s2io annotations
[linux-2.6/sactl.git] / kernel / sched_fair.c
blobf2cc59080efa4f9ae1e12aa30afe2e3fe08a86f9
1 /*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
23 #include <linux/latencytop.h>
26 * Targeted preemption latency for CPU-bound tasks:
27 * (default: 20ms * (1 + ilog(ncpus)), units: nanoseconds)
29 * NOTE: this latency value is not the same as the concept of
30 * 'timeslice length' - timeslices in CFS are of variable length
31 * and have no persistent notion like in traditional, time-slice
32 * based scheduling concepts.
34 * (to see the precise effective timeslice length of your workload,
35 * run vmstat and monitor the context-switches (cs) field)
37 unsigned int sysctl_sched_latency = 20000000ULL;
40 * Minimal preemption granularity for CPU-bound tasks:
41 * (default: 4 msec * (1 + ilog(ncpus)), units: nanoseconds)
43 unsigned int sysctl_sched_min_granularity = 4000000ULL;
46 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
48 static unsigned int sched_nr_latency = 5;
51 * After fork, child runs first. (default) If set to 0 then
52 * parent will (try to) run first.
54 const_debug unsigned int sysctl_sched_child_runs_first = 1;
57 * sys_sched_yield() compat mode
59 * This option switches the agressive yield implementation of the
60 * old scheduler back on.
62 unsigned int __read_mostly sysctl_sched_compat_yield;
65 * SCHED_BATCH wake-up granularity.
66 * (default: 10 msec * (1 + ilog(ncpus)), units: nanoseconds)
68 * This option delays the preemption effects of decoupled workloads
69 * and reduces their over-scheduling. Synchronous workloads will still
70 * have immediate wakeup/sleep latencies.
72 unsigned int sysctl_sched_batch_wakeup_granularity = 10000000UL;
75 * SCHED_OTHER wake-up granularity.
76 * (default: 10 msec * (1 + ilog(ncpus)), units: nanoseconds)
78 * This option delays the preemption effects of decoupled workloads
79 * and reduces their over-scheduling. Synchronous workloads will still
80 * have immediate wakeup/sleep latencies.
82 unsigned int sysctl_sched_wakeup_granularity = 10000000UL;
84 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
86 /**************************************************************
87 * CFS operations on generic schedulable entities:
90 #ifdef CONFIG_FAIR_GROUP_SCHED
92 /* cpu runqueue to which this cfs_rq is attached */
93 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
95 return cfs_rq->rq;
98 /* An entity is a task if it doesn't "own" a runqueue */
99 #define entity_is_task(se) (!se->my_q)
101 #else /* CONFIG_FAIR_GROUP_SCHED */
103 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
105 return container_of(cfs_rq, struct rq, cfs);
108 #define entity_is_task(se) 1
110 #endif /* CONFIG_FAIR_GROUP_SCHED */
112 static inline struct task_struct *task_of(struct sched_entity *se)
114 return container_of(se, struct task_struct, se);
118 /**************************************************************
119 * Scheduling class tree data structure manipulation methods:
122 static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
124 s64 delta = (s64)(vruntime - min_vruntime);
125 if (delta > 0)
126 min_vruntime = vruntime;
128 return min_vruntime;
131 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
133 s64 delta = (s64)(vruntime - min_vruntime);
134 if (delta < 0)
135 min_vruntime = vruntime;
137 return min_vruntime;
140 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
142 return se->vruntime - cfs_rq->min_vruntime;
146 * Enqueue an entity into the rb-tree:
148 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
150 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
151 struct rb_node *parent = NULL;
152 struct sched_entity *entry;
153 s64 key = entity_key(cfs_rq, se);
154 int leftmost = 1;
157 * Find the right place in the rbtree:
159 while (*link) {
160 parent = *link;
161 entry = rb_entry(parent, struct sched_entity, run_node);
163 * We dont care about collisions. Nodes with
164 * the same key stay together.
166 if (key < entity_key(cfs_rq, entry)) {
167 link = &parent->rb_left;
168 } else {
169 link = &parent->rb_right;
170 leftmost = 0;
175 * Maintain a cache of leftmost tree entries (it is frequently
176 * used):
178 if (leftmost) {
179 cfs_rq->rb_leftmost = &se->run_node;
181 * maintain cfs_rq->min_vruntime to be a monotonic increasing
182 * value tracking the leftmost vruntime in the tree.
