2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
5 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
12 #include <linux/jiffies.h>
13 #include <linux/kernel.h>
14 #include <linux/skbuff.h>
15 #include <linux/netdevice.h>
16 #include <linux/etherdevice.h>
17 #include <linux/rcupdate.h>
18 #include <net/mac80211.h>
19 #include <net/ieee80211_radiotap.h>
21 #include "ieee80211_i.h"
29 u8
ieee80211_sta_manage_reorder_buf(struct ieee80211_hw
*hw
,
30 struct tid_ampdu_rx
*tid_agg_rx
,
31 struct sk_buff
*skb
, u16 mpdu_seq_num
,
34 * monitor mode reception
36 * This function cleans up the SKB, i.e. it removes all the stuff
37 * only useful for monitoring.
39 static struct sk_buff
*remove_monitor_info(struct ieee80211_local
*local
,
43 skb_pull(skb
, rtap_len
);
45 if (local
->hw
.flags
& IEEE80211_HW_RX_INCLUDES_FCS
) {
46 if (likely(skb
->len
> FCS_LEN
))
47 skb_trim(skb
, skb
->len
- FCS_LEN
);
59 static inline int should_drop_frame(struct ieee80211_rx_status
*status
,
64 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)skb
->data
;
66 if (status
->flag
& (RX_FLAG_FAILED_FCS_CRC
| RX_FLAG_FAILED_PLCP_CRC
))
68 if (unlikely(skb
->len
< 16 + present_fcs_len
+ radiotap_len
))
70 if (ieee80211_is_ctl(hdr
->frame_control
) &&
71 !ieee80211_is_pspoll(hdr
->frame_control
) &&
72 !ieee80211_is_back_req(hdr
->frame_control
))
78 ieee80211_rx_radiotap_len(struct ieee80211_local
*local
,
79 struct ieee80211_rx_status
*status
)
83 /* always present fields */
84 len
= sizeof(struct ieee80211_radiotap_header
) + 9;
86 if (status
->flag
& RX_FLAG_TSFT
)
88 if (local
->hw
.flags
& IEEE80211_HW_SIGNAL_DB
||
89 local
->hw
.flags
& IEEE80211_HW_SIGNAL_DBM
)
91 if (local
->hw
.flags
& IEEE80211_HW_NOISE_DBM
)
94 if (len
& 1) /* padding for RX_FLAGS if necessary */
97 /* make sure radiotap starts at a naturally aligned address */
99 len
= roundup(len
, 8);
105 * ieee80211_add_rx_radiotap_header - add radiotap header
107 * add a radiotap header containing all the fields which the hardware provided.
110 ieee80211_add_rx_radiotap_header(struct ieee80211_local
*local
,
112 struct ieee80211_rx_status
*status
,
113 struct ieee80211_rate
*rate
,
116 struct ieee80211_radiotap_header
*rthdr
;
119 rthdr
= (struct ieee80211_radiotap_header
*)skb_push(skb
, rtap_len
);
120 memset(rthdr
, 0, rtap_len
);
122 /* radiotap header, set always present flags */
124 cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS
) |
125 (1 << IEEE80211_RADIOTAP_RATE
) |
126 (1 << IEEE80211_RADIOTAP_CHANNEL
) |
127 (1 << IEEE80211_RADIOTAP_ANTENNA
) |
128 (1 << IEEE80211_RADIOTAP_RX_FLAGS
));
129 rthdr
->it_len
= cpu_to_le16(rtap_len
);
131 pos
= (unsigned char *)(rthdr
+1);
133 /* the order of the following fields is important */
135 /* IEEE80211_RADIOTAP_TSFT */
136 if (status
->flag
& RX_FLAG_TSFT
) {
137 *(__le64
*)pos
= cpu_to_le64(status
->mactime
);
139 cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT
);
143 /* IEEE80211_RADIOTAP_FLAGS */
144 if (local
->hw
.flags
& IEEE80211_HW_RX_INCLUDES_FCS
)
145 *pos
|= IEEE80211_RADIOTAP_F_FCS
;
148 /* IEEE80211_RADIOTAP_RATE */
149 *pos
= rate
->bitrate
/ 5;
152 /* IEEE80211_RADIOTAP_CHANNEL */
153 *(__le16
*)pos
= cpu_to_le16(status
->freq
);
155 if (status
->band
== IEEE80211_BAND_5GHZ
)
156 *(__le16
*)pos
= cpu_to_le16(IEEE80211_CHAN_OFDM
|
157 IEEE80211_CHAN_5GHZ
);
159 *(__le16
*)pos
= cpu_to_le16(IEEE80211_CHAN_DYN
|
160 IEEE80211_CHAN_2GHZ
);
163 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
164 if (local
->hw
.flags
& IEEE80211_HW_SIGNAL_DBM
) {
165 *pos
= status
->signal
;
167 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL
);
171 /* IEEE80211_RADIOTAP_DBM_ANTNOISE */
172 if (local
->hw
.flags
& IEEE80211_HW_NOISE_DBM
) {
173 *pos
= status
->noise
;
175 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTNOISE
);
179 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
181 /* IEEE80211_RADIOTAP_ANTENNA */
182 *pos
= status
->antenna
;
185 /* IEEE80211_RADIOTAP_DB_ANTSIGNAL */
186 if (local
->hw
.flags
& IEEE80211_HW_SIGNAL_DB
) {
187 *pos
= status
->signal
;
189 cpu_to_le32(1 << IEEE80211_RADIOTAP_DB_ANTSIGNAL
);
193 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
195 /* IEEE80211_RADIOTAP_RX_FLAGS */
196 /* ensure 2 byte alignment for the 2 byte field as required */
197 if ((pos
- (unsigned char *)rthdr
) & 1)
199 /* FIXME: when radiotap gets a 'bad PLCP' flag use it here */
200 if (status
->flag
& (RX_FLAG_FAILED_FCS_CRC
| RX_FLAG_FAILED_PLCP_CRC
))
201 *(__le16
*)pos
|= cpu_to_le16(IEEE80211_RADIOTAP_F_RX_BADFCS
);
206 * This function copies a received frame to all monitor interfaces and
207 * returns a cleaned-up SKB that no longer includes the FCS nor the
208 * radiotap header the driver might have added.
