2 * linux/arch/arm/mm/mmu.c
4 * Copyright (C) 1995-2005 Russell King
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/init.h>
14 #include <linux/bootmem.h>
15 #include <linux/mman.h>
16 #include <linux/nodemask.h>
18 #include <asm/mach-types.h>
19 #include <asm/setup.h>
20 #include <asm/sizes.h>
23 #include <asm/mach/arch.h>
24 #include <asm/mach/map.h>
28 DEFINE_PER_CPU(struct mmu_gather
, mmu_gathers
);
30 extern void _stext
, _etext
, __data_start
, _end
;
31 extern pgd_t swapper_pg_dir
[PTRS_PER_PGD
];
34 * empty_zero_page is a special page that is used for
35 * zero-initialized data and COW.
37 struct page
*empty_zero_page
;
40 * The pmd table for the upper-most set of pages.
44 #define CPOLICY_UNCACHED 0
45 #define CPOLICY_BUFFERED 1
46 #define CPOLICY_WRITETHROUGH 2
47 #define CPOLICY_WRITEBACK 3
48 #define CPOLICY_WRITEALLOC 4
50 static unsigned int cachepolicy __initdata
= CPOLICY_WRITEBACK
;
51 static unsigned int ecc_mask __initdata
= 0;
53 pgprot_t pgprot_kernel
;
55 EXPORT_SYMBOL(pgprot_user
);
56 EXPORT_SYMBOL(pgprot_kernel
);
59 const char policy
[16];
65 static struct cachepolicy cache_policies
[] __initdata
= {
69 .pmd
= PMD_SECT_UNCACHED
,
74 .pmd
= PMD_SECT_BUFFERED
,
75 .pte
= PTE_BUFFERABLE
,
77 .policy
= "writethrough",
82 .policy
= "writeback",
85 .pte
= PTE_BUFFERABLE
|PTE_CACHEABLE
,
87 .policy
= "writealloc",
90 .pte
= PTE_BUFFERABLE
|PTE_CACHEABLE
,
95 * These are useful for identifying cache coherency
96 * problems by allowing the cache or the cache and
97 * writebuffer to be turned off. (Note: the write
98 * buffer should not be on and the cache off).
100 static void __init
early_cachepolicy(char **p
)
104 for (i
= 0; i
< ARRAY_SIZE(cache_policies
); i
++) {
105 int len
= strlen(cache_policies
[i
].policy
);
107 if (memcmp(*p
, cache_policies
[i
].policy
, len
) == 0) {
109 cr_alignment
&= ~cache_policies
[i
].cr_mask
;
110 cr_no_alignment
&= ~cache_policies
[i
].cr_mask
;
115 if (i
== ARRAY_SIZE(cache_policies
))
116 printk(KERN_ERR
"ERROR: unknown or unsupported cache policy\n");
117 if (cpu_architecture() >= CPU_ARCH_ARMv6
) {
118 printk(KERN_WARNING
"Only cachepolicy=writeback supported on ARMv6 and later\n");
119 cachepolicy
= CPOLICY_WRITEBACK
;
122 set_cr(cr_alignment
);
124 __early_param("cachepolicy=", early_cachepolicy
);
126 static void __init
early_nocache(char **__unused
)
128 char *p
= "buffered";
129 printk(KERN_WARNING
"nocache is deprecated; use cachepolicy=%s\n", p
);
130 early_cachepolicy(&p
);
132 __early_param("nocache", early_nocache
);
134 static void __init
early_nowrite(char **__unused
)
136 char *p
= "uncached";