184 cfs_rq->min_vruntime =
185 max_vruntime(cfs_rq->min_vruntime, se->vruntime);
188 rb_link_node(&se->run_node, parent, link);
189 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
192 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
194 if (cfs_rq->rb_leftmost == &se->run_node) {
195 struct rb_node *next_node;
196 struct sched_entity *next;
198 next_node = rb_next(&se->run_node);
199 cfs_rq->rb_leftmost = next_node;
201 if (next_node) {
202 next = rb_entry(next_node,
203 struct sched_entity, run_node);
204 cfs_rq->min_vruntime =
205 max_vruntime(cfs_rq->min_vruntime,
206 next->vruntime);
210 if (cfs_rq->next == se)
211 cfs_rq->next = NULL;
213 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
216 static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
218 return cfs_rq->rb_leftmost;
221 static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
223 return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
226 static inline struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
228 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
230 if (!last)
231 return NULL;
233 return rb_entry(last, struct sched_entity, run_node);
236 /**************************************************************
237 * Scheduling class statistics methods:
240 #ifdef CONFIG_SCHED_DEBUG
241 int sched_nr_latency_handler(struct ctl_table *table, int write,
242 struct file *filp, void __user *buffer, size_t *lenp,
243 loff_t *ppos)
245 int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
247 if (ret || !write)
248 return ret;
250 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
251 sysctl_sched_min_granularity);
253 return 0;
255 #endif
258 * The idea is to set a period in which each task runs once.
260 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
261 * this period because otherwise the slices get too small.
263 * p = (nr <= nl) ? l : l*nr/nl
265 static u64 __sched_period(unsigned long nr_running)
267 u64 period = sysctl_sched_latency;
268 unsigned long nr_latency = sched_nr_latency;
270 if (unlikely(nr_running > nr_latency)) {
271 period = sysctl_sched_min_granularity;
272 period *= nr_running;
275 return period;
279 * We calculate the wall-time slice from the period by taking a part
280 * proportional to the weight.
282 * s = p*w/rw
284 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
286 return calc_delta_mine(__sched_period(cfs_rq->nr_running),
287 se->load.weight, &cfs_rq->load);
291 * We calculate the vruntime slice.
293 * vs = s/w = p/rw
295 static u64 __sched_vslice(unsigned long rq_weight, unsigned long nr_running)
297 u64 vslice = __sched_period(nr_running);
299 vslice *= NICE_0_LOAD;
300 do_div(vslice, rq_weight);
302 return vslice;
305 static u64 sched_vslice(struct cfs_rq *cfs_rq)
307 return __sched_vslice(cfs_rq->load.weight, cfs_rq->nr_running);
310 static u64 sched_vslice_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
312 return __sched_vslice(cfs_rq->load.weight + se->load.weight,
313 cfs_rq->nr_running + 1);
317 * Update the current task's runtime statistics. Skip current tasks that
318 * are not in our scheduling class.
320 static inline void
321 __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
322 unsigned long delta_exec)
324 unsigned long delta_exec_weighted;
326 schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
328 curr->sum_exec_runtime += delta_exec;
329 schedstat_add(cfs_rq, exec_clock, delta_exec);
330 delta_exec_weighted = delta_exec;
331 if (unlikely(curr->load.weight != NICE_0_LOAD)) {
332 delta_exec_weighted = calc_delta_fair(delta_exec_weighted,
333 &curr->load);
335 curr->vruntime += delta_exec_weighted;
338 static void update_curr(struct cfs_rq *cfs_rq)
340 struct sched_entity *curr = cfs_rq->curr;
341 u64 now = rq_of(cfs_rq)->clock;
342 unsigned long delta_exec;
344 if (unlikely(!curr))
345 return;
348 * Get the amount of time the current task was running
349 * since the last time we changed load (this cannot
350 * overflow on 32 bits):
352 delta_exec = (unsigned long)(now - curr->exec_start);
354 __update_curr(cfs_rq, curr, delta_exec);
355 curr->exec_start = now;
357 if (entity_is_task(curr)) {
358 struct task_struct *curtask = task_of(curr);
360 cpuacct_charge(curtask, delta_exec);
364 static inline void
365 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
367 schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
371 * Task is being enqueued - update stats:
373 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