210 static struct sk_buff
*
211 ieee80211_rx_monitor(struct ieee80211_local
*local
, struct sk_buff
*origskb
,
212 struct ieee80211_rx_status
*status
,
213 struct ieee80211_rate
*rate
)
215 struct ieee80211_sub_if_data
*sdata
;
216 int needed_headroom
= 0;
217 struct sk_buff
*skb
, *skb2
;
218 struct net_device
*prev_dev
= NULL
;
219 int present_fcs_len
= 0;
223 * First, we may need to make a copy of the skb because
224 * (1) we need to modify it for radiotap (if not present), and
225 * (2) the other RX handlers will modify the skb we got.
227 * We don't need to, of course, if we aren't going to return
228 * the SKB because it has a bad FCS/PLCP checksum.
230 if (status
->flag
& RX_FLAG_RADIOTAP
)
231 rtap_len
= ieee80211_get_radiotap_len(origskb
->data
);
233 /* room for the radiotap header based on driver features */
234 needed_headroom
= ieee80211_rx_radiotap_len(local
, status
);
236 if (local
->hw
.flags
& IEEE80211_HW_RX_INCLUDES_FCS
)
237 present_fcs_len
= FCS_LEN
;
239 if (!local
->monitors
) {
240 if (should_drop_frame(status
, origskb
, present_fcs_len
,
242 dev_kfree_skb(origskb
);
246 return remove_monitor_info(local
, origskb
, rtap_len
);
249 if (should_drop_frame(status
, origskb
, present_fcs_len
, rtap_len
)) {
250 /* only need to expand headroom if necessary */
255 * This shouldn't trigger often because most devices have an
256 * RX header they pull before we get here, and that should
257 * be big enough for our radiotap information. We should
258 * probably export the length to drivers so that we can have
259 * them allocate enough headroom to start with.
261 if (skb_headroom(skb
) < needed_headroom
&&
262 pskb_expand_head(skb
, needed_headroom
, 0, GFP_ATOMIC
)) {
268 * Need to make a copy and possibly remove radiotap header
269 * and FCS from the original.
271 skb
= skb_copy_expand(origskb
, needed_headroom
, 0, GFP_ATOMIC
);
273 origskb
= remove_monitor_info(local
, origskb
, rtap_len
);
279 /* if necessary, prepend radiotap information */
280 if (!(status
->flag
& RX_FLAG_RADIOTAP
))
281 ieee80211_add_rx_radiotap_header(local
, skb
, status
, rate
,
284 skb_reset_mac_header(skb
);
285 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
286 skb
->pkt_type
= PACKET_OTHERHOST
;
287 skb
->protocol
= htons(ETH_P_802_2
);
289 list_for_each_entry_rcu(sdata
, &local
->interfaces
, list
) {
290 if (!netif_running(sdata
->dev
))
293 if (sdata
->vif
.type
!= IEEE80211_IF_TYPE_MNTR
)
296 if (sdata
->u
.mntr_flags
& MONITOR_FLAG_COOK_FRAMES
)
300 skb2
= skb_clone(skb
, GFP_ATOMIC
);
302 skb2
->dev
= prev_dev
;
307 prev_dev
= sdata
->dev
;
308 sdata
->dev
->stats
.rx_packets
++;
309 sdata
->dev
->stats
.rx_bytes
+= skb
->len
;
322 static void ieee80211_parse_qos(struct ieee80211_rx_data
*rx
)
324 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)rx
->skb
->data
;
327 /* does the frame have a qos control field? */
328 if (ieee80211_is_data_qos(hdr
->frame_control
)) {
329 u8
*qc
= ieee80211_get_qos_ctl(hdr
);
330 /* frame has qos control */
331 tid
= *qc
& IEEE80211_QOS_CTL_TID_MASK
;
332 if (*qc
& IEEE80211_QOS_CONTROL_A_MSDU_PRESENT
)
333 rx
->flags
|= IEEE80211_RX_AMSDU
;
335 rx
->flags
&= ~IEEE80211_RX_AMSDU
;
337 if (unlikely(ieee80211_is_mgmt(hdr
->frame_control
))) {
338 /* Separate TID for management frames */
339 tid
= NUM_RX_DATA_QUEUES
- 1;
341 /* no qos control present */
342 tid
= 0; /* 802.1d - Best Effort */
347 /* Set skb->priority to 1d tag if highest order bit of TID is not set.
348 * For now, set skb->priority to 0 for other cases. */
349 rx
->skb
->priority
= (tid
> 7) ? 0 : tid
;
352 static void ieee80211_verify_ip_alignment(struct ieee80211_rx_data
*rx
)
354 #ifdef CONFIG_MAC80211_DEBUG_PACKET_ALIGNMENT
355 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)rx
->skb
->data
;
358 if (!ieee80211_is_data_present(hdr
->frame_control
))
362 * Drivers are required to align the payload data in a way that
363 * guarantees that the contained IP header is aligned to a four-
364 * byte boundary. In the case of regular frames, this simply means
365 * aligning the payload to a four-byte boundary (because either
366 * the IP header is directly contained, or IV/RFC1042 headers that
367 * have a length divisible by four are in front of it.
369 * With A-MSDU frames, however, the payload data address must
370 * yield two modulo four because there are 14-byte 802.3 headers
371 * within the A-MSDU frames that push the IP header further back
372 * to a multiple of four again. Thankfully, the specs were sane
373 * enough this time around to require padding each A-MSDU subframe
374 * to a length that is a multiple of four.
376 * Padding like atheros hardware adds which is inbetween the 802.11
377 * header and the payload is not supported, the driver is required
378 * to move the 802.11 header further back in that case.