137 printk(KERN_WARNING
"nowb is deprecated; use cachepolicy=%s\n", p
);
138 early_cachepolicy(&p
);
140 __early_param("nowb", early_nowrite
);
142 static void __init
early_ecc(char **p
)
144 if (memcmp(*p
, "on", 2) == 0) {
145 ecc_mask
= PMD_PROTECTION
;
147 } else if (memcmp(*p
, "off", 3) == 0) {
152 __early_param("ecc=", early_ecc
);
154 static int __init
noalign_setup(char *__unused
)
156 cr_alignment
&= ~CR_A
;
157 cr_no_alignment
&= ~CR_A
;
158 set_cr(cr_alignment
);
161 __setup("noalign", noalign_setup
);
164 void adjust_cr(unsigned long mask
, unsigned long set
)
172 local_irq_save(flags
);
174 cr_no_alignment
= (cr_no_alignment
& ~mask
) | set
;
175 cr_alignment
= (cr_alignment
& ~mask
) | set
;
177 set_cr((get_cr() & ~mask
) | set
);
179 local_irq_restore(flags
);
183 #define PROT_PTE_DEVICE L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_WRITE
184 #define PROT_SECT_DEVICE PMD_TYPE_SECT|PMD_SECT_XN|PMD_SECT_AP_WRITE
186 static struct mem_type mem_types
[] = {
187 [MT_DEVICE
] = { /* Strongly ordered / ARMv6 shared device */
188 .prot_pte
= PROT_PTE_DEVICE
,
189 .prot_l1
= PMD_TYPE_TABLE
,
190 .prot_sect
= PROT_SECT_DEVICE
| PMD_SECT_UNCACHED
,
193 [MT_DEVICE_NONSHARED
] = { /* ARMv6 non-shared device */
194 .prot_pte
= PROT_PTE_DEVICE
,
195 .prot_pte_ext
= PTE_EXT_TEX(2),
196 .prot_l1
= PMD_TYPE_TABLE
,
197 .prot_sect
= PROT_SECT_DEVICE
| PMD_SECT_TEX(2),
200 [MT_DEVICE_CACHED
] = { /* ioremap_cached */
201 .prot_pte
= PROT_PTE_DEVICE
| L_PTE_CACHEABLE
| L_PTE_BUFFERABLE
,
202 .prot_l1
= PMD_TYPE_TABLE
,
203 .prot_sect
= PROT_SECT_DEVICE
| PMD_SECT_WB
,
206 [MT_DEVICE_IXP2000
] = { /* IXP2400 requires XCB=101 for on-chip I/O */
207 .prot_pte
= PROT_PTE_DEVICE
,
208 .prot_l1
= PMD_TYPE_TABLE
,
209 .prot_sect
= PROT_SECT_DEVICE
| PMD_SECT_BUFFERABLE
|
214 .prot_sect
= PMD_TYPE_SECT
| PMD_SECT_XN
,
215 .domain
= DOMAIN_KERNEL
,
218 .prot_sect
= PMD_TYPE_SECT
| PMD_SECT_XN
| PMD_SECT_MINICACHE
,
219 .domain
= DOMAIN_KERNEL
,
222 .prot_pte
= L_PTE_PRESENT
| L_PTE_YOUNG
| L_PTE_DIRTY
|
224 .prot_l1
= PMD_TYPE_TABLE
,
225 .domain
= DOMAIN_USER
,
227 [MT_HIGH_VECTORS
] = {
228 .prot_pte
= L_PTE_PRESENT
| L_PTE_YOUNG
| L_PTE_DIRTY
|
229 L_PTE_USER
| L_PTE_EXEC
,
230 .prot_l1
= PMD_TYPE_TABLE
,
231 .domain
= DOMAIN_USER
,
234 .prot_sect
= PMD_TYPE_SECT
| PMD_SECT_AP_WRITE
,
235 .domain
= DOMAIN_KERNEL
,
238 .prot_sect
= PMD_TYPE_SECT
,
239 .domain
= DOMAIN_KERNEL
,
243 const struct mem_type
*get_mem_type(unsigned int type
)
245 return type
< ARRAY_SIZE(mem_types
) ? &mem_types
[type
] : NULL
;
249 * Adjust the PMD section entries according to the CPU in use.
