2 * Generic pidhash and scalable, time-bounded PID allocator
4 * (C) 2002-2003 William Irwin, IBM
5 * (C) 2004 William Irwin, Oracle
6 * (C) 2002-2004 Ingo Molnar, Red Hat
8 * pid-structures are backing objects for tasks sharing a given ID to chain
9 * against. There is very little to them aside from hashing them and
10 * parking tasks using given ID's on a list.
12 * The hash is always changed with the tasklist_lock write-acquired,
13 * and the hash is only accessed with the tasklist_lock at least
14 * read-acquired, so there's no additional SMP locking needed here.
16 * We have a list of bitmap pages, which bitmaps represent the PID space.
17 * Allocating and freeing PIDs is completely lockless. The worst-case
18 * allocation scenario when all but one out of 1 million PIDs possible are
19 * allocated already: the scanning of 32 list entries and at most PAGE_SIZE
20 * bytes. The typical fastpath is a single successful setbit. Freeing is O(1).
23 * (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
24 * (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
25 * Many thanks to Oleg Nesterov for comments and help
30 #include <linux/module.h>
31 #include <linux/slab.h>
32 #include <linux/init.h>
33 #include <linux/bootmem.h>
34 #include <linux/hash.h>
35 #include <linux/pid_namespace.h>
36 #include <linux/init_task.h>
37 #include <linux/syscalls.h>
39 #define pid_hashfn(nr, ns) \
40 hash_long((unsigned long)nr + (unsigned long)ns, pidhash_shift)
41 static struct hlist_head
*pid_hash
;
42 static int pidhash_shift
;
43 struct pid init_struct_pid
= INIT_STRUCT_PID
;
44 static struct kmem_cache
*pid_ns_cachep
;
46 int pid_max
= PID_MAX_DEFAULT
;
48 #define RESERVED_PIDS 300
50 int pid_max_min
= RESERVED_PIDS
+ 1;
51 int pid_max_max
= PID_MAX_LIMIT
;
53 #define BITS_PER_PAGE (PAGE_SIZE*8)
54 #define BITS_PER_PAGE_MASK (BITS_PER_PAGE-1)
56 static inline int mk_pid(struct pid_namespace
*pid_ns
,
57 struct pidmap
*map
, int off
)
59 return (map
- pid_ns
->pidmap
)*BITS_PER_PAGE
+ off
;
62 #define find_next_offset(map, off) \
63 find_next_zero_bit((map)->page, BITS_PER_PAGE, off)
66 * PID-map pages start out as NULL, they get allocated upon
67 * first use and are never deallocated. This way a low pid_max
68 * value does not cause lots of bitmaps to be allocated, but
69 * the scheme scales to up to 4 million PIDs, runtime.
71 struct pid_namespace init_pid_ns
= {
73 .refcount
= ATOMIC_INIT(2),
76 [ 0 ... PIDMAP_ENTRIES
-1] = { ATOMIC_INIT(BITS_PER_PAGE
), NULL
}
80 .child_reaper
= &init_task
,
82 EXPORT_SYMBOL_GPL(init_pid_ns
);
84 int is_container_init(struct task_struct
*tsk
)
91 if (pid
!= NULL
&& pid
->numbers
[pid
->level
].nr
== 1)
97 EXPORT_SYMBOL(is_container_init
);
100 * Note: disable interrupts while the pidmap_lock is held as an
101 * interrupt might come in and do read_lock(&tasklist_lock).
103 * If we don't disable interrupts there is a nasty deadlock between
104 * detach_pid()->free_pid() and another cpu that does
105 * spin_lock(&pidmap_lock) followed by an interrupt routine that does
106 * read_lock(&tasklist_lock);
108 * After we clean up the tasklist_lock and know there are no
109 * irq handlers that take it we can leave the interrupts enabled.
110 * For now it is easier to be safe than to prove it can't happen.
