2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/config.h>
18 #include <linux/stddef.h>
20 #include <linux/swap.h>
21 #include <linux/interrupt.h>
22 #include <linux/pagemap.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/suspend.h>
28 #include <linux/pagevec.h>
29 #include <linux/blkdev.h>
30 #include <linux/slab.h>
31 #include <linux/notifier.h>
32 #include <linux/topology.h>
33 #include <linux/sysctl.h>
34 #include <linux/cpu.h>
35 #include <linux/cpuset.h>
36 #include <linux/memory_hotplug.h>
37 #include <linux/nodemask.h>
38 #include <linux/vmalloc.h>
39 #include <linux/mempolicy.h>
41 #include <asm/tlbflush.h>
45 * MCD - HACK: Find somewhere to initialize this EARLY, or make this
48 nodemask_t node_online_map __read_mostly
= { { [0] = 1UL } };
49 EXPORT_SYMBOL(node_online_map
);
50 nodemask_t node_possible_map __read_mostly
= NODE_MASK_ALL
;
51 EXPORT_SYMBOL(node_possible_map
);
52 struct pglist_data
*pgdat_list __read_mostly
;
53 unsigned long totalram_pages __read_mostly
;
54 unsigned long totalhigh_pages __read_mostly
;
56 int percpu_pagelist_fraction
;
58 static void __free_pages_ok(struct page
*page
, unsigned int order
);
61 * results with 256, 32 in the lowmem_reserve sysctl:
62 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
63 * 1G machine -> (16M dma, 784M normal, 224M high)
64 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
65 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
66 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
68 * TBD: should special case ZONE_DMA32 machines here - in those we normally
69 * don't need any ZONE_NORMAL reservation
71 int sysctl_lowmem_reserve_ratio
[MAX_NR_ZONES
-1] = { 256, 256, 32 };
73 EXPORT_SYMBOL(totalram_pages
);
76 * Used by page_zone() to look up the address of the struct zone whose
77 * id is encoded in the upper bits of page->flags
79 struct zone
*zone_table
[1 << ZONETABLE_SHIFT
] __read_mostly
;
80 EXPORT_SYMBOL(zone_table
);
82 static char *zone_names
[MAX_NR_ZONES
] = { "DMA", "DMA32", "Normal", "HighMem" };
83 int min_free_kbytes
= 1024;
85 unsigned long __initdata nr_kernel_pages
;
86 unsigned long __initdata nr_all_pages
;
88 #ifdef CONFIG_DEBUG_VM
89 static int page_outside_zone_boundaries(struct zone
*zone
, struct page
*page
)
93 unsigned long pfn
= page_to_pfn(page
);
96 seq
= zone_span_seqbegin(zone
);
97 if (pfn
>= zone
->zone_start_pfn
+ zone
->spanned_pages
)
99 else if (pfn
< zone
->zone_start_pfn
)
101 } while (zone_span_seqretry(zone
, seq
));
106 static int page_is_consistent(struct zone
*zone
, struct page
*page
)
108 #ifdef CONFIG_HOLES_IN_ZONE
109 if (!pfn_valid(page_to_pfn(page
)))
112 if (zone
!= page_zone(page
))
118 * Temporary debugging check for pages not lying within a given zone.
120 static int bad_range(struct zone
*zone
, struct page
*page
)
122 if (page_outside_zone_boundaries(zone
, page
))
124 if (!page_is_consistent(zone
, page
))
131 static inline int bad_range(struct zone
*zone
, struct page
*page
)
137 static void bad_page(struct page
*page
)
139 printk(KERN_EMERG
"Bad page state in process '%s'\n"
140 KERN_EMERG
"page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
141 KERN_EMERG
"Trying to fix it up, but a reboot is needed\n"
142 KERN_EMERG
"Backtrace:\n",
143 current
->comm
, page
, (int)(2*sizeof(unsigned long)),
144 (unsigned long)page
->flags
, page
->mapping
,
145 page_mapcount(page
), page_count(page
));
147 page
->flags
&= ~(1 << PG_lru
|
156 set_page_count(page
, 0);
157 reset_page_mapcount(page
);
158 page
->mapping
= NULL
;
159 add_taint(TAINT_BAD_PAGE
);
163 * Higher-order pages are called "compound pages". They are structured thusly:
165 * The first PAGE_SIZE page is called the "head page".
167 * The remaining PAGE_SIZE pages are called "tail pages".
169 * All pages have PG_compound set. All pages have their ->private pointing at
170 * the head page (even the head page has this).
172 * The first tail page's ->lru.next holds the address of the compound page's
173 * put_page() function. Its ->lru.prev holds the order of allocation.
174 * This usage means that zero-order pages may not be compound.
177 static void free_compound_page(struct page
*page
)
179 __free_pages_ok(page
, (unsigned long)page
[1].lru
.prev
);
182 static void prep_compound_page(struct page
*page
, unsigned long order
)
185 int nr_pages
= 1 << order
;
187 page
[1].lru
.next
= (void *)free_compound_page
; /* set dtor */
188 page
[1].lru
.prev
= (void *)order
;
189 for (i
= 0; i
< nr_pages
; i
++) {
190 struct page
*p
= page
+ i
;
192 __SetPageCompound(p
);
193 set_page_private(p
, (unsigned long)page
);
197 static void destroy_compound_page(struct page
*page
, unsigned long order
)
200 int nr_pages
= 1 << order
;
202 if (unlikely((unsigned long)page
[1].lru
.prev
!= order
))
205 for (i
= 0; i
< nr_pages
; i
++) {
206 struct page
*p
= page
+ i
;
208 if (unlikely(!PageCompound(p
) |
209 (page_private(p
) != (unsigned long)page
)))
211 __ClearPageCompound(p
);
215 static inline void prep_zero_page(struct page
*page
, int order
, gfp_t gfp_flags
)
219 BUG_ON((gfp_flags
& (__GFP_WAIT
| __GFP_HIGHMEM
)) == __GFP_HIGHMEM
);
221 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
222 * and __GFP_HIGHMEM from hard or soft interrupt context.
224 BUG_ON((gfp_flags
& __GFP_HIGHMEM
) && in_interrupt());
225 for (i
= 0; i
< (1 << order
); i
++)
226 clear_highpage(page
+ i
);
230 * function for dealing with page's order in buddy system.
231 * zone->lock is already acquired when we use these.
232 * So, we don't need atomic page->flags operations here.
234 static inline unsigned long page_order(struct page
*page
) {
235 return page_private(page
);
238 static inline void set_page_order(struct page
*page
, int order
) {
239 set_page_private(page
, order
);
240 __SetPagePrivate(page
);
243 static inline void rmv_page_order(struct page
*page
)
245 __ClearPagePrivate(page
);
246 set_page_private(page
, 0);
250 * Locate the struct page for both the matching buddy in our
251 * pair (buddy1) and the combined O(n+1) page they form (page).
253 * 1) Any buddy B1 will have an order O twin B2 which satisfies
254 * the following equation:
256 * For example, if the starting buddy (buddy2) is #8 its order
258 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
260 * 2) Any buddy B will have an order O+1 parent P which
261 * satisfies the following equation:
264 * Assumption: *_mem_map is contigious at least up to MAX_ORDER
266 static inline struct page
*
267 __page_find_buddy(struct page
*page
, unsigned long page_idx
, unsigned int order
)
269 unsigned long buddy_idx
= page_idx
^ (1 << order
);
271 return page
+ (buddy_idx
- page_idx
);
274 static inline unsigned long
275 __find_combined_index(unsigned long page_idx
, unsigned int order
)
277 return (page_idx
& ~(1 << order
));
281 * This function checks whether a page is free && is the buddy
282 * we can do coalesce a page and its buddy if
283 * (a) the buddy is not in a hole &&
284 * (b) the buddy is free &&
285 * (c) the buddy is on the buddy system &&
286 * (d) a page and its buddy have the same order.
287 * for recording page's order, we use page_private(page) and PG_private.
290 static inline int page_is_buddy(struct page
*page
, int order
)
292 #ifdef CONFIG_HOLES_IN_ZONE
293 if (!pfn_valid(page_to_pfn(page
)))
297 if (PagePrivate(page
) &&
298 (page_order(page
) == order
) &&
299 page_count(page
) == 0)
305 * Freeing function for a buddy system allocator.
307 * The concept of a buddy system is to maintain direct-mapped table
308 * (containing bit values) for memory blocks of various "orders".
309 * The bottom level table contains the map for the smallest allocatable
310 * units of memory (here, pages), and each level above it describes
311 * pairs of units from the levels below, hence, "buddies".
312 * At a high level, all that happens here is marking the table entry
313 * at the bottom level available, and propagating the changes upward
314 * as necessary, plus some accounting needed to play nicely with other
315 * parts of the VM system.
316 * At each level, we keep a list of pages, which are heads of continuous
317 * free pages of length of (1 << order) and marked with PG_Private.Page's
318 * order is recorded in page_private(page) field.
319 * So when we are allocating or freeing one, we can derive the state of the
320 * other. That is, if we allocate a small block, and both were
321 * free, the remainder of the region must be split into blocks.
322 * If a block is freed, and its buddy is also free, then this
323 * triggers coalescing into a block of larger size.
