2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
22 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
23 * enough at me, Linus for the original (flawed) idea, Matthew
24 * Kirkwood for proof-of-concept implementation.
26 * "The futexes are also cursed."
27 * "But they come in a choice of three flavours!"
29 * This program is free software; you can redistribute it and/or modify
30 * it under the terms of the GNU General Public License as published by
31 * the Free Software Foundation; either version 2 of the License, or
32 * (at your option) any later version.
34 * This program is distributed in the hope that it will be useful,
35 * but WITHOUT ANY WARRANTY; without even the implied warranty of
36 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
37 * GNU General Public License for more details.
39 * You should have received a copy of the GNU General Public License
40 * along with this program; if not, write to the Free Software
41 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
43 #include <linux/slab.h>
44 #include <linux/poll.h>
46 #include <linux/file.h>
47 #include <linux/jhash.h>
48 #include <linux/init.h>
49 #include <linux/futex.h>
50 #include <linux/mount.h>
51 #include <linux/pagemap.h>
52 #include <linux/syscalls.h>
53 #include <linux/signal.h>
54 #include <linux/module.h>
55 #include <linux/magic.h>
56 #include <linux/pid.h>
57 #include <linux/nsproxy.h>
59 #include <asm/futex.h>
61 #include "rtmutex_common.h"
63 #define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
66 * Priority Inheritance state:
68 struct futex_pi_state
{
70 * list of 'owned' pi_state instances - these have to be
71 * cleaned up in do_exit() if the task exits prematurely:
73 struct list_head list
;
78 struct rt_mutex pi_mutex
;
80 struct task_struct
*owner
;
87 * We use this hashed waitqueue instead of a normal wait_queue_t, so
88 * we can wake only the relevant ones (hashed queues may be shared).
90 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
91 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
92 * The order of wakup is always to make the first condition true, then
93 * wake up q->waiters, then make the second condition true.
96 struct plist_node list
;
97 wait_queue_head_t waiters
;
99 /* Which hash list lock to use: */
100 spinlock_t
*lock_ptr
;
102 /* Key which the futex is hashed on: */
105 /* For fd, sigio sent using these: */
109 /* Optional priority inheritance state: */
110 struct futex_pi_state
*pi_state
;
111 struct task_struct
*task
;
115 * Split the global futex_lock into every hash list lock.
117 struct futex_hash_bucket
{
119 struct plist_head chain
;
122 static struct futex_hash_bucket futex_queues
[1<<FUTEX_HASHBITS
];
124 /* Futex-fs vfsmount entry: */
125 static struct vfsmount
*futex_mnt
;
128 * Take mm->mmap_sem, when futex is shared
130 static inline void futex_lock_mm(struct rw_semaphore
*fshared
)
137 * Release mm->mmap_sem, when the futex is shared
139 static inline void futex_unlock_mm(struct rw_semaphore
*fshared
)
146 * We hash on the keys returned from get_futex_key (see below).
148 static struct futex_hash_bucket
*hash_futex(union futex_key
*key
)
150 u32 hash
= jhash2((u32
*)&key
->both
.word
,
151 (sizeof(key
->both
.word
)+sizeof(key
->both
.ptr
))/4,
153 return &futex_queues
[hash
& ((1 << FUTEX_HASHBITS
)-1)];
157 * Return 1 if two futex_keys are equal, 0 otherwise.
159 static inline int match_futex(union futex_key
*key1
, union futex_key
*key2
)
161 return (key1
->both
.word
== key2
->both
.word
162 && key1
->both
.ptr
== key2
->both
.ptr
163 && key1
->both
.offset
== key2
->both
.offset
);
167 * get_futex_key - Get parameters which are the keys for a futex.
168 * @uaddr: virtual address of the futex
169 * @shared: NULL for a PROCESS_PRIVATE futex,
170 * ¤t->mm->mmap_sem for a PROCESS_SHARED futex
171 * @key: address where result is stored.
173 * Returns a negative error code or 0
174 * The key words are stored in *key on success.
176 * For shared mappings, it's (page->index, vma->vm_file->f_path.dentry->d_inode,
177 * offset_within_page). For private mappings, it's (uaddr, current->mm).
178 * We can usually work out the index without swapping in the page.
180 * fshared is NULL for PROCESS_PRIVATE futexes
181 * For other futexes, it points to ¤t->mm->mmap_sem and
182 * caller must have taken the reader lock. but NOT any spinlocks.
184 int get_futex_key(u32 __user
*uaddr
, struct rw_semaphore
*fshared
,
185 union futex_key
*key
)
187 unsigned long address
= (unsigned long)uaddr
;
188 struct mm_struct
*mm
= current
->mm
;
189 struct vm_area_struct
*vma
;
194 * The futex address must be "naturally" aligned.
196 key
->both
.offset
= address
% PAGE_SIZE
;
197 if (unlikely((address
% sizeof(u32
)) != 0))
199 address
-= key
->both
.offset
;
202 * PROCESS_PRIVATE futexes are fast.
203 * As the mm cannot disappear under us and the 'key' only needs
204 * virtual address, we dont even have to find the underlying vma.
205 * Note : We do have to check 'uaddr' is a valid user address,
206 * but access_ok() should be faster than find_vma()
209 if (unlikely(!access_ok(VERIFY_WRITE
, uaddr
, sizeof(u32
))))
211 key
->private.mm
= mm
;
212 key
->private.address
= address
;
216 * The futex is hashed differently depending on whether
217 * it's in a shared or private mapping. So check vma first.
219 vma
= find_extend_vma(mm
, address
);
226 if (unlikely((vma
->vm_flags
& (VM_IO
|VM_READ
)) != VM_READ
))
227 return (vma
->vm_flags
& VM_IO
) ? -EPERM
: -EACCES
;
230 * Private mappings are handled in a simple way.
232 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
233 * it's a read-only handle, it's expected that futexes attach to
234 * the object not the particular process. Therefore we use
235 * VM_MAYSHARE here, not VM_SHARED which is restricted to shared
236 * mappings of _writable_ handles.
238 if (likely(!(vma
->vm_flags
& VM_MAYSHARE
))) {
239 key
->both
.offset
|= FUT_OFF_MMSHARED
; /* reference taken on mm */
240 key
->private.mm
= mm
;
241 key
->private.address
= address
;
246 * Linear file mappings are also simple.
248 key
->shared
.inode
= vma
->vm_file
->f_path
.dentry
->d_inode
;
249 key
->both
.offset
|= FUT_OFF_INODE
; /* inode-based key. */
250 if (likely(!(vma
->vm_flags
& VM_NONLINEAR
))) {
251 key
->shared
.pgoff
= (((address
- vma
->vm_start
) >> PAGE_SHIFT
)
257 * We could walk the page table to read the non-linear
258 * pte, and get the page index without fetching the page
259 * from swap. But that's a lot of code to duplicate here
260 * for a rare case, so we simply fetch the page.
