX_REBOOT_CMD_HALT
:
406 case LINUX_REBOOT_CMD_POWER_OFF
:
412 case LINUX_REBOOT_CMD_RESTART2
:
413 if (strncpy_from_user(&buffer
[0], arg
, sizeof(buffer
) - 1) < 0) {
417 buffer
[sizeof(buffer
) - 1] = '\0';
419 kernel_restart(buffer
);
422 case LINUX_REBOOT_CMD_KEXEC
:
427 #ifdef CONFIG_HIBERNATION
428 case LINUX_REBOOT_CMD_SW_SUSPEND
:
430 int ret
= hibernate();
444 static void deferred_cad(struct work_struct
*dummy
)
446 kernel_restart(NULL
);
450 * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
451 * As it's called within an interrupt, it may NOT sync: the only choice
452 * is whether to reboot at once, or just ignore the ctrl-alt-del.
454 void ctrl_alt_del(void)
456 static DECLARE_WORK(cad_work
, deferred_cad
);
459 schedule_work(&cad_work
);
461 kill_cad_pid(SIGINT
, 1);
465 * Unprivileged users may change the real gid to the effective gid
466 * or vice versa. (BSD-style)
468 * If you set the real gid at all, or set the effective gid to a value not
469 * equal to the real gid, then the saved gid is set to the new effective gid.
471 * This makes it possible for a setgid program to completely drop its
472 * privileges, which is often a useful assertion to make when you are doing
473 * a security audit over a program.
475 * The general idea is that a program which uses just setregid() will be
476 * 100% compatible with BSD. A program which uses just setgid() will be
477 * 100% compatible with POSIX with saved IDs.
479 * SMP: There are not races, the GIDs are checked only by filesystem
480 * operations (as far as semantic preservation is concerned).
482 asmlinkage
long sys_setregid(gid_t rgid
, gid_t egid
)
484 int old_rgid
= current
->gid
;
485 int old_egid
= current
->egid
;
486 int new_rgid
= old_rgid
;
487 int new_egid
= old_egid
;
490 retval
= security_task_setgid(rgid
, egid
, (gid_t
)-1, LSM_SETID_RE
);
494 if (rgid
!= (gid_t
) -1) {
495 if ((old_rgid
== rgid
) ||
496 (current
->egid
==rgid
) ||
502 if (egid
!= (gid_t
) -1) {
503 if ((old_rgid
== egid
) ||
504 (current
->egid
== egid
) ||
505 (current
->sgid
== egid
) ||
511 if (new_egid
!= old_egid
) {
512 set_dumpable(current
->mm
, suid_dumpable
);
515 if (rgid
!= (gid_t
) -1 ||
516 (egid
!= (gid_t
) -1 && egid
!= old_rgid
))
517 current
->sgid
= new_egid
;
518 current
->fsgid
= new_egid
;
519 current
->egid
= new_egid
;
520 current
->gid
= new_rgid
;
521 key_fsgid_changed(current
);
522 proc_id_connector(current
, PROC_EVENT_GID
);
527 * setgid() is implemented like SysV w/ SAVED_IDS
529 * SMP: Same implicit races as above.
531 asmlinkage
long sys_setgid(gid_t gid
)
533 int old_egid
= current
->egid
;
536 retval
= security_task_setgid(gid
, (gid_t
)-1, (gid_t
)-1, LSM_SETID_ID
);
540 if (capable(CAP_SETGID
)) {
541 if (old_egid
!= gid
) {
542 set_dumpable(current
->mm
, suid_dumpable
);
545 current
->gid
= current
->egid
= current
->sgid
= current
->fsgid
= gid
;
546 } else if ((gid
== current
->gid
) || (gid
== current
->sgid
)) {
547 if (old_egid
!= gid
) {
548 set_dumpable(current
->mm
, suid_dumpable
);
551 current
->egid
= current
->fsgid
= gid
;
556 key_fsgid_changed(current
);
557 proc_id_connector(current
, PROC_EVENT_GID
);
561 static int set_user(uid_t new_ruid
, int dumpclear
)
563 struct user_struct
*new_user
;
565 new_user
= alloc_uid(current
->nsproxy
->user_ns
, new_ruid
);
569 if (atomic_read(&new_user
->processes
) >=
570 current
->signal
->rlim
[RLIMIT_NPROC
].rlim_cur
&&
571 new_user
!= current
->nsproxy
->user_ns
->root_user
) {
576 switch_uid(new_user
);
579 set_dumpable(current
->mm
, suid_dumpable
);
582 current
->uid
= new_ruid
;
587 * Unprivileged users may change the real uid to the effective uid
588 * or vice versa. (BSD-style)
590 * If you set the real uid at all, or set the effective uid to a value not
591 * equal to the real uid, then the saved uid is set to the new effective uid.
593 * This makes it possible for a setuid program to completely drop its
594 * privileges, which is often a useful assertion to make when you are doing
595 * a security audit over a program.
597 * The general idea is that a program which uses just setreuid() will be
598 * 100% compatible with BSD. A program which uses just setuid() will be
599 * 100% compatible with POSIX with saved IDs.