251 static void __init
build_mem_type_table(void)
253 struct cachepolicy
*cp
;
254 unsigned int cr
= get_cr();
255 unsigned int user_pgprot
, kern_pgprot
;
256 int cpu_arch
= cpu_architecture();
259 if (cpu_arch
< CPU_ARCH_ARMv6
) {
260 #if defined(CONFIG_CPU_DCACHE_DISABLE)
261 if (cachepolicy
> CPOLICY_BUFFERED
)
262 cachepolicy
= CPOLICY_BUFFERED
;
263 #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
264 if (cachepolicy
> CPOLICY_WRITETHROUGH
)
265 cachepolicy
= CPOLICY_WRITETHROUGH
;
268 if (cpu_arch
< CPU_ARCH_ARMv5
) {
269 if (cachepolicy
>= CPOLICY_WRITEALLOC
)
270 cachepolicy
= CPOLICY_WRITEBACK
;
275 * ARMv5 and lower, bit 4 must be set for page tables.
276 * (was: cache "update-able on write" bit on ARM610)
277 * However, Xscale cores require this bit to be cleared.
279 if (cpu_is_xscale()) {
280 for (i
= 0; i
< ARRAY_SIZE(mem_types
); i
++) {
281 mem_types
[i
].prot_sect
&= ~PMD_BIT4
;
282 mem_types
[i
].prot_l1
&= ~PMD_BIT4
;
284 } else if (cpu_arch
< CPU_ARCH_ARMv6
) {
285 for (i
= 0; i
< ARRAY_SIZE(mem_types
); i
++) {
286 if (mem_types
[i
].prot_l1
)
287 mem_types
[i
].prot_l1
|= PMD_BIT4
;
288 if (mem_types
[i
].prot_sect
)
289 mem_types
[i
].prot_sect
|= PMD_BIT4
;
293 cp
= &cache_policies
[cachepolicy
];
294 kern_pgprot
= user_pgprot
= cp
->pte
;
297 * Enable CPU-specific coherency if supported.
298 * (Only available on XSC3 at the moment.)
300 if (arch_is_coherent()) {
302 mem_types
[MT_MEMORY
].prot_sect
|= PMD_SECT_S
;
303 mem_types
[MT_MEMORY
].prot_pte
|= L_PTE_SHARED
;
308 * ARMv6 and above have extended page tables.
310 if (cpu_arch
>= CPU_ARCH_ARMv6
&& (cr
& CR_XP
)) {
312 * Mark cache clean areas and XIP ROM read only
313 * from SVC mode and no access from userspace.
315 mem_types
[MT_ROM
].prot_sect
|= PMD_SECT_APX
|PMD_SECT_AP_WRITE
;
316 mem_types
[MT_MINICLEAN
].prot_sect
|= PMD_SECT_APX
|PMD_SECT_AP_WRITE
;
317 mem_types
[MT_CACHECLEAN
].prot_sect
|= PMD_SECT_APX
|PMD_SECT_AP_WRITE
;
320 * Mark the device area as "shared device"
322 mem_types
[MT_DEVICE
].prot_pte
|= L_PTE_BUFFERABLE
;
323 mem_types
[MT_DEVICE
].prot_sect
|= PMD_SECT_BUFFERED
;
327 * Mark memory with the "shared" attribute for SMP systems
329 user_pgprot
|= L_PTE_SHARED
;
330 kern_pgprot
|= L_PTE_SHARED
;
331 mem_types
[MT_MEMORY
].prot_sect
|= PMD_SECT_S
;
335 for (i
= 0; i
< 16; i
++) {
336 unsigned long v
= pgprot_val(protection_map
[i
]);
337 v
= (v
& ~(L_PTE_BUFFERABLE
|L_PTE_CACHEABLE
)) | user_pgprot
;
338 protection_map
[i
] = __pgprot(v
);
341 mem_types
[MT_LOW_VECTORS
].prot_pte
|= kern_pgprot
;
342 mem_types
[MT_HIGH_VECTORS
].prot_pte
|= kern_pgprot
;
344 if (cpu_arch
>= CPU_ARCH_ARMv5
) {
347 * Only use write-through for non-SMP systems
349 mem_types
[MT_LOW_VECTORS
].prot_pte
&= ~L_PTE_BUFFERABLE
;
350 mem_types