328 static inline void __free_one_page(struct page
*page
,
329 struct zone
*zone
, unsigned int order
)
331 unsigned long page_idx
;
332 int order_size
= 1 << order
;
334 if (unlikely(PageCompound(page
)))
335 destroy_compound_page(page
, order
);
337 page_idx
= page_to_pfn(page
) & ((1 << MAX_ORDER
) - 1);
339 BUG_ON(page_idx
& (order_size
- 1));
340 BUG_ON(bad_range(zone
, page
));
342 zone
->free_pages
+= order_size
;
343 while (order
< MAX_ORDER
-1) {
344 unsigned long combined_idx
;
345 struct free_area
*area
;
348 buddy
= __page_find_buddy(page
, page_idx
, order
);
349 if (!page_is_buddy(buddy
, order
))
350 break; /* Move the buddy up one level. */
352 list_del(&buddy
->lru
);
353 area
= zone
->free_area
+ order
;
355 rmv_page_order(buddy
);
356 combined_idx
= __find_combined_index(page_idx
, order
);
357 page
= page
+ (combined_idx
- page_idx
);
358 page_idx
= combined_idx
;
361 set_page_order(page
, order
);
362 list_add(&page
->lru
, &zone
->free_area
[order
].free_list
);
363 zone
->free_area
[order
].nr_free
++;
366 static inline int free_pages_check(struct page
*page
)
368 if (unlikely(page_mapcount(page
) |
369 (page
->mapping
!= NULL
) |
370 (page_count(page
) != 0) |
380 1 << PG_reserved
))))
383 __ClearPageDirty(page
);
385 * For now, we report if PG_reserved was found set, but do not
386 * clear it, and do not free the page. But we shall soon need
387 * to do more, for when the ZERO_PAGE count wraps negative.
389 return PageReserved(page
);
393 * Frees a list of pages.
394 * Assumes all pages on list are in same zone, and of same order.
395 * count is the number of pages to free.
397 * If the zone was previously in an "all pages pinned" state then look to
398 * see if this freeing clears that state.
400 * And clear the zone's pages_scanned counter, to hold off the "all pages are
401 * pinned" detection logic.
403 static void free_pages_bulk(struct zone
*zone
, int count
,
404 struct list_head
*list
, int order
)
406 spin_lock(&zone
->lock
);
407 zone
->all_unreclaimable
= 0;
408 zone
->pages_scanned
= 0;
412 BUG_ON(list_empty(list
));
413 page
= list_entry(list
->prev
, struct page
, lru
);
414 /* have to delete it as __free_one_page list manipulates */
415 list_del(&page
->lru
);
416 __free_one_page(page
, zone
, order
);
418 spin_unlock(&zone
->lock
);
421 static void free_one_page(struct zone
*zone
, struct page
*page
, int order
)
424 list_add(&page
->lru
, &list
);
425 free_pages_bulk(zone
, 1, &list
, order
);
428 static void __free_pages_ok(struct page
*page
, unsigned int order
)
434 arch_free_page(page
, order
);
435 if (!PageHighMem(page
))
436 mutex_debug_check_no_locks_freed(page_address(page
),
439 for (i
= 0 ; i
< (1 << order
) ; ++i
)
440 reserved
+= free_pages_check(page
+ i
);
444 kernel_map_pages(page
, 1 << order
, 0);
445 local_irq_save(flags
);
446 __mod_page_state(pgfree
, 1 << order
);
447 free_one_page(page_zone(page
), page
, order
);
448 local_irq_restore(flags
);
452 * permit the bootmem allocator to evade page validation on high-order frees
454 void fastcall __init
__free_pages_bootmem(struct page
*page
, unsigned int order
)
457 __ClearPageReserved(page
);
458 set_page_count(page
, 0);
459 set_page_refcounted(page
);
465 for (loop
= 0; loop
< BITS_PER_LONG
; loop
++) {
466 struct page
*p
= &page
[loop
];
468 if (loop
+ 1 < BITS_PER_LONG
)
470 __ClearPageReserved(p
);
471 set_page_count(p
, 0);
474 set_page_refcounted(page
);
475 __free_pages(page
, order
);
481 * The order of subdivision here is critical for the IO subsystem.
482 * Please do not alter this order without good reasons and regression
483 * testing. Specifically, as large blocks of memory are subdivided,
484 * the order in which smaller blocks are delivered depends on the order
485 * they're subdivided in this function. This is the primary factor
486 * influencing the order in which pages are delivered to the IO
487 * subsystem according to empirical testing, and this is also justified
488 * by considering the behavior of a buddy system containing a single
489 * large block of memory acted on by a series of small allocations.
490 * This behavior is a critical factor in sglist merging's success.
494 static inline void expand(struct zone
*zone
, struct page
*page
,
495 int low
, int high
, struct free_area
*area
)
497 unsigned long size
= 1 << high
;
503 BUG_ON(bad_range(zone
, &page
[size
]));
504 list_add(&page
[size
].lru
, &area
->free_list
);
506 set_page_order(&page
[size
], high
);
511 * This page is about to be returned from the page allocator
513 static int prep_new_page(struct page
*page
, int order
, gfp_t gfp_flags
)
515 if (unlikely(page_mapcount(page
) |
516 (page
->mapping
!= NULL
) |
517 (page_count(page
) != 0) |
528 1 << PG_reserved
))))
532 * For now, we report if PG_reserved was found set, but do not
533 * clear it, and do not allocate the page: as a safety net.
535 if (PageReserved(page
))
538 page
->flags
&= ~(1 << PG_uptodate
| 1 << PG_error
|
539 1 << PG_referenced
| 1 << PG_arch_1
|
540 1 << PG_checked
| 1 << PG_mappedtodisk
);
541 set_page_private(page
, 0);
542 set_page_refcounted(page
);
543 kernel_map_pages(page
, 1 << order
, 1);
545 if (gfp_flags
& __GFP_ZERO
)
546 prep_zero_page(page
, order
, gfp_flags
);
548 if (order
&& (gfp_flags
& __GFP_COMP
))
549 prep_compound_page(page
, order
);
555 * Do the hard work of removing an element from the buddy allocator.
556 * Call me with the zone->lock already held.
558 static struct page
*__rmqueue(struct zone
*zone
, unsigned int order
)
560 struct free_area
* area
;
561 unsigned int current_order
;
564 for (current_order
= order
; current_order
< MAX_ORDER
; ++current_order
) {
565 area
= zone
->free_area
+ current_order
;
566 if (list_empty(&area
->free_list
))
569 page
= list_entry(area
->free_list
.next
, struct page
, lru
);
570 list_del(&page
->lru
);
571 rmv_page_order(page
);
573 zone
->free_pages
-= 1UL << order
;
574 expand(zone
, page
, order
, current_order
, area
);
582 * Obtain a specified number of elements from the buddy allocator, all under
583 * a single hold of the lock, for efficiency. Add them to the supplied list.
584 * Returns the number of new pages which were placed at *list.
586 static int rmqueue_bulk(struct zone
*zone
, unsigned int order
,
587 unsigned long count
, struct list_head
*list
)
591 spin_lock(&zone
->lock
);
592 for (i
= 0; i
< count
; ++i
) {
593 struct page
*page
= __rmqueue(zone
, order
);
594 if (unlikely(page
== NULL
))
596 list_add_tail(&page
->lru
, list
);
598 spin_unlock(&zone
->lock
);
604 * Called from the slab reaper to drain pagesets on a particular node that
605 * belong to the currently executing processor.
606 * Note that this function must be called with the thread pinned to
607 * a single processor.
609 void drain_node_pages(int nodeid
)
614 for (z
= 0; z
< MAX_NR_ZONES
; z
++) {
615 struct zone
*zone
= NODE_DATA(nodeid
)->node_zones
+ z
;
616 struct per_cpu_pageset
*pset
;
618 pset
= zone_pcp(zone
, smp_processor_id());
619 for (i
= 0; i
< ARRAY_SIZE(pset
->pcp
); i
++) {
620 struct per_cpu_pages
*pcp
;
624 local_irq_save(flags
);
625 free_pages_bulk(zone
, pcp
->count
, &pcp
->list
, 0);
627 local_irq_restore(flags
);
634 #if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU)
635 static void __drain_pages(unsigned int cpu
)
641 for_each_zone(zone
) {
642 struct per_cpu_pageset
*pset
;
644 pset
= zone_pcp(zone
, cpu
);
645 for (i
= 0; i
< ARRAY_SIZE(pset
->pcp
); i
++) {
646 struct per_cpu_pages
*pcp
;
649 local_irq_save(flags
);
650 free_pages_bulk(zone
, pcp
->count
, &pcp
->list
, 0);
652 local_irq_restore(flags
);
656 #endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */
660 void mark_free_pages(struct zone
*zone
)
662 unsigned long zone_pfn
, flags
;
664 struct list_head
*curr
;
666 if (!zone
->spanned_pages
)
669 spin_lock_irqsave(&zone
->lock
, flags
);
670 for (zone_pfn
= 0; zone_pfn
< zone
->spanned_pages
; ++zone_pfn
)
671 ClearPageNosaveFree(pfn_to_page(zone_pfn
+ zone
->zone_start_pfn
));
673 for (order
= MAX_ORDER
- 1; order
>= 0; --order
)
674 list_for_each(curr
, &zone
->free_area
[order
].free_list
) {
675 unsigned long start_pfn
, i
;
677 start_pfn
= page_to_pfn(list_entry(curr
, struct page
, lru
));
679 for (i
=0; i
< (1<<order
); i
++)
680 SetPageNosaveFree(pfn_to_page(start_pfn
+i
));
682 spin_unlock_irqrestore(&zone
->lock
, flags
);
686 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
688 void drain_local_pages(void)
692 local_irq_save(flags
);
693 __drain_pages(smp_processor_id());
694 local_irq_restore(flags
);
696 #endif /* CONFIG_PM */
698 static void zone_statistics(struct zonelist
*zonelist
, struct zone
*z
, int cpu
)
701 pg_data_t
*pg
= z
->zone_pgdat
;
702 pg_data_t
*orig
= zonelist
->zones
[0]->zone_pgdat
;
703 struct per_cpu_pageset
*p
;
705 p
= zone_pcp(z
, cpu
);
710 zone_pcp(zonelist
->zones
[0], cpu
)->numa_foreign
++;
712 if (pg
== NODE_DATA(numa_node_id()))
720 * Free a 0-order page
722 static void fastcall
free_hot_cold_page(struct page
*page
, int cold
)
724 struct zone
*zone
= page_zone(page
);
725 struct per_cpu_pages
*pcp
;
728 arch_free_page(page
, 0);
731 page
->mapping
= NULL
;
732 if (free_pages_check(page
))
735 kernel_map_pages(page
, 1, 0);
737 pcp
= &zone_pcp(zone
, get_cpu())->pcp
[cold
];
738 local_irq_save(flags
);
739 __inc_page_state(pgfree
);
740 list_add(&page
->lru
, &pcp
->list
);
742 if (pcp
->count
>= pcp
->high
) {
743 free_pages_bulk(zone
, pcp
->batch
, &pcp
->list
, 0);
744 pcp
->count
-= pcp
->batch
;
746 local_irq_restore(flags
);
750 void fastcall
free_hot_page(struct page
*page
)
752 free_hot_cold_page(page
, 0);
755 void fastcall
free_cold_page(struct page
*page
)
757 free_hot_cold_page(page
, 1);
761 * split_page takes a non-compound higher-order page, and splits it into
762 * n (1<<order) sub-pages: page[0..n]
763 * Each sub-page must be freed individually.