601 asmlinkage
long sys_setreuid(uid_t ruid
, uid_t euid
)
603 int old_ruid
, old_euid
, old_suid
, new_ruid
, new_euid
;
606 retval
= security_task_setuid(ruid
, euid
, (uid_t
)-1, LSM_SETID_RE
);
610 new_ruid
= old_ruid
= current
->uid
;
611 new_euid
= old_euid
= current
->euid
;
612 old_suid
= current
->suid
;
614 if (ruid
!= (uid_t
) -1) {
616 if ((old_ruid
!= ruid
) &&
617 (current
->euid
!= ruid
) &&
618 !capable(CAP_SETUID
))
622 if (euid
!= (uid_t
) -1) {
624 if ((old_ruid
!= euid
) &&
625 (current
->euid
!= euid
) &&
626 (current
->suid
!= euid
) &&
627 !capable(CAP_SETUID
))
631 if (new_ruid
!= old_ruid
&& set_user(new_ruid
, new_euid
!= old_euid
) < 0)
634 if (new_euid
!= old_euid
) {
635 set_dumpable(current
->mm
, suid_dumpable
);
638 current
->fsuid
= current
->euid
= new_euid
;
639 if (ruid
!= (uid_t
) -1 ||
640 (euid
!= (uid_t
) -1 && euid
!= old_ruid
))
641 current
->suid
= current
->euid
;
642 current
->fsuid
= current
->euid
;
644 key_fsuid_changed(current
);
645 proc_id_connector(current
, PROC_EVENT_UID
);
647 return security_task_post_setuid(old_ruid
, old_euid
, old_suid
, LSM_SETID_RE
);
653 * setuid() is implemented like SysV with SAVED_IDS
655 * Note that SAVED_ID's is deficient in that a setuid root program
656 * like sendmail, for example, cannot set its uid to be a normal
657 * user and then switch back, because if you're root, setuid() sets
658 * the saved uid too. If you don't like this, blame the bright people
659 * in the POSIX committee and/or USG. Note that the BSD-style setreuid()
660 * will allow a root program to temporarily drop privileges and be able to
661 * regain them by swapping the real and effective uid.
663 asmlinkage
long sys_setuid(uid_t uid
)
665 int old_euid
= current
->euid
;
666 int old_ruid
, old_suid
, new_suid
;
669 retval
= security_task_setuid(uid
, (uid_t
)-1, (uid_t
)-1, LSM_SETID_ID
);
673 old_ruid
= current
->uid
;
674 old_suid
= current
->suid
;
677 if (capable(CAP_SETUID
)) {
678 if (uid
!= old_ruid
&& set_user(uid
, old_euid
!= uid
) < 0)
681 } else if ((uid
!= current
->uid
) && (uid
!= new_suid
))
684 if (old_euid
!= uid
) {
685 set_dumpable(current
->mm
, suid_dumpable
);
688 current
->fsuid
= current
->euid
= uid
;
689 current
->suid
= new_suid
;
691 key_fsuid_changed(current
);
692 proc_id_connector(current
, PROC_EVENT_UID
);
694 return security_task_post_setuid(old_ruid
, old_euid
, old_suid
, LSM_SETID_ID
);
699 * This function implements a generic ability to update ruid, euid,
700 * and suid. This allows you to implement the 4.4 compatible seteuid().
702 asmlinkage
long sys_setresuid(uid_t ruid
, uid_t euid
, uid_t suid
)
704 int old_ruid
= current
->uid
;
705 int old_euid
= current
->euid
;
706 int old_suid
= current
->suid
;
709 retval
= security_task_setuid(ruid
, euid
, suid
, LSM_SETID_RES
);
713 if (!capable(CAP_SETUID
)) {
714 if ((ruid
!= (uid_t
) -1) && (ruid
!= current
->uid
) &&
715 (ruid
!= current
->euid
) && (ruid
!= current
->suid
))
717 if ((euid
!= (uid_t
) -1) && (euid
!= current
->uid
) &&
718 (euid
!= current
->euid
) && (euid
!= current
->suid
))
720 if ((suid
!= (uid_t
) -1) && (suid
!= current
->uid
) &&
721 (suid
!= current
->euid
) && (suid
!= current
->suid
))
724 if (ruid
!= (uid_t
) -1) {
725 if (ruid
!= current
->uid
&& set_user(ruid
, euid
!= current
->euid
) < 0)
728 if (euid
!= (uid_t
) -1) {
729 if (euid
!= current
->euid
) {
730 set_dumpable(current
->mm
, suid_dumpable
);
733 current
->euid
= euid
;
735 current
->fsuid
= current
->euid
;
736 if (suid
!= (uid_t
) -1)
737 current
->suid
= suid
;
739 key_fsuid_changed(current
);
740 proc_id_connector(current
, PROC_EVENT_UID
);
742 return security_task_post_setuid(old_ruid
, old_euid
, old_suid
, LSM_SETID_RES
);
745 asmlinkage
long sys_getresuid(uid_t __user
*ruid
, uid_t __user
*euid
, uid_t __user
*suid
)
749 if (!(retval
= put_user(current
->uid
, ruid
)) &&
750 !(retval
= put_user(current
->euid
, euid
)))
751 retval
= put_user(current
->suid
, suid
);
757 * Same as above, but for rgid, egid, sgid.