376 * Are we enqueueing a waiting task? (for current tasks
377 * a dequeue/enqueue event is a NOP)
379 if (se != cfs_rq->curr)
380 update_stats_wait_start(cfs_rq, se);
383 static void
384 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
386 schedstat_set(se->wait_max, max(se->wait_max,
387 rq_of(cfs_rq)->clock - se->wait_start));
388 schedstat_set(se->wait_count, se->wait_count + 1);
389 schedstat_set(se->wait_sum, se->wait_sum +
390 rq_of(cfs_rq)->clock - se->wait_start);
391 schedstat_set(se->wait_start, 0);
394 static inline void
395 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
398 * Mark the end of the wait period if dequeueing a
399 * waiting task:
401 if (se != cfs_rq->curr)
402 update_stats_wait_end(cfs_rq, se);
406 * We are picking a new current task - update its stats:
408 static inline void
409 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
412 * We are starting a new run period:
414 se->exec_start = rq_of(cfs_rq)->clock;
417 /**************************************************
418 * Scheduling class queueing methods:
421 static void
422 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
424 update_load_add(&cfs_rq->load, se->load.weight);
425 cfs_rq->nr_running++;
426 se->on_rq = 1;
429 static void
430 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
432 update_load_sub(&cfs_rq->load, se->load.weight);
433 cfs_rq->nr_running--;
434 se->on_rq = 0;
437 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
439 #ifdef CONFIG_SCHEDSTATS
440 if (se->sleep_start) {
441 u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
442 struct task_struct *tsk = task_of(se);
444 if ((s64)delta < 0)
445 delta = 0;
447 if (unlikely(delta > se->sleep_max))
448 se->sleep_max = delta;
450 se->sleep_start = 0;
451 se->sum_sleep_runtime += delta;
453 account_scheduler_latency(tsk, delta >> 10, 1);
455 if (se->block_start) {
456 u64 delta = rq_of(cfs_rq)->clock - se->block_start;
457 struct task_struct *tsk = task_of(se);
459 if ((s64)delta < 0)
460 delta = 0;
462 if (unlikely(delta > se->block_max))
463 se->block_max = delta;
465 se->block_start = 0;
466 se->sum_sleep_runtime += delta;
469 * Blocking time is in units of nanosecs, so shift by 20 to
470 * get a milliseconds-range estimation of the amount of
471 * time that the task spent sleeping:
473 if (unlikely(prof_on == SLEEP_PROFILING)) {
475 profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
476 delta >> 20);
478 account_scheduler_latency(tsk, delta >> 10, 0);
480 #endif
483 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
485 #ifdef CONFIG_SCHED_DEBUG
486 s64 d = se->vruntime - cfs_rq->min_vruntime;
488 if (d < 0)
489 d = -d;
491 if (d > 3*sysctl_sched_latency)
492 schedstat_inc(cfs_rq, nr_spread_over);
493 #endif
496 static void
497 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
499 u64 vruntime;
501 if (first_fair(cfs_rq)) {
502 vruntime = min_vruntime(cfs_rq->min_vruntime,
503 __pick_next_entity(cfs_rq)->vruntime);
504 } else
505 vruntime = cfs_rq->min_vruntime;
507 if (sched_feat(TREE_AVG)) {
508 struct sched_entity *last = __pick_last_entity(cfs_rq);
509 if (last) {
510 vruntime += last->vruntime;
511 vruntime >>= 1;
513 } else if (sched_feat(APPROX_AVG) && cfs_rq->nr_running)
514 vruntime += sched_vslice(cfs_rq)/2;
517 * The 'current' period is already promised to the current tasks,
518 * however the extra weight of the new task will slow them down a
519 * little, place the new task so that it fits in the slot that
520 * stays open at the end.
522 if (initial && sched_feat(START_DEBIT))
523 vruntime += sched_vslice_add(cfs_rq, se);
525 if (!initial) {
526 /* sleeps upto a single latency don't count. */
527 if (sched_feat(NEW_FAIR_SLEEPERS)) {
528 vruntime -= calc_delta_fair(sysctl_sched_latency,
529 &cfs_rq->load);
532 /* ensure we never gain time by being placed backwards. */
533 vruntime = max_vruntime(se->vruntime, vruntime);
536 se->vruntime = vruntime;
539 static void
540 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
543 * Update run-time statistics of the 'current'.
545 update_curr(cfs_rq);
547 if (wakeup) {
548 place_entity(cfs_rq, se, 0);
549 enqueue_sleeper(cfs_rq, se);
552 update_stats_enqueue(cfs_rq, se);
553 check_spread(cfs_rq, se);
554 if (se != cfs_rq->curr)
555 __enqueue_entity(cfs_rq, se);
556 account_entity_enqueue(cfs_rq, se);
559 static void
560 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
563 * Update run-time statistics of the 'current'.