380 hdrlen
= ieee80211_hdrlen(hdr
->frame_control
);
381 if (rx
->flags
& IEEE80211_RX_AMSDU
)
383 WARN_ON_ONCE(((unsigned long)(rx
->skb
->data
+ hdrlen
)) & 3);
390 static ieee80211_rx_result debug_noinline
391 ieee80211_rx_h_passive_scan(struct ieee80211_rx_data
*rx
)
393 struct ieee80211_local
*local
= rx
->local
;
394 struct sk_buff
*skb
= rx
->skb
;
396 if (unlikely(local
->sta_hw_scanning
))
397 return ieee80211_sta_rx_scan(rx
->dev
, skb
, rx
->status
);
399 if (unlikely(local
->sta_sw_scanning
)) {
400 /* drop all the other packets during a software scan anyway */
401 if (ieee80211_sta_rx_scan(rx
->dev
, skb
, rx
->status
)
407 if (unlikely(rx
->flags
& IEEE80211_RX_IN_SCAN
)) {
408 /* scanning finished during invoking of handlers */
409 I802_DEBUG_INC(local
->rx_handlers_drop_passive_scan
);
410 return RX_DROP_UNUSABLE
;
416 static ieee80211_rx_result
417 ieee80211_rx_mesh_check(struct ieee80211_rx_data
*rx
)
419 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)rx
->skb
->data
;
420 unsigned int hdrlen
= ieee80211_hdrlen(hdr
->frame_control
);
422 if (ieee80211_is_data(hdr
->frame_control
)) {
423 if (!ieee80211_has_a4(hdr
->frame_control
))
424 return RX_DROP_MONITOR
;
425 if (memcmp(hdr
->addr4
, rx
->dev
->dev_addr
, ETH_ALEN
) == 0)
426 return RX_DROP_MONITOR
;
429 /* If there is not an established peer link and this is not a peer link
430 * establisment frame, beacon or probe, drop the frame.
433 if (!rx
->sta
|| sta_plink_state(rx
->sta
) != PLINK_ESTAB
) {
434 struct ieee80211_mgmt
*mgmt
;
436 if (!ieee80211_is_mgmt(hdr
->frame_control
))
437 return RX_DROP_MONITOR
;
439 if (ieee80211_is_action(hdr
->frame_control
)) {
440 mgmt
= (struct ieee80211_mgmt
*)hdr
;
441 if (mgmt
->u
.action
.category
!= PLINK_CATEGORY
)
442 return RX_DROP_MONITOR
;
446 if (ieee80211_is_probe_req(hdr
->frame_control
) ||
447 ieee80211_is_probe_resp(hdr
->frame_control
) ||
448 ieee80211_is_beacon(hdr
->frame_control
))
451 return RX_DROP_MONITOR
;
455 #define msh_h_get(h, l) ((struct ieee80211s_hdr *) ((u8 *)h + l))
457 if (ieee80211_is_data(hdr
->frame_control
) &&
458 is_multicast_ether_addr(hdr
->addr1
) &&
459 mesh_rmc_check(hdr
->addr4
, msh_h_get(hdr
, hdrlen
), rx
->dev
))
460 return RX_DROP_MONITOR
;
467 static ieee80211_rx_result debug_noinline
468 ieee80211_rx_h_check(struct ieee80211_rx_data
*rx
)
470 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)rx
->skb
->data
;
472 /* Drop duplicate 802.11 retransmissions (IEEE 802.11 Chap. 9.2.9) */
473 if (rx
->sta
&& !is_multicast_ether_addr(hdr
->addr1
)) {
474 if (unlikely(ieee80211_has_retry(hdr
->frame_control
) &&
475 rx
->sta
->last_seq_ctrl
[rx
->queue
] ==
477 if (rx
->flags
& IEEE80211_RX_RA_MATCH
) {
478 rx
->local
->dot11FrameDuplicateCount
++;
479 rx
->sta
->num_duplicates
++;
481 return RX_DROP_MONITOR
;
483 rx
->sta
->last_seq_ctrl
[rx
->queue
] = hdr
->seq_ctrl
;
486 if (unlikely(rx
->skb
->len
< 16)) {
487 I802_DEBUG_INC(rx
->local
->rx_handlers_drop_short
);
488 return RX_DROP_MONITOR
;
491 /* Drop disallowed frame classes based on STA auth/assoc state;
492 * IEEE 802.11, Chap 5.5.
494 * 80211.o does filtering only based on association state, i.e., it
495 * drops Class 3 frames from not associated stations. hostapd sends
496 * deauth/disassoc frames when needed. In addition, hostapd is
497 * responsible for filtering on both auth and assoc states.
500 if (ieee80211_vif_is_mesh(&rx
->sdata
->vif
))
501 return ieee80211_rx_mesh_check(rx
);
503 if (unlikely((ieee80211_is_data(hdr
->frame_control
) ||
504 ieee80211_is_pspoll(hdr
->frame_control
)) &&
505 rx
->sdata
->vif
.type
!= IEEE80211_IF_TYPE_IBSS
&&
506 (!rx
->sta
|| !test_sta_flags(rx
->sta
, WLAN_STA_ASSOC
)))) {
507 if ((!ieee80211_has_fromds(hdr
->frame_control
) &&
508 !ieee80211_has_tods(hdr
->frame_control
) &&
509 ieee80211_is_data(hdr
->frame_control
)) ||
510 !(rx
->flags
& IEEE80211_RX_RA_MATCH
)) {
511 /* Drop IBSS frames and frames for other hosts
513 return RX_DROP_MONITOR
;
516 return RX_DROP_MONITOR
;
523 static ieee80211_rx_result debug_noinline
524 ieee80211_rx_h_decrypt(struct ieee80211_rx_data
*rx
)
526 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)rx
->skb
->data
;
529 ieee80211_rx_result result
= RX_DROP_UNUSABLE
;
530 struct ieee80211_key
*stakey
= NULL
;
535 * There are three types of keys:
537 * - PTK (pairwise keys)
538 * - STK (station-to-station pairwise keys)
540 * When selecting a key, we have to distinguish between multicast
541 * (including broadcast) and unicast frames, the latter can only
542 * use PTKs and STKs while the former always use GTKs. Unless, of
543 * course, actual WEP keys ("pre-RSNA") are used, then unicast
544 * frames can also use key indizes like GTKs. Hence, if we don't
545 * have a PTK/STK we check the key index for a WEP key.
547 * Note that in a regular BSS, multicast frames are sent by the
548 * AP only, associated stations unicast the frame to the AP first
549 * which then multicasts it on their behalf.
551 * There is also a slight problem in IBSS mode: GTKs are negotiated
552 * with each station, that is something we don't currently handle.