759 asmlinkage
long sys_setresgid(gid_t rgid
, gid_t egid
, gid_t sgid
)
763 retval
= security_task_setgid(rgid
, egid
, sgid
, LSM_SETID_RES
);
767 if (!capable(CAP_SETGID
)) {
768 if ((rgid
!= (gid_t
) -1) && (rgid
!= current
->gid
) &&
769 (rgid
!= current
->egid
) && (rgid
!= current
->sgid
))
771 if ((egid
!= (gid_t
) -1) && (egid
!= current
->gid
) &&
772 (egid
!= current
->egid
) && (egid
!= current
->sgid
))
774 if ((sgid
!= (gid_t
) -1) && (sgid
!= current
->gid
) &&
775 (sgid
!= current
->egid
) && (sgid
!= current
->sgid
))
778 if (egid
!= (gid_t
) -1) {
779 if (egid
!= current
->egid
) {
780 set_dumpable(current
->mm
, suid_dumpable
);
783 current
->egid
= egid
;
785 current
->fsgid
= current
->egid
;
786 if (rgid
!= (gid_t
) -1)
788 if (sgid
!= (gid_t
) -1)
789 current
->sgid
= sgid
;
791 key_fsgid_changed(current
);
792 proc_id_connector(current
, PROC_EVENT_GID
);
796 asmlinkage
long sys_getresgid(gid_t __user
*rgid
, gid_t __user
*egid
, gid_t __user
*sgid
)
800 if (!(retval
= put_user(current
->gid
, rgid
)) &&
801 !(retval
= put_user(current
->egid
, egid
)))
802 retval
= put_user(current
->sgid
, sgid
);
809 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
810 * is used for "access()" and for the NFS daemon (letting nfsd stay at
811 * whatever uid it wants to). It normally shadows "euid", except when
812 * explicitly set by setfsuid() or for access..
814 asmlinkage
long sys_setfsuid(uid_t uid
)
818 old_fsuid
= current
->fsuid
;
819 if (security_task_setuid(uid
, (uid_t
)-1, (uid_t
)-1, LSM_SETID_FS
))
822 if (uid
== current
->uid
|| uid
== current
->euid
||
823 uid
== current
->suid
|| uid
== current
->fsuid
||
824 capable(CAP_SETUID
)) {
825 if (uid
!= old_fsuid
) {
826 set_dumpable(current
->mm
, suid_dumpable
);
829 current
->fsuid
= uid
;
832 key_fsuid_changed(current
);
833 proc_id_connector(current
, PROC_EVENT_UID
);
835 security_task_post_setuid(old_fsuid
, (uid_t
)-1, (uid_t
)-1, LSM_SETID_FS
);
841 * Samma på svenska..
843 asmlinkage
long sys_setfsgid(gid_t gid
)
847 old_fsgid
= current
->fsgid
;
848 if (security_task_setgid(gid
, (gid_t
)-1, (gid_t
)-1, LSM_SETID_FS
))
851 if (gid
== current
->gid
|| gid
== current
->egid
||
852 gid
== current
->sgid
|| gid
== current
->fsgid
||
853 capable(CAP_SETGID
)) {
854 if (gid
!= old_fsgid
) {
855 set_dumpable(current
->mm
, suid_dumpable
);
858 current
->fsgid
= gid
;
859 key_fsgid_changed(current
);
860 proc_id_connector(current
, PROC_EVENT_GID
);
865 asmlinkage
long sys_times(struct tms __user
* tbuf
)
868 * In the SMP world we might just be unlucky and have one of
869 * the times increment as we use it. Since the value is an
870 * atomically safe type this is just fine. Conceptually its
871 * as if the syscall took an instant longer to occur.
875 struct task_struct
*tsk
= current
;
876 struct task_struct
*t
;
877 cputime_t utime
, stime
, cutime
, cstime
;
879 spin_lock_irq(&tsk
->sighand
->siglock
);
880 utime
= tsk
->signal
->utime
;
881 stime
= tsk
->signal
->stime
;
884 utime
= cputime_add(utime
, t
->utime
);
885 stime
= cputime_add(stime
, t
->stime
);
889 cutime
= tsk
->signal
->cutime
;
890 cstime
= tsk
->signal
->cstime
;
891 spin_unlock_irq(&tsk
->sighand
->siglock
);
893 tmp
.tms_utime
= cputime_to_clock_t(utime
);
894 tmp
.tms_stime
= cputime_to_clock_t(stime
);
895 tmp
.tms_cutime
= cputime_to_clock_t(cutime
);
896 tmp
.tms_cstime
= cputime_to_clock_t(cstime
);
897 if (copy_to_user(tbuf
, &tmp
, sizeof(struct tms
)))
900 return (long) jiffies_64_to_clock_t(get_jiffies_64());
904 * This needs some heavy checking ...