262 err
= get_user_pages(current
, mm
, address
, 1, 0, 0, &page
, NULL
);
265 page
->index
<< (PAGE_CACHE_SHIFT
- PAGE_SHIFT
);
271 EXPORT_SYMBOL_GPL(get_futex_key
);
274 * Take a reference to the resource addressed by a key.
275 * Can be called while holding spinlocks.
278 inline void get_futex_key_refs(union futex_key
*key
)
280 if (key
->both
.ptr
== 0)
282 switch (key
->both
.offset
& (FUT_OFF_INODE
|FUT_OFF_MMSHARED
)) {
284 atomic_inc(&key
->shared
.inode
->i_count
);
286 case FUT_OFF_MMSHARED
:
287 atomic_inc(&key
->private.mm
->mm_count
);
291 EXPORT_SYMBOL_GPL(get_futex_key_refs
);
294 * Drop a reference to the resource addressed by a key.
295 * The hash bucket spinlock must not be held.
297 void drop_futex_key_refs(union futex_key
*key
)
301 switch (key
->both
.offset
& (FUT_OFF_INODE
|FUT_OFF_MMSHARED
)) {
303 iput(key
->shared
.inode
);
305 case FUT_OFF_MMSHARED
:
306 mmdrop(key
->private.mm
);
310 EXPORT_SYMBOL_GPL(drop_futex_key_refs
);
312 static u32
cmpxchg_futex_value_locked(u32 __user
*uaddr
, u32 uval
, u32 newval
)
317 curval
= futex_atomic_cmpxchg_inatomic(uaddr
, uval
, newval
);
323 static int get_futex_value_locked(u32
*dest
, u32 __user
*from
)
328 ret
= __copy_from_user_inatomic(dest
, from
, sizeof(u32
));
331 return ret
? -EFAULT
: 0;
336 * if fshared is non NULL, current->mm->mmap_sem is already held
338 static int futex_handle_fault(unsigned long address
,
339 struct rw_semaphore
*fshared
, int attempt
)
341 struct vm_area_struct
* vma
;
342 struct mm_struct
*mm
= current
->mm
;
349 down_read(&mm
->mmap_sem
);
350 vma
= find_vma(mm
, address
);
351 if (vma
&& address
>= vma
->vm_start
&&
352 (vma
->vm_flags
& VM_WRITE
)) {
354 fault
= handle_mm_fault(mm
, vma
, address
, 1);
355 if (unlikely((fault
& VM_FAULT_ERROR
))) {
357 /* XXX: let's do this when we verify it is OK */
358 if (ret
& VM_FAULT_OOM
)
363 if (fault
& VM_FAULT_MAJOR
)
370 up_read(&mm
->mmap_sem
);
377 static int refill_pi_state_cache(void)
379 struct futex_pi_state
*pi_state
;
381 if (likely(current
->pi_state_cache
))
384 pi_state
= kzalloc(sizeof(*pi_state
), GFP_KERNEL
);
389 INIT_LIST_HEAD(&pi_state
->list
);
390 /* pi_mutex gets initialized later */
391 pi_state
->owner
= NULL
;
392 atomic_set(&pi_state
->refcount
, 1);
394 current
->pi_state_cache
= pi_state
;
399 static struct futex_pi_state
* alloc_pi_state(void)
401 struct futex_pi_state
*pi_state
= current
->pi_state_cache
;
404 current
->pi_state_cache
= NULL
;
409 static void free_pi_state(struct futex_pi_state
*pi_state
)
411 if (!atomic_dec_and_test(&pi_state
->refcount
))
415 * If pi_state->owner is NULL, the owner is most probably dying
416 * and has cleaned up the pi_state already
418 if (pi_state
->owner
) {
419 spin_lock_irq(&pi_state
->owner
->pi_lock
);
420 list_del_init(&pi_state
->list
);
421 spin_unlock_irq(&pi_state
->owner
->pi_lock
);
423 rt_mutex_proxy_unlock(&pi_state
->pi_mutex
, pi_state
->owner
);
426 if (current
->pi_state_cache
)
430 * pi_state->list is already empty.
431 * clear pi_state->owner.
432 * refcount is at 0 - put it back to 1.
434 pi_state
->owner
= NULL
;
435 atomic_set(&pi_state
->refcount
, 1);
436 current
->pi_state_cache
= pi_state
;
441 * Look up the task based on what TID userspace gave us.
444 static struct task_struct
* futex_find_get_task(pid_t pid
)
446 struct task_struct
*p
;
449 p
= find_task_by_vpid(pid
);
450 if (!p
|| ((current
->euid
!= p
->euid
) && (current
->euid
!= p
->uid
)))
461 * This task is holding PI mutexes at exit time => bad.
462 * Kernel cleans up PI-state, but userspace is likely hosed.
463 * (Robust-futex cleanup is separate and might save the day for userspace.)
465 void exit_pi_state_list(struct task_struct
*curr
)
467 struct list_head
*next
, *head
= &curr
->pi_state_list
;
468 struct futex_pi_state
*pi_state
;
469 struct futex_hash_bucket
*hb
;
473 * We are a ZOMBIE and nobody can enqueue itself on
474 * pi_state_list anymore, but we have to be careful
475 * versus waiters unqueueing themselves:
477 spin_lock_irq(&curr
->pi_lock
);
478 while (!list_empty(head
)) {
481 pi_state
= list_entry(next
, struct futex_pi_state
, list
);
483 hb
= hash_futex(&key
);
484 spin_unlock_irq(&curr
->pi_lock
);
486 spin_lock(&hb
->lock
);
488 spin_lock_irq(&curr
->pi_lock
);
490 * We dropped the pi-lock, so re-check whether this
491 * task still owns the PI-state:
493 if (head
->next
!= next
) {
494 spin_unlock(&hb
->lock
);
498 WARN_ON(pi_state
->owner
!= curr
);
499 WARN_ON(list_empty(&pi_state
->list
));
500 list_del_init(&pi_state
->list
);
501 pi_state
->owner
= NULL
;
502 spin_unlock_irq(&curr
->pi_lock
);
504 rt_mutex_unlock(&pi_state
->pi_mutex
);
506 spin_unlock(&hb
->lock
);
508 spin_lock_irq(&curr
->pi_lock
);
510 spin_unlock_irq(&curr
->pi_lock
);
514 lookup_pi_state(u32 uval
, struct futex_hash_bucket
*hb
,
515 union futex_key
*key
, struct futex_pi_state
**ps
)
517 struct futex_pi_state
*pi_state
= NULL
;
518 struct futex_q
*this, *next
;
519 struct plist_head
*head
;
520 struct task_struct
*p
;
521 pid_t pid
= uval
& FUTEX_TID_MASK
;
525 plist_for_each_entry_safe(this, next
, head
, list
) {
526 if (match_futex(&this->key
, key
)) {
528 * Another waiter already exists - bump up
529 * the refcount and return its pi_state:
531 pi_state
= this->pi_state
;
533 * Userspace might have messed up non PI and PI futexes
535 if (unlikely(!pi_state
))
538 WARN_ON(!atomic_read(&pi_state
->refcount
));
539 WARN_ON(pid
&& pi_state
->owner
&&
540 pi_state
->owner
->pid
!= pid
);
542 atomic_inc(&pi_state
->refcount
);
550 * We are the first waiter - try to look up the real owner and attach
551 * the new pi_state to it, but bail out when TID = 0
555 p
= futex_find_get_task(pid
);
560 * We need to look at the task state flags to figure out,
561 * whether the task is exiting. To protect against the do_exit
562 * change of the task flags, we do this protected by
565 spin_lock_irq(&p
->pi_lock
);
566 if (unlikely(p
->flags
& PF_EXITING
)) {
568 * The task is on the way out. When PF_EXITPIDONE is
569 * set, we know that the task has finished the
572 int ret
= (p
->flags
& PF_EXITPIDONE
) ? -ESRCH
: -EAGAIN
;
574 spin_unlock_irq(&p
->pi_lock
);
579 pi_state
= alloc_pi_state();
582 * Initialize the pi_mutex in locked state and make 'p'
585 rt_mutex_init_proxy_locked(&pi_state
->pi_mutex
, p
);
587 /* Store the key for possible exit cleanups: */
588 pi_state
->key
= *key
;
590 WARN_ON(!list_empty(&pi_state
->list
));
591 list_add(&pi_state
->list
, &p
->pi_state_list
);
593 spin_unlock_irq(&p
->pi_lock
);
603 * The hash bucket lock must be held when this is called.