553 * The spec seems to expect that one negotiates the same key with
554 * every station but there's no such requirement; VLANs could be
558 if (!ieee80211_has_protected(hdr
->frame_control
))
562 * No point in finding a key and decrypting if the frame is neither
563 * addressed to us nor a multicast frame.
565 if (!(rx
->flags
& IEEE80211_RX_RA_MATCH
))
569 stakey
= rcu_dereference(rx
->sta
->key
);
571 if (!is_multicast_ether_addr(hdr
->addr1
) && stakey
) {
575 * The device doesn't give us the IV so we won't be
576 * able to look up the key. That's ok though, we
577 * don't need to decrypt the frame, we just won't
578 * be able to keep statistics accurate.
579 * Except for key threshold notifications, should
580 * we somehow allow the driver to tell us which key
581 * the hardware used if this flag is set?
583 if ((rx
->status
->flag
& RX_FLAG_DECRYPTED
) &&
584 (rx
->status
->flag
& RX_FLAG_IV_STRIPPED
))
587 hdrlen
= ieee80211_hdrlen(hdr
->frame_control
);
589 if (rx
->skb
->len
< 8 + hdrlen
)
590 return RX_DROP_UNUSABLE
; /* TODO: count this? */
593 * no need to call ieee80211_wep_get_keyidx,
594 * it verifies a bunch of things we've done already
596 keyidx
= rx
->skb
->data
[hdrlen
+ 3] >> 6;
598 rx
->key
= rcu_dereference(rx
->sdata
->keys
[keyidx
]);
601 * RSNA-protected unicast frames should always be sent with
602 * pairwise or station-to-station keys, but for WEP we allow
603 * using a key index as well.
605 if (rx
->key
&& rx
->key
->conf
.alg
!= ALG_WEP
&&
606 !is_multicast_ether_addr(hdr
->addr1
))
611 rx
->key
->tx_rx_count
++;
612 /* TODO: add threshold stuff again */
614 return RX_DROP_MONITOR
;
617 /* Check for weak IVs if possible */
618 if (rx
->sta
&& rx
->key
->conf
.alg
== ALG_WEP
&&
619 ieee80211_is_data(hdr
->frame_control
) &&
620 (!(rx
->status
->flag
& RX_FLAG_IV_STRIPPED
) ||
621 !(rx
->status
->flag
& RX_FLAG_DECRYPTED
)) &&
622 ieee80211_wep_is_weak_iv(rx
->skb
, rx
->key
))
623 rx
->sta
->wep_weak_iv_count
++;
625 switch (rx
->key
->conf
.alg
) {
627 result
= ieee80211_crypto_wep_decrypt(rx
);
630 result
= ieee80211_crypto_tkip_decrypt(rx
);
633 result
= ieee80211_crypto_ccmp_decrypt(rx
);
637 /* either the frame has been decrypted or will be dropped */
638 rx
->status
->flag
|= RX_FLAG_DECRYPTED
;
643 static void ap_sta_ps_start(struct net_device
*dev
, struct sta_info
*sta
)
645 struct ieee80211_sub_if_data
*sdata
;
646 DECLARE_MAC_BUF(mac
);
650 atomic_inc(&sdata
->bss
->num_sta_ps
);
651 set_and_clear_sta_flags(sta
, WLAN_STA_PS
, WLAN_STA_PSPOLL
);
652 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
653 printk(KERN_DEBUG
"%s: STA %s aid %d enters power save mode\n",
654 dev
->name
, print_mac(mac
, sta
->addr
), sta
->aid
);
655 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
658 static int ap_sta_ps_end(struct net_device
*dev
, struct sta_info
*sta
)
660 struct ieee80211_local
*local
= wdev_priv(dev
->ieee80211_ptr
);
663 struct ieee80211_sub_if_data
*sdata
;
664 struct ieee80211_tx_info
*info
;
665 DECLARE_MAC_BUF(mac
);
669 atomic_dec(&sdata
->bss
->num_sta_ps
);
671 clear_sta_flags(sta
, WLAN_STA_PS
| WLAN_STA_PSPOLL
);
673 if (!skb_queue_empty(&sta
->ps_tx_buf
))
674 sta_info_clear_tim_bit(sta
);
676 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
677 printk(KERN_DEBUG
"%s: STA %s aid %d exits power save mode\n",
678 dev
->name
, print_mac(mac
, sta
->addr
), sta
->aid
);
679 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
681 /* Send all buffered frames to the station */
682 while ((skb
= skb_dequeue(&sta
->tx_filtered
)) != NULL
) {
683 info
= IEEE80211_SKB_CB(skb
);
685 info
->flags
|= IEEE80211_TX_CTL_REQUEUE
;
688 while ((skb
= skb_dequeue(&sta
->ps_tx_buf
)) != NULL
) {
689 info
= IEEE80211_SKB_CB(skb
);
690 local
->total_ps_buffered
--;
692 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
693 printk(KERN_DEBUG
"%s: STA %s aid %d send PS frame "
694 "since STA not sleeping anymore\n", dev
->name
,
695 print_mac(mac
, sta
->addr
), sta
->aid
);
696 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
697 info
->flags
|= IEEE80211_TX_CTL_REQUEUE
;
704 static ieee80211_rx_result debug_noinline
705 ieee80211_rx_h_sta_process(struct ieee80211_rx_data
*rx
)
707 struct sta_info
*sta
= rx
->sta
;
708 struct net_device
*dev
= rx
->dev
;
709 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)rx
->skb
->data
;
714 /* Update last_rx only for IBSS packets which are for the current
715 * BSSID to avoid keeping the current IBSS network alive in cases where
716 * other STAs are using different BSSID. */
717 if (rx
->sdata
->vif
.type
== IEEE80211_IF_TYPE_IBSS
) {
718 u8
*bssid
= ieee80211_get_bssid(hdr
, rx
->skb
->len
,
719 IEEE80211_IF_TYPE_IBSS
);
720 if (compare_ether_addr(bssid
, rx
->sdata
->u
.sta
.bssid
) == 0)
721 sta
->last_rx
= jiffies
;
723 if (!is_multicast_ether_addr(hdr
->addr1
) ||
724 rx
->sdata
->vif
.type
== IEEE80211_IF_TYPE_STA
) {
725 /* Update last_rx only for unicast frames in order to prevent
726 * the Probe Request frames (the only broadcast frames from a
727 * STA in infrastructure mode) from keeping a connection alive.
