[ARM] More sparse fixes
[linux-2.6/sactl.git] / arch / arm / kernel / smp.c
blobf5fc57e0fe412bc1ea0b5fb28b65705a165b317c
1 /*
2 * linux/arch/arm/kernel/smp.c
4 * Copyright (C) 2002 ARM Limited, All Rights Reserved.
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10 #include <linux/config.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/spinlock.h>
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/cache.h>
17 #include <linux/profile.h>
18 #include <linux/errno.h>
19 #include <linux/mm.h>
20 #include <linux/cpu.h>
21 #include <linux/smp.h>
22 #include <linux/seq_file.h>
24 #include <asm/atomic.h>
25 #include <asm/cacheflush.h>
26 #include <asm/cpu.h>
27 #include <asm/mmu_context.h>
28 #include <asm/pgtable.h>
29 #include <asm/pgalloc.h>
30 #include <asm/processor.h>
31 #include <asm/tlbflush.h>
32 #include <asm/ptrace.h>
35 * bitmask of present and online CPUs.
36 * The present bitmask indicates that the CPU is physically present.
37 * The online bitmask indicates that the CPU is up and running.
39 cpumask_t cpu_possible_map;
40 cpumask_t cpu_online_map;
43 * as from 2.5, kernels no longer have an init_tasks structure
44 * so we need some other way of telling a new secondary core
45 * where to place its SVC stack
47 struct secondary_data secondary_data;
50 * structures for inter-processor calls
51 * - A collection of single bit ipi messages.
53 struct ipi_data {
54 spinlock_t lock;
55 unsigned long ipi_count;
56 unsigned long bits;
59 static DEFINE_PER_CPU(struct ipi_data, ipi_data) = {
60 .lock = SPIN_LOCK_UNLOCKED,
63 enum ipi_msg_type {
64 IPI_TIMER,
65 IPI_RESCHEDULE,
66 IPI_CALL_FUNC,
67 IPI_CPU_STOP,
70 struct smp_call_struct {
71 void (*func)(void *info);
72 void *info;
73 int wait;
74 cpumask_t pending;
75 cpumask_t unfinished;
78 static struct smp_call_struct * volatile smp_call_function_data;
79 static DEFINE_SPINLOCK(smp_call_function_lock);
81 int __cpuinit __cpu_up(unsigned int cpu)
83 struct cpuinfo_arm *ci = &per_cpu(cpu_data, cpu);
84 struct task_struct *idle = ci->idle;
85 pgd_t *pgd;
86 pmd_t *pmd;
87 int ret;
90 * Spawn a new process manually, if not already done.
91 * Grab a pointer to its task struct so we can mess with it
93 if (!idle) {
94 idle = fork_idle(cpu);
95 if (IS_ERR(idle)) {
96 printk(KERN_ERR "CPU%u: fork() failed\n", cpu);
97 return PTR_ERR(idle);
99 ci->idle = idle;
103 * Allocate initial page tables to allow the new CPU to
104 * enable the MMU safely. This essentially means a set
105 * of our "standard" page tables, with the addition of
106 * a 1:1 mapping for the physical address of the kernel.
108 pgd = pgd_alloc(&init_mm);
109 pmd = pmd_offset(pgd, PHYS_OFFSET);
110 *pmd = __pmd((PHYS_OFFSET & PGDIR_MASK) |
111 PMD_TYPE_SECT | PMD_SECT_AP_WRITE);
114 * We need to tell the secondary core where to find
115 * its stack and the page tables.
117 secondary_data.stack = (void *)idle->thread_info + THREAD_START_SP;
118 secondary_data.pgdir = virt_to_phys(pgd);
119 wmb();
122 * Now bring the CPU into our world.
124 ret = boot_secondary(cpu, idle);
125 if (ret == 0) {
126 unsigned long timeout;
129 * CPU was successfully started, wait for it
130 * to come online or time out.
132 timeout = jiffies + HZ;
133 while (time_before(jiffies, timeout)) {
134 if (cpu_online(cpu))
135 break;
137 udelay(10);
138 barrier();
141 if (!cpu_online(cpu))
142 ret = -EIO;
145 secondary_data.stack = NULL;
146 secondary_data.pgdir = 0;
148 *pmd_offset(pgd, PHYS_OFFSET) = __pmd(0);
149 pgd_free(pgd);
151 if (ret) {
152 printk(KERN_CRIT "CPU%u: processor failed to boot\n", cpu);
155 * FIXME: We need to clean up the new idle thread. --rmk
159 return ret;
162 #ifdef CONFIG_HOTPLUG_CPU
164 * __cpu_disable runs on the processor to be shutdown.