765 * Note: this is probably too low level an operation for use in drivers.
766 * Please consult with lkml before using this in your driver.
768 void split_page(struct page
*page
, unsigned int order
)
772 BUG_ON(PageCompound(page
));
773 BUG_ON(!page_count(page
));
774 for (i
= 1; i
< (1 << order
); i
++)
775 set_page_refcounted(page
+ i
);
779 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
780 * we cheat by calling it from here, in the order > 0 path. Saves a branch
783 static struct page
*buffered_rmqueue(struct zonelist
*zonelist
,
784 struct zone
*zone
, int order
, gfp_t gfp_flags
)
788 int cold
= !!(gfp_flags
& __GFP_COLD
);
793 if (likely(order
== 0)) {
794 struct per_cpu_pages
*pcp
;
796 pcp
= &zone_pcp(zone
, cpu
)->pcp
[cold
];
797 local_irq_save(flags
);
799 pcp
->count
+= rmqueue_bulk(zone
, 0,
800 pcp
->batch
, &pcp
->list
);
801 if (unlikely(!pcp
->count
))
804 page
= list_entry(pcp
->list
.next
, struct page
, lru
);
805 list_del(&page
->lru
);
808 spin_lock_irqsave(&zone
->lock
, flags
);
809 page
= __rmqueue(zone
, order
);
810 spin_unlock(&zone
->lock
);
815 __mod_page_state_zone(zone
, pgalloc
, 1 << order
);
816 zone_statistics(zonelist
, zone
, cpu
);
817 local_irq_restore(flags
);
820 BUG_ON(bad_range(zone
, page
));
821 if (prep_new_page(page
, order
, gfp_flags
))
826 local_irq_restore(flags
);
831 #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
832 #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
833 #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
834 #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
835 #define ALLOC_HARDER 0x10 /* try to alloc harder */
836 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
837 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
840 * Return 1 if free pages are above 'mark'. This takes into account the order
843 int zone_watermark_ok(struct zone
*z
, int order
, unsigned long mark
,
844 int classzone_idx
, int alloc_flags
)
846 /* free_pages my go negative - that's OK */
847 long min
= mark
, free_pages
= z
->free_pages
- (1 << order
) + 1;
850 if (alloc_flags
& ALLOC_HIGH
)
852 if (alloc_flags
& ALLOC_HARDER
)
855 if (free_pages
<= min
+ z
->lowmem_reserve
[classzone_idx
])
857 for (o
= 0; o
< order
; o
++) {
858 /* At the next order, this order's pages become unavailable */
859 free_pages
-= z
->free_area
[o
].nr_free
<< o
;
861 /* Require fewer higher order pages to be free */
864 if (free_pages
<= min
)
871 * get_page_from_freeliest goes through the zonelist trying to allocate
875 get_page_from_freelist(gfp_t gfp_mask
, unsigned int order
,
876 struct zonelist
*zonelist
, int alloc_flags
)
878 struct zone
**z
= zonelist
->zones
;
879 struct page
*page
= NULL
;
880 int classzone_idx
= zone_idx(*z
);
883 * Go through the zonelist once, looking for a zone with enough free.
884 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
887 if ((alloc_flags
& ALLOC_CPUSET
) &&
888 !cpuset_zone_allowed(*z
, gfp_mask
))
891 if (!(alloc_flags
& ALLOC_NO_WATERMARKS
)) {
893 if (alloc_flags
& ALLOC_WMARK_MIN
)
894 mark
= (*z
)->pages_min
;
895 else if (alloc_flags
& ALLOC_WMARK_LOW
)
896 mark
= (*z
)->pages_low
;
898 mark
= (*z
)->pages_high
;
899 if (!zone_watermark_ok(*z
, order
, mark
,
900 classzone_idx
, alloc_flags
))
901 if (!zone_reclaim_mode
||
902 !zone_reclaim(*z
, gfp_mask
, order
))
906 page
= buffered_rmqueue(zonelist
, *z
, order
, gfp_mask
);
910 } while (*(++z
) != NULL
);
915 * This is the 'heart' of the zoned buddy allocator.
917 struct page
* fastcall
918 __alloc_pages(gfp_t gfp_mask
, unsigned int order
,
919 struct zonelist
*zonelist
)
921 const gfp_t wait
= gfp_mask
& __GFP_WAIT
;
924 struct reclaim_state reclaim_state
;
925 struct task_struct
*p
= current
;
928 int did_some_progress
;
930 might_sleep_if(wait
);
933 z
= zonelist
->zones
; /* the list of zones suitable for gfp_mask */
935 if (unlikely(*z
== NULL
)) {
936 /* Should this ever happen?? */
940 page
= get_page_from_freelist(gfp_mask
|__GFP_HARDWALL
, order
,
941 zonelist
, ALLOC_WMARK_LOW
|ALLOC_CPUSET
);
946 wakeup_kswapd(*z
, order
);
950 * OK, we're below the kswapd watermark and have kicked background
951 * reclaim. Now things get more complex, so set up alloc_flags according
952 * to how we want to proceed.
954 * The caller may dip into page reserves a bit more if the caller
955 * cannot run direct reclaim, or if the caller has realtime scheduling
956 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
957 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
959 alloc_flags
= ALLOC_WMARK_MIN
;
960 if ((unlikely(rt_task(p
)) && !in_interrupt()) || !wait
)
961 alloc_flags
|= ALLOC_HARDER
;
962 if (gfp_mask
& __GFP_HIGH
)
963 alloc_flags
|= ALLOC_HIGH
;
964 alloc_flags
|= ALLOC_CPUSET
;
967 * Go through the zonelist again. Let __GFP_HIGH and allocations
968 * coming from realtime tasks go deeper into reserves.
970 * This is the last chance, in general, before the goto nopage.
971 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
972 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
974 page
= get_page_from_freelist(gfp_mask
, order
, zonelist
, alloc_flags
);
978 /* This allocation should allow future memory freeing. */
980 if (((p
->flags
& PF_MEMALLOC
) || unlikely(test_thread_flag(TIF_MEMDIE
)))
981 && !in_interrupt()) {
982 if (!(gfp_mask
& __GFP_NOMEMALLOC
)) {
984 /* go through the zonelist yet again, ignoring mins */
985 page
= get_page_from_freelist(gfp_mask
, order
,
986 zonelist
, ALLOC_NO_WATERMARKS
);
989 if (gfp_mask
& __GFP_NOFAIL
) {
990 blk_congestion_wait(WRITE
, HZ
/50);
997 /* Atomic allocations - we can't balance anything */
1004 /* We now go into synchronous reclaim */
1005 cpuset_memory_pressure_bump();
1006 p
->flags
|= PF_MEMALLOC
;
1007 reclaim_state
.reclaimed_slab
= 0;
1008 p
->reclaim_state
= &reclaim_state
;
1010 did_some_progress
= try_to_free_pages(zonelist
->zones
, gfp_mask
);
1012 p
->reclaim_state
= NULL
;
1013 p
->flags
&= ~PF_MEMALLOC
;
1017 if (likely(did_some_progress
)) {
1018 page
= get_page_from_freelist(gfp_mask
, order
,
1019 zonelist
, alloc_flags
);
1022 } else if ((gfp_mask
& __GFP_FS
) && !(gfp_mask
& __GFP_NORETRY
)) {
1024 * Go through the zonelist yet one more time, keep
1025 * very high watermark here, this is only to catch
1026 * a parallel oom killing, we must fail if we're still
1027 * under heavy pressure.
1029 page
= get_page_from_freelist(gfp_mask
|__GFP_HARDWALL
, order
,
1030 zonelist
, ALLOC_WMARK_HIGH
|ALLOC_CPUSET
);
1034 out_of_memory(zonelist
, gfp_mask
, order
);
1039 * Don't let big-order allocations loop unless the caller explicitly
1040 * requests that. Wait for some write requests to complete then retry.