905 * I just haven't the stomach for it. I also don't fully
906 * understand sessions/pgrp etc. Let somebody who does explain it.
908 * OK, I think I have the protection semantics right.... this is really
909 * only important on a multi-user system anyway, to make sure one user
910 * can't send a signal to a process owned by another. -TYT, 12/12/91
912 * Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
915 asmlinkage
long sys_setpgid(pid_t pid
, pid_t pgid
)
917 struct task_struct
*p
;
918 struct task_struct
*group_leader
= current
->group_leader
;
920 struct pid_namespace
*ns
;
923 pid
= task_pid_vnr(group_leader
);
929 /* From this point forward we keep holding onto the tasklist lock
930 * so that our parent does not change from under us. -DaveM
932 ns
= current
->nsproxy
->pid_ns
;
934 write_lock_irq(&tasklist_lock
);
937 p
= find_task_by_pid_ns(pid
, ns
);
942 if (!thread_group_leader(p
))
945 if (p
->real_parent
->tgid
== group_leader
->tgid
) {
947 if (task_session(p
) != task_session(group_leader
))
954 if (p
!= group_leader
)
959 if (p
->signal
->leader
)
963 struct task_struct
*g
;
965 g
= find_task_by_pid_type_ns(PIDTYPE_PGID
, pgid
, ns
);
966 if (!g
|| task_session(g
) != task_session(group_leader
))
970 err
= security_task_setpgid(p
, pgid
);
974 if (task_pgrp_nr_ns(p
, ns
) != pgid
) {
977 detach_pid(p
, PIDTYPE_PGID
);
978 pid
= find_vpid(pgid
);
979 attach_pid(p
, PIDTYPE_PGID
, pid
);
980 set_task_pgrp(p
, pid_nr(pid
));
985 /* All paths lead to here, thus we are safe. -DaveM */
986 write_unlock_irq(&tasklist_lock
);
990 asmlinkage
long sys_getpgid(pid_t pid
)
993 return task_pgrp_vnr(current
);
996 struct task_struct
*p
;
997 struct pid_namespace
*ns
;
999 ns
= current
->nsproxy
->pid_ns
;
1001 read_lock(&tasklist_lock
);
1002 p
= find_task_by_pid_ns(pid
, ns
);
1005 retval
= security_task_getpgid(p
);
1007 retval
= task_pgrp_nr_ns(p
, ns
);
1009 read_unlock(&tasklist_lock
);
1014 #ifdef __ARCH_WANT_SYS_GETPGRP
1016 asmlinkage
long sys_getpgrp(void)
1018 /* SMP - assuming writes are word atomic this is fine */
1019 return task_pgrp_vnr(current
);
1024 asmlinkage
long sys_getsid(pid_t pid
)
1027 return task_session_vnr(current
);
1030 struct task_struct
*p
;
1031 struct pid_namespace
*ns
;
1033 ns
= current
->nsproxy
->pid_ns
;
1035 read_lock(&tasklist_lock
);
1036 p
= find_task_by_pid_ns(pid
, ns
);
1039 retval
= security_task_getsid(p
);
1041 retval
= task_session_nr_ns(p
, ns
);
1043 read_unlock(&tasklist_lock
);
1048 asmlinkage
long sys_setsid(void)
1050 struct task_struct
*group_leader
= current
->group_leader
;
1054 write_lock_irq(&tasklist_lock
);
1056 /* Fail if I am already a session leader */
1057 if (group_leader
->signal
->leader
)
1060 session
= group_leader
->pid
;
1061 /* Fail if a process group id already exists that equals the
1062 * proposed session id.
1064 * Don't check if session id == 1 because kernel threads use this
1065 * session id and so the check will always fail and make it so
1066 * init cannot successfully call setsid.