728 * Mesh beacons will update last_rx when if they are found to
729 * match the current local configuration when processed.
731 sta
->last_rx
= jiffies
;
734 if (!(rx
->flags
& IEEE80211_RX_RA_MATCH
))
738 sta
->rx_bytes
+= rx
->skb
->len
;
739 sta
->last_signal
= rx
->status
->signal
;
740 sta
->last_qual
= rx
->status
->qual
;
741 sta
->last_noise
= rx
->status
->noise
;
743 if (!ieee80211_has_morefrags(hdr
->frame_control
) &&
744 (rx
->sdata
->vif
.type
== IEEE80211_IF_TYPE_AP
||
745 rx
->sdata
->vif
.type
== IEEE80211_IF_TYPE_VLAN
)) {
746 /* Change STA power saving mode only in the end of a frame
747 * exchange sequence */
748 if (test_sta_flags(sta
, WLAN_STA_PS
) &&
749 !ieee80211_has_pm(hdr
->frame_control
))
750 rx
->sent_ps_buffered
+= ap_sta_ps_end(dev
, sta
);
751 else if (!test_sta_flags(sta
, WLAN_STA_PS
) &&
752 ieee80211_has_pm(hdr
->frame_control
))
753 ap_sta_ps_start(dev
, sta
);
756 /* Drop data::nullfunc frames silently, since they are used only to
757 * control station power saving mode. */
758 if (ieee80211_is_nullfunc(hdr
->frame_control
)) {
759 I802_DEBUG_INC(rx
->local
->rx_handlers_drop_nullfunc
);
760 /* Update counter and free packet here to avoid counting this
761 * as a dropped packed. */
763 dev_kfree_skb(rx
->skb
);
768 } /* ieee80211_rx_h_sta_process */
770 static inline struct ieee80211_fragment_entry
*
771 ieee80211_reassemble_add(struct ieee80211_sub_if_data
*sdata
,
772 unsigned int frag
, unsigned int seq
, int rx_queue
,
773 struct sk_buff
**skb
)
775 struct ieee80211_fragment_entry
*entry
;
778 idx
= sdata
->fragment_next
;
779 entry
= &sdata
->fragments
[sdata
->fragment_next
++];
780 if (sdata
->fragment_next
>= IEEE80211_FRAGMENT_MAX
)
781 sdata
->fragment_next
= 0;
783 if (!skb_queue_empty(&entry
->skb_list
)) {
784 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
785 struct ieee80211_hdr
*hdr
=
786 (struct ieee80211_hdr
*) entry
->skb_list
.next
->data
;
787 DECLARE_MAC_BUF(mac
);
788 DECLARE_MAC_BUF(mac2
);
789 printk(KERN_DEBUG
"%s: RX reassembly removed oldest "
790 "fragment entry (idx=%d age=%lu seq=%d last_frag=%d "
791 "addr1=%s addr2=%s\n",
792 sdata
->dev
->name
, idx
,
793 jiffies
- entry
->first_frag_time
, entry
->seq
,
794 entry
->last_frag
, print_mac(mac
, hdr
->addr1
),
795 print_mac(mac2
, hdr
->addr2
));
797 __skb_queue_purge(&entry
->skb_list
);
800 __skb_queue_tail(&entry
->skb_list
, *skb
); /* no need for locking */
802 entry
->first_frag_time
= jiffies
;
804 entry
->rx_queue
= rx_queue
;
805 entry
->last_frag
= frag
;
807 entry
->extra_len
= 0;
812 static inline struct ieee80211_fragment_entry
*
813 ieee80211_reassemble_find(struct ieee80211_sub_if_data
*sdata
,
814 u16 fc
, unsigned int frag
, unsigned int seq
,
815 int rx_queue
, struct ieee80211_hdr
*hdr
)
817 struct ieee80211_fragment_entry
*entry
;
820 idx
= sdata
->fragment_next
;
821 for (i
= 0; i
< IEEE80211_FRAGMENT_MAX
; i
++) {
822 struct ieee80211_hdr
*f_hdr
;
827 idx
= IEEE80211_FRAGMENT_MAX
- 1;
829 entry
= &sdata
->fragments
[idx
];
830 if (skb_queue_empty(&entry
->skb_list
) || entry
->seq
!= seq
||
831 entry
->rx_queue
!= rx_queue
||
832 entry
->last_frag
+ 1 != frag
)
835 f_hdr
= (struct ieee80211_hdr
*) entry
->skb_list
.next
->data
;
836 f_fc
= le16_to_cpu(f_hdr
->frame_control
);
838 if ((fc
& IEEE80211_FCTL_FTYPE
) != (f_fc
& IEEE80211_FCTL_FTYPE
) ||
839 compare_ether_addr(hdr
->addr1
, f_hdr
->addr1
) != 0 ||
840 compare_ether_addr(hdr
->addr2
, f_hdr
->addr2
) != 0)
843 if (time_after(jiffies
, entry
->first_frag_time
+ 2 * HZ
)) {
844 __skb_queue_purge(&entry
->skb_list
);
853 static ieee80211_rx_result debug_noinline
854 ieee80211_rx_h_defragment(struct ieee80211_rx_data
*rx
)
856 struct ieee80211_hdr
*hdr
;
858 unsigned int frag
, seq
;
859 struct ieee80211_fragment_entry
*entry
;
861 DECLARE_MAC_BUF(mac
);
863 hdr
= (struct ieee80211_hdr
*) rx
->skb
->data
;
864 sc
= le16_to_cpu(hdr
->seq_ctrl
);
865 frag
= sc
& IEEE80211_SCTL_FRAG
;
867 if (likely((!(rx
->fc
& IEEE80211_FCTL_MOREFRAGS
) && frag
== 0) ||
868 (rx
->skb
)->len
< 24 ||
869 is_multicast_ether_addr(hdr
->addr1
))) {
873 I802_DEBUG_INC(rx
->local
->rx_handlers_fragments
);
875 seq
= (sc
& IEEE80211_SCTL_SEQ
) >> 4;
878 /* This is the first fragment of a new frame. */
879 entry
= ieee80211_reassemble_add(rx
->sdata
, frag
, seq
,
880 rx
->queue
, &(rx
->skb
));
881 if (rx
->key
&& rx
->key
->conf
.alg
== ALG_CCMP
&&
882 (rx
->fc
& IEEE80211_FCTL_PROTECTED
)) {
883 /* Store CCMP PN so that we can verify that the next
884 * fragment has a sequential PN value. */
886 memcpy(entry
->last_pn
,
887 rx
->key
->u
.ccmp
.rx_pn
[rx
->queue
],
893 /* This is a fragment for a frame that should already be pending in
894 * fragment cache. Add this fragment to the end of the pending entry.