1042 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
1043 * <= 3, but that may not be true in other implementations.
1046 if (!(gfp_mask
& __GFP_NORETRY
)) {
1047 if ((order
<= 3) || (gfp_mask
& __GFP_REPEAT
))
1049 if (gfp_mask
& __GFP_NOFAIL
)
1053 blk_congestion_wait(WRITE
, HZ
/50);
1058 if (!(gfp_mask
& __GFP_NOWARN
) && printk_ratelimit()) {
1059 printk(KERN_WARNING
"%s: page allocation failure."
1060 " order:%d, mode:0x%x\n",
1061 p
->comm
, order
, gfp_mask
);
1069 EXPORT_SYMBOL(__alloc_pages
);
1072 * Common helper functions.
1074 fastcall
unsigned long __get_free_pages(gfp_t gfp_mask
, unsigned int order
)
1077 page
= alloc_pages(gfp_mask
, order
);
1080 return (unsigned long) page_address(page
);
1083 EXPORT_SYMBOL(__get_free_pages
);
1085 fastcall
unsigned long get_zeroed_page(gfp_t gfp_mask
)
1090 * get_zeroed_page() returns a 32-bit address, which cannot represent
1093 BUG_ON((gfp_mask
& __GFP_HIGHMEM
) != 0);
1095 page
= alloc_pages(gfp_mask
| __GFP_ZERO
, 0);
1097 return (unsigned long) page_address(page
);
1101 EXPORT_SYMBOL(get_zeroed_page
);
1103 void __pagevec_free(struct pagevec
*pvec
)
1105 int i
= pagevec_count(pvec
);
1108 free_hot_cold_page(pvec
->pages
[i
], pvec
->cold
);
1111 fastcall
void __free_pages(struct page
*page
, unsigned int order
)
1113 if (put_page_testzero(page
)) {
1115 free_hot_page(page
);
1117 __free_pages_ok(page
, order
);
1121 EXPORT_SYMBOL(__free_pages
);
1123 fastcall
void free_pages(unsigned long addr
, unsigned int order
)
1126 BUG_ON(!virt_addr_valid((void *)addr
));
1127 __free_pages(virt_to_page((void *)addr
), order
);
1131 EXPORT_SYMBOL(free_pages
);
1134 * Total amount of free (allocatable) RAM:
1136 unsigned int nr_free_pages(void)
1138 unsigned int sum
= 0;
1142 sum
+= zone
->free_pages
;
1147 EXPORT_SYMBOL(nr_free_pages
);
1150 unsigned int nr_free_pages_pgdat(pg_data_t
*pgdat
)
1152 unsigned int i
, sum
= 0;
1154 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
1155 sum
+= pgdat
->node_zones
[i
].free_pages
;
1161 static unsigned int nr_free_zone_pages(int offset
)
1163 /* Just pick one node, since fallback list is circular */
1164 pg_data_t
*pgdat
= NODE_DATA(numa_node_id());
1165 unsigned int sum
= 0;
1167 struct zonelist
*zonelist
= pgdat
->node_zonelists
+ offset
;
1168 struct zone
**zonep
= zonelist
->zones
;
1171 for (zone
= *zonep
++; zone
; zone
= *zonep
++) {
1172 unsigned long size
= zone
->present_pages
;
1173 unsigned long high
= zone
->pages_high
;
1182 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1184 unsigned int nr_free_buffer_pages(void)
1186 return nr_free_zone_pages(gfp_zone(GFP_USER
));
1190 * Amount of free RAM allocatable within all zones
1192 unsigned int nr_free_pagecache_pages(void)
1194 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER
));
1197 #ifdef CONFIG_HIGHMEM
1198 unsigned int nr_free_highpages (void)
1201 unsigned int pages
= 0;
1203 for_each_pgdat(pgdat
)
1204 pages
+= pgdat
->node_zones
[ZONE_HIGHMEM
].free_pages
;
1211 static void show_node(struct zone
*zone
)
1213 printk("Node %d ", zone
->zone_pgdat
->node_id
);
1216 #define show_node(zone) do { } while (0)
1220 * Accumulate the page_state information across all CPUs.
1221 * The result is unavoidably approximate - it can change
1222 * during and after execution of this function.
1224 static DEFINE_PER_CPU(struct page_state
, page_states
) = {0};
1226 atomic_t nr_pagecache
= ATOMIC_INIT(0);
1227 EXPORT_SYMBOL(nr_pagecache
);
1229 DEFINE_PER_CPU(long, nr_pagecache_local
) = 0;
1232 static void __get_page_state(struct page_state
*ret
, int nr
, cpumask_t
*cpumask
)
1236 memset(ret
, 0, nr
* sizeof(unsigned long));
1237 cpus_and(*cpumask
, *cpumask
, cpu_online_map
);
1239 for_each_cpu_mask(cpu
, *cpumask
) {
1245 in
= (unsigned long *)&per_cpu(page_states
, cpu
);
1247 next_cpu
= next_cpu(cpu
, *cpumask
);
1248 if (likely(next_cpu
< NR_CPUS
))
1249 prefetch(&per_cpu(page_states
, next_cpu
));
1251 out
= (unsigned long *)ret
;
1252 for (off
= 0; off
< nr
; off
++)
1257 void get_page_state_node(struct page_state
*ret
, int node
)
1260 cpumask_t mask
= node_to_cpumask(node
);
1262 nr
= offsetof(struct page_state
, GET_PAGE_STATE_LAST
);
1263 nr
/= sizeof(unsigned long);
1265 __get_page_state(ret
, nr
+1, &mask
);
1268 void get_page_state(struct page_state
*ret
)
1271 cpumask_t mask
= CPU_MASK_ALL
;
1273 nr
= offsetof(struct page_state
, GET_PAGE_STATE_LAST
);
1274 nr
/= sizeof(unsigned long);
1276 __get_page_state(ret
, nr
+ 1, &mask
);
1279 void get_full_page_state(struct page_state
*ret
)
1281 cpumask_t mask
= CPU_MASK_ALL
;
1283 __get_page_state(ret
, sizeof(*ret
) / sizeof(unsigned long), &mask
);
1286 unsigned long read_page_state_offset(unsigned long offset
)
1288 unsigned long ret
= 0;
1291 for_each_online_cpu(cpu
) {
1294 in
= (unsigned long)&per_cpu(page_states
, cpu
) + offset
;
1295 ret
+= *((unsigned long *)in
);
1300 void __mod_page_state_offset(unsigned long offset
, unsigned long delta
)
1304 ptr
= &__get_cpu_var(page_states
);
1305 *(unsigned long *)(ptr
+ offset
) += delta
;
1307 EXPORT_SYMBOL(__mod_page_state_offset
);
1309 void mod_page_state_offset(unsigned long offset
, unsigned long delta
)
1311 unsigned long flags
;
1314 local_irq_save(flags
);
1315 ptr
= &__get_cpu_var(page_states
);
1316 *(unsigned long *)(ptr
+ offset
) += delta
;
1317 local_irq_restore(flags
);
1319 EXPORT_SYMBOL(mod_page_state_offset
);
1321 void __get_zone_counts(unsigned long *active
, unsigned long *inactive
,
1322 unsigned long *free
, struct pglist_data
*pgdat
)
1324 struct zone
*zones
= pgdat
->node_zones
;
1330 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
1331 *active
+= zones
[i
].nr_active
;
1332 *inactive
+= zones
[i
].nr_inactive
;
1333 *free
+= zones
[i
].free_pages
;
1337 void get_zone_counts(unsigned long *active
,
1338 unsigned long *inactive
, unsigned long *free
)
1340 struct pglist_data
*pgdat
;
1345 for_each_pgdat(pgdat
) {
1346 unsigned long l
, m
, n
;
1347 __get_zone_counts(&l
, &m
, &n
, pgdat
);
1354 void si_meminfo(struct sysinfo
*val
)
1356 val
->totalram
= totalram_pages
;
1358 val
->freeram
= nr_free_pages();
1359 val
->bufferram
= nr_blockdev_pages();
1360 #ifdef CONFIG_HIGHMEM
1361 val
->totalhigh
= totalhigh_pages
;
1362 val
->freehigh
= nr_free_highpages();
1367 val
->mem_unit
= PAGE_SIZE
;
1370 EXPORT_SYMBOL(si_meminfo
);
1373 void si_meminfo_node(struct sysinfo
*val
, int nid
)
1375 pg_data_t
*pgdat
= NODE_DATA(nid
);
1377 val
->totalram
= pgdat
->node_present_pages
;
1378 val
->freeram
= nr_free_pages_pgdat(pgdat
);
1379 val
->totalhigh
= pgdat
->node_zones
[ZONE_HIGHMEM
].present_pages
;
1380 val
->freehigh
= pgdat
->node_zones
[ZONE_HIGHMEM
].free_pages
;
1381 val
->mem_unit
= PAGE_SIZE
;
1385 #define K(x) ((x) << (PAGE_SHIFT-10))
1388 * Show free area list (used inside shift_scroll-lock stuff)
1389 * We also calculate the percentage fragmentation. We do this by counting the
1390 * memory on each free list with the exception of the first item on the list.