604 * Afterwards, the futex_q must not be accessed.
606 static void wake_futex(struct futex_q
*q
)
608 plist_del(&q
->list
, &q
->list
.plist
);
610 send_sigio(&q
->filp
->f_owner
, q
->fd
, POLL_IN
);
612 * The lock in wake_up_all() is a crucial memory barrier after the
613 * plist_del() and also before assigning to q->lock_ptr.
615 wake_up_all(&q
->waiters
);
617 * The waiting task can free the futex_q as soon as this is written,
618 * without taking any locks. This must come last.
620 * A memory barrier is required here to prevent the following store
621 * to lock_ptr from getting ahead of the wakeup. Clearing the lock
622 * at the end of wake_up_all() does not prevent this store from
629 static int wake_futex_pi(u32 __user
*uaddr
, u32 uval
, struct futex_q
*this)
631 struct task_struct
*new_owner
;
632 struct futex_pi_state
*pi_state
= this->pi_state
;
638 spin_lock(&pi_state
->pi_mutex
.wait_lock
);
639 new_owner
= rt_mutex_next_owner(&pi_state
->pi_mutex
);
642 * This happens when we have stolen the lock and the original
643 * pending owner did not enqueue itself back on the rt_mutex.
644 * Thats not a tragedy. We know that way, that a lock waiter
645 * is on the fly. We make the futex_q waiter the pending owner.
648 new_owner
= this->task
;
651 * We pass it to the next owner. (The WAITERS bit is always
652 * kept enabled while there is PI state around. We must also
653 * preserve the owner died bit.)
655 if (!(uval
& FUTEX_OWNER_DIED
)) {
658 newval
= FUTEX_WAITERS
| task_pid_vnr(new_owner
);
660 curval
= cmpxchg_futex_value_locked(uaddr
, uval
, newval
);
662 if (curval
== -EFAULT
)
667 spin_unlock(&pi_state
->pi_mutex
.wait_lock
);
672 spin_lock_irq(&pi_state
->owner
->pi_lock
);
673 WARN_ON(list_empty(&pi_state
->list
));
674 list_del_init(&pi_state
->list
);
675 spin_unlock_irq(&pi_state
->owner
->pi_lock
);
677 spin_lock_irq(&new_owner
->pi_lock
);
678 WARN_ON(!list_empty(&pi_state
->list
));
679 list_add(&pi_state
->list
, &new_owner
->pi_state_list
);
680 pi_state
->owner
= new_owner
;
681 spin_unlock_irq(&new_owner
->pi_lock
);
683 spin_unlock(&pi_state
->pi_mutex
.wait_lock
);
684 rt_mutex_unlock(&pi_state
->pi_mutex
);
689 static int unlock_futex_pi(u32 __user
*uaddr
, u32 uval
)
694 * There is no waiter, so we unlock the futex. The owner died
695 * bit has not to be preserved here. We are the owner:
697 oldval
= cmpxchg_futex_value_locked(uaddr
, uval
, 0);
699 if (oldval
== -EFAULT
)
708 * Express the locking dependencies for lockdep:
711 double_lock_hb(struct futex_hash_bucket
*hb1
, struct futex_hash_bucket
*hb2
)
714 spin_lock(&hb1
->lock
);
716 spin_lock_nested(&hb2
->lock
, SINGLE_DEPTH_NESTING
);
717 } else { /* hb1 > hb2 */
718 spin_lock(&hb2
->lock
);
719 spin_lock_nested(&hb1
->lock
, SINGLE_DEPTH_NESTING
);
724 * Wake up all waiters hashed on the physical page that is mapped
725 * to this virtual address:
727 static int futex_wake(u32 __user
*uaddr
, struct rw_semaphore
*fshared
,
730 struct futex_hash_bucket
*hb
;
731 struct futex_q
*this, *next
;
732 struct plist_head
*head
;
736 futex_lock_mm(fshared
);
738 ret
= get_futex_key(uaddr
, fshared
, &key
);
739 if (unlikely(ret
!= 0))
742 hb
= hash_futex(&key
);
743 spin_lock(&hb
->lock
);
746 plist_for_each_entry_safe(this, next
, head
, list
) {
747 if (match_futex (&this->key
, &key
)) {
748 if (this->pi_state
) {
753 if (++ret
>= nr_wake
)
758 spin_unlock(&hb
->lock
);
760 futex_unlock_mm(fshared
);
765 * Wake up all waiters hashed on the physical page that is mapped
766 * to this virtual address:
769 futex_wake_op(u32 __user
*uaddr1
, struct rw_semaphore
*fshared
,
771 int nr_wake
, int nr_wake2
, int op
)
773 union futex_key key1
, key2
;
774 struct futex_hash_bucket
*hb1
, *hb2
;
775 struct plist_head
*head
;
776 struct futex_q
*this, *next
;
777 int ret
, op_ret
, attempt
= 0;
780 futex_lock_mm(fshared
);
782 ret
= get_futex_key(uaddr1
, fshared
, &key1
);
783 if (unlikely(ret
!= 0))
785 ret
= get_futex_key(uaddr2
, fshared
, &key2
);
786 if (unlikely(ret
!= 0))
789 hb1
= hash_futex(&key1
);
790 hb2
= hash_futex(&key2
);
793 double_lock_hb(hb1
, hb2
);
795 op_ret
= futex_atomic_op_inuser(op
, uaddr2
);
796 if (unlikely(op_ret
< 0)) {
799 spin_unlock(&hb1
->lock
);
801 spin_unlock(&hb2
->lock
);
805 * we don't get EFAULT from MMU faults if we don't have an MMU,
806 * but we might get them from range checking
812 if (unlikely(op_ret
!= -EFAULT
)) {
818 * futex_atomic_op_inuser needs to both read and write
819 * *(int __user *)uaddr2, but we can't modify it
820 * non-atomically. Therefore, if get_user below is not
821 * enough, we need to handle the fault ourselves, while
822 * still holding the mmap_sem.