896 entry
= ieee80211_reassemble_find(rx
->sdata
, rx
->fc
, frag
, seq
,
899 I802_DEBUG_INC(rx
->local
->rx_handlers_drop_defrag
);
900 return RX_DROP_MONITOR
;
903 /* Verify that MPDUs within one MSDU have sequential PN values.
904 * (IEEE 802.11i, 8.3.3.4.5) */
907 u8 pn
[CCMP_PN_LEN
], *rpn
;
908 if (!rx
->key
|| rx
->key
->conf
.alg
!= ALG_CCMP
)
909 return RX_DROP_UNUSABLE
;
910 memcpy(pn
, entry
->last_pn
, CCMP_PN_LEN
);
911 for (i
= CCMP_PN_LEN
- 1; i
>= 0; i
--) {
916 rpn
= rx
->key
->u
.ccmp
.rx_pn
[rx
->queue
];
917 if (memcmp(pn
, rpn
, CCMP_PN_LEN
))
918 return RX_DROP_UNUSABLE
;
919 memcpy(entry
->last_pn
, pn
, CCMP_PN_LEN
);
922 skb_pull(rx
->skb
, ieee80211_get_hdrlen(rx
->fc
));
923 __skb_queue_tail(&entry
->skb_list
, rx
->skb
);
924 entry
->last_frag
= frag
;
925 entry
->extra_len
+= rx
->skb
->len
;
926 if (rx
->fc
& IEEE80211_FCTL_MOREFRAGS
) {
931 rx
->skb
= __skb_dequeue(&entry
->skb_list
);
932 if (skb_tailroom(rx
->skb
) < entry
->extra_len
) {
933 I802_DEBUG_INC(rx
->local
->rx_expand_skb_head2
);
934 if (unlikely(pskb_expand_head(rx
->skb
, 0, entry
->extra_len
,
936 I802_DEBUG_INC(rx
->local
->rx_handlers_drop_defrag
);
937 __skb_queue_purge(&entry
->skb_list
);
938 return RX_DROP_UNUSABLE
;
941 while ((skb
= __skb_dequeue(&entry
->skb_list
))) {
942 memcpy(skb_put(rx
->skb
, skb
->len
), skb
->data
, skb
->len
);
946 /* Complete frame has been reassembled - process it now */
947 rx
->flags
|= IEEE80211_RX_FRAGMENTED
;
951 rx
->sta
->rx_packets
++;
952 if (is_multicast_ether_addr(hdr
->addr1
))
953 rx
->local
->dot11MulticastReceivedFrameCount
++;
955 ieee80211_led_rx(rx
->local
);
959 static ieee80211_rx_result debug_noinline
960 ieee80211_rx_h_ps_poll(struct ieee80211_rx_data
*rx
)
962 struct ieee80211_sub_if_data
*sdata
= IEEE80211_DEV_TO_SUB_IF(rx
->dev
);
965 DECLARE_MAC_BUF(mac
);
967 if (likely(!rx
->sta
||
968 (rx
->fc
& IEEE80211_FCTL_FTYPE
) != IEEE80211_FTYPE_CTL
||
969 (rx
->fc
& IEEE80211_FCTL_STYPE
) != IEEE80211_STYPE_PSPOLL
||
970 !(rx
->flags
& IEEE80211_RX_RA_MATCH
)))
973 if ((sdata
->vif
.type
!= IEEE80211_IF_TYPE_AP
) &&
974 (sdata
->vif
.type
!= IEEE80211_IF_TYPE_VLAN
))
975 return RX_DROP_UNUSABLE
;
977 skb
= skb_dequeue(&rx
->sta
->tx_filtered
);
979 skb
= skb_dequeue(&rx
->sta
->ps_tx_buf
);
981 rx
->local
->total_ps_buffered
--;
983 no_pending_pkts
= skb_queue_empty(&rx
->sta
->tx_filtered
) &&
984 skb_queue_empty(&rx
->sta
->ps_tx_buf
);
987 struct ieee80211_hdr
*hdr
=
988 (struct ieee80211_hdr
*) skb
->data
;
991 * Tell TX path to send one frame even though the STA may
992 * still remain is PS mode after this frame exchange.
994 set_sta_flags(rx
->sta
, WLAN_STA_PSPOLL
);
996 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
997 printk(KERN_DEBUG
"STA %s aid %d: PS Poll (entries after %d)\n",
998 print_mac(mac
, rx
->sta
->addr
), rx
->sta
->aid
,
999 skb_queue_len(&rx
->sta
->ps_tx_buf
));
1000 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1002 /* Use MoreData flag to indicate whether there are more
1003 * buffered frames for this STA */
1004 if (no_pending_pkts
)
1005 hdr
->frame_control
&= cpu_to_le16(~IEEE80211_FCTL_MOREDATA
);
1007 hdr
->frame_control
|= cpu_to_le16(IEEE80211_FCTL_MOREDATA
);
1009 dev_queue_xmit(skb
);
1011 if (no_pending_pkts
)
1012 sta_info_clear_tim_bit(rx
->sta
);
1013 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
1014 } else if (!rx
->sent_ps_buffered
) {
1016 * FIXME: This can be the result of a race condition between
1017 * us expiring a frame and the station polling for it.
1018 * Should we send it a null-func frame indicating we
1019 * have nothing buffered for it?