1392 void show_free_areas(void)
1394 struct page_state ps
;
1395 int cpu
, temperature
;
1396 unsigned long active
;
1397 unsigned long inactive
;
1401 for_each_zone(zone
) {
1403 printk("%s per-cpu:", zone
->name
);
1405 if (!populated_zone(zone
)) {
1411 for_each_online_cpu(cpu
) {
1412 struct per_cpu_pageset
*pageset
;
1414 pageset
= zone_pcp(zone
, cpu
);
1416 for (temperature
= 0; temperature
< 2; temperature
++)
1417 printk("cpu %d %s: high %d, batch %d used:%d\n",
1419 temperature
? "cold" : "hot",
1420 pageset
->pcp
[temperature
].high
,
1421 pageset
->pcp
[temperature
].batch
,
1422 pageset
->pcp
[temperature
].count
);
1426 get_page_state(&ps
);
1427 get_zone_counts(&active
, &inactive
, &free
);
1429 printk("Free pages: %11ukB (%ukB HighMem)\n",
1431 K(nr_free_highpages()));
1433 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu "
1434 "unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n",
1443 ps
.nr_page_table_pages
);
1445 for_each_zone(zone
) {
1457 " pages_scanned:%lu"
1458 " all_unreclaimable? %s"
1461 K(zone
->free_pages
),
1464 K(zone
->pages_high
),
1466 K(zone
->nr_inactive
),
1467 K(zone
->present_pages
),
1468 zone
->pages_scanned
,
1469 (zone
->all_unreclaimable
? "yes" : "no")
1471 printk("lowmem_reserve[]:");
1472 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
1473 printk(" %lu", zone
->lowmem_reserve
[i
]);
1477 for_each_zone(zone
) {
1478 unsigned long nr
, flags
, order
, total
= 0;
1481 printk("%s: ", zone
->name
);
1482 if (!populated_zone(zone
)) {
1487 spin_lock_irqsave(&zone
->lock
, flags
);
1488 for (order
= 0; order
< MAX_ORDER
; order
++) {
1489 nr
= zone
->free_area
[order
].nr_free
;
1490 total
+= nr
<< order
;
1491 printk("%lu*%lukB ", nr
, K(1UL) << order
);
1493 spin_unlock_irqrestore(&zone
->lock
, flags
);
1494 printk("= %lukB\n", K(total
));
1497 show_swap_cache_info();
1501 * Builds allocation fallback zone lists.
1503 * Add all populated zones of a node to the zonelist.
1505 static int __init
build_zonelists_node(pg_data_t
*pgdat
,
1506 struct zonelist
*zonelist
, int nr_zones
, int zone_type
)
1510 BUG_ON(zone_type
> ZONE_HIGHMEM
);
1513 zone
= pgdat
->node_zones
+ zone_type
;
1514 if (populated_zone(zone
)) {
1515 #ifndef CONFIG_HIGHMEM
1516 BUG_ON(zone_type
> ZONE_NORMAL
);
1518 zonelist
->zones
[nr_zones
++] = zone
;
1519 check_highest_zone(zone_type
);
1523 } while (zone_type
>= 0);
1527 static inline int highest_zone(int zone_bits
)
1529 int res
= ZONE_NORMAL
;
1530 if (zone_bits
& (__force
int)__GFP_HIGHMEM
)
1532 if (zone_bits
& (__force
int)__GFP_DMA32
)
1534 if (zone_bits
& (__force
int)__GFP_DMA
)
1540 #define MAX_NODE_LOAD (num_online_nodes())
1541 static int __initdata node_load
[MAX_NUMNODES
];
1543 * find_next_best_node - find the next node that should appear in a given node's fallback list
1544 * @node: node whose fallback list we're appending
1545 * @used_node_mask: nodemask_t of already used nodes
1547 * We use a number of factors to determine which is the next node that should
1548 * appear on a given node's fallback list. The node should not have appeared
1549 * already in @node's fallback list, and it should be the next closest node
1550 * according to the distance array (which contains arbitrary distance values
1551 * from each node to each node in the system), and should also prefer nodes
1552 * with no CPUs, since presumably they'll have very little allocation pressure
1553 * on them otherwise.
1554 * It returns -1 if no node is found.
1556 static int __init
find_next_best_node(int node
, nodemask_t
*used_node_mask
)
1559 int min_val
= INT_MAX
;
1562 /* Use the local node if we haven't already */
1563 if (!node_isset(node
, *used_node_mask
)) {
1564 node_set(node
, *used_node_mask
);
1568 for_each_online_node(n
) {
1571 /* Don't want a node to appear more than once */
1572 if (node_isset(n
, *used_node_mask
))
1575 /* Use the distance array to find the distance */
1576 val
= node_distance(node
, n
);
1578 /* Penalize nodes under us ("prefer the next node") */
1581 /* Give preference to headless and unused nodes */
1582 tmp
= node_to_cpumask(n
);
1583 if (!cpus_empty(tmp
))
1584 val
+= PENALTY_FOR_NODE_WITH_CPUS
;
1586 /* Slight preference for less loaded node */
1587 val
*= (MAX_NODE_LOAD
*MAX_NUMNODES
);
1588 val
+= node_load
[n
];
1590 if (val
< min_val
) {
1597 node_set(best_node
, *used_node_mask
);
1602 static void __init
build_zonelists(pg_data_t
*pgdat
)
1604 int i
, j
, k
, node
, local_node
;
1605 int prev_node
, load
;
1606 struct zonelist
*zonelist
;
1607 nodemask_t used_mask
;
1609 /* initialize zonelists */
1610 for (i
= 0; i
< GFP_ZONETYPES
; i
++) {
1611 zonelist
= pgdat
->node_zonelists
+ i
;
1612 zonelist
->zones
[0] = NULL
;
1615 /* NUMA-aware ordering of nodes */
1616 local_node
= pgdat
->node_id
;
1617 load
= num_online_nodes();
1618 prev_node
= local_node
;
1619 nodes_clear(used_mask
);
1620 while ((node
= find_next_best_node(local_node
, &used_mask
)) >= 0) {
1621 int distance
= node_distance(local_node
, node
);
1624 * If another node is sufficiently far away then it is better
1625 * to reclaim pages in a zone before going off node.
1627 if (distance
> RECLAIM_DISTANCE
)
1628 zone_reclaim_mode
= 1;
1631 * We don't want to pressure a particular node.
1632 * So adding penalty to the first node in same
1633 * distance group to make it round-robin.
1636 if (distance
!= node_distance(local_node
, prev_node
))
1637 node_load
[node
] += load
;
1640 for (i
= 0; i
< GFP_ZONETYPES
; i
++) {
1641 zonelist
= pgdat
->node_zonelists
+ i
;
1642 for (j
= 0; zonelist
->zones
[j
] != NULL
; j
++);
1644 k
= highest_zone(i
);
1646 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
, k
);
1647 zonelist
->zones
[j
] = NULL
;
1652 #else /* CONFIG_NUMA */
1654 static void __init
build_zonelists(pg_data_t
*pgdat
)
1656 int i
, j
, k
, node
, local_node
;
1658 local_node
= pgdat
->node_id
;
1659 for (i
= 0; i
< GFP_ZONETYPES
; i
++) {
1660 struct zonelist
*zonelist
;
1662 zonelist
= pgdat
->node_zonelists
+ i
;
1665 k
= highest_zone(i
);
1666 j
= build_zonelists_node(pgdat
, zonelist
, j
, k
);
1668 * Now we build the zonelist so that it contains the zones
1669 * of all the other nodes.
1670 * We don't want to pressure a particular node, so when
1671 * building the zones for node N, we make sure that the
1672 * zones coming right after the local ones are those from
1673 * node N+1 (modulo N)
1675 for (node
= local_node
+ 1; node
< MAX_NUMNODES
; node
++) {
1676 if (!node_online(node
))
1678 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
, k
);
1680 for (node
= 0; node
< local_node
; node
++) {
1681 if (!node_online(node
))
1683 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
, k
);
1686 zonelist
->zones
[j
] = NULL
;
1690 #endif /* CONFIG_NUMA */
1692 void __init
build_all_zonelists(void)
1696 for_each_online_node(i
)
1697 build_zonelists(NODE_DATA(i
));
1698 printk("Built %i zonelists\n", num_online_nodes());
1699 cpuset_init_current_mems_allowed();
1703 * Helper functions to size the waitqueue hash table.
1704 * Essentially these want to choose hash table sizes sufficiently
1705 * large so that collisions trying to wait on pages are rare.
1706 * But in fact, the number of active page waitqueues on typical
1707 * systems is ridiculously low, less than 200. So this is even
1708 * conservative, even though it seems large.
1710 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
1711 * waitqueues, i.e. the size of the waitq table given the number of pages.
1713 #define PAGES_PER_WAITQUEUE 256
1715 static inline unsigned long wait_table_size(unsigned long pages
)
1717 unsigned long size
= 1;
1719 pages
/= PAGES_PER_WAITQUEUE
;
1721 while (size
< pages
)
1725 * Once we have dozens or even hundreds of threads sleeping
1726 * on IO we've got bigger problems than wait queue collision.
1727 * Limit the size of the wait table to a reasonable size.
1729 size
= min(size
, 4096UL);
1731 return max(size
, 4UL);
1735 * This is an integer logarithm so that shifts can be used later
1736 * to extract the more random high bits from the multiplicative
1737 * hash function before the remainder is taken.