565 update_curr(cfs_rq);
567 update_stats_dequeue(cfs_rq, se);
568 if (sleep) {
569 #ifdef CONFIG_SCHEDSTATS
570 if (entity_is_task(se)) {
571 struct task_struct *tsk = task_of(se);
573 if (tsk->state & TASK_INTERRUPTIBLE)
574 se->sleep_start = rq_of(cfs_rq)->clock;
575 if (tsk->state & TASK_UNINTERRUPTIBLE)
576 se->block_start = rq_of(cfs_rq)->clock;
578 #endif
581 if (se != cfs_rq->curr)
582 __dequeue_entity(cfs_rq, se);
583 account_entity_dequeue(cfs_rq, se);
587 * Preempt the current task with a newly woken task if needed:
589 static void
590 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
592 unsigned long ideal_runtime, delta_exec;
594 ideal_runtime = sched_slice(cfs_rq, curr);
595 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
596 if (delta_exec > ideal_runtime)
597 resched_task(rq_of(cfs_rq)->curr);
600 static void
601 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
603 /* 'current' is not kept within the tree. */
604 if (se->on_rq) {
606 * Any task has to be enqueued before it get to execute on
607 * a CPU. So account for the time it spent waiting on the
608 * runqueue.
610 update_stats_wait_end(cfs_rq, se);
611 __dequeue_entity(cfs_rq, se);
614 update_stats_curr_start(cfs_rq, se);
615 cfs_rq->curr = se;
616 #ifdef CONFIG_SCHEDSTATS
618 * Track our maximum slice length, if the CPU's load is at
619 * least twice that of our own weight (i.e. dont track it
620 * when there are only lesser-weight tasks around):
622 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
623 se->slice_max = max(se->slice_max,
624 se->sum_exec_runtime - se->prev_sum_exec_runtime);
626 #endif
627 se->prev_sum_exec_runtime = se->sum_exec_runtime;
630 static struct sched_entity *
631 pick_next(struct cfs_rq *cfs_rq, struct sched_entity *se)
633 s64 diff, gran;
635 if (!cfs_rq->next)
636 return se;
638 diff = cfs_rq->next->vruntime - se->vruntime;
639 if (diff < 0)
640 return se;
642 gran = calc_delta_fair(sysctl_sched_wakeup_granularity, &cfs_rq->load);
643 if (diff > gran)
644 return se;
646 return cfs_rq->next;
649 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
651 struct sched_entity *se = NULL;
653 if (first_fair(cfs_rq)) {
654 se = __pick_next_entity(cfs_rq);
655 se = pick_next(cfs_rq, se);
656 set_next_entity(cfs_rq, se);
659 return se;
662 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
665 * If still on the runqueue then deactivate_task()
666 * was not called and update_curr() has to be done:
668 if (prev->on_rq)
669 update_curr(cfs_rq);
671 check_spread(cfs_rq, prev);
672 if (prev->on_rq) {
673 update_stats_wait_start(cfs_rq, prev);
674 /* Put 'current' back into the tree. */
675 __enqueue_entity(cfs_rq, prev);
677 cfs_rq->curr = NULL;
680 static void
681 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
684 * Update run-time statistics of the 'current'.
686 update_curr(cfs_rq);
688 #ifdef CONFIG_SCHED_HRTICK
690 * queued ticks are scheduled to match the slice, so don't bother
691 * validating it and just reschedule.
693 if (queued)
694 return resched_task(rq_of(cfs_rq)->curr);
696 * don't let the period tick interfere with the hrtick preemption
698 if (!sched_feat(DOUBLE_TICK) &&
699 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
700 return;
701 #endif
703 if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
704 check_preempt_tick(cfs_rq, curr);
707 /**************************************************
708 * CFS operations on tasks:
711 #ifdef CONFIG_FAIR_GROUP_SCHED
713 /* Walk up scheduling entities hierarchy */
714 #define for_each_sched_entity(se) \
715 for (; se; se = se->parent)
717 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
719 return p->se.cfs_rq;
722 /* runqueue on which this entity is (to be) queued */
723 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
725 return se->cfs_rq;
728 /* runqueue "owned" by this group */
729 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
731 return grp->my_q;
734 /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
735 * another cpu ('this_cpu')
737 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
739 return cfs_rq->tg->cfs_rq[this_cpu];
742 /* Iterate thr' all leaf cfs_rq's on a runqueue */
743 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
744 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
746 /* Do the two (enqueued) entities belong to the same group ? */
747 static inline int
748 is_same_group(struct sched_entity *se, struct sched_entity *pse)
750 if (se->cfs_rq == pse->cfs_rq)
751 return 1;
753 return 0;
756 static inline struct sched_entity *parent_entity(struct sched_entity *se)
758 return se->parent;
761 #else /* CONFIG_FAIR_GROUP_SCHED */
763 #define for_each_sched_entity(se) \
764 for (; se; se = NULL)
766 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
768 return &task_rq(p)->cfs;
771 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
773 struct task_struct *p = task_of(se);
774 struct rq *rq = task_rq(p);
776 return &rq->cfs;
779 /* runqueue "owned" by this group */
780 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
782 return NULL;
785 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
787 return &cpu_rq(this_cpu)->cfs;
790 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
791 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
793 static inline int
794 is_same_group(struct sched_entity *se, struct sched_entity *pse)
796 return 1;
799 static inline struct sched_entity *parent_entity(struct sched_entity *se)
801 return NULL;
804 #endif /* CONFIG_FAIR_GROUP_SCHED */
806 #ifdef CONFIG_SCHED_HRTICK
807 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
809 int requeue = rq->curr == p;
810 struct sched_entity *se = &p->se;
811 struct cfs_rq *cfs_rq = cfs_rq_of(se);
813 WARN_ON(task_rq(p) != rq);
815 if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
816 u64 slice = sched_slice(cfs_rq, se);
817 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
818 s64 delta = slice - ran;
820 if (delta < 0) {
821 if (rq->curr == p)
822 resched_task(p);
823 return;
827 * Don't schedule slices shorter than 10000ns, that just
828 * doesn't make sense. Rely on vruntime for fairness.