166 int __cpuexit __cpu_disable(void)
168 unsigned int cpu = smp_processor_id();
169 struct task_struct *p;
170 int ret;
172 ret = mach_cpu_disable(cpu);
173 if (ret)
174 return ret;
177 * Take this CPU offline. Once we clear this, we can't return,
178 * and we must not schedule until we're ready to give up the cpu.
180 cpu_clear(cpu, cpu_online_map);
183 * OK - migrate IRQs away from this CPU
185 migrate_irqs();
188 * Flush user cache and TLB mappings, and then remove this CPU
189 * from the vm mask set of all processes.
191 flush_cache_all();
192 local_flush_tlb_all();
194 read_lock(&tasklist_lock);
195 for_each_process(p) {
196 if (p->mm)
197 cpu_clear(cpu, p->mm->cpu_vm_mask);
199 read_unlock(&tasklist_lock);
201 return 0;
205 * called on the thread which is asking for a CPU to be shutdown -
206 * waits until shutdown has completed, or it is timed out.
208 void __cpuexit __cpu_die(unsigned int cpu)
210 if (!platform_cpu_kill(cpu))
211 printk("CPU%u: unable to kill\n", cpu);
215 * Called from the idle thread for the CPU which has been shutdown.
217 * Note that we disable IRQs here, but do not re-enable them
218 * before returning to the caller. This is also the behaviour
219 * of the other hotplug-cpu capable cores, so presumably coming
220 * out of idle fixes this.
222 void __cpuexit cpu_die(void)
224 unsigned int cpu = smp_processor_id();
226 local_irq_disable();
227 idle_task_exit();
230 * actual CPU shutdown procedure is at least platform (if not
231 * CPU) specific
233 platform_cpu_die(cpu);
236 * Do not return to the idle loop - jump back to the secondary
237 * cpu initialisation. There's some initialisation which needs
238 * to be repeated to undo the effects of taking the CPU offline.
240 __asm__("mov sp, %0\n"
241 " b secondary_start_kernel"
243 : "r" ((void *)current->thread_info + THREAD_SIZE - 8));
245 #endif /* CONFIG_HOTPLUG_CPU */
248 * This is the secondary CPU boot entry. We're using this CPUs
249 * idle thread stack, but a set of temporary page tables.
251 asmlinkage void __cpuinit secondary_start_kernel(void)
253 struct mm_struct *mm = &init_mm;
254 unsigned int cpu = smp_processor_id();
256 printk("CPU%u: Booted secondary processor\n", cpu);
259 * All kernel threads share the same mm context; grab a
260 * reference and switch to it.
262 atomic_inc(&mm->mm_users);
263 atomic_inc(&mm->mm_count);
264 current->active_mm = mm;
265 cpu_set(cpu, mm->cpu_vm_mask);
266 cpu_switch_mm(mm->pgd, mm);
267 enter_lazy_tlb(mm, current);
268 local_flush_tlb_all();
270 cpu_init();
273 * Give the platform a chance to do its own initialisation.
275 platform_secondary_init(cpu);
278 * Enable local interrupts.
280 local_irq_enable();
281 local_fiq_enable();
283 calibrate_delay();
285 smp_store_cpu_info(cpu);
288 * OK, now it's safe to let the boot CPU continue
290 cpu_set(cpu, cpu_online_map);
293 * OK, it's off to the idle thread for us
295 cpu_idle();
299 * Called by both boot and secondaries to move global data into
300 * per-processor storage.
302 void __cpuinit smp_store_cpu_info(unsigned int cpuid)
304 struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
306 cpu_info->loops_per_jiffy = loops_per_jiffy;
309 void __init smp_cpus_done(unsigned int max_cpus)
311 int cpu;
312 unsigned long bogosum = 0;
314 for_each_online_cpu(cpu)
315 bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
317 printk(KERN_INFO "SMP: Total of %d processors activated "
318 "(%lu.%02lu BogoMIPS).\n",
319 num_online_cpus(),
320 bogosum / (500000/HZ),
321 (bogosum / (5000/HZ)) % 100);
324 void __init smp_prepare_boot_cpu(void)
326 unsigned int cpu = smp_processor_id();
328 per_cpu(cpu_data, cpu).idle = current;
330 cpu_set(cpu, cpu_possible_map);
331 cpu_set(cpu, cpu_present_map);
332 cpu_set(cpu, cpu_online_map);
335 static void send_ipi_message(cpumask_t callmap, enum ipi_msg_type msg)
337 unsigned long flags;
338 unsigned int cpu;
340 local_irq_save(flags);
342 for_each_cpu_mask(cpu, callmap) {
343 struct ipi_data *ipi = &per_cpu(ipi_data, cpu);
345 spin_lock(&ipi->lock);
346 ipi->bits |= 1 << msg;
347 spin_unlock(&ipi->lock);
351 * Call the platform specific cross-CPU call function.