1739 static inline unsigned long wait_table_bits(unsigned long size
)
1744 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
1746 static void __init
calculate_zone_totalpages(struct pglist_data
*pgdat
,
1747 unsigned long *zones_size
, unsigned long *zholes_size
)
1749 unsigned long realtotalpages
, totalpages
= 0;
1752 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
1753 totalpages
+= zones_size
[i
];
1754 pgdat
->node_spanned_pages
= totalpages
;
1756 realtotalpages
= totalpages
;
1758 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
1759 realtotalpages
-= zholes_size
[i
];
1760 pgdat
->node_present_pages
= realtotalpages
;
1761 printk(KERN_DEBUG
"On node %d totalpages: %lu\n", pgdat
->node_id
, realtotalpages
);
1766 * Initially all pages are reserved - free ones are freed
1767 * up by free_all_bootmem() once the early boot process is
1768 * done. Non-atomic initialization, single-pass.
1770 void __meminit
memmap_init_zone(unsigned long size
, int nid
, unsigned long zone
,
1771 unsigned long start_pfn
)
1774 unsigned long end_pfn
= start_pfn
+ size
;
1777 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++) {
1778 if (!early_pfn_valid(pfn
))
1780 page
= pfn_to_page(pfn
);
1781 set_page_links(page
, zone
, nid
, pfn
);
1782 init_page_count(page
);
1783 reset_page_mapcount(page
);
1784 SetPageReserved(page
);
1785 INIT_LIST_HEAD(&page
->lru
);
1786 #ifdef WANT_PAGE_VIRTUAL
1787 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1788 if (!is_highmem_idx(zone
))
1789 set_page_address(page
, __va(pfn
<< PAGE_SHIFT
));
1794 void zone_init_free_lists(struct pglist_data
*pgdat
, struct zone
*zone
,
1798 for (order
= 0; order
< MAX_ORDER
; order
++) {
1799 INIT_LIST_HEAD(&zone
->free_area
[order
].free_list
);
1800 zone
->free_area
[order
].nr_free
= 0;
1804 #define ZONETABLE_INDEX(x, zone_nr) ((x << ZONES_SHIFT) | zone_nr)
1805 void zonetable_add(struct zone
*zone
, int nid
, int zid
, unsigned long pfn
,
1808 unsigned long snum
= pfn_to_section_nr(pfn
);
1809 unsigned long end
= pfn_to_section_nr(pfn
+ size
);
1812 zone_table
[ZONETABLE_INDEX(nid
, zid
)] = zone
;
1814 for (; snum
<= end
; snum
++)
1815 zone_table
[ZONETABLE_INDEX(snum
, zid
)] = zone
;
1818 #ifndef __HAVE_ARCH_MEMMAP_INIT
1819 #define memmap_init(size, nid, zone, start_pfn) \
1820 memmap_init_zone((size), (nid), (zone), (start_pfn))
1823 static int __cpuinit
zone_batchsize(struct zone
*zone
)
1828 * The per-cpu-pages pools are set to around 1000th of the
1829 * size of the zone. But no more than 1/2 of a meg.
1831 * OK, so we don't know how big the cache is. So guess.
1833 batch
= zone
->present_pages
/ 1024;
1834 if (batch
* PAGE_SIZE
> 512 * 1024)
1835 batch
= (512 * 1024) / PAGE_SIZE
;
1836 batch
/= 4; /* We effectively *= 4 below */
1841 * Clamp the batch to a 2^n - 1 value. Having a power
1842 * of 2 value was found to be more likely to have
1843 * suboptimal cache aliasing properties in some cases.
1845 * For example if 2 tasks are alternately allocating
1846 * batches of pages, one task can end up with a lot
1847 * of pages of one half of the possible page colors
1848 * and the other with pages of the other colors.
1850 batch
= (1 << (fls(batch
+ batch
/2)-1)) - 1;
1855 inline void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
)
1857 struct per_cpu_pages
*pcp
;
1859 memset(p
, 0, sizeof(*p
));
1861 pcp
= &p
->pcp
[0]; /* hot */
1863 pcp
->high
= 6 * batch
;
1864 pcp
->batch
= max(1UL, 1 * batch
);
1865 INIT_LIST_HEAD(&pcp
->list
);
1867 pcp
= &p
->pcp
[1]; /* cold*/
1869 pcp
->high
= 2 * batch
;
1870 pcp
->batch
= max(1UL, batch
/2);
1871 INIT_LIST_HEAD(&pcp
->list
);
1875 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
1876 * to the value high for the pageset p.
1879 static void setup_pagelist_highmark(struct per_cpu_pageset
*p
,
1882 struct per_cpu_pages
*pcp
;
1884 pcp
= &p
->pcp
[0]; /* hot list */
1886 pcp
->batch
= max(1UL, high
/4);
1887 if ((high
/4) > (PAGE_SHIFT
* 8))
1888 pcp
->batch
= PAGE_SHIFT
* 8;
1894 * Boot pageset table. One per cpu which is going to be used for all
1895 * zones and all nodes. The parameters will be set in such a way
1896 * that an item put on a list will immediately be handed over to
1897 * the buddy list. This is safe since pageset manipulation is done
1898 * with interrupts disabled.
1900 * Some NUMA counter updates may also be caught by the boot pagesets.
1902 * The boot_pagesets must be kept even after bootup is complete for
1903 * unused processors and/or zones. They do play a role for bootstrapping
1904 * hotplugged processors.
1906 * zoneinfo_show() and maybe other functions do
1907 * not check if the processor is online before following the pageset pointer.
1908 * Other parts of the kernel may not check if the zone is available.
1910 static struct per_cpu_pageset boot_pageset
[NR_CPUS
];
1913 * Dynamically allocate memory for the
1914 * per cpu pageset array in struct zone.
1916 static int __cpuinit
process_zones(int cpu
)
1918 struct zone
*zone
, *dzone
;
1920 for_each_zone(zone
) {
1922 zone_pcp(zone
, cpu
) = kmalloc_node(sizeof(struct per_cpu_pageset
),
1923 GFP_KERNEL
, cpu_to_node(cpu
));
1924 if (!zone_pcp(zone
, cpu
))
1927 setup_pageset(zone_pcp(zone
, cpu
), zone_batchsize(zone
));
1929 if (percpu_pagelist_fraction
)
1930 setup_pagelist_highmark(zone_pcp(zone
, cpu
),
1931 (zone
->present_pages
/ percpu_pagelist_fraction
));
1936 for_each_zone(dzone
) {
1939 kfree(zone_pcp(dzone
, cpu
));
1940 zone_pcp(dzone
, cpu
) = NULL
;
1945 static inline void free_zone_pagesets(int cpu
)
1949 for_each_zone(zone
) {
1950 struct per_cpu_pageset
*pset
= zone_pcp(zone
, cpu
);
1952 zone_pcp(zone
, cpu
) = NULL
;
1957 static int __cpuinit
pageset_cpuup_callback(struct notifier_block
*nfb
,
1958 unsigned long action
,
1961 int cpu
= (long)hcpu
;
1962 int ret
= NOTIFY_OK
;
1965 case CPU_UP_PREPARE
:
1966 if (process_zones(cpu
))
1969 case CPU_UP_CANCELED
:
1971 free_zone_pagesets(cpu
);
1979 static struct notifier_block pageset_notifier
=
1980 { &pageset_cpuup_callback
, NULL
, 0 };
1982 void __init
setup_per_cpu_pageset(void)
1986 /* Initialize per_cpu_pageset for cpu 0.