830 if (!requeue)
831 delta = max(10000LL, delta);
833 hrtick_start(rq, delta, requeue);
836 #else
837 static inline void
838 hrtick_start_fair(struct rq *rq, struct task_struct *p)
841 #endif
844 * The enqueue_task method is called before nr_running is
845 * increased. Here we update the fair scheduling stats and
846 * then put the task into the rbtree:
848 static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
850 struct cfs_rq *cfs_rq;
851 struct sched_entity *se = &p->se;
853 for_each_sched_entity(se) {
854 if (se->on_rq)
855 break;
856 cfs_rq = cfs_rq_of(se);
857 enqueue_entity(cfs_rq, se, wakeup);
858 wakeup = 1;
861 hrtick_start_fair(rq, rq->curr);
865 * The dequeue_task method is called before nr_running is
866 * decreased. We remove the task from the rbtree and
867 * update the fair scheduling stats:
869 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
871 struct cfs_rq *cfs_rq;
872 struct sched_entity *se = &p->se;
874 for_each_sched_entity(se) {
875 cfs_rq = cfs_rq_of(se);
876 dequeue_entity(cfs_rq, se, sleep);
877 /* Don't dequeue parent if it has other entities besides us */
878 if (cfs_rq->load.weight)
879 break;
880 sleep = 1;
883 hrtick_start_fair(rq, rq->curr);
887 * sched_yield() support is very simple - we dequeue and enqueue.
889 * If compat_yield is turned on then we requeue to the end of the tree.
891 static void yield_task_fair(struct rq *rq)
893 struct task_struct *curr = rq->curr;
894 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
895 struct sched_entity *rightmost, *se = &curr->se;
898 * Are we the only task in the tree?
900 if (unlikely(cfs_rq->nr_running == 1))
901 return;
903 if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
904 __update_rq_clock(rq);
906 * Update run-time statistics of the 'current'.
908 update_curr(cfs_rq);
910 return;
913 * Find the rightmost entry in the rbtree:
915 rightmost = __pick_last_entity(cfs_rq);
917 * Already in the rightmost position?
919 if (unlikely(rightmost->vruntime < se->vruntime))
920 return;
923 * Minimally necessary key value to be last in the tree:
924 * Upon rescheduling, sched_class::put_prev_task() will place
925 * 'current' within the tree based on its new key value.
927 se->vruntime = rightmost->vruntime + 1;
931 * wake_idle() will wake a task on an idle cpu if task->cpu is
932 * not idle and an idle cpu is available. The span of cpus to
933 * search starts with cpus closest then further out as needed,
934 * so we always favor a closer, idle cpu.
936 * Returns the CPU we should wake onto.
938 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
939 static int wake_idle(int cpu, struct task_struct *p)
941 cpumask_t tmp;
942 struct sched_domain *sd;
943 int i;
946 * If it is idle, then it is the best cpu to run this task.
948 * This cpu is also the best, if it has more than one task already.
949 * Siblings must be also busy(in most cases) as they didn't already
950 * pickup the extra load from this cpu and hence we need not check
951 * sibling runqueue info. This will avoid the checks and cache miss
952 * penalities associated with that.