1068 if (session
> 1 && find_task_by_pid_type_ns(PIDTYPE_PGID
,
1069 session
, &init_pid_ns
))
1072 group_leader
->signal
->leader
= 1;
1073 __set_special_pids(session
, session
);
1075 spin_lock(&group_leader
->sighand
->siglock
);
1076 group_leader
->signal
->tty
= NULL
;
1077 spin_unlock(&group_leader
->sighand
->siglock
);
1079 err
= task_pgrp_vnr(group_leader
);
1081 write_unlock_irq(&tasklist_lock
);
1086 * Supplementary group IDs
1089 /* init to 2 - one for init_task, one to ensure it is never freed */
1090 struct group_info init_groups
= { .usage
= ATOMIC_INIT(2) };
1092 struct group_info
*groups_alloc(int gidsetsize
)
1094 struct group_info
*group_info
;
1098 nblocks
= (gidsetsize
+ NGROUPS_PER_BLOCK
- 1) / NGROUPS_PER_BLOCK
;
1099 /* Make sure we always allocate at least one indirect block pointer */
1100 nblocks
= nblocks
? : 1;
1101 group_info
= kmalloc(sizeof(*group_info
) + nblocks
*sizeof(gid_t
*), GFP_USER
);
1104 group_info
->ngroups
= gidsetsize
;
1105 group_info
->nblocks
= nblocks
;
1106 atomic_set(&group_info
->usage
, 1);
1108 if (gidsetsize
<= NGROUPS_SMALL
)
1109 group_info
->blocks
[0] = group_info
->small_block
;
1111 for (i
= 0; i
< nblocks
; i
++) {
1113 b
= (void *)__get_free_page(GFP_USER
);
1115 goto out_undo_partial_alloc
;
1116 group_info
->blocks
[i
] = b
;
1121 out_undo_partial_alloc
:
1123 free_page((unsigned long)group_info
->blocks
[i
]);
1129 EXPORT_SYMBOL(groups_alloc
);
1131 void groups_free(struct group_info
*group_info
)
1133 if (group_info
->blocks
[0] != group_info
->small_block
) {
1135 for (i
= 0; i
< group_info
->nblocks
; i
++)
1136 free_page((unsigned long)group_info
->blocks
[i
]);
1141 EXPORT_SYMBOL(groups_free
);
1143 /* export the group_info to a user-space array */
1144 static int groups_to_user(gid_t __user
*grouplist
,
1145 struct group_info
*group_info
)
1148 int count
= group_info
->ngroups
;
1150 for (i
= 0; i
< group_info
->nblocks
; i
++) {
1151 int cp_count
= min(NGROUPS_PER_BLOCK
, count
);
1152 int off
= i
* NGROUPS_PER_BLOCK
;
1153 int len
= cp_count
* sizeof(*grouplist
);
1155 if (copy_to_user(grouplist
+off
, group_info
->blocks
[i
], len
))
1163 /* fill a group_info from a user-space array - it must be allocated already */
1164 static int groups_from_user(struct group_info
*group_info
,
1165 gid_t __user
*grouplist
)
1168 int count
= group_info
->ngroups
;
1170 for (i
= 0; i
< group_info
->nblocks
; i
++) {
1171 int cp_count
= min(NGROUPS_PER_BLOCK
, count
);
1172 int off
= i
* NGROUPS_PER_BLOCK
;
1173 int len
= cp_count
* sizeof(*grouplist
);
1175 if (copy_from_user(group_info
->blocks
[i
], grouplist
+off
, len
))
1183 /* a simple Shell sort */
1184 static void groups_sort(struct group_info
*group_info
)
1186 int base
, max
, stride
;
1187 int gidsetsize
= group_info
->ngroups
;
1189 for (stride
= 1; stride
< gidsetsize
; stride
= 3 * stride
+ 1)
1194 max
= gidsetsize
- stride
;
1195 for (base
= 0; base
< max
; base
++) {
1197 int right
= left
+ stride
;
1198 gid_t tmp
= GROUP_AT(group_info
, right
);
1200 while (left
>= 0 && GROUP_AT(group_info
, left
) > tmp
) {
1201 GROUP_AT(group_info
, right
) =
1202 GROUP_AT(group_info
, left
);
1206 GROUP_AT(group_info
, right
) = tmp
;
1212 /* a simple bsearch */
1213 int groups_search(struct group_info
*group_info
, gid_t grp
)
1215 unsigned int left
, right
;
1221 right
= group_info
->ngroups
;
1222 while (left
< right
) {
1223 unsigned int mid
= (left
+right
)/2;
1224 int cmp
= grp
- GROUP_AT(group_info
, mid
);
1235 /* validate and set current->group_info */
1236 int set_current_groups(struct group_info
*group_info
)
1239 struct group_info
*old_info
;
1241 retval
= security_task_setgroups(group_info
);
1245 groups_sort(group_info
);
1246 get_group_info(group_info
);
1249 old_info
= current
->group_info
;
1250 current
->group_info
= group_info
;
1251 task_unlock(current
);
1253 put_group_info(old_info
);
1258 EXPORT_SYMBOL(set_current_groups
);
1260 asmlinkage
long sys_getgroups(int gidsetsize
, gid_t __user
*grouplist
)
1265 * SMP: Nobody else can change our grouplist. Thus we are
1272 /* no need to grab task_lock here; it cannot change */
1273 i
= current
->group_info
->ngroups
;
1275 if (i
> gidsetsize
) {
1279 if (groups_to_user(grouplist
, current
->group_info
)) {
1289 * SMP: Our groups are copy-on-write. We can set them safely
1290 * without another task interfering.
1293 asmlinkage
long sys_setgroups(int gidsetsize
, gid_t __user
*grouplist
)
1295 struct group_info
*group_info
;
1298 if (!capable(CAP_SETGID
))
1300 if ((unsigned)gidsetsize
> NGROUPS_MAX
)
1303 group_info
= groups_alloc(gidsetsize
);
1306 retval
= groups_from_user(group_info
, grouplist
);
1308 put_group_info(group_info
);
1312 retval
= set_current_groups(group_info
);
1313 put_group_info(group_info
);
1319 * Check whether we're fsgid/egid or in the supplemental group..