1987 * A cpuup callback will do this for every cpu
1988 * as it comes online
1990 err
= process_zones(smp_processor_id());
1992 register_cpu_notifier(&pageset_notifier
);
1998 void zone_wait_table_init(struct zone
*zone
, unsigned long zone_size_pages
)
2001 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
2004 * The per-page waitqueue mechanism uses hashed waitqueues
2007 zone
->wait_table_size
= wait_table_size(zone_size_pages
);
2008 zone
->wait_table_bits
= wait_table_bits(zone
->wait_table_size
);
2009 zone
->wait_table
= (wait_queue_head_t
*)
2010 alloc_bootmem_node(pgdat
, zone
->wait_table_size
2011 * sizeof(wait_queue_head_t
));
2013 for(i
= 0; i
< zone
->wait_table_size
; ++i
)
2014 init_waitqueue_head(zone
->wait_table
+ i
);
2017 static __meminit
void zone_pcp_init(struct zone
*zone
)
2020 unsigned long batch
= zone_batchsize(zone
);
2022 for (cpu
= 0; cpu
< NR_CPUS
; cpu
++) {
2024 /* Early boot. Slab allocator not functional yet */
2025 zone_pcp(zone
, cpu
) = &boot_pageset
[cpu
];
2026 setup_pageset(&boot_pageset
[cpu
],0);
2028 setup_pageset(zone_pcp(zone
,cpu
), batch
);
2031 printk(KERN_DEBUG
" %s zone: %lu pages, LIFO batch:%lu\n",
2032 zone
->name
, zone
->present_pages
, batch
);
2035 static __meminit
void init_currently_empty_zone(struct zone
*zone
,
2036 unsigned long zone_start_pfn
, unsigned long size
)
2038 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
2040 zone_wait_table_init(zone
, size
);
2041 pgdat
->nr_zones
= zone_idx(zone
) + 1;
2043 zone
->zone_mem_map
= pfn_to_page(zone_start_pfn
);
2044 zone
->zone_start_pfn
= zone_start_pfn
;
2046 memmap_init(size
, pgdat
->node_id
, zone_idx(zone
), zone_start_pfn
);
2048 zone_init_free_lists(pgdat
, zone
, zone
->spanned_pages
);
2052 * Set up the zone data structures:
2053 * - mark all pages reserved
2054 * - mark all memory queues empty
2055 * - clear the memory bitmaps
2057 static void __init
free_area_init_core(struct pglist_data
*pgdat
,
2058 unsigned long *zones_size
, unsigned long *zholes_size
)
2061 int nid
= pgdat
->node_id
;
2062 unsigned long zone_start_pfn
= pgdat
->node_start_pfn
;
2064 pgdat_resize_init(pgdat
);
2065 pgdat
->nr_zones
= 0;
2066 init_waitqueue_head(&pgdat
->kswapd_wait
);
2067 pgdat
->kswapd_max_order
= 0;
2069 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
2070 struct zone
*zone
= pgdat
->node_zones
+ j
;
2071 unsigned long size
, realsize
;
2073 realsize
= size
= zones_size
[j
];
2075 realsize
-= zholes_size
[j
];
2077 if (j
< ZONE_HIGHMEM
)
2078 nr_kernel_pages
+= realsize
;
2079 nr_all_pages
+= realsize
;
2081 zone
->spanned_pages
= size
;
2082 zone
->present_pages
= realsize
;
2083 zone
->name
= zone_names
[j
];
2084 spin_lock_init(&zone
->lock
);
2085 spin_lock_init(&zone
->lru_lock
);
2086 zone_seqlock_init(zone
);
2087 zone
->zone_pgdat
= pgdat
;
2088 zone
->free_pages
= 0;
2090 zone
->temp_priority
= zone
->prev_priority
= DEF_PRIORITY
;
2092 zone_pcp_init(zone
);
2093 INIT_LIST_HEAD(&zone
->active_list
);
2094 INIT_LIST_HEAD(&zone
->inactive_list
);
2095 zone
->nr_scan_active
= 0;
2096 zone
->nr_scan_inactive
= 0;
2097 zone
->nr_active
= 0;
2098 zone
->nr_inactive
= 0;
2099 atomic_set(&zone
->reclaim_in_progress
, 0);
2103 zonetable_add(zone
, nid
, j
, zone_start_pfn
, size
);
2104 init_currently_empty_zone(zone
, zone_start_pfn
, size
);
2105 zone_start_pfn
+= size
;
2109 static void __init
alloc_node_mem_map(struct pglist_data
*pgdat
)
2111 /* Skip empty nodes */
2112 if (!pgdat
->node_spanned_pages
)
2115 #ifdef CONFIG_FLAT_NODE_MEM_MAP
2116 /* ia64 gets its own node_mem_map, before this, without bootmem */
2117 if (!pgdat
->node_mem_map
) {
2121 size
= (pgdat
->node_spanned_pages
+ 1) * sizeof(struct page
);
2122 map
= alloc_remap(pgdat
->node_id
, size
);
2124 map
= alloc_bootmem_node(pgdat
, size
);
2125 pgdat
->node_mem_map
= map
;
2127 #ifdef CONFIG_FLATMEM
2129 * With no DISCONTIG, the global mem_map is just set as node 0's
2131 if (pgdat
== NODE_DATA(0))
2132 mem_map
= NODE_DATA(0)->node_mem_map
;
2134 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
2137 void __init
free_area_init_node(int nid
, struct pglist_data
*pgdat
,
2138 unsigned long *zones_size
, unsigned long node_start_pfn
,
2139 unsigned long *zholes_size
)
2141 pgdat
->node_id
= nid
;
2142 pgdat
->node_start_pfn
= node_start_pfn
;
2143 calculate_zone_totalpages(pgdat
, zones_size
, zholes_size
);
2145 alloc_node_mem_map(pgdat
);
2147 free_area_init_core(pgdat
, zones_size
, zholes_size
);
2150 #ifndef CONFIG_NEED_MULTIPLE_NODES
2151 static bootmem_data_t contig_bootmem_data
;
2152 struct pglist_data contig_page_data
= { .bdata
= &contig_bootmem_data
};
2154 EXPORT_SYMBOL(contig_page_data
);
2157 void __init
free_area_init(unsigned long *zones_size
)
2159 free_area_init_node(0, NODE_DATA(0), zones_size
,
2160 __pa(PAGE_OFFSET
) >> PAGE_SHIFT
, NULL
);
2163 #ifdef CONFIG_PROC_FS
2165 #include <linux/seq_file.h>
2167 static void *frag_start(struct seq_file
*m
, loff_t
*pos
)
2172 for (pgdat
= pgdat_list
; pgdat
&& node
; pgdat
= pgdat
->pgdat_next
)
2178 static void *frag_next(struct seq_file
*m
, void *arg
, loff_t
*pos
)
2180 pg_data_t
*pgdat
= (pg_data_t
*)arg
;
2183 return pgdat
->pgdat_next
;
2186 static void frag_stop(struct seq_file
*m
, void *arg
)
2191 * This walks the free areas for each zone.
2193 static int frag_show(struct seq_file
*m
, void *arg
)
2195 pg_data_t
*pgdat
= (pg_data_t
*)arg
;
2197 struct zone
*node_zones
= pgdat
->node_zones
;
2198 unsigned long flags
;
2201 for (zone
= node_zones
; zone
- node_zones
< MAX_NR_ZONES
; ++zone
) {
2202 if (!populated_zone(zone
))
2205 spin_lock_irqsave(&zone
->lock
, flags
);
2206 seq_printf(m
, "Node %d, zone %8s ", pgdat
->node_id
, zone
->name
);
2207 for (order
= 0; order
< MAX_ORDER
; ++order
)
2208 seq_printf(m
, "%6lu ", zone
->free_area
[order
].nr_free
);
2209 spin_unlock_irqrestore(&zone
->lock
, flags
);
2215 struct seq_operations fragmentation_op
= {
2216 .start
= frag_start
,
2223 * Output information about zones in @pgdat.
2225 static int zoneinfo_show(struct seq_file
*m
, void *arg
)
2227 pg_data_t
*pgdat
= arg
;
2229 struct zone
*node_zones
= pgdat
->node_zones
;
2230 unsigned long flags
;
2232 for (zone
= node_zones
; zone
- node_zones
< MAX_NR_ZONES
; zone
++) {
2235 if (!populated_zone(zone
))
2238 spin_lock_irqsave(&zone
->lock
, flags
);
2239 seq_printf(m
, "Node %d, zone %8s", pgdat
->node_id
, zone
->name
);
2247 "\n scanned %lu (a: %lu i: %lu)"
2256 zone
->pages_scanned
,
2257 zone
->nr_scan_active
, zone
->nr_scan_inactive
,
2258 zone
->spanned_pages
,
2259 zone
->present_pages
);
2261 "\n protection: (%lu",
2262 zone
->lowmem_reserve
[0]);
2263 for (i
= 1; i
< ARRAY_SIZE(zone
->lowmem_reserve
); i
++)
2264 seq_printf(m
, ", %lu", zone
->lowmem_reserve
[i
]);
2268 for_each_online_cpu(i
) {
2269 struct per_cpu_pageset
*pageset
;
2272 pageset
= zone_pcp(zone
, i
);
2273 for (j
= 0; j
< ARRAY_SIZE(pageset
->pcp
); j
++) {
2274 if (pageset
->pcp
[j
].count
)
2277 if (j
== ARRAY_SIZE(pageset
->pcp
))
2279 for (j
= 0; j
< ARRAY_SIZE(pageset
->pcp
); j
++) {
2281 "\n cpu: %i pcp: %i"
2286 pageset
->pcp
[j
].count
,
2287 pageset
->pcp
[j
].high
,
2288 pageset
->pcp
[j
].batch
);
2294 "\n numa_foreign: %lu"
2295 "\n interleave_hit: %lu"
2296 "\n local_node: %lu"
2297 "\n other_node: %lu",
2300 pageset
->numa_foreign
,
2301 pageset
->interleave_hit
,
2302 pageset
->local_node
,
2303 pageset
->other_node
);
2307 "\n all_unreclaimable: %u"
2308 "\n prev_priority: %i"
2309 "\n temp_priority: %i"
2310 "\n start_pfn: %lu",
2311 zone
->all_unreclaimable
,
2312 zone
->prev_priority
,
2313 zone
->temp_priority
,
2314 zone
->zone_start_pfn
);
2315 spin_unlock_irqrestore(&zone
->lock
, flags
);
2321 struct seq_operations zoneinfo_op
= {
2322 .start
= frag_start
, /* iterate over all zones. The same as in
2326 .show
= zoneinfo_show
,
2329 static char *vmstat_text
[] = {
2333 "nr_page_table_pages",
2364 "pgscan_kswapd_high",
2365 "pgscan_kswapd_normal",
2366 "pgscan_kswapd_dma32",
2367 "pgscan_kswapd_dma",
2369 "pgscan_direct_high",
2370 "pgscan_direct_normal",
2371 "pgscan_direct_dma32",
2372 "pgscan_direct_dma",
2377 "kswapd_inodesteal",
2385 static void *vmstat_start(struct seq_file
*m
, loff_t
*pos
)
2387 struct page_state
*ps
;
2389 if (*pos
>= ARRAY_SIZE(vmstat_text
))
2392 ps
= kmalloc(sizeof(*ps
), GFP_KERNEL
);
2395 return ERR_PTR(-ENOMEM
);
2396 get_full_page_state(ps
);
2397 ps
->pgpgin
/= 2; /* sectors -> kbytes */
2399 return (unsigned long *)ps
+ *pos
;
2402 static void *vmstat_next(struct seq_file
*m
, void *arg
, loff_t
*pos
)
2405 if (*pos
>= ARRAY_SIZE(vmstat_text
))
2407 return (unsigned long *)m
->private + *pos
;
2410 static int vmstat_show(struct seq_file
*m
, void *arg
)
2412 unsigned long *l
= arg
;
2413 unsigned long off
= l
- (unsigned long *)m
->private;
2415 seq_printf(m
, "%s %lu\n", vmstat_text
[off
], *l
);
2419 static void vmstat_stop(struct seq_file
*m
, void *arg
)
2425 struct seq_operations vmstat_op
= {
2426 .start
= vmstat_start
,
2427 .next
= vmstat_next
,
2428 .stop
= vmstat_stop
,
2429 .show
= vmstat_show
,
2432 #endif /* CONFIG_PROC_FS */
2434 #ifdef CONFIG_HOTPLUG_CPU
2435 static int page_alloc_cpu_notify(struct notifier_block
*self
,
2436 unsigned long action
, void *hcpu
)
2438 int cpu
= (unsigned long)hcpu
;
2440 unsigned long *src
, *dest
;
2442 if (action
== CPU_DEAD
) {
2445 /* Drain local pagecache count. */
2446 count
= &per_cpu(nr_pagecache_local
, cpu
);
2447 atomic_add(*count
, &nr_pagecache
);
2449 local_irq_disable();
2452 /* Add dead cpu's page_states to our own. */
2453 dest
= (unsigned long *)&__get_cpu_var(page_states
);
2454 src
= (unsigned long *)&per_cpu(page_states
, cpu
);
2456 for (i
= 0; i
< sizeof(struct page_state
)/sizeof(unsigned long);
2466 #endif /* CONFIG_HOTPLUG_CPU */
2468 void __init
page_alloc_init(void)
2470 hotcpu_notifier(page_alloc_cpu_notify
, 0);
2474 * setup_per_zone_lowmem_reserve - called whenever
2475 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
2476 * has a correct pages reserved value, so an adequate number of
2477 * pages are left in the zone after a successful __alloc_pages().