[MT_HIGH_VECTORS
].prot_pte
&= ~L_PTE_BUFFERABLE
;
353 mem_types
[MT_MINICLEAN
].prot_sect
&= ~PMD_SECT_TEX(1);
356 pgprot_user
= __pgprot(L_PTE_PRESENT
| L_PTE_YOUNG
| user_pgprot
);
357 pgprot_kernel
= __pgprot(L_PTE_PRESENT
| L_PTE_YOUNG
|
358 L_PTE_DIRTY
| L_PTE_WRITE
|
359 L_PTE_EXEC
| kern_pgprot
);
361 mem_types
[MT_LOW_VECTORS
].prot_l1
|= ecc_mask
;
362 mem_types
[MT_HIGH_VECTORS
].prot_l1
|= ecc_mask
;
363 mem_types
[MT_MEMORY
].prot_sect
|= ecc_mask
| cp
->pmd
;
364 mem_types
[MT_ROM
].prot_sect
|= cp
->pmd
;
368 mem_types
[MT_CACHECLEAN
].prot_sect
|= PMD_SECT_WT
;
372 mem_types
[MT_CACHECLEAN
].prot_sect
|= PMD_SECT_WB
;
375 printk("Memory policy: ECC %sabled, Data cache %s\n",
376 ecc_mask
? "en" : "dis", cp
->policy
);
378 for (i
= 0; i
< ARRAY_SIZE(mem_types
); i
++) {
379 struct mem_type
*t
= &mem_types
[i
];
381 t
->prot_l1
|= PMD_DOMAIN(t
->domain
);
383 t
->prot_sect
|= PMD_DOMAIN(t
->domain
);
387 #define vectors_base() (vectors_high() ? 0xffff0000 : 0)
389 static void __init
alloc_init_pte(pmd_t
*pmd
, unsigned long addr
,
390 unsigned long end
, unsigned long pfn
,
391 const struct mem_type
*type
)
395 if (pmd_none(*pmd
)) {
396 pte
= alloc_bootmem_low_pages(2 * PTRS_PER_PTE
* sizeof(pte_t
));
397 __pmd_populate(pmd
, __pa(pte
) | type
->prot_l1
);
400 pte
= pte_offset_kernel(pmd
, addr
);
402 set_pte_ext(pte
, pfn_pte(pfn
, __pgprot(type
->prot_pte
)),
405 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
408 static void __init
alloc_init_section(pgd_t
*pgd
, unsigned long addr
,
409 unsigned long end
, unsigned long phys
,
410 const struct mem_type
*type
)
412 pmd_t
*pmd
= pmd_offset(pgd
, addr
);
415 * Try a section mapping - end, addr and phys must all be aligned
416 * to a section boundary. Note that PMDs refer to the individual
417 * L1 entries, whereas PGDs refer to a group of L1 entries making
418 * up one logical pointer to an L2 table.
420 if (((addr
| end
| phys
) & ~SECTION_MASK
) == 0) {
423 if (addr
& SECTION_SIZE
)
427 *pmd
= __pmd(phys
| type
->prot_sect
);
428 phys
+= SECTION_SIZE
;
429 } while (pmd
++, addr
+= SECTION_SIZE
, addr
!= end
);
434 * No need to loop; pte's aren't interested in the
435 * individual L1 entries.
437 alloc_init_pte(pmd
, addr
, end
, __phys_to_pfn(phys
), type
);
441 static void __init
create_36bit_mapping(struct map_desc
*md
,
442 const struct mem_type
*type
)
444 unsigned long phys
, addr
, length
, end
;
448 phys
= (unsigned long)__pfn_to_phys(md
->pfn
);
449 length
= PAGE_ALIGN(md
->length
);
451 if (!(cpu_architecture() >= CPU_ARCH_ARMv6
|| cpu_is_xsc3())) {
452 printk(KERN_ERR
"MM: CPU does not support supersection "
453 "mapping for 0x%08llx at 0x%08lx\n",
454 __pfn_to_phys((u64
)md
->pfn
), addr
);
458 /* N.B. ARMv6 supersections are only defined to work with domain 0.