1321 int in_group_p(gid_t grp
)
1324 if (grp
!= current
->fsgid
)
1325 retval
= groups_search(current
->group_info
, grp
);
1329 EXPORT_SYMBOL(in_group_p
);
1331 int in_egroup_p(gid_t grp
)
1334 if (grp
!= current
->egid
)
1335 retval
= groups_search(current
->group_info
, grp
);
1339 EXPORT_SYMBOL(in_egroup_p
);
1341 DECLARE_RWSEM(uts_sem
);
1343 EXPORT_SYMBOL(uts_sem
);
1345 asmlinkage
long sys_newuname(struct new_utsname __user
* name
)
1349 down_read(&uts_sem
);
1350 if (copy_to_user(name
, utsname(), sizeof *name
))
1356 asmlinkage
long sys_sethostname(char __user
*name
, int len
)
1359 char tmp
[__NEW_UTS_LEN
];
1361 if (!capable(CAP_SYS_ADMIN
))
1363 if (len
< 0 || len
> __NEW_UTS_LEN
)
1365 down_write(&uts_sem
);
1367 if (!copy_from_user(tmp
, name
, len
)) {
1368 memcpy(utsname()->nodename
, tmp
, len
);
1369 utsname()->nodename
[len
] = 0;
1376 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1378 asmlinkage
long sys_gethostname(char __user
*name
, int len
)
1384 down_read(&uts_sem
);
1385 i
= 1 + strlen(utsname()->nodename
);
1389 if (copy_to_user(name
, utsname()->nodename
, i
))
1398 * Only setdomainname; getdomainname can be implemented by calling
1401 asmlinkage
long sys_setdomainname(char __user
*name
, int len
)
1404 char tmp
[__NEW_UTS_LEN
];
1406 if (!capable(CAP_SYS_ADMIN
))
1408 if (len
< 0 || len
> __NEW_UTS_LEN
)
1411 down_write(&uts_sem
);
1413 if (!copy_from_user(tmp
, name
, len
)) {
1414 memcpy(utsname()->domainname
, tmp
, len
);
1415 utsname()->domainname
[len
] = 0;
1422 asmlinkage
long sys_getrlimit(unsigned int resource
, struct rlimit __user
*rlim
)
1424 if (resource
>= RLIM_NLIMITS
)
1427 struct rlimit value
;
1428 task_lock(current
->group_leader
);
1429 value
= current
->signal
->rlim
[resource
];
1430 task_unlock(current
->group_leader
);
1431 return copy_to_user(rlim
, &value
, sizeof(*rlim
)) ? -EFAULT
: 0;
1435 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1438 * Back compatibility for getrlimit. Needed for some apps.
1441 asmlinkage
long sys_old_getrlimit(unsigned int resource
, struct rlimit __user
*rlim
)
1444 if (resource
>= RLIM_NLIMITS
)
1447 task_lock(current
->group_leader
);
1448 x
= current
->signal
->rlim
[resource
];
1449 task_unlock(current
->group_leader
);
1450 if (x
.rlim_cur
> 0x7FFFFFFF)
1451 x
.rlim_cur
= 0x7FFFFFFF;
1452 if (x
.rlim_max
> 0x7FFFFFFF)
1453 x
.rlim_max
= 0x7FFFFFFF;
1454 return copy_to_user(rlim
, &x
, sizeof(x
))?-EFAULT
:0;
1459 asmlinkage
long sys_setrlimit(unsigned int resource
, struct rlimit __user
*rlim
)
1461 struct rlimit new_rlim
, *old_rlim
;
1462 unsigned long it_prof_secs
;
1465 if (resource
>= RLIM_NLIMITS
)
1467 if (copy_from_user(&new_rlim
, rlim
, sizeof(*rlim
)))
1469 if (new_rlim
.rlim_cur
> new_rlim
.rlim_max
)
1471 old_rlim
= current
->signal
->rlim
+ resource
;
1472 if ((new_rlim
.rlim_max
> old_rlim
->rlim_max
) &&
1473 !capable(CAP_SYS_RESOURCE
))
1475 if (resource
== RLIMIT_NOFILE
&& new_rlim
.rlim_max
> NR_OPEN
)
1478 retval
= security_task_setrlimit(resource
, &new_rlim
);
1482 if (resource
== RLIMIT_CPU
&& new_rlim
.rlim_cur
== 0) {
1484 * The caller is asking for an immediate RLIMIT_CPU
1485 * expiry. But we use the zero value to mean "it was
1486 * never set". So let's cheat and make it one second
1489 new_rlim
.rlim_cur
= 1;
1492 task_lock(current
->group_leader
);
1493 *old_rlim
= new_rlim
;
1494 task_unlock(current
->group_leader
);
1496 if (resource
!= RLIMIT_CPU
)
1500 * RLIMIT_CPU handling. Note that the kernel fails to return an error
1501 * code if it rejected the user's attempt to set RLIMIT_CPU. This is a
1502 * very long-standing error, and fixing it now risks breakage of
1503 * applications, so we live with it
1505 if (new_rlim
.rlim_cur
== RLIM_INFINITY
)
1508 it_prof_secs
= cputime_to_secs(current
->signal
->it_prof_expires
);
1509 if (it_prof_secs
== 0 || new_rlim
.rlim_cur
<= it_prof_secs
) {
1510 unsigned long rlim_cur
= new_rlim
.rlim_cur
;
1513 cputime
= secs_to_cputime(rlim_cur
);
1514 read_lock(&tasklist_lock
);
1515 spin_lock_irq(¤t
->sighand
->siglock
);
1516 set_process_cpu_timer(current
, CPUCLOCK_PROF
, &cputime
, NULL
);
1517 spin_unlock_irq(¤t
->sighand
->siglock
);
1518 read_unlock(&tasklist_lock
);
1525 * It would make sense to put struct rusage in the task_struct,
1526 * except that would make the task_struct be *really big*. After
1527 * task_struct gets moved into malloc'ed memory, it would
1528 * make sense to do this. It will make moving the rest of the information
1529 * a lot simpler! (Which we're not doing right now because we're not
1530 * measuring them yet).