825 ret
= futex_handle_fault((unsigned long)uaddr2
,
833 * If we would have faulted, release mmap_sem,
834 * fault it in and start all over again.
836 futex_unlock_mm(fshared
);
838 ret
= get_user(dummy
, uaddr2
);
847 plist_for_each_entry_safe(this, next
, head
, list
) {
848 if (match_futex (&this->key
, &key1
)) {
850 if (++ret
>= nr_wake
)
859 plist_for_each_entry_safe(this, next
, head
, list
) {
860 if (match_futex (&this->key
, &key2
)) {
862 if (++op_ret
>= nr_wake2
)
869 spin_unlock(&hb1
->lock
);
871 spin_unlock(&hb2
->lock
);
873 futex_unlock_mm(fshared
);
879 * Requeue all waiters hashed on one physical page to another
882 static int futex_requeue(u32 __user
*uaddr1
, struct rw_semaphore
*fshared
,
884 int nr_wake
, int nr_requeue
, u32
*cmpval
)
886 union futex_key key1
, key2
;
887 struct futex_hash_bucket
*hb1
, *hb2
;
888 struct plist_head
*head1
;
889 struct futex_q
*this, *next
;
890 int ret
, drop_count
= 0;
893 futex_lock_mm(fshared
);
895 ret
= get_futex_key(uaddr1
, fshared
, &key1
);
896 if (unlikely(ret
!= 0))
898 ret
= get_futex_key(uaddr2
, fshared
, &key2
);
899 if (unlikely(ret
!= 0))
902 hb1
= hash_futex(&key1
);
903 hb2
= hash_futex(&key2
);
905 double_lock_hb(hb1
, hb2
);
907 if (likely(cmpval
!= NULL
)) {
910 ret
= get_futex_value_locked(&curval
, uaddr1
);
913 spin_unlock(&hb1
->lock
);
915 spin_unlock(&hb2
->lock
);
918 * If we would have faulted, release mmap_sem, fault
919 * it in and start all over again.
921 futex_unlock_mm(fshared
);
923 ret
= get_user(curval
, uaddr1
);
930 if (curval
!= *cmpval
) {
937 plist_for_each_entry_safe(this, next
, head1
, list
) {
938 if (!match_futex (&this->key
, &key1
))
940 if (++ret
<= nr_wake
) {
944 * If key1 and key2 hash to the same bucket, no need to
947 if (likely(head1
!= &hb2
->chain
)) {
948 plist_del(&this->list
, &hb1
->chain
);
949 plist_add(&this->list
, &hb2
->chain
);
950 this->lock_ptr
= &hb2
->lock
;
951 #ifdef CONFIG_DEBUG_PI_LIST
952 this->list
.plist
.lock
= &hb2
->lock
;
956 get_futex_key_refs(&key2
);
959 if (ret
- nr_wake
>= nr_requeue
)
965 spin_unlock(&hb1
->lock
);
967 spin_unlock(&hb2
->lock
);
969 /* drop_futex_key_refs() must be called outside the spinlocks. */
970 while (--drop_count
>= 0)
971 drop_futex_key_refs(&key1
);
974 futex_unlock_mm(fshared
);
978 /* The key must be already stored in q->key. */
979 static inline struct futex_hash_bucket
*
980 queue_lock(struct futex_q
*q
, int fd
, struct file
*filp
)
982 struct futex_hash_bucket
*hb
;
987 init_waitqueue_head(&q
->waiters
);
989 get_futex_key_refs(&q
->key
);
990 hb
= hash_futex(&q
->key
);
991 q
->lock_ptr
= &hb
->lock
;
993 spin_lock(&hb
->lock
);
997 static inline void __queue_me(struct futex_q
*q
, struct futex_hash_bucket
*hb
)
1002 * The priority used to register this element is
1003 * - either the real thread-priority for the real-time threads
1004 * (i.e. threads with a priority lower than MAX_RT_PRIO)
1005 * - or MAX_RT_PRIO for non-RT threads.
1006 * Thus, all RT-threads are woken first in priority order, and
1007 * the others are woken last, in FIFO order.
1009 prio
= min(current
->normal_prio
, MAX_RT_PRIO
);
1011 plist_node_init(&q
->list
, prio
);
1012 #ifdef CONFIG_DEBUG_PI_LIST
1013 q
->list
.plist
.lock
= &hb
->lock
;
1015 plist_add(&q
->list
, &hb
->chain
);
1017 spin_unlock(&hb
->lock
);
1021 queue_unlock(struct futex_q
*q
, struct futex_hash_bucket
*hb
)
1023 spin_unlock(&hb
->lock
);
1024 drop_futex_key_refs(&q
->key
);
1028 * queue_me and unqueue_me must be called as a pair, each
1029 * exactly once. They are called with the hashed spinlock held.
1032 /* The key must be already stored in q->key. */
1033 static void queue_me(struct futex_q
*q
, int fd
, struct file
*filp
)
1035 struct futex_hash_bucket
*hb
;
1037 hb
= queue_lock(q
, fd
, filp
);
1041 /* Return 1 if we were still queued (ie. 0 means we were woken) */
1042 static int unqueue_me(struct futex_q
*q
)
1044 spinlock_t
*lock_ptr
;
1047 /* In the common case we don't take the spinlock, which is nice. */
1049 lock_ptr
= q
->lock_ptr
;
1051 if (lock_ptr
!= NULL
) {
1052 spin_lock(lock_ptr
);
1054 * q->lock_ptr can change between reading it and
1055 * spin_lock(), causing us to take the wrong lock. This
1056 * corrects the race condition.
1058 * Reasoning goes like this: if we have the wrong lock,
1059 * q->lock_ptr must have changed (maybe several times)
1060 * between reading it and the spin_lock(). It can
1061 * change again after the spin_lock() but only if it was
1062 * already changed before the spin_lock(). It cannot,
1063 * however, change back to the original value. Therefore
1064 * we can detect whether we acquired the correct lock.
1066 if (unlikely(lock_ptr
!= q
->lock_ptr
)) {
1067 spin_unlock(lock_ptr
);
1070 WARN_ON(plist_node_empty(&q
->list
));
1071 plist_del(&q
->list
, &q
->list
.plist
);
1073 BUG_ON(q
->pi_state
);
1075 spin_unlock(lock_ptr
);
1079 drop_futex_key_refs(&q
->key
);
1084 * PI futexes can not be requeued and must remove themself from the
1085 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1088 static void unqueue_me_pi(struct futex_q
*q
)
1090 WARN_ON(plist_node_empty(&q
->list
));
1091 plist_del(&q
->list
, &q
->list
.plist
);
1093 BUG_ON(!q
->pi_state
);
1094 free_pi_state(q
->pi_state
);
1097 spin_unlock(q
->lock_ptr
);
1099 drop_futex_key_refs(&q
->key
);
1103 * Fixup the pi_state owner with current.