353 smp_cross_call(callmap);
355 local_irq_restore(flags);
359 * You must not call this function with disabled interrupts, from a
360 * hardware interrupt handler, nor from a bottom half handler.
362 static int smp_call_function_on_cpu(void (*func)(void *info), void *info,
363 int retry, int wait, cpumask_t callmap)
365 struct smp_call_struct data;
366 unsigned long timeout;
367 int ret = 0;
369 data.func = func;
370 data.info = info;
371 data.wait = wait;
373 cpu_clear(smp_processor_id(), callmap);
374 if (cpus_empty(callmap))
375 goto out;
377 data.pending = callmap;
378 if (wait)
379 data.unfinished = callmap;
382 * try to get the mutex on smp_call_function_data
384 spin_lock(&smp_call_function_lock);
385 smp_call_function_data = &data;
387 send_ipi_message(callmap, IPI_CALL_FUNC);
389 timeout = jiffies + HZ;
390 while (!cpus_empty(data.pending) && time_before(jiffies, timeout))
391 barrier();
394 * did we time out?
396 if (!cpus_empty(data.pending)) {
398 * this may be causing our panic - report it
400 printk(KERN_CRIT
401 "CPU%u: smp_call_function timeout for %p(%p)\n"
402 " callmap %lx pending %lx, %swait\n",
403 smp_processor_id(), func, info, *cpus_addr(callmap),
404 *cpus_addr(data.pending), wait ? "" : "no ");
407 * TRACE
409 timeout = jiffies + (5 * HZ);
410 while (!cpus_empty(data.pending) && time_before(jiffies, timeout))
411 barrier();
413 if (cpus_empty(data.pending))
414 printk(KERN_CRIT " RESOLVED\n");
415 else
416 printk(KERN_CRIT " STILL STUCK\n");
420 * whatever happened, we're done with the data, so release it
422 smp_call_function_data = NULL;
423 spin_unlock(&smp_call_function_lock);
425 if (!cpus_empty(data.pending)) {
426 ret = -ETIMEDOUT;
427 goto out;
430 if (wait)
431 while (!cpus_empty(data.unfinished))
432 barrier();
433 out:
435 return 0;
438 int smp_call_function(void (*func)(void *info), void *info, int retry,
439 int wait)
441 return smp_call_function_on_cpu(func, info, retry, wait,
442 cpu_online_map);
445 void show_ipi_list(struct seq_file *p)
447 unsigned int cpu;
449 seq_puts(p, "IPI:");
451 for_each_present_cpu(cpu)
452 seq_printf(p, " %10lu", per_cpu(ipi_data, cpu).ipi_count);
454 seq_putc(p, '\n');
457 static void ipi_timer(struct pt_regs *regs)
459 int user = user_mode(regs);
461 irq_enter();
462 profile_tick(CPU_PROFILING, regs);
463 update_process_times(user);
464 irq_exit();
468 * ipi_call_function - handle IPI from smp_call_function()
470 * Note that we copy data out of the cross-call structure and then
471 * let the caller know that we're here and have done with their data
473 static void ipi_call_function(unsigned int cpu)
475 struct smp_call_struct *data = smp_call_function_data;
476 void (*func)(void *info) = data->func;
477 void *info = data->info;
478 int wait = data->wait;
480 cpu_clear(cpu, data->pending);
482 func(info);
484 if (wait)
485 cpu_clear(cpu, data->unfinished);
488 static DEFINE_SPINLOCK(stop_lock);
491 * ipi_cpu_stop - handle IPI from smp_send_stop()
493 static void ipi_cpu_stop(unsigned int cpu)
495 spin_lock(&stop_lock);
496 printk(KERN_CRIT "CPU%u: stopping\n", cpu);
497 dump_stack();
498 spin_unlock(&stop_lock);
500 cpu_clear(cpu, cpu_online_map);
502 local_fiq_disable();
503 local_irq_disable();
505 while (1)
506 cpu_relax();
510 * Main handler for inter-processor interrupts
512 * For ARM, the ipimask now only identifies a single
513 * category of IPI (Bit 1 IPIs have been replaced by a
514 * different mechanism):
516 * Bit 0 - Inter-processor function call
518 asmlinkage void do_IPI(struct pt_regs *regs)
520 unsigned int cpu = smp_processor_id();
521 struct ipi_data *ipi = &per_cpu(ipi_data, cpu);
523 ipi->ipi_count++;
525 for (;;) {