954 if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
955 return cpu;
957 for_each_domain(cpu, sd) {
958 if (sd->flags & SD_WAKE_IDLE) {
959 cpus_and(tmp, sd->span, p->cpus_allowed);
960 for_each_cpu_mask(i, tmp) {
961 if (idle_cpu(i)) {
962 if (i != task_cpu(p)) {
963 schedstat_inc(p,
964 se.nr_wakeups_idle);
966 return i;
969 } else {
970 break;
973 return cpu;
975 #else
976 static inline int wake_idle(int cpu, struct task_struct *p)
978 return cpu;
980 #endif
982 #ifdef CONFIG_SMP
983 static int select_task_rq_fair(struct task_struct *p, int sync)
985 int cpu, this_cpu;
986 struct rq *rq;
987 struct sched_domain *sd, *this_sd = NULL;
988 int new_cpu;
990 cpu = task_cpu(p);
991 rq = task_rq(p);
992 this_cpu = smp_processor_id();
993 new_cpu = cpu;
995 if (cpu == this_cpu)
996 goto out_set_cpu;
998 for_each_domain(this_cpu, sd) {
999 if (cpu_isset(cpu, sd->span)) {
1000 this_sd = sd;
1001 break;
1005 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1006 goto out_set_cpu;
1009 * Check for affine wakeup and passive balancing possibilities.
1011 if (this_sd) {
1012 int idx = this_sd->wake_idx;
1013 unsigned int imbalance;
1014 unsigned long load, this_load;
1016 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1018 load = source_load(cpu, idx);
1019 this_load = target_load(this_cpu, idx);
1021 new_cpu = this_cpu; /* Wake to this CPU if we can */
1023 if (this_sd->flags & SD_WAKE_AFFINE) {
1024 unsigned long tl = this_load;
1025 unsigned long tl_per_task;
1028 * Attract cache-cold tasks on sync wakeups:
1030 if (sync && !task_hot(p, rq->clock, this_sd))
1031 goto out_set_cpu;
1033 schedstat_inc(p, se.nr_wakeups_affine_attempts);
1034 tl_per_task = cpu_avg_load_per_task(this_cpu);
1037 * If sync wakeup then subtract the (maximum possible)
1038 * effect of the currently running task from the load
1039 * of the current CPU:
1041 if (sync)
1042 tl -= current->se.load.weight;
1044 if ((tl <= load &&
1045 tl + target_load(cpu, idx) <= tl_per_task) ||
1046 100*(tl + p->se.load.weight) <= imbalance*load) {
1048 * This domain has SD_WAKE_AFFINE and
1049 * p is cache cold in this domain, and
1050 * there is no bad imbalance.
1052 schedstat_inc(this_sd, ttwu_move_affine);
1053 schedstat_inc(p, se.nr_wakeups_affine);
1054 goto out_set_cpu;
1059 * Start passive balancing when half the imbalance_pct
1060 * limit is reached.
1062 if (this_sd->flags & SD_WAKE_BALANCE) {
1063 if (imbalance*this_load <= 100*load) {
1064 schedstat_inc(this_sd, ttwu_move_balance);
1065 schedstat_inc(p, se.nr_wakeups_passive);
1066 goto out_set_cpu;
1071 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1072 out_set_cpu:
1073 return wake_idle(new_cpu, p);
1075 #endif /* CONFIG_SMP */
1079 * Preempt the current task with a newly woken task if needed:
1081 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p)
1083 struct task_struct *curr = rq->curr;
1084 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1085 struct sched_entity *se = &curr->se, *pse = &p->se;
1086 unsigned long gran;
1088 if (unlikely(rt_prio(p->prio))) {
1089 update_rq_clock(rq);
1090 update_curr(cfs_rq);
1091 resched_task(curr);
1092 return;
1095 cfs_rq_of(pse)->next = pse;
1098 * Batch tasks do not preempt (their preemption is driven by
1099 * the tick):
1101 if (unlikely(p->policy == SCHED_BATCH))
1102 return;
1104 if (!sched_feat(WAKEUP_PREEMPT))
1105 return;
1107 while (!is_same_group(se, pse)) {
1108 se = parent_entity(se);
1109 pse = parent_entity(pse);
1112 gran = sysctl_sched_wakeup_granularity;
1114 * More easily preempt - nice tasks, while not making
1115 * it harder for + nice tasks.