2479 static void setup_per_zone_lowmem_reserve(void)
2481 struct pglist_data
*pgdat
;
2484 for_each_pgdat(pgdat
) {
2485 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
2486 struct zone
*zone
= pgdat
->node_zones
+ j
;
2487 unsigned long present_pages
= zone
->present_pages
;
2489 zone
->lowmem_reserve
[j
] = 0;
2491 for (idx
= j
-1; idx
>= 0; idx
--) {
2492 struct zone
*lower_zone
;
2494 if (sysctl_lowmem_reserve_ratio
[idx
] < 1)
2495 sysctl_lowmem_reserve_ratio
[idx
] = 1;
2497 lower_zone
= pgdat
->node_zones
+ idx
;
2498 lower_zone
->lowmem_reserve
[j
] = present_pages
/
2499 sysctl_lowmem_reserve_ratio
[idx
];
2500 present_pages
+= lower_zone
->present_pages
;
2507 * setup_per_zone_pages_min - called when min_free_kbytes changes. Ensures
2508 * that the pages_{min,low,high} values for each zone are set correctly
2509 * with respect to min_free_kbytes.
2511 void setup_per_zone_pages_min(void)
2513 unsigned long pages_min
= min_free_kbytes
>> (PAGE_SHIFT
- 10);
2514 unsigned long lowmem_pages
= 0;
2516 unsigned long flags
;
2518 /* Calculate total number of !ZONE_HIGHMEM pages */
2519 for_each_zone(zone
) {
2520 if (!is_highmem(zone
))
2521 lowmem_pages
+= zone
->present_pages
;
2524 for_each_zone(zone
) {
2526 spin_lock_irqsave(&zone
->lru_lock
, flags
);
2527 tmp
= (pages_min
* zone
->present_pages
) / lowmem_pages
;
2528 if (is_highmem(zone
)) {
2530 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
2531 * need highmem pages, so cap pages_min to a small
2534 * The (pages_high-pages_low) and (pages_low-pages_min)
2535 * deltas controls asynch page reclaim, and so should
2536 * not be capped for highmem.
2540 min_pages
= zone
->present_pages
/ 1024;
2541 if (min_pages
< SWAP_CLUSTER_MAX
)
2542 min_pages
= SWAP_CLUSTER_MAX
;
2543 if (min_pages
> 128)
2545 zone
->pages_min
= min_pages
;
2548 * If it's a lowmem zone, reserve a number of pages
2549 * proportionate to the zone's size.
2551 zone
->pages_min
= tmp
;
2554 zone
->pages_low
= zone
->pages_min
+ tmp
/ 4;
2555 zone
->pages_high
= zone
->pages_min
+ tmp
/ 2;
2556 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
2561 * Initialise min_free_kbytes.
2563 * For small machines we want it small (128k min). For large machines
2564 * we want it large (64MB max). But it is not linear, because network
2565 * bandwidth does not increase linearly with machine size. We use
2567 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
2568 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
2584 static int __init
init_per_zone_pages_min(void)
2586 unsigned long lowmem_kbytes
;
2588 lowmem_kbytes
= nr_free_buffer_pages() * (PAGE_SIZE
>> 10);
2590 min_free_kbytes
= int_sqrt(lowmem_kbytes
* 16);
2591 if (min_free_kbytes
< 128)
2592 min_free_kbytes
= 128;
2593 if (min_free_kbytes
> 65536)
2594 min_free_kbytes
= 65536;
2595 setup_per_zone_pages_min();
2596 setup_per_zone_lowmem_reserve();
2599 module_init(init_per_zone_pages_min
)
2602 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
2603 * that we can call two helper functions whenever min_free_kbytes
2606 int min_free_kbytes_sysctl_handler(ctl_table
*table
, int write
,
2607 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
2609 proc_dointvec(table
, write
, file
, buffer
, length
, ppos
);
2610 setup_per_zone_pages_min();
2615 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
2616 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
2617 * whenever sysctl_lowmem_reserve_ratio changes.
2619 * The reserve ratio obviously has absolutely no relation with the
2620 * pages_min watermarks. The lowmem reserve ratio can only make sense
2621 * if in function of the boot time zone sizes.
2623 int lowmem_reserve_ratio_sysctl_handler(ctl_table
*table
, int write
,
2624 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
2626 proc_dointvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
2627 setup_per_zone_lowmem_reserve();
2632 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
2633 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
2634 * can have before it gets flushed back to buddy allocator.
2637 int percpu_pagelist_fraction_sysctl_handler(ctl_table
*table
, int write
,
2638 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
2644 ret
= proc_dointvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
2645 if (!write
|| (ret
== -EINVAL
))
2647 for_each_zone(zone
) {
2648 for_each_online_cpu(cpu
) {
2650 high
= zone
->present_pages
/ percpu_pagelist_fraction
;
2651 setup_pagelist_highmark(zone_pcp(zone
, cpu
), high
);
2657 __initdata
int hashdist
= HASHDIST_DEFAULT
;
2660 static int __init
set_hashdist(char *str
)
2664 hashdist
= simple_strtoul(str
, &str
, 0);
2667 __setup("hashdist=", set_hashdist
);
2671 * allocate a large system hash table from bootmem
2672 * - it is assumed that the hash table must contain an exact power-of-2
2673 * quantity of entries
2674 * - limit is the number of hash buckets, not the total allocation size
2676 void *__init
alloc_large_system_hash(const char *tablename
,
2677 unsigned long bucketsize
,
2678 unsigned long numentries
,
2681 unsigned int *_hash_shift
,
2682 unsigned int *_hash_mask
,
2683 unsigned long limit
)
2685 unsigned long long max
= limit
;
2686 unsigned long log2qty
, size
;
2689 /* allow the kernel cmdline to have a say */
2691 /* round applicable memory size up to nearest megabyte */
2692 numentries
= (flags
& HASH_HIGHMEM
) ? nr_all_pages
: nr_kernel_pages
;
2693 numentries
+= (1UL << (20 - PAGE_SHIFT
)) - 1;
2694 numentries
>>= 20 - PAGE_SHIFT
;
2695 numentries
<<= 20 - PAGE_SHIFT
;
2697 /* limit to 1 bucket per 2^scale bytes of low memory */
2698 if (scale
> PAGE_SHIFT
)
2699 numentries
>>= (scale
- PAGE_SHIFT
);
2701 numentries
<<= (PAGE_SHIFT
- scale
);
2703 /* rounded up to nearest power of 2 in size */
2704 numentries
= 1UL << (long_log2(numentries
) + 1);
2706 /* limit allocation size to 1/16 total memory by default */
2708 max
= ((unsigned long long)nr_all_pages
<< PAGE_SHIFT
) >> 4;
2709 do_div(max
, bucketsize
);
2712 if (numentries
> max
)
2715 log2qty
= long_log2(numentries
);
2718 size
= bucketsize
<< log2qty
;
2719 if (flags
& HASH_EARLY
)
2720 table
= alloc_bootmem(size
);
2722 table
= __vmalloc(size
, GFP_ATOMIC
, PAGE_KERNEL
);
2724 unsigned long order
;
2725 for (order
= 0; ((1UL << order
) << PAGE_SHIFT
) < size
; order
++)
2727 table
= (void*) __get_free_pages(GFP_ATOMIC
, order
);
2729 } while (!table
&& size
> PAGE_SIZE
&& --log2qty
);
2732 panic("Failed to allocate %s hash table\n", tablename
);
2734 printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
2737 long_log2(size
) - PAGE_SHIFT
,
2741 *_hash_shift
= log2qty
;
2743 *_hash_mask
= (1 << log2qty
) - 1;