526 unsigned long msgs;
528 spin_lock(&ipi->lock);
529 msgs = ipi->bits;
530 ipi->bits = 0;
531 spin_unlock(&ipi->lock);
533 if (!msgs)
534 break;
536 do {
537 unsigned nextmsg;
539 nextmsg = msgs & -msgs;
540 msgs &= ~nextmsg;
541 nextmsg = ffz(~nextmsg);
543 switch (nextmsg) {
544 case IPI_TIMER:
545 ipi_timer(regs);
546 break;
548 case IPI_RESCHEDULE:
550 * nothing more to do - eveything is
551 * done on the interrupt return path
553 break;
555 case IPI_CALL_FUNC:
556 ipi_call_function(cpu);
557 break;
559 case IPI_CPU_STOP:
560 ipi_cpu_stop(cpu);
561 break;
563 default:
564 printk(KERN_CRIT "CPU%u: Unknown IPI message 0x%x\n",
565 cpu, nextmsg);
566 break;
568 } while (msgs);
572 void smp_send_reschedule(int cpu)
574 send_ipi_message(cpumask_of_cpu(cpu), IPI_RESCHEDULE);
577 void smp_send_timer(void)
579 cpumask_t mask = cpu_online_map;
580 cpu_clear(smp_processor_id(), mask);
581 send_ipi_message(mask, IPI_TIMER);
584 void smp_send_stop(void)
586 cpumask_t mask = cpu_online_map;
587 cpu_clear(smp_processor_id(), mask);
588 send_ipi_message(mask, IPI_CPU_STOP);
592 * not supported here
594 int __init setup_profiling_timer(unsigned int multiplier)
596 return -EINVAL;
599 static int
600 on_each_cpu_mask(void (*func)(void *), void *info, int retry, int wait,
601 cpumask_t mask)
603 int ret = 0;
605 preempt_disable();
607 ret = smp_call_function_on_cpu(func, info, retry, wait, mask);
608 if (cpu_isset(smp_processor_id(), mask))
609 func(info);
611 preempt_enable();
613 return ret;
616 /**********************************************************************/
619 * TLB operations
621 struct tlb_args {
622 struct vm_area_struct *ta_vma;
623 unsigned long ta_start;
624 unsigned long ta_end;
627 static inline void ipi_flush_tlb_all(void *ignored)
629 local_flush_tlb_all();
632 static inline void ipi_flush_tlb_mm(void *arg)
634 struct mm_struct *mm = (struct mm_struct *)arg;
636 local_flush_tlb_mm(mm);
639 static inline void ipi_flush_tlb_page(void *arg)
641 struct tlb_args *ta = (struct tlb_args *)arg;
643 local_flush_tlb_page(ta->ta_vma, ta->ta_start);
646 static inline void ipi_flush_tlb_kernel_page(void *arg)
648 struct tlb_args *ta = (struct tlb_args *)arg;
650 local_flush_tlb_kernel_page(ta->ta_start);
653 static inline void ipi_flush_tlb_range(void *arg)
655 struct tlb_args *ta = (struct tlb_args *)arg;
657 local_flush_tlb_range(ta->ta_vma, ta->ta_start, ta->ta_end);
660 static inline void ipi_flush_tlb_kernel_range(void *arg)
662 struct tlb_args *ta = (struct tlb_args *)arg;
664 local_flush_tlb_kernel_range(ta->ta_start, ta->ta_end);
667 void flush_tlb_all(void)
669 on_each_cpu(ipi_flush_tlb_all, NULL, 1, 1);
672 void flush_tlb_mm(struct mm_struct *mm)
674 cpumask_t mask = mm->cpu_vm_mask;
676 on_each_cpu_mask(ipi_flush_tlb_mm, mm, 1, 1, mask);
679 void flush_tlb_page(struct vm_area_struct *vma, unsigned long uaddr)
681 cpumask_t mask = vma->vm_mm->cpu_vm_mask;
682 struct tlb_args ta;
684 ta.ta_vma = vma;
685 ta.ta_start = uaddr;
687 on_each_cpu_mask(ipi_flush_tlb_page, &ta, 1, 1, mask);
690 void flush_tlb_kernel_page(unsigned long kaddr)
692 struct tlb_args ta;
694 ta.ta_start = kaddr;
696 on_each_cpu(ipi_flush_tlb_kernel_page, &ta, 1, 1);
699 void flush_tlb_range(struct vm_area_struct *vma,
700 unsigned long start, unsigned long end)
702 cpumask_t mask = vma->vm_mm->cpu_vm_mask;
703 struct tlb_args ta;
705 ta.ta_vma = vma;
706 ta.ta_start = start;
707 ta.ta_end = end;
709 on_each_cpu_mask(ipi_flush_tlb_range, &ta, 1, 1, mask);
712 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
714 struct tlb_args ta;
716 ta.ta_start = start;
717 ta.ta_end = end;
719 on_each_cpu(ipi_flush_tlb_kernel_range, &ta, 1, 1);