1117 if (unlikely(se->load.weight > NICE_0_LOAD))
1118 gran = calc_delta_fair(gran, &se->load);
1120 if (pse->vruntime + gran < se->vruntime)
1121 resched_task(curr);
1124 static struct task_struct *pick_next_task_fair(struct rq *rq)
1126 struct task_struct *p;
1127 struct cfs_rq *cfs_rq = &rq->cfs;
1128 struct sched_entity *se;
1130 if (unlikely(!cfs_rq->nr_running))
1131 return NULL;
1133 do {
1134 se = pick_next_entity(cfs_rq);
1135 cfs_rq = group_cfs_rq(se);
1136 } while (cfs_rq);
1138 p = task_of(se);
1139 hrtick_start_fair(rq, p);
1141 return p;
1145 * Account for a descheduled task:
1147 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
1149 struct sched_entity *se = &prev->se;
1150 struct cfs_rq *cfs_rq;
1152 for_each_sched_entity(se) {
1153 cfs_rq = cfs_rq_of(se);
1154 put_prev_entity(cfs_rq, se);
1158 #ifdef CONFIG_SMP
1159 /**************************************************
1160 * Fair scheduling class load-balancing methods:
1164 * Load-balancing iterator. Note: while the runqueue stays locked
1165 * during the whole iteration, the current task might be
1166 * dequeued so the iterator has to be dequeue-safe. Here we
1167 * achieve that by always pre-iterating before returning
1168 * the current task:
1170 static struct task_struct *
1171 __load_balance_iterator(struct cfs_rq *cfs_rq, struct rb_node *curr)
1173 struct task_struct *p;
1175 if (!curr)
1176 return NULL;
1178 p = rb_entry(curr, struct task_struct, se.run_node);
1179 cfs_rq->rb_load_balance_curr = rb_next(curr);
1181 return p;
1184 static struct task_struct *load_balance_start_fair(void *arg)
1186 struct cfs_rq *cfs_rq = arg;
1188 return __load_balance_iterator(cfs_rq, first_fair(cfs_rq));
1191 static struct task_struct *load_balance_next_fair(void *arg)
1193 struct cfs_rq *cfs_rq = arg;
1195 return __load_balance_iterator(cfs_rq, cfs_rq->rb_load_balance_curr);
1198 #ifdef CONFIG_FAIR_GROUP_SCHED
1199 static int cfs_rq_best_prio(struct cfs_rq *cfs_rq)
1201 struct sched_entity *curr;
1202 struct task_struct *p;
1204 if (!cfs_rq->nr_running || !first_fair(cfs_rq))
1205 return MAX_PRIO;
1207 curr = cfs_rq->curr;
1208 if (!curr)
1209 curr = __pick_next_entity(cfs_rq);
1211 p = task_of(curr);
1213 return p->prio;
1215 #endif
1217 static unsigned long
1218 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1219 unsigned long max_load_move,
1220 struct sched_domain *sd, enum cpu_idle_type idle,
1221 int *all_pinned, int *this_best_prio)
1223 struct cfs_rq *busy_cfs_rq;
1224 long rem_load_move = max_load_move;
1225 struct rq_iterator cfs_rq_iterator;
1227 cfs_rq_iterator.start = load_balance_start_fair;
1228 cfs_rq_iterator.next = load_balance_next_fair;
1230 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
1231 #ifdef CONFIG_FAIR_GROUP_SCHED
1232 struct cfs_rq *this_cfs_rq;
1233 long imbalance;
1234 unsigned long maxload;
1236 this_cfs_rq = cpu_cfs_rq(busy_cfs_rq, this_cpu);
1238 imbalance = busy_cfs_rq->load.weight - this_cfs_rq->load.weight;
1239 /* Don't pull if this_cfs_rq has more load than busy_cfs_rq */
1240 if (imbalance <= 0)
1241 continue;
1243 /* Don't pull more than imbalance/2 */
1244 imbalance /= 2;
1245 maxload = min(rem_load_move, imbalance);
1247 *this_best_prio = cfs_rq_best_prio(this_cfs_rq);
1248 #else
1249 # define maxload rem_load_move
1250 #endif
1252 * pass busy_cfs_rq argument into
1253 * load_balance_[start|next]_fair iterators
1255 cfs_rq_iterator.arg = busy_cfs_rq;
1256 rem_load_move -= balance_tasks(this_rq, this_cpu, busiest,
1257 maxload, sd, idle, all_pinned,
1258 this_best_prio,
1259 &cfs_rq_iterator);
1261 if (rem_load_move <= 0)
1262 break;
1265 return max_load_move - rem_load_move;
1268 static int
1269 move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1270 struct sched_domain *sd, enum cpu_idle_type idle)
1272 struct cfs_rq *busy_cfs_rq;
1273 struct rq_iterator cfs_rq_iterator;
1275 cfs_rq_iterator.start = load_balance_start_fair;
1276 cfs_rq_iterator.next = load_balance_next_fair;
1278 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
1280 * pass busy_cfs_rq argument into
1281 * load_balance_[start|next]_fair iterators
1283 cfs_rq_iterator.arg = busy_cfs_rq;
1284 if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
1285 &cfs_rq_iterator))
1286 return 1;
1289 return 0;
1291 #endif
1294 * scheduler tick hitting a task of our scheduling class:
1296 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
1298 struct cfs_rq *cfs_rq;
1299 struct sched_entity *se = &curr->se;
1301 for_each_sched_entity(se) {
1302 cfs_rq = cfs_rq_of(se);
1303 entity_tick(cfs_rq, se, queued);
1307 #define swap(a, b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)
1310 * Share the fairness runtime between parent and child, thus the
1311 * total amount of pressure for CPU stays equal - new tasks
1312 * get a chance to run but frequent forkers are not allowed to
1313 * monopolize the CPU. Note: the parent runqueue is locked,
1314 * the child is not running yet.