1105 * Must be called with hash bucket lock held and mm->sem held for non
1108 static int fixup_pi_state_owner(u32 __user
*uaddr
, struct futex_q
*q
,
1109 struct task_struct
*curr
)
1111 u32 newtid
= task_pid_vnr(curr
) | FUTEX_WAITERS
;
1112 struct futex_pi_state
*pi_state
= q
->pi_state
;
1113 u32 uval
, curval
, newval
;
1117 if (pi_state
->owner
!= NULL
) {
1118 spin_lock_irq(&pi_state
->owner
->pi_lock
);
1119 WARN_ON(list_empty(&pi_state
->list
));
1120 list_del_init(&pi_state
->list
);
1121 spin_unlock_irq(&pi_state
->owner
->pi_lock
);
1123 newtid
|= FUTEX_OWNER_DIED
;
1125 pi_state
->owner
= curr
;
1127 spin_lock_irq(&curr
->pi_lock
);
1128 WARN_ON(!list_empty(&pi_state
->list
));
1129 list_add(&pi_state
->list
, &curr
->pi_state_list
);
1130 spin_unlock_irq(&curr
->pi_lock
);
1133 * We own it, so we have to replace the pending owner
1134 * TID. This must be atomic as we have preserve the
1135 * owner died bit here.
1137 ret
= get_futex_value_locked(&uval
, uaddr
);
1140 newval
= (uval
& FUTEX_OWNER_DIED
) | newtid
;
1142 curval
= cmpxchg_futex_value_locked(uaddr
, uval
, newval
);
1144 if (curval
== -EFAULT
)
1154 * In case we must use restart_block to restart a futex_wait,
1155 * we encode in the 'arg3' shared capability
1157 #define ARG3_SHARED 1
1159 static long futex_wait_restart(struct restart_block
*restart
);
1161 static int futex_wait(u32 __user
*uaddr
, struct rw_semaphore
*fshared
,
1162 u32 val
, ktime_t
*abs_time
)
1164 struct task_struct
*curr
= current
;
1165 DECLARE_WAITQUEUE(wait
, curr
);
1166 struct futex_hash_bucket
*hb
;
1170 struct hrtimer_sleeper t
;
1175 futex_lock_mm(fshared
);
1177 ret
= get_futex_key(uaddr
, fshared
, &q
.key
);
1178 if (unlikely(ret
!= 0))
1179 goto out_release_sem
;
1181 hb
= queue_lock(&q
, -1, NULL
);
1184 * Access the page AFTER the futex is queued.
1185 * Order is important:
1187 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
1188 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
1190 * The basic logical guarantee of a futex is that it blocks ONLY
1191 * if cond(var) is known to be true at the time of blocking, for
1192 * any cond. If we queued after testing *uaddr, that would open
1193 * a race condition where we could block indefinitely with
1194 * cond(var) false, which would violate the guarantee.
1196 * A consequence is that futex_wait() can return zero and absorb
1197 * a wakeup when *uaddr != val on entry to the syscall. This is
1200 * for shared futexes, we hold the mmap semaphore, so the mapping
1201 * cannot have changed since we looked it up in get_futex_key.
1203 ret
= get_futex_value_locked(&uval
, uaddr
);
1205 if (unlikely(ret
)) {
1206 queue_unlock(&q
, hb
);
1209 * If we would have faulted, release mmap_sem, fault it in and
1210 * start all over again.
1212 futex_unlock_mm(fshared
);
1214 ret
= get_user(uval
, uaddr
);
1222 goto out_unlock_release_sem
;
1224 /* Only actually queue if *uaddr contained val. */
1228 * Now the futex is queued and we have checked the data, we
1229 * don't want to hold mmap_sem while we sleep.
1231 futex_unlock_mm(fshared
);
1234 * There might have been scheduling since the queue_me(), as we
1235 * cannot hold a spinlock across the get_user() in case it
1236 * faults, and we cannot just set TASK_INTERRUPTIBLE state when
1237 * queueing ourselves into the futex hash. This code thus has to
1238 * rely on the futex_wake() code removing us from hash when it
1242 /* add_wait_queue is the barrier after __set_current_state. */
1243 __set_current_state(TASK_INTERRUPTIBLE
);
1244 add_wait_queue(&q
.waiters
, &wait
);
1246 * !plist_node_empty() is safe here without any lock.
1247 * q.lock_ptr != 0 is not safe, because of ordering against wakeup.
1249 if (likely(!plist_node_empty(&q
.list
))) {
1253 hrtimer_init(&t
.timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_ABS
);
1254 hrtimer_init_sleeper(&t
, current
);
1255 t
.timer
.expires
= *abs_time
;
1257 hrtimer_start(&t
.timer
, t
.timer
.expires
, HRTIMER_MODE_ABS
);
1260 * the timer could have already expired, in which
1261 * case current would be flagged for rescheduling.
1262 * Don't bother calling schedule.
1267 hrtimer_cancel(&t
.timer
);
1269 /* Flag if a timeout occured */
1270 rem
= (t
.task
== NULL
);
1273 __set_current_state(TASK_RUNNING
);
1276 * NOTE: we don't remove ourselves from the waitqueue because
1277 * we are the only user of it.
1280 /* If we were woken (and unqueued), we succeeded, whatever. */
1281 if (!unqueue_me(&q
))
1287 * We expect signal_pending(current), but another thread may
1288 * have handled it for us already.
1291 return -ERESTARTSYS
;
1293 struct restart_block
*restart
;
1294 restart
= ¤t_thread_info()->restart_block
;
1295 restart
->fn
= futex_wait_restart
;
1296 restart
->arg0
= (unsigned long)uaddr
;
1297 restart
->arg1
= (unsigned long)val
;
1298 restart
->arg2
= (unsigned long)abs_time
;
1301 restart
->arg3
|= ARG3_SHARED
;
1302 return -ERESTART_RESTARTBLOCK
;
1305 out_unlock_release_sem
:
1306 queue_unlock(&q
, hb
);
1309 futex_unlock_mm(fshared
);
1314 static long futex_wait_restart(struct restart_block
*restart
)
1316 u32 __user
*uaddr
= (u32 __user
*)restart
->arg0
;
1317 u32 val
= (u32
)restart
->arg1
;
1318 ktime_t
*abs_time
= (ktime_t
*)restart
->arg2
;
1319 struct rw_semaphore
*fshared
= NULL
;
1321 restart
->fn
= do_no_restart_syscall
;
1322 if (restart
->arg3
& ARG3_SHARED
)
1323 fshared
= ¤t
->mm
->mmap_sem
;
1324 return (long)futex_wait(uaddr
, fshared
, val
, abs_time
);
1329 * Userspace tried a 0 -> TID atomic transition of the futex value
1330 * and failed. The kernel side here does the whole locking operation:
1331 * if there are waiters then it will block, it does PI, etc. (Due to
1332 * races the kernel might see a 0 value of the futex too.)