1021 printk(KERN_DEBUG
"%s: STA %s sent PS Poll even "
1022 "though there are no buffered frames for it\n",
1023 rx
->dev
->name
, print_mac(mac
, rx
->sta
->addr
));
1024 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1027 /* Free PS Poll skb here instead of returning RX_DROP that would
1028 * count as an dropped frame. */
1029 dev_kfree_skb(rx
->skb
);
1034 static ieee80211_rx_result debug_noinline
1035 ieee80211_rx_h_remove_qos_control(struct ieee80211_rx_data
*rx
)
1037 u8
*data
= rx
->skb
->data
;
1038 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)data
;
1040 if (!ieee80211_is_data_qos(hdr
->frame_control
))
1043 /* remove the qos control field, update frame type and meta-data */
1044 memmove(data
+ IEEE80211_QOS_CTL_LEN
, data
,
1045 ieee80211_hdrlen(hdr
->frame_control
) - IEEE80211_QOS_CTL_LEN
);
1046 hdr
= (struct ieee80211_hdr
*)skb_pull(rx
->skb
, IEEE80211_QOS_CTL_LEN
);
1047 /* change frame type to non QOS */
1048 rx
->fc
&= ~IEEE80211_STYPE_QOS_DATA
;
1049 hdr
->frame_control
&= ~cpu_to_le16(IEEE80211_STYPE_QOS_DATA
);
1055 ieee80211_802_1x_port_control(struct ieee80211_rx_data
*rx
)
1057 if (unlikely(!rx
->sta
||
1058 !test_sta_flags(rx
->sta
, WLAN_STA_AUTHORIZED
)))
1065 ieee80211_drop_unencrypted(struct ieee80211_rx_data
*rx
)
1068 * Pass through unencrypted frames if the hardware has
1069 * decrypted them already.
1071 if (rx
->status
->flag
& RX_FLAG_DECRYPTED
)
1074 /* Drop unencrypted frames if key is set. */
1075 if (unlikely(!(rx
->fc
& IEEE80211_FCTL_PROTECTED
) &&
1076 (rx
->fc
& IEEE80211_FCTL_FTYPE
) == IEEE80211_FTYPE_DATA
&&
1077 (rx
->fc
& IEEE80211_FCTL_STYPE
) != IEEE80211_STYPE_NULLFUNC
&&
1078 (rx
->key
|| rx
->sdata
->drop_unencrypted
)))
1085 ieee80211_data_to_8023(struct ieee80211_rx_data
*rx
)
1087 struct net_device
*dev
= rx
->dev
;
1088 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*) rx
->skb
->data
;
1089 u16 fc
, hdrlen
, ethertype
;
1092 u8 src
[ETH_ALEN
] __aligned(2);
1093 struct sk_buff
*skb
= rx
->skb
;
1094 struct ieee80211_sub_if_data
*sdata
= IEEE80211_DEV_TO_SUB_IF(dev
);
1095 DECLARE_MAC_BUF(mac
);
1096 DECLARE_MAC_BUF(mac2
);
1097 DECLARE_MAC_BUF(mac3
);
1098 DECLARE_MAC_BUF(mac4
);
1102 if (unlikely(!WLAN_FC_DATA_PRESENT(fc
)))
1105 hdrlen
= ieee80211_get_hdrlen(fc
);
1107 if (ieee80211_vif_is_mesh(&sdata
->vif
)) {
1108 int meshhdrlen
= ieee80211_get_mesh_hdrlen(
1109 (struct ieee80211s_hdr
*) (skb
->data
+ hdrlen
));
1111 * - mesh header: to be used for mesh forwarding
1112 * decision. It will also be used as mesh header template at
1113 * tx.c:ieee80211_subif_start_xmit() if interface
1114 * type is mesh and skb->pkt_type == PACKET_OTHERHOST
1115 * - ta: to be used if a RERR needs to be sent.
1117 memcpy(skb
->cb
, skb
->data
+ hdrlen
, meshhdrlen
);
1118 memcpy(MESH_PREQ(skb
), hdr
->addr2
, ETH_ALEN
);
1119 hdrlen
+= meshhdrlen
;
1122 /* convert IEEE 802.11 header + possible LLC headers into Ethernet
1124 * IEEE 802.11 address fields:
1125 * ToDS FromDS Addr1 Addr2 Addr3 Addr4
1126 * 0 0 DA SA BSSID n/a
1127 * 0 1 DA BSSID SA n/a
1128 * 1 0 BSSID SA DA n/a
1132 switch (fc
& (IEEE80211_FCTL_TODS
| IEEE80211_FCTL_FROMDS
)) {
1133 case IEEE80211_FCTL_TODS
:
1135 memcpy(dst
, hdr
->addr3
, ETH_ALEN
);
1136 memcpy(src
, hdr
->addr2
, ETH_ALEN
);
1138 if (unlikely(sdata
->vif
.type
!= IEEE80211_IF_TYPE_AP
&&
1139 sdata
->vif
.type
!= IEEE80211_IF_TYPE_VLAN
))
1142 case (IEEE80211_FCTL_TODS
| IEEE80211_FCTL_FROMDS
):
1144 memcpy(dst
, hdr
->addr3
, ETH_ALEN
);
1145 memcpy(src
, hdr
->addr4
, ETH_ALEN
);
1147 if (unlikely(sdata
->vif
.type
!= IEEE80211_IF_TYPE_WDS
&&
1148 sdata
->vif
.type
!= IEEE80211_IF_TYPE_MESH_POINT
))
1151 case IEEE80211_FCTL_FROMDS
:
1153 memcpy(dst
, hdr
->addr1
, ETH_ALEN
);
1154 memcpy(src
, hdr
->addr3
, ETH_ALEN
);
1156 if (sdata
->vif
.type
!= IEEE80211_IF_TYPE_STA
||
1157 (is_multicast_ether_addr(dst
) &&
1158 !compare_ether_addr(src
, dev
->dev_addr
)))
1163 memcpy(dst
, hdr
->addr1
, ETH_ALEN
);
1164 memcpy(src
, hdr
->addr2
, ETH_ALEN
);
1166 if (sdata
->vif
.type
!= IEEE80211_IF_TYPE_IBSS
)
1171 if (unlikely(skb
->len
- hdrlen
< 8))
1174 payload
= skb
->data
+ hdrlen
;
1175 ethertype
= (payload
[6] << 8) | payload
[7];
1177 if (likely((compare_ether_addr(payload
, rfc1042_header
) == 0 &&
1178 ethertype
!= ETH_P_AARP
&& ethertype
!= ETH_P_IPX
) ||
1179 compare_ether_addr(payload
, bridge_tunnel_header
) == 0)) {
1180 /* remove RFC1042 or Bridge-Tunnel encapsulation and
1181 * replace EtherType */
1182 skb_pull(skb
, hdrlen
+ 6);
1183 memcpy(skb_push(skb
, ETH_ALEN
), src
, ETH_ALEN
);
1184 memcpy(skb_push(skb
, ETH_ALEN
), dst
, ETH_ALEN
);
1186 struct ethhdr
*ehdr
;
1189 skb_pull(skb
, hdrlen
);
1190 len
= htons(skb
->len
);
1191 ehdr
= (struct ethhdr
*) skb_push(skb
, sizeof(struct ethhdr
));
1192 memcpy(ehdr
->h_dest
, dst
, ETH_ALEN
);
1193 memcpy(ehdr
->h_source
, src
, ETH_ALEN
);
1194 ehdr
->h_proto
= len
;
1200 * requires that rx->skb is a frame with ethernet header
1202 static bool ieee80211_frame_allowed(struct ieee80211_rx_data
*rx
)
1204 static const u8 pae_group_addr
[ETH_ALEN
] __aligned(2)
1205 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
1206 struct ethhdr
*ehdr
= (struct ethhdr
*) rx
->skb
->data
;
1209 * Allow EAPOL frames to us/the PAE group address regardless
1210 * of whether the frame was encrypted or not.