113 static __cacheline_aligned_in_smp
DEFINE_SPINLOCK(pidmap_lock
);
115 static fastcall
void free_pidmap(struct pid_namespace
*pid_ns
, int pid
)
117 struct pidmap
*map
= pid_ns
->pidmap
+ pid
/ BITS_PER_PAGE
;
118 int offset
= pid
& BITS_PER_PAGE_MASK
;
120 clear_bit(offset
, map
->page
);
121 atomic_inc(&map
->nr_free
);
124 static int alloc_pidmap(struct pid_namespace
*pid_ns
)
126 int i
, offset
, max_scan
, pid
, last
= pid_ns
->last_pid
;
132 offset
= pid
& BITS_PER_PAGE_MASK
;
133 map
= &pid_ns
->pidmap
[pid
/BITS_PER_PAGE
];
134 max_scan
= (pid_max
+ BITS_PER_PAGE
- 1)/BITS_PER_PAGE
- !offset
;
135 for (i
= 0; i
<= max_scan
; ++i
) {
136 if (unlikely(!map
->page
)) {
137 void *page
= kzalloc(PAGE_SIZE
, GFP_KERNEL
);
139 * Free the page if someone raced with us
142 spin_lock_irq(&pidmap_lock
);
147 spin_unlock_irq(&pidmap_lock
);
148 if (unlikely(!map
->page
))
151 if (likely(atomic_read(&map
->nr_free
))) {
153 if (!test_and_set_bit(offset
, map
->page
)) {
154 atomic_dec(&map
->nr_free
);
155 pid_ns
->last_pid
= pid
;
158 offset
= find_next_offset(map
, offset
);
159 pid
= mk_pid(pid_ns
, map
, offset
);
161 * find_next_offset() found a bit, the pid from it
162 * is in-bounds, and if we fell back to the last
163 * bitmap block and the final block was the same
164 * as the starting point, pid is before last_pid.
166 } while (offset
< BITS_PER_PAGE
&& pid
< pid_max
&&
167 (i
!= max_scan
|| pid
< last
||
168 !((last
+1) & BITS_PER_PAGE_MASK
)));
170 if (map
< &pid_ns
->pidmap
[(pid_max
-1)/BITS_PER_PAGE
]) {
174 map
= &pid_ns
->pidmap
[0];
175 offset
= RESERVED_PIDS
;
176 if (unlikely(last
== offset
))
179 pid
= mk_pid(pid_ns
, map
, offset
);
184 static int next_pidmap(struct pid_namespace
*pid_ns
, int last
)
187 struct pidmap
*map
, *end
;
189 offset
= (last
+ 1) & BITS_PER_PAGE_MASK
;
190 map
= &pid_ns
->pidmap
[(last
+ 1)/BITS_PER_PAGE
];
191 end
= &pid_ns
->pidmap
[PIDMAP_ENTRIES
];
192 for (; map
< end
; map
++, offset
= 0) {
193 if (unlikely(!map
->page
))
195 offset
= find_next_bit((map
)->page
, BITS_PER_PAGE
, offset
);
196 if (offset
< BITS_PER_PAGE
)
197 return mk_pid(pid_ns
, map
, offset
);
202 fastcall
void put_pid(struct pid
*pid
)
204 struct pid_namespace
*ns
;
209 ns
= pid
->numbers
[pid
->level
].ns
;
210 if ((atomic_read(&pid
->count
) == 1) ||
211 atomic_dec_and_test(&pid
->count
)) {
212 kmem_cache_free(ns
->pid_cachep
, pid
);
216 EXPORT_SYMBOL_GPL(put_pid
);
218 static void delayed_put_pid(struct rcu_head
*rhp
)
220 struct pid
*pid
= container_of(rhp
, struct pid
, rcu
);
224 fastcall
void free_pid(struct pid
*pid
)
226 /* We can be called with write_lock_irq(&tasklist_lock) held */
230 spin_lock_irqsave(&pidmap_lock
, flags
);
231 for (i
= 0; i
<= pid
->level
; i
++)
232 hlist_del_rcu(&pid
->numbers
[i
].pid_chain