1334 static int futex_lock_pi(u32 __user
*uaddr
, struct rw_semaphore
*fshared
,
1335 int detect
, ktime_t
*time
, int trylock
)
1337 struct hrtimer_sleeper timeout
, *to
= NULL
;
1338 struct task_struct
*curr
= current
;
1339 struct futex_hash_bucket
*hb
;
1340 u32 uval
, newval
, curval
;
1342 int ret
, lock_taken
, ownerdied
= 0, attempt
= 0;
1344 if (refill_pi_state_cache())
1349 hrtimer_init(&to
->timer
, CLOCK_REALTIME
, HRTIMER_MODE_ABS
);
1350 hrtimer_init_sleeper(to
, current
);
1351 to
->timer
.expires
= *time
;
1356 futex_lock_mm(fshared
);
1358 ret
= get_futex_key(uaddr
, fshared
, &q
.key
);
1359 if (unlikely(ret
!= 0))
1360 goto out_release_sem
;
1363 hb
= queue_lock(&q
, -1, NULL
);
1366 ret
= lock_taken
= 0;
1369 * To avoid races, we attempt to take the lock here again
1370 * (by doing a 0 -> TID atomic cmpxchg), while holding all
1371 * the locks. It will most likely not succeed.
1373 newval
= task_pid_vnr(current
);
1375 curval
= cmpxchg_futex_value_locked(uaddr
, 0, newval
);
1377 if (unlikely(curval
== -EFAULT
))
1381 * Detect deadlocks. In case of REQUEUE_PI this is a valid
1382 * situation and we return success to user space.
1384 if (unlikely((curval
& FUTEX_TID_MASK
) == task_pid_vnr(current
))) {
1386 goto out_unlock_release_sem
;
1390 * Surprise - we got the lock. Just return to userspace:
1392 if (unlikely(!curval
))
1393 goto out_unlock_release_sem
;
1398 * Set the WAITERS flag, so the owner will know it has someone
1399 * to wake at next unlock
1401 newval
= curval
| FUTEX_WAITERS
;
1404 * There are two cases, where a futex might have no owner (the
1405 * owner TID is 0): OWNER_DIED. We take over the futex in this
1406 * case. We also do an unconditional take over, when the owner
1407 * of the futex died.
1409 * This is safe as we are protected by the hash bucket lock !
1411 if (unlikely(ownerdied
|| !(curval
& FUTEX_TID_MASK
))) {
1412 /* Keep the OWNER_DIED bit */
1413 newval
= (curval
& ~FUTEX_TID_MASK
) | task_pid_vnr(current
);
1418 curval
= cmpxchg_futex_value_locked(uaddr
, uval
, newval
);
1420 if (unlikely(curval
== -EFAULT
))
1422 if (unlikely(curval
!= uval
))
1426 * We took the lock due to owner died take over.
1428 if (unlikely(lock_taken
))
1429 goto out_unlock_release_sem
;
1432 * We dont have the lock. Look up the PI state (or create it if
1433 * we are the first waiter):
1435 ret
= lookup_pi_state(uval
, hb
, &q
.key
, &q
.pi_state
);
1437 if (unlikely(ret
)) {
1442 * Task is exiting and we just wait for the
1445 queue_unlock(&q
, hb
);
1446 futex_unlock_mm(fshared
);
1452 * No owner found for this futex. Check if the
1453 * OWNER_DIED bit is set to figure out whether
1454 * this is a robust futex or not.
1456 if (get_futex_value_locked(&curval
, uaddr
))
1460 * We simply start over in case of a robust
1461 * futex. The code above will take the futex
1464 if (curval
& FUTEX_OWNER_DIED
) {
1469 goto out_unlock_release_sem
;
1474 * Only actually queue now that the atomic ops are done:
1479 * Now the futex is queued and we have checked the data, we
1480 * don't want to hold mmap_sem while we sleep.
1482 futex_unlock_mm(fshared
);
1484 WARN_ON(!q
.pi_state
);
1486 * Block on the PI mutex:
1489 ret
= rt_mutex_timed_lock(&q
.pi_state
->pi_mutex
, to
, 1);
1491 ret
= rt_mutex_trylock(&q
.pi_state
->pi_mutex
);
1492 /* Fixup the trylock return value: */
1493 ret
= ret
? 0 : -EWOULDBLOCK
;
1496 futex_lock_mm(fshared
);
1497 spin_lock(q
.lock_ptr
);
1501 * Got the lock. We might not be the anticipated owner
1502 * if we did a lock-steal - fix up the PI-state in
1505 if (q
.pi_state
->owner
!= curr
)
1506 ret
= fixup_pi_state_owner(uaddr
, &q
, curr
);
1509 * Catch the rare case, where the lock was released
1510 * when we were on the way back before we locked the
1513 if (q
.pi_state
->owner
== curr
&&
1514 rt_mutex_trylock(&q
.pi_state
->pi_mutex
)) {
1518 * Paranoia check. If we did not take the lock
1519 * in the trylock above, then we should not be
1520 * the owner of the rtmutex, neither the real
1521 * nor the pending one:
1523 if (rt_mutex_owner(&q
.pi_state
->pi_mutex
) == curr
)
1524 printk(KERN_ERR
"futex_lock_pi: ret = %d "
1525 "pi-mutex: %p pi-state %p\n", ret
,
1526 q
.pi_state
->pi_mutex
.owner
,
1531 /* Unqueue and drop the lock */
1533 futex_unlock_mm(fshared
);
1535 return ret
!= -EINTR
? ret
: -ERESTARTNOINTR
;
1537 out_unlock_release_sem
:
1538 queue_unlock(&q
, hb
);
1541 futex_unlock_mm(fshared
);
1546 * We have to r/w *(int __user *)uaddr, but we can't modify it
1547 * non-atomically. Therefore, if get_user below is not
1548 * enough, we need to handle the fault ourselves, while
1549 * still holding the mmap_sem.
1551 * ... and hb->lock. :-) --ANK
1553 queue_unlock(&q
, hb
);
1556 ret
= futex_handle_fault((unsigned long)uaddr
, fshared
,
1559 goto out_release_sem
;
1560 goto retry_unlocked
;
1563 futex_unlock_mm(fshared
);
1565 ret
= get_user(uval
, uaddr
);
1566 if (!ret
&& (uval
!= -EFAULT
))
1573 * Userspace attempted a TID -> 0 atomic transition, and failed.
1574 * This is the in-kernel slowpath: we look up the PI state (if any),
1575 * and do the rt-mutex unlock.