1532 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1533 * races with threads incrementing their own counters. But since word
1534 * reads are atomic, we either get new values or old values and we don't
1535 * care which for the sums. We always take the siglock to protect reading
1536 * the c* fields from p->signal from races with exit.c updating those
1537 * fields when reaping, so a sample either gets all the additions of a
1538 * given child after it's reaped, or none so this sample is before reaping.
1541 * We need to take the siglock for CHILDEREN, SELF and BOTH
1542 * for the cases current multithreaded, non-current single threaded
1543 * non-current multithreaded. Thread traversal is now safe with
1545 * Strictly speaking, we donot need to take the siglock if we are current and
1546 * single threaded, as no one else can take our signal_struct away, no one
1547 * else can reap the children to update signal->c* counters, and no one else
1548 * can race with the signal-> fields. If we do not take any lock, the
1549 * signal-> fields could be read out of order while another thread was just
1550 * exiting. So we should place a read memory barrier when we avoid the lock.
1551 * On the writer side, write memory barrier is implied in __exit_signal
1552 * as __exit_signal releases the siglock spinlock after updating the signal->
1553 * fields. But we don't do this yet to keep things simple.
1557 static void k_getrusage(struct task_struct
*p
, int who
, struct rusage
*r
)
1559 struct task_struct
*t
;
1560 unsigned long flags
;
1561 cputime_t utime
, stime
;
1563 memset((char *) r
, 0, sizeof *r
);
1564 utime
= stime
= cputime_zero
;
1567 if (!lock_task_sighand(p
, &flags
)) {
1574 case RUSAGE_CHILDREN
:
1575 utime
= p
->signal
->cutime
;
1576 stime
= p
->signal
->cstime
;
1577 r
->ru_nvcsw
= p
->signal
->cnvcsw
;
1578 r
->ru_nivcsw
= p
->signal
->cnivcsw
;
1579 r
->ru_minflt
= p
->signal
->cmin_flt
;
1580 r
->ru_majflt
= p
->signal
->cmaj_flt
;
1581 r
->ru_inblock
= p
->signal
->cinblock
;
1582 r
->ru_oublock
= p
->signal
->coublock
;
1584 if (who
== RUSAGE_CHILDREN
)
1588 utime
= cputime_add(utime
, p
->signal
->utime
);
1589 stime
= cputime_add(stime
, p
->signal
->stime
);
1590 r
->ru_nvcsw
+= p
->signal
->nvcsw
;
1591 r
->ru_nivcsw
+= p
->signal
->nivcsw
;
1592 r
->ru_minflt
+= p
->signal
->min_flt
;
1593 r
->ru_majflt
+= p
->signal
->maj_flt
;
1594 r
->ru_inblock
+= p
->signal
->inblock
;
1595 r
->ru_oublock
+= p
->signal
->oublock
;
1598 utime
= cputime_add(utime
, t
->utime
);
1599 stime
= cputime_add(stime
, t
->stime
);
1600 r
->ru_nvcsw
+= t
->nvcsw
;
1601 r
->ru_nivcsw
+= t
->nivcsw
;
1602 r
->ru_minflt
+= t
->min_flt
;
1603 r
->ru_majflt
+= t
->maj_flt
;
1604 r
->ru_inblock
+= task_io_get_inblock(t
);
1605 r
->ru_oublock
+= task_io_get_oublock(t
);
1614 unlock_task_sighand(p
, &flags
);
1617 cputime_to_timeval(utime
, &r
->ru_utime
);
1618 cputime_to_timeval(stime
, &r
->ru_stime
);
1621 int getrusage(struct task_struct
*p
, int who
, struct rusage __user
*ru
)
1624 k_getrusage(p
, who
, &r
);
1625 return copy_to_user(ru
, &r
, sizeof(r
)) ? -EFAULT
: 0;
1628 asmlinkage
long sys_getrusage(int who
, struct rusage __user
*ru
)
1630 if (who
!= RUSAGE_SELF
&& who
!= RUSAGE_CHILDREN
)
1632 return getrusage(current
, who
, ru
);
1635 asmlinkage
long sys_umask(int mask
)
1637 mask
= xchg(¤t
->fs
->umask
, mask
& S_IRWXUGO
);
1641 asmlinkage
long sys_prctl(int option
, unsigned long arg2
, unsigned long arg3
,
1642 unsigned long arg4
, unsigned long arg5
)
1646 error
= security_task_prctl(option
, arg2
, arg3