);
233 spin_unlock_irqrestore(&pidmap_lock
, flags
);
235 for (i
= 0; i
<= pid
->level
; i
++)
236 free_pidmap(pid
->numbers
[i
].ns
, pid
->numbers
[i
].nr
);
238 call_rcu(&pid
->rcu
, delayed_put_pid
);
241 struct pid
*alloc_pid(struct pid_namespace
*ns
)
246 struct pid_namespace
*tmp
;
249 pid
= kmem_cache_alloc(ns
->pid_cachep
, GFP_KERNEL
);
254 for (i
= ns
->level
; i
>= 0; i
--) {
255 nr
= alloc_pidmap(tmp
);
259 pid
->numbers
[i
].nr
= nr
;
260 pid
->numbers
[i
].ns
= tmp
;
265 pid
->level
= ns
->level
;
266 atomic_set(&pid
->count
, 1);
267 for (type
= 0; type
< PIDTYPE_MAX
; ++type
)
268 INIT_HLIST_HEAD(&pid
->tasks
[type
]);
270 spin_lock_irq(&pidmap_lock
);
271 for (i
= ns
->level
; i
>= 0; i
--) {
272 upid
= &pid
->numbers
[i
];
273 hlist_add_head_rcu(&upid
->pid_chain
,
274 &pid_hash
[pid_hashfn(upid
->nr
, upid
->ns
)]);
276 spin_unlock_irq(&pidmap_lock
);
282 for (i
++; i
<= ns
->level
; i
++)
283 free_pidmap(pid
->numbers
[i
].ns
, pid
->numbers
[i
].nr
);
285 kmem_cache_free(ns
->pid_cachep
, pid
);
290 struct pid
* fastcall
find_pid_ns(int nr
, struct pid_namespace
*ns
)
292 struct hlist_node
*elem
;
295 hlist_for_each_entry_rcu(pnr
, elem
,
296 &pid_hash
[pid_hashfn(nr
, ns
)], pid_chain
)
297 if (pnr
->nr
== nr
&& pnr
->ns
== ns
)
298 return container_of(pnr
, struct pid
,
303 EXPORT_SYMBOL_GPL(find_pid_ns
);
305 struct pid
*find_vpid(int nr
)
307 return find_pid_ns(nr
, current
->nsproxy
->pid_ns
);
309 EXPORT_SYMBOL_GPL(find_vpid
);
311 struct pid
*find_pid(int nr
)
313 return find_pid_ns(nr
, &init_pid_ns
);
315 EXPORT_SYMBOL_GPL(find_pid
);
318 * attach_pid() must be called with the tasklist_lock write-held.
320 int fastcall
attach_pid(struct task_struct
*task
, enum pid_type type
,
323 struct pid_link
*link
;
325 link
= &task
->pids
[type
];
327 hlist_add_head_rcu(&link
->node
, &pid
->tasks
[type
]);
332 void fastcall
detach_pid(struct task_struct
*task
, enum pid_type type
)
334 struct pid_link
*link
;
338 link
= &task
->pids
[type
];
341 hlist_del_rcu(&link
->node
);
344 for (tmp
= PIDTYPE_MAX
; --tmp
>= 0; )
345 if (!hlist_empty(&pid
->tasks
[tmp
]))
351 /* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */
352 void fastcall
transfer_pid(struct task_struct
*old
, struct task_struct
*new,
355 new->pids
[type
].pid
= old
->pids
[type
].pid
;
356 hlist_replace_rcu(&old
->pids
[type
].node
, &new->pids
[type
].node
);
357 old
->pids
[type
].pid
= NULL
;
360 struct task_struct
* fastcall
pid_task(struct pid
*pid
, enum pid_type type
)
362 struct task_struct
*result
= NULL
;
364 struct hlist_node
*first
;
365 first
= rcu_dereference(pid
->tasks
[type
].first
);
367 result
= hlist_entry(first
, struct task_struct
, pids
[(type
)].node
);
373 * Must be called under rcu_read_lock() or with tasklist_lock read-held.