459 * Since domain assignments can in fact be arbitrary, the
460 * 'domain == 0' check below is required to insure that ARMv6
461 * supersections are only allocated for domain 0 regardless
462 * of the actual domain assignments in use.
465 printk(KERN_ERR
"MM: invalid domain in supersection "
466 "mapping for 0x%08llx at 0x%08lx\n",
467 __pfn_to_phys((u64
)md
->pfn
), addr
);
471 if ((addr
| length
| __pfn_to_phys(md
->pfn
)) & ~SUPERSECTION_MASK
) {
472 printk(KERN_ERR
"MM: cannot create mapping for "
473 "0x%08llx at 0x%08lx invalid alignment\n",
474 __pfn_to_phys((u64
)md
->pfn
), addr
);
479 * Shift bits [35:32] of address into bits [23:20] of PMD
482 phys
|= (((md
->pfn
>> (32 - PAGE_SHIFT
)) & 0xF) << 20);
484 pgd
= pgd_offset_k(addr
);
487 pmd_t
*pmd
= pmd_offset(pgd
, addr
);
490 for (i
= 0; i
< 16; i
++)
491 *pmd
++ = __pmd(phys
| type
->prot_sect
| PMD_SECT_SUPER
);
493 addr
+= SUPERSECTION_SIZE
;
494 phys
+= SUPERSECTION_SIZE
;
495 pgd
+= SUPERSECTION_SIZE
>> PGDIR_SHIFT
;
496 } while (addr
!= end
);
500 * Create the page directory entries and any necessary
501 * page tables for the mapping specified by `md'. We
502 * are able to cope here with varying sizes and address
503 * offsets, and we take full advantage of sections and
506 void __init
create_mapping(struct map_desc
*md
)
508 unsigned long phys
, addr
, length
, end
;
509 const struct mem_type
*type
;
512 if (md
->virtual != vectors_base() && md
->virtual < TASK_SIZE
) {
513 printk(KERN_WARNING
"BUG: not creating mapping for "
514 "0x%08llx at 0x%08lx in user region\n",
515 __pfn_to_phys((u64
)md
->pfn
), md
->virtual);
519 if ((md
->type
== MT_DEVICE
|| md
->type
== MT_ROM
) &&
520 md
->virtual >= PAGE_OFFSET
&& md
->virtual < VMALLOC_END
) {
521 printk(KERN_WARNING
"BUG: mapping for 0x%08llx at 0x%08lx "
522 "overlaps vmalloc space\n",
523 __pfn_to_phys((u64
)md
->pfn
), md
->virtual);
526 type
= &mem_types
[md
->type
];
529 * Catch 36-bit addresses
531 if (md
->pfn
>= 0x100000) {
532 create_36bit_mapping(md
, type
);
536 addr
= md
->virtual & PAGE_MASK
;
537 phys
= (unsigned long)__pfn_to_phys(md
->pfn
);
538 length
= PAGE_ALIGN(md
->length
+ (md
->virtual & ~PAGE_MASK
));
540 if (type
->prot_l1
== 0 && ((addr
| phys
| length
) & ~SECTION_MASK
)) {
541 printk(KERN_WARNING
"BUG: map for 0x%08lx at 0x%08lx can not "
542 "be mapped using pages, ignoring.\n",
543 __pfn_to_phys(md
->pfn
), addr
);
547 pgd
= pgd_offset_k(addr
);
550 unsigned long next
= pgd_addr_end(addr
, end
);
552 alloc_init_section(pgd
, addr
, next
, phys
, type
);
556 } while (pgd
++, addr
!= end
);
560 * Create the architecture specific mappings
562 void __init
iotable_init(struct map_desc
*io_desc
, int nr
)
566 for (i
= 0; i
< nr
; i
++)
567 create_mapping(io_desc
+ i
);
570 static inline void prepare_page_table(struct meminfo
*mi
)
575 * Clear out all the mappings below the kernel image.