1316 static void task_new_fair(struct rq *rq, struct task_struct *p)
1318 struct cfs_rq *cfs_rq = task_cfs_rq(p);
1319 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
1320 int this_cpu = smp_processor_id();
1322 sched_info_queued(p);
1324 update_curr(cfs_rq);
1325 place_entity(cfs_rq, se, 1);
1327 /* 'curr' will be NULL if the child belongs to a different group */
1328 if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
1329 curr && curr->vruntime < se->vruntime) {
1331 * Upon rescheduling, sched_class::put_prev_task() will place
1332 * 'current' within the tree based on its new key value.
1334 swap(curr->vruntime, se->vruntime);
1337 enqueue_task_fair(rq, p, 0);
1338 resched_task(rq->curr);
1342 * Priority of the task has changed. Check to see if we preempt
1343 * the current task.
1345 static void prio_changed_fair(struct rq *rq, struct task_struct *p,
1346 int oldprio, int running)
1349 * Reschedule if we are currently running on this runqueue and
1350 * our priority decreased, or if we are not currently running on
1351 * this runqueue and our priority is higher than the current's
1353 if (running) {
1354 if (p->prio > oldprio)
1355 resched_task(rq->curr);
1356 } else
1357 check_preempt_curr(rq, p);
1361 * We switched to the sched_fair class.
1363 static void switched_to_fair(struct rq *rq, struct task_struct *p,
1364 int running)
1367 * We were most likely switched from sched_rt, so
1368 * kick off the schedule if running, otherwise just see
1369 * if we can still preempt the current task.
1371 if (running)
1372 resched_task(rq->curr);
1373 else
1374 check_preempt_curr(rq, p);
1377 /* Account for a task changing its policy or group.
1379 * This routine is mostly called to set cfs_rq->curr field when a task
1380 * migrates between groups/classes.
1382 static void set_curr_task_fair(struct rq *rq)
1384 struct sched_entity *se = &rq->curr->se;
1386 for_each_sched_entity(se)
1387 set_next_entity(cfs_rq_of(se), se);
1390 #ifdef CONFIG_FAIR_GROUP_SCHED
1391 static void moved_group_fair(struct task_struct *p)
1393 struct cfs_rq *cfs_rq = task_cfs_rq(p);
1395 update_curr(cfs_rq);
1396 place_entity(cfs_rq, &p->se, 1);
1398 #endif
1401 * All the scheduling class methods:
1403 static const struct sched_class fair_sched_class = {
1404 .next = &idle_sched_class,
1405 .enqueue_task = enqueue_task_fair,
1406 .dequeue_task = dequeue_task_fair,
1407 .yield_task = yield_task_fair,
1408 #ifdef CONFIG_SMP
1409 .select_task_rq = select_task_rq_fair,
1410 #endif /* CONFIG_SMP */
1412 .check_preempt_curr = check_preempt_wakeup,
1414 .pick_next_task = pick_next_task_fair,
1415 .put_prev_task = put_prev_task_fair,
1417 #ifdef CONFIG_SMP
1418 .load_balance = load_balance_fair,
1419 .move_one_task = move_one_task_fair,
1420 #endif
1422 .set_curr_task = set_curr_task_fair,
1423 .task_tick = task_tick_fair,
1424 .task_new = task_new_fair,
1426 .prio_changed = prio_changed_fair,
1427 .switched_to = switched_to_fair,
1429 #ifdef CONFIG_FAIR_GROUP_SCHED
1430 .moved_group = moved_group_fair,
1431 #endif
1434 #ifdef CONFIG_SCHED_DEBUG
1435 static void print_cfs_stats(struct seq_file *m, int cpu)
1437 struct cfs_rq *cfs_rq;
1439 #ifdef CONFIG_FAIR_GROUP_SCHED
1440 print_cfs_rq(m, cpu, &cpu_rq(cpu)->cfs);
1441 #endif
1442 rcu_read_lock();
1443 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
1444 print_cfs_rq(m, cpu, cfs_rq);
1445 rcu_read_unlock();
1447 #endif