375 struct task_struct
*find_task_by_pid_type_ns(int type
, int nr
,
376 struct pid_namespace
*ns
)
378 return pid_task(find_pid_ns(nr
, ns
), type
);
381 EXPORT_SYMBOL(find_task_by_pid_type_ns
);
383 struct task_struct
*find_task_by_pid(pid_t nr
)
385 return find_task_by_pid_type_ns(PIDTYPE_PID
, nr
, &init_pid_ns
);
387 EXPORT_SYMBOL(find_task_by_pid
);
389 struct task_struct
*find_task_by_vpid(pid_t vnr
)
391 return find_task_by_pid_type_ns(PIDTYPE_PID
, vnr
,
392 current
->nsproxy
->pid_ns
);
394 EXPORT_SYMBOL(find_task_by_vpid
);
396 struct task_struct
*find_task_by_pid_ns(pid_t nr
, struct pid_namespace
*ns
)
398 return find_task_by_pid_type_ns(PIDTYPE_PID
, nr
, ns
);
400 EXPORT_SYMBOL(find_task_by_pid_ns
);
402 struct pid
*get_task_pid(struct task_struct
*task
, enum pid_type type
)
406 pid
= get_pid(task
->pids
[type
].pid
);
411 struct task_struct
*fastcall
get_pid_task(struct pid
*pid
, enum pid_type type
)
413 struct task_struct
*result
;
415 result
= pid_task(pid
, type
);
417 get_task_struct(result
);
422 struct pid
*find_get_pid(pid_t nr
)
427 pid
= get_pid(find_vpid(nr
));
433 pid_t
pid_nr_ns(struct pid
*pid
, struct pid_namespace
*ns
)
438 if (pid
&& ns
->level
<= pid
->level
) {
439 upid
= &pid
->numbers
[ns
->level
];
446 pid_t
task_pid_nr_ns(struct task_struct
*tsk
, struct pid_namespace
*ns
)
448 return pid_nr_ns(task_pid(tsk
), ns
);
450 EXPORT_SYMBOL(task_pid_nr_ns
);
452 pid_t
task_tgid_nr_ns(struct task_struct
*tsk
, struct pid_namespace
*ns
)
454 return pid_nr_ns(task_tgid(tsk
), ns
);
456 EXPORT_SYMBOL(task_tgid_nr_ns
);
458 pid_t
task_pgrp_nr_ns(struct task_struct
*tsk
, struct pid_namespace
*ns
)
460 return pid_nr_ns(task_pgrp(tsk
), ns
);
462 EXPORT_SYMBOL(task_pgrp_nr_ns
);
464 pid_t
task_session_nr_ns(struct task_struct
*tsk
, struct pid_namespace
*ns
)
466 return pid_nr_ns(task_session(tsk
), ns
);
468 EXPORT_SYMBOL(task_session_nr_ns
);
471 * Used by proc to find the first pid that is greater then or equal to nr.
473 * If there is a pid at nr this function is exactly the same as find_pid.
475 struct pid
*find_ge_pid(int nr
, struct pid_namespace
*ns
)
480 pid
= find_pid_ns(nr
, ns
);
483 nr
= next_pidmap(ns
, nr
);
488 EXPORT_SYMBOL_GPL(find_get_pid
);
493 struct kmem_cache
*cachep
;
494 struct list_head list
;
497 static LIST_HEAD(pid_caches_lh
);
498 static DEFINE_MUTEX(pid_caches_mutex
);
501 * creates the kmem cache to allocate pids from.
502 * @nr_ids: the number of numerical ids this pid will have to carry
505 static struct kmem_cache
*create_pid_cachep(int nr_ids
)
507 struct pid_cache
*pcache
;
508 struct kmem_cache
*cachep
;
510 mutex_lock(&pid_caches_mutex
);
511 list_for_each_entry (pcache
, &pid_caches_lh
, list
)
512 if (pcache
->nr_ids
== nr_ids
)
515 pcache
= kmalloc(sizeof(struct pid_cache
), GFP_KERNEL
);
519 snprintf(pcache
->name
, sizeof(pcache
->name
), "pid_%d", nr_ids
);
520 cachep
= kmem_cache_create(pcache
->name
,
521 sizeof(struct pid
) + (nr_ids
- 1) * sizeof(struct upid
),
522 0, SLAB_HWCACHE_ALIGN
, NULL
);
526 pcache
->nr_ids
= nr_ids
;
527 pcache
->cachep
= cachep
;
528 list_add(&pcache
->list
, &pid_caches_lh
);
530 mutex_unlock(&pid_caches_mutex
);
531 return pcache
->cachep
;
536 mutex_unlock(&pid_caches_mutex
);
540 static struct pid_namespace
*create_pid_namespace(int level
)
542 struct pid_namespace
*ns
;
545 ns
= kmem_cache_alloc(pid_ns_cachep
, GFP_KERNEL
);
549 ns
->pidmap
[0].page