1577 static int futex_unlock_pi(u32 __user
*uaddr
, struct rw_semaphore
*fshared
)
1579 struct futex_hash_bucket
*hb
;
1580 struct futex_q
*this, *next
;
1582 struct plist_head
*head
;
1583 union futex_key key
;
1584 int ret
, attempt
= 0;
1587 if (get_user(uval
, uaddr
))
1590 * We release only a lock we actually own:
1592 if ((uval
& FUTEX_TID_MASK
) != task_pid_vnr(current
))
1595 * First take all the futex related locks:
1597 futex_lock_mm(fshared
);
1599 ret
= get_futex_key(uaddr
, fshared
, &key
);
1600 if (unlikely(ret
!= 0))
1603 hb
= hash_futex(&key
);
1605 spin_lock(&hb
->lock
);
1608 * To avoid races, try to do the TID -> 0 atomic transition
1609 * again. If it succeeds then we can return without waking
1612 if (!(uval
& FUTEX_OWNER_DIED
))
1613 uval
= cmpxchg_futex_value_locked(uaddr
, task_pid_vnr(current
), 0);
1616 if (unlikely(uval
== -EFAULT
))
1619 * Rare case: we managed to release the lock atomically,
1620 * no need to wake anyone else up:
1622 if (unlikely(uval
== task_pid_vnr(current
)))
1626 * Ok, other tasks may need to be woken up - check waiters
1627 * and do the wakeup if necessary:
1631 plist_for_each_entry_safe(this, next
, head
, list
) {
1632 if (!match_futex (&this->key
, &key
))
1634 ret
= wake_futex_pi(uaddr
, uval
, this);
1636 * The atomic access to the futex value
1637 * generated a pagefault, so retry the
1638 * user-access and the wakeup:
1645 * No waiters - kernel unlocks the futex:
1647 if (!(uval
& FUTEX_OWNER_DIED
)) {
1648 ret
= unlock_futex_pi(uaddr
, uval
);
1654 spin_unlock(&hb
->lock
);
1656 futex_unlock_mm(fshared
);
1662 * We have to r/w *(int __user *)uaddr, but we can't modify it
1663 * non-atomically. Therefore, if get_user below is not
1664 * enough, we need to handle the fault ourselves, while
1665 * still holding the mmap_sem.
1667 * ... and hb->lock. --ANK
1669 spin_unlock(&hb
->lock
);
1672 ret
= futex_handle_fault((unsigned long)uaddr
, fshared
,
1677 goto retry_unlocked
;
1680 futex_unlock_mm(fshared
);
1682 ret
= get_user(uval
, uaddr
);
1683 if (!ret
&& (uval
!= -EFAULT
))
1689 static int futex_close(struct inode
*inode
, struct file
*filp
)
1691 struct futex_q
*q
= filp
->private_data
;
1699 /* This is one-shot: once it's gone off you need a new fd */
1700 static unsigned int futex_poll(struct file
*filp
,
1701 struct poll_table_struct
*wait
)
1703 struct futex_q
*q
= filp
->private_data
;
1706 poll_wait(filp
, &q
->waiters
, wait
);
1709 * plist_node_empty() is safe here without any lock.
1710 * q->lock_ptr != 0 is not safe, because of ordering against wakeup.
1712 if (plist_node_empty(&q
->list
))
1713 ret
= POLLIN
| POLLRDNORM
;
1718 static const struct file_operations futex_fops
= {
1719 .release
= futex_close
,
1724 * Signal allows caller to avoid the race which would occur if they
1725 * set the sigio stuff up afterwards.
1727 static int futex_fd(u32 __user
*uaddr
, int signal
)
1732 struct rw_semaphore
*fshared
;
1733 static unsigned long printk_interval
;
1735 if (printk_timed_ratelimit(&printk_interval
, 60 * 60 * 1000)) {
1736 printk(KERN_WARNING
"Process `%s' used FUTEX_FD, which "
1737 "will be removed from the kernel in June 2007\n",
1742 if (!valid_signal(signal
))
1745 ret
= get_unused_fd();
1748 filp
= get_empty_filp();
1754 filp
->f_op
= &futex_fops
;
1755 filp
->f_path
.mnt
= mntget(futex_mnt
);
1756 filp
->f_path
.dentry
= dget(futex_mnt
->mnt_root
);
1757 filp
->f_mapping
= filp
->f_path
.dentry
->d_inode
->i_mapping
;
1760 err
= __f_setown(filp
, task_pid(current
), PIDTYPE_PID
, 1);
1764 filp
->f_owner
.signum
= signal
;
1767 q
= kmalloc(sizeof(*q
), GFP_KERNEL
);
1774 fshared
= ¤t
->mm
->mmap_sem
;
1776 err
= get_futex_key(uaddr
, fshared
, &q
->key
);
1778 if (unlikely(err
!= 0)) {
1785 * queue_me() must be called before releasing mmap_sem, because
1786 * key->shared.inode needs to be referenced while holding it.
1788 filp
->private_data
= q
;
1790 queue_me(q
, ret
, filp
);
1793 /* Now we map fd to filp, so userspace can access it */
1794 fd_install(ret
, filp
);
1805 * Support for robust futexes: the kernel cleans up held futexes at
1808 * Implementation: user-space maintains a per-thread list of locks it
1809 * is holding. Upon do_exit(), the kernel carefully walks this list,
1810 * and marks all locks that are owned by this thread with the
1811 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
1812 * always manipulated with the lock held, so the list is private and
1813 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
1814 * field, to allow the kernel to clean up if the thread dies after
1815 * acquiring the lock, but just before it could have added itself to
1816 * the list. There can only be one such pending lock.