577 for (addr
= 0; addr
< MODULE_START
; addr
+= PGDIR_SIZE
)
578 pmd_clear(pmd_off_k(addr
));
580 #ifdef CONFIG_XIP_KERNEL
581 /* The XIP kernel is mapped in the module area -- skip over it */
582 addr
= ((unsigned long)&_etext
+ PGDIR_SIZE
- 1) & PGDIR_MASK
;
584 for ( ; addr
< PAGE_OFFSET
; addr
+= PGDIR_SIZE
)
585 pmd_clear(pmd_off_k(addr
));
588 * Clear out all the kernel space mappings, except for the first
589 * memory bank, up to the end of the vmalloc region.
591 for (addr
= __phys_to_virt(mi
->bank
[0].start
+ mi
->bank
[0].size
);
592 addr
< VMALLOC_END
; addr
+= PGDIR_SIZE
)
593 pmd_clear(pmd_off_k(addr
));
597 * Reserve the various regions of node 0
599 void __init
reserve_node_zero(pg_data_t
*pgdat
)
601 unsigned long res_size
= 0;
604 * Register the kernel text and data with bootmem.
605 * Note that this can only be in node 0.
607 #ifdef CONFIG_XIP_KERNEL
608 reserve_bootmem_node(pgdat
, __pa(&__data_start
), &_end
- &__data_start
,
611 reserve_bootmem_node(pgdat
, __pa(&_stext
), &_end
- &_stext
,
616 * Reserve the page tables. These are already in use,
617 * and can only be in node 0.
619 reserve_bootmem_node(pgdat
, __pa(swapper_pg_dir
),
620 PTRS_PER_PGD
* sizeof(pgd_t
), BOOTMEM_DEFAULT
);
623 * Hmm... This should go elsewhere, but we really really need to
624 * stop things allocating the low memory; ideally we need a better
625 * implementation of GFP_DMA which does not assume that DMA-able
626 * memory starts at zero.
628 if (machine_is_integrator() || machine_is_cintegrator())
629 res_size
= __pa(swapper_pg_dir
) - PHYS_OFFSET
;
632 * These should likewise go elsewhere. They pre-reserve the
633 * screen memory region at the start of main system memory.
635 if (machine_is_edb7211())
636 res_size
= 0x00020000;
637 if (machine_is_p720t())
638 res_size
= 0x00014000;
640 /* H1940 and RX3715 need to reserve this for suspend */
642 if (machine_is_h1940() || machine_is_rx3715()) {
643 reserve_bootmem_node(pgdat
, 0x30003000, 0x1000,
645 reserve_bootmem_node(pgdat
, 0x30081000, 0x1000,
651 * Because of the SA1111 DMA bug, we want to preserve our
652 * precious DMA-able memory...
654 res_size
= __pa(swapper_pg_dir
) - PHYS_OFFSET
;
657 reserve_bootmem_node(pgdat
, PHYS_OFFSET
, res_size
,
662 * Set up device the mappings. Since we clear out the page tables for all
663 * mappings above VMALLOC_END, we will remove any debug device mappings.
664 * This means you have to be careful how you debug this function, or any
665 * called function. This means you can't use any function or debugging
666 * method which may touch any device, otherwise the kernel _will_ crash.
668 static void __init
devicemaps_init(struct machine_desc
*mdesc
)
675 * Allocate the vector page early.
677 vectors
= alloc_bootmem_low_pages(PAGE_SIZE
);
680 for (addr
= VMALLOC_END
; addr
; addr
+= PGDIR_SIZE
)
681 pmd_clear(pmd_off_k(addr
));
684 * Map the kernel if it is XIP.