= kzalloc(PAGE_SIZE
, GFP_KERNEL
);
550 if (!ns
->pidmap
[0].page
)
553 ns
->pid_cachep
= create_pid_cachep(level
+ 1);
554 if (ns
->pid_cachep
== NULL
)
557 kref_init(&ns
->kref
);
559 ns
->child_reaper
= NULL
;
562 set_bit(0, ns
->pidmap
[0].page
);
563 atomic_set(&ns
->pidmap
[0].nr_free
, BITS_PER_PAGE
- 1);
565 for (i
= 1; i
< PIDMAP_ENTRIES
; i
++) {
566 ns
->pidmap
[i
].page
= 0;
567 atomic_set(&ns
->pidmap
[i
].nr_free
, BITS_PER_PAGE
);
573 kfree(ns
->pidmap
[0].page
);
575 kmem_cache_free(pid_ns_cachep
, ns
);
577 return ERR_PTR(-ENOMEM
);
580 static void destroy_pid_namespace(struct pid_namespace
*ns
)
584 for (i
= 0; i
< PIDMAP_ENTRIES
; i
++)
585 kfree(ns
->pidmap
[i
].page
);
586 kmem_cache_free(pid_ns_cachep
, ns
);
589 struct pid_namespace
*copy_pid_ns(unsigned long flags
, struct pid_namespace
*old_ns
)
591 struct pid_namespace
*new_ns
;
594 new_ns
= get_pid_ns(old_ns
);
595 if (!(flags
& CLONE_NEWPID
))
598 new_ns
= ERR_PTR(-EINVAL
);
599 if (flags
& CLONE_THREAD
)
602 new_ns
= create_pid_namespace(old_ns
->level
+ 1);
604 new_ns
->parent
= get_pid_ns(old_ns
);
612 void free_pid_ns(struct kref
*kref
)
614 struct pid_namespace
*ns
, *parent
;
616 ns
= container_of(kref
, struct pid_namespace
, kref
);
619 destroy_pid_namespace(ns
);
625 void zap_pid_ns_processes(struct pid_namespace
*pid_ns
)
631 * The last thread in the cgroup-init thread group is terminating.
632 * Find remaining pid_ts in the namespace, signal and wait for them
635 * Note: This signals each threads in the namespace - even those that
636 * belong to the same thread group, To avoid this, we would have
637 * to walk the entire tasklist looking a processes in this
638 * namespace, but that could be unnecessarily expensive if the
639 * pid namespace has just a few processes. Or we need to
640 * maintain a tasklist for each pid namespace.
643 read_lock(&tasklist_lock
);
644 nr
= next_pidmap(pid_ns
, 1);
646 kill_proc_info(SIGKILL
, SEND_SIG_PRIV
, nr
);
647 nr
= next_pidmap(pid_ns
, nr
);
649 read_unlock(&tasklist_lock
);
652 clear_thread_flag(TIF_SIGPENDING
);
653 rc
= sys_wait4(-1, NULL
, __WALL
, NULL
);
654 } while (rc
!= -ECHILD
);
657 /* Child reaper for the pid namespace is going away */
658 pid_ns
->child_reaper
= NULL
;
663 * The pid hash table is scaled according to the amount of memory in the
664 * machine. From a minimum of 16 slots up to 4096 slots at one gigabyte or
667 void __init
pidhash_init(void)
670 unsigned long megabytes
= nr_kernel_pages
>> (20 - PAGE_SHIFT
);
672 pidhash_shift
= max(4, fls(megabytes
* 4));
673 pidhash_shift
= min(12, pidhash_shift
);
674 pidhash_size
= 1 << pidhash_shift
;
676 printk("PID hash table entries: %d (order: %d, %Zd bytes)\n",
677 pidhash_size
, pidhash_shift
,
678 pidhash_size
* sizeof(struct hlist_head
));
680 pid_hash
= alloc_bootmem(pidhash_size
* sizeof(*(pid_hash
)));
682 panic("Could not alloc pidhash!\n");
683 for (i
= 0; i
< pidhash_size
; i
++)
684 INIT_HLIST_HEAD(&pid_hash
[i
]);
687 void __init
pidmap_init(void)
689 init_pid_ns
.pidmap
[0].page
= kzalloc(PAGE_SIZE
, GFP_KERNEL
);
690 /* Reserve PID 0. We never call free_pidmap(0) */
691 set_bit(0, init_pid_ns
.pidmap
[0].page
);
692 atomic_dec(&init_pid_ns
.pidmap
[0].nr_free
);
694 init_pid_ns
.pid_cachep
= create_pid_cachep(1);
695 if (init_pid_ns
.pid_cachep
== NULL
)
696 panic("Can't create pid_1 cachep\n");
698 pid_ns_cachep
= KMEM_CACHE(pid_namespace
, SLAB_PANIC
);