1820 * sys_set_robust_list - set the robust-futex list head of a task
1821 * @head: pointer to the list-head
1822 * @len: length of the list-head, as userspace expects
1825 sys_set_robust_list(struct robust_list_head __user
*head
,
1829 * The kernel knows only one size for now:
1831 if (unlikely(len
!= sizeof(*head
)))
1834 current
->robust_list
= head
;
1840 * sys_get_robust_list - get the robust-futex list head of a task
1841 * @pid: pid of the process [zero for current task]
1842 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
1843 * @len_ptr: pointer to a length field, the kernel fills in the header size
1846 sys_get_robust_list(int pid
, struct robust_list_head __user
* __user
*head_ptr
,
1847 size_t __user
*len_ptr
)
1849 struct robust_list_head __user
*head
;
1853 head
= current
->robust_list
;
1855 struct task_struct
*p
;
1859 p
= find_task_by_vpid(pid
);
1863 if ((current
->euid
!= p
->euid
) && (current
->euid
!= p
->uid
) &&
1864 !capable(CAP_SYS_PTRACE
))
1866 head
= p
->robust_list
;
1870 if (put_user(sizeof(*head
), len_ptr
))
1872 return put_user(head
, head_ptr
);
1881 * Process a futex-list entry, check whether it's owned by the
1882 * dying task, and do notification if so:
1884 int handle_futex_death(u32 __user
*uaddr
, struct task_struct
*curr
, int pi
)
1886 u32 uval
, nval
, mval
;
1889 if (get_user(uval
, uaddr
))
1892 if ((uval
& FUTEX_TID_MASK
) == task_pid_vnr(curr
)) {
1894 * Ok, this dying thread is truly holding a futex
1895 * of interest. Set the OWNER_DIED bit atomically
1896 * via cmpxchg, and if the value had FUTEX_WAITERS
1897 * set, wake up a waiter (if any). (We have to do a
1898 * futex_wake() even if OWNER_DIED is already set -
1899 * to handle the rare but possible case of recursive
1900 * thread-death.) The rest of the cleanup is done in
1903 mval
= (uval
& FUTEX_WAITERS
) | FUTEX_OWNER_DIED
;
1904 nval
= futex_atomic_cmpxchg_inatomic(uaddr
, uval
, mval
);
1906 if (nval
== -EFAULT
)
1913 * Wake robust non-PI futexes here. The wakeup of
1914 * PI futexes happens in exit_pi_state():
1916 if (!pi
&& (uval
& FUTEX_WAITERS
))
1917 futex_wake(uaddr
, &curr
->mm
->mmap_sem
, 1);
1923 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
1925 static inline int fetch_robust_entry(struct robust_list __user
**entry
,
1926 struct robust_list __user
* __user
*head
,
1929 unsigned long uentry
;
1931 if (get_user(uentry
, (unsigned long __user
*)head
))
1934 *entry
= (void __user
*)(uentry
& ~1UL);
1941 * Walk curr->robust_list (very carefully, it's a userspace list!)
1942 * and mark any locks found there dead, and notify any waiters.
1944 * We silently return on any sign of list-walking problem.
1946 void exit_robust_list(struct task_struct
*curr
)
1948 struct robust_list_head __user
*head
= curr
->robust_list
;
1949 struct robust_list __user
*entry
, *next_entry
, *pending
;
1950 unsigned int limit
= ROBUST_LIST_LIMIT
, pi
, next_pi
, pip
;
1951 unsigned long futex_offset
;
1955 * Fetch the list head (which was registered earlier, via
1956 * sys_set_robust_list()):
1958 if (fetch_robust_entry(&entry
, &head
->list
.next
, &pi
))
1961 * Fetch the relative futex offset:
1963 if (get_user(futex_offset
, &head
->futex_offset
))
1966 * Fetch any possibly pending lock-add first, and handle it
1969 if (fetch_robust_entry(&pending
, &head
->list_op_pending
, &pip
))
1972 next_entry
= NULL
; /* avoid warning with gcc */
1973 while (entry
!= &head
->list
) {
1975 * Fetch the next entry in the list before calling
1976 * handle_futex_death:
1978 rc
= fetch_robust_entry(&next_entry
, &entry
->next
, &next_pi
);
1980 * A pending lock might already be on the list, so
1981 * don't process it twice:
1983 if (entry
!= pending
)
1984 if (handle_futex_death((void __user
*)entry
+ futex_offset
,
1992 * Avoid excessively long or circular lists:
2001 handle_futex_death((void __user
*)pending
+ futex_offset
,
2005 long do_futex(u32 __user
*uaddr
, int op
, u32 val
, ktime_t
*timeout
,
2006 u32 __user
*uaddr2
, u32 val2
, u32 val3
)
2009 int cmd
= op
& FUTEX_CMD_MASK
;
2010 struct rw_semaphore
*fshared
= NULL
;
2012 if (!(op
& FUTEX_PRIVATE_FLAG
))
2013 fshared
= ¤t
->mm
->mmap_sem
;
2017 ret
= futex_wait(uaddr
, fshared
, val
, timeout
);
2020 ret
= futex_wake(uaddr
, fshared
, val
);
2023 /* non-zero val means F_SETOWN(getpid()) & F_SETSIG(val) */
2024 ret
= futex_fd(uaddr
, val
);
2027 ret
= futex_requeue(uaddr
, fshared
, uaddr2
, val
, val2
, NULL
);
2029 case FUTEX_CMP_REQUEUE
:
2030 ret
= futex_requeue(uaddr
, fshared
, uaddr2
, val
, val2
, &val3
);
2033 ret
= futex_wake_op(uaddr
, fshared
, uaddr2
, val
, val2
, val3
);
2036 ret
= futex_lock_pi(uaddr
, fshared
, val
, timeout
, 0);
2038 case FUTEX_UNLOCK_PI
:
2039 ret
= futex_unlock_pi(uaddr
, fshared
);
2041 case FUTEX_TRYLOCK_PI
:
2042 ret
= futex_lock_pi(uaddr
, fshared
, 0, timeout
, 1);
2051 asmlinkage
long sys_futex(u32 __user
*uaddr
, int op
, u32 val
,
2052 struct timespec __user
*utime
, u32 __user
*uaddr2
,
2056 ktime_t t
, *tp
= NULL
;
2058 int cmd
= op
& FUTEX_CMD_MASK
;
2060 if (utime
&& (cmd
== FUTEX_WAIT
|| cmd
== FUTEX_LOCK_PI
)) {
2061 if (copy_from_user(&ts
, utime
, sizeof(ts
)) != 0)
2063 if (!timespec_valid(&ts
))
2066 t
= timespec_to_ktime(ts
);
2067 if (cmd
== FUTEX_WAIT
)
2068 t
= ktime_add(ktime_get(), t
);
2072 * requeue parameter in 'utime' if cmd == FUTEX_REQUEUE.
2073 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
2075 if (cmd
== FUTEX_REQUEUE
|| cmd
== FUTEX_CMP_REQUEUE
||
2076 cmd
== FUTEX_WAKE_OP
)
2077 val2
= (u32
) (unsigned long) utime
;
2079 return do_futex(uaddr
, op
, val
, tp
, uaddr2
, val2
, val3
);
2082 static int futexfs_get_sb(struct file_system_type
*fs_type
,
2083 int flags
, const char *dev_name
, void *data
,
2084 struct vfsmount
*mnt
)
2086 return get_sb_pseudo(fs_type
, "futex", NULL
, FUTEXFS_SUPER_MAGIC
, mnt
);
2089 static struct file_system_type futex_fs_type
= {
2091 .get_sb
= futexfs_get_sb
,
2092 .kill_sb
= kill_anon_super
,
2095 static int __init
init(void)
2097 int i
= register_filesystem(&futex_fs_type
);
2102 futex_mnt
= kern_mount(&futex_fs_type
);
2103 if (IS_ERR(futex_mnt
)) {
2104 unregister_filesystem(&futex_fs_type
);
2105 return PTR_ERR(futex_mnt
);
2108 for (i
= 0; i
< ARRAY_SIZE(futex_queues
); i
++) {
2109 plist_head_init(&futex_queues
[i
].chain
, &futex_queues
[i
].lock
);
2110 spin_lock_init(&futex_queues
[i
].lock
);