685 * It is always first in the modulearea.
687 #ifdef CONFIG_XIP_KERNEL
688 map
.pfn
= __phys_to_pfn(CONFIG_XIP_PHYS_ADDR
& SECTION_MASK
);
689 map
.virtual = MODULE_START
;
690 map
.length
= ((unsigned long)&_etext
- map
.virtual + ~SECTION_MASK
) & SECTION_MASK
;
692 create_mapping(&map
);
696 * Map the cache flushing regions.
699 map
.pfn
= __phys_to_pfn(FLUSH_BASE_PHYS
);
700 map
.virtual = FLUSH_BASE
;
702 map
.type
= MT_CACHECLEAN
;
703 create_mapping(&map
);
705 #ifdef FLUSH_BASE_MINICACHE
706 map
.pfn
= __phys_to_pfn(FLUSH_BASE_PHYS
+ SZ_1M
);
707 map
.virtual = FLUSH_BASE_MINICACHE
;
709 map
.type
= MT_MINICLEAN
;
710 create_mapping(&map
);
714 * Create a mapping for the machine vectors at the high-vectors
715 * location (0xffff0000). If we aren't using high-vectors, also
716 * create a mapping at the low-vectors virtual address.
718 map
.pfn
= __phys_to_pfn(virt_to_phys(vectors
));
719 map
.virtual = 0xffff0000;
720 map
.length
= PAGE_SIZE
;
721 map
.type
= MT_HIGH_VECTORS
;
722 create_mapping(&map
);
724 if (!vectors_high()) {
726 map
.type
= MT_LOW_VECTORS
;
727 create_mapping(&map
);
731 * Ask the machine support to map in the statically mapped devices.
737 * Finally flush the caches and tlb to ensure that we're in a
738 * consistent state wrt the writebuffer. This also ensures that
739 * any write-allocated cache lines in the vector page are written
740 * back. After this point, we can start to touch devices again.
742 local_flush_tlb_all();
747 * paging_init() sets up the page tables, initialises the zone memory
748 * maps, and sets up the zero page, bad page and bad page tables.
750 void __init
paging_init(struct meminfo
*mi
, struct machine_desc
*mdesc
)
754 build_mem_type_table();
755 prepare_page_table(mi
);
757 devicemaps_init(mdesc
);
759 top_pmd
= pmd_off_k(0xffff0000);
762 * allocate the zero page. Note that we count on this going ok.
764 zero_page
= alloc_bootmem_low_pages(PAGE_SIZE
);
765 memzero(zero_page
, PAGE_SIZE
);
766 empty_zero_page
= virt_to_page(zero_page
);
767 flush_dcache_page(empty_zero_page
);
771 * In order to soft-boot, we need to insert a 1:1 mapping in place of
772 * the user-mode pages. This will then ensure that we have predictable
773 * results when turning the mmu off
775 void setup_mm_for_reboot(char mode
)
777 unsigned long base_pmdval
;
781 if (current
->mm
&& current
->mm
->pgd
)
782 pgd
= current
->mm
->pgd
;
786 base_pmdval
= PMD_SECT_AP_WRITE
| PMD_SECT_AP_READ
| PMD_TYPE_SECT
;
787 if (cpu_architecture() <= CPU_ARCH_ARMv5TEJ
&& !cpu_is_xscale())
788 base_pmdval
|= PMD_BIT4
;
790 for (i
= 0; i
< FIRST_USER_PGD_NR
+ USER_PTRS_PER_PGD
; i
++, pgd
++) {
791 unsigned long pmdval
= (i
<< PGDIR_SHIFT
) | base_pmdval
;
794 pmd
= pmd_off(pgd
, i
<< PGDIR_SHIFT
);
795 pmd
[0] = __pmd(pmdval
);
796 pmd
[1] = __pmd(pmdval
+ (1 << (PGDIR_SHIFT
- 1)));
797 flush_pmd_entry(pmd
);