, arg4
, arg5
);
1651 case PR_SET_PDEATHSIG
:
1652 if (!valid_signal(arg2
)) {
1656 current
->pdeath_signal
= arg2
;
1658 case PR_GET_PDEATHSIG
:
1659 error
= put_user(current
->pdeath_signal
, (int __user
*)arg2
);
1661 case PR_GET_DUMPABLE
:
1662 error
= get_dumpable(current
->mm
);
1664 case PR_SET_DUMPABLE
:
1665 if (arg2
< 0 || arg2
> 1) {
1669 set_dumpable(current
->mm
, arg2
);
1672 case PR_SET_UNALIGN
:
1673 error
= SET_UNALIGN_CTL(current
, arg2
);
1675 case PR_GET_UNALIGN
:
1676 error
= GET_UNALIGN_CTL(current
, arg2
);
1679 error
= SET_FPEMU_CTL(current
, arg2
);
1682 error
= GET_FPEMU_CTL(current
, arg2
);
1685 error
= SET_FPEXC_CTL(current
, arg2
);
1688 error
= GET_FPEXC_CTL(current
, arg2
);
1691 error
= PR_TIMING_STATISTICAL
;
1694 if (arg2
== PR_TIMING_STATISTICAL
)
1700 case PR_GET_KEEPCAPS
:
1701 if (current
->keep_capabilities
)
1704 case PR_SET_KEEPCAPS
:
1705 if (arg2
!= 0 && arg2
!= 1) {
1709 current
->keep_capabilities
= arg2
;
1712 struct task_struct
*me
= current
;
1713 unsigned char ncomm
[sizeof(me
->comm
)];
1715 ncomm
[sizeof(me
->comm
)-1] = 0;
1716 if (strncpy_from_user(ncomm
, (char __user
*)arg2
,
1717 sizeof(me
->comm
)-1) < 0)
1719 set_task_comm(me
, ncomm
);
1723 struct task_struct
*me
= current
;
1724 unsigned char tcomm
[sizeof(me
->comm
)];
1726 get_task_comm(tcomm
, me
);
1727 if (copy_to_user((char __user
*)arg2
, tcomm
, sizeof(tcomm
)))
1732 error
= GET_ENDIAN(current
, arg2
);
1735 error
= SET_ENDIAN(current
, arg2
);
1738 case PR_GET_SECCOMP
:
1739 error
= prctl_get_seccomp();
1741 case PR_SET_SECCOMP
:
1742 error
= prctl_set_seccomp(arg2
);
1752 asmlinkage
long sys_getcpu(unsigned __user
*cpup
, unsigned __user
*nodep
,
1753 struct getcpu_cache __user
*cache
)
1756 int cpu
= raw_smp_processor_id();
1758 err
|= put_user(cpu
, cpup
);
1760 err
|= put_user(cpu_to_node(cpu
), nodep
);
1763 * The cache is not needed for this implementation,
1764 * but make sure user programs pass something
1765 * valid. vsyscall implementations can instead make
1766 * good use of the cache. Only use t0 and t1 because
1767 * these are available in both 32bit and 64bit ABI (no
1768 * need for a compat_getcpu). 32bit has enough
1771 unsigned long t0
, t1
;
1772 get_user(t0
, &cache
->blob
[0]);
1773 get_user(t1
, &cache
->blob
[1]);
1776 put_user(t0
, &cache
->blob
[0]);
1777 put_user(t1
, &cache
->blob
[1]);
1779 return err
? -EFAULT
: 0;
1782 char poweroff_cmd
[POWEROFF_CMD_PATH_LEN
] = "/sbin/poweroff";
1784 static void argv_cleanup(char **argv
, char **envp
)
1790 * orderly_poweroff - Trigger an orderly system poweroff
1791 * @force: force poweroff if command execution fails
1793 * This may be called from any context to trigger a system shutdown.
1794 * If the orderly shutdown fails, it will force an immediate shutdown.
1796 int orderly_poweroff(bool force
)
1799 char **argv
= argv_split(GFP_ATOMIC
, poweroff_cmd
, &argc
);
1800 static char *envp
[] = {
1802 "PATH=/sbin:/bin:/usr/sbin:/usr/bin",
1806 struct subprocess_info
*info
;
1809 printk(KERN_WARNING
"%s failed to allocate memory for \"%s\"\n",
1810 __func__
, poweroff_cmd
);
1814 info
= call_usermodehelper_setup(argv
[0], argv
, envp
);
1820 call_usermodehelper_setcleanup(info
, argv_cleanup
);
1822 ret
= call_usermodehelper_exec(info
, UMH_NO_WAIT
);
1826 printk(KERN_WARNING
"Failed to start orderly shutdown: "
1827 "forcing the issue\n");
1829 /* I guess this should try to kick off some daemon to
1830 sync and poweroff asap. Or not even bother syncing
1831 if we're doing an emergency shutdown? */
1838 EXPORT_SYMBOL_GPL(orderly_poweroff
);