1212 if (ehdr
->h_proto
== htons(ETH_P_PAE
) &&
1213 (compare_ether_addr(ehdr
->h_dest
, rx
->dev
->dev_addr
) == 0 ||
1214 compare_ether_addr(ehdr
->h_dest
, pae_group_addr
) == 0))
1217 if (ieee80211_802_1x_port_control(rx
) ||
1218 ieee80211_drop_unencrypted(rx
))
1225 * requires that rx->skb is a frame with ethernet header
1228 ieee80211_deliver_skb(struct ieee80211_rx_data
*rx
)
1230 struct net_device
*dev
= rx
->dev
;
1231 struct ieee80211_local
*local
= rx
->local
;
1232 struct sk_buff
*skb
, *xmit_skb
;
1233 struct ieee80211_sub_if_data
*sdata
= IEEE80211_DEV_TO_SUB_IF(dev
);
1234 struct ethhdr
*ehdr
= (struct ethhdr
*) rx
->skb
->data
;
1235 struct sta_info
*dsta
;
1240 if (local
->bridge_packets
&& (sdata
->vif
.type
== IEEE80211_IF_TYPE_AP
||
1241 sdata
->vif
.type
== IEEE80211_IF_TYPE_VLAN
) &&
1242 (rx
->flags
& IEEE80211_RX_RA_MATCH
)) {
1243 if (is_multicast_ether_addr(ehdr
->h_dest
)) {
1245 * send multicast frames both to higher layers in
1246 * local net stack and back to the wireless medium
1248 xmit_skb
= skb_copy(skb
, GFP_ATOMIC
);
1249 if (!xmit_skb
&& net_ratelimit())
1250 printk(KERN_DEBUG
"%s: failed to clone "
1251 "multicast frame\n", dev
->name
);
1253 dsta
= sta_info_get(local
, skb
->data
);
1254 if (dsta
&& dsta
->sdata
->dev
== dev
) {
1256 * The destination station is associated to
1257 * this AP (in this VLAN), so send the frame
1258 * directly to it and do not pass it to local
1267 /* Mesh forwarding */
1268 if (ieee80211_vif_is_mesh(&sdata
->vif
)) {
1269 u8
*mesh_ttl
= &((struct ieee80211s_hdr
*)skb
->cb
)->ttl
;
1272 if (is_multicast_ether_addr(skb
->data
)) {
1273 if (*mesh_ttl
> 0) {
1274 xmit_skb
= skb_copy(skb
, GFP_ATOMIC
);
1276 xmit_skb
->pkt_type
= PACKET_OTHERHOST
;
1277 else if (net_ratelimit())
1278 printk(KERN_DEBUG
"%s: failed to clone "
1279 "multicast frame\n", dev
->name
);
1281 IEEE80211_IFSTA_MESH_CTR_INC(&sdata
->u
.sta
,
1282 dropped_frames_ttl
);
1283 } else if (skb
->pkt_type
!= PACKET_OTHERHOST
&&
1284 compare_ether_addr(dev
->dev_addr
, skb
->data
) != 0) {
1285 if (*mesh_ttl
== 0) {
1286 IEEE80211_IFSTA_MESH_CTR_INC(&sdata
->u
.sta
,
1287 dropped_frames_ttl
);
1292 xmit_skb
->pkt_type
= PACKET_OTHERHOST
;
1293 if (!(dev
->flags
& IFF_PROMISC
))
1300 /* deliver to local stack */
1301 skb
->protocol
= eth_type_trans(skb
, dev
);
1302 memset(skb
->cb
, 0, sizeof(skb
->cb
));
1307 /* send to wireless media */
1308 xmit_skb
->protocol
= htons(ETH_P_802_3
);
1309 skb_reset_network_header(xmit_skb
);
1310 skb_reset_mac_header(xmit_skb
);
1311 dev_queue_xmit(xmit_skb
);
1315 static ieee80211_rx_result debug_noinline
1316 ieee80211_rx_h_amsdu(struct ieee80211_rx_data
*rx
)
1318 struct net_device
*dev
= rx
->dev
;
1319 struct ieee80211_local
*local
= rx
->local
;
1322 struct sk_buff
*skb
= rx
->skb
, *frame
= NULL
;
1323 const struct ethhdr
*eth
;
1327 DECLARE_MAC_BUF(mac
);
1330 if (unlikely((fc
& IEEE80211_FCTL_FTYPE
) != IEEE80211_FTYPE_DATA
))
1333 if (unlikely(!WLAN_FC_DATA_PRESENT(fc
)))
1334 return RX_DROP_MONITOR
;
1336 if (!(rx
->flags
& IEEE80211_RX_AMSDU
))
1339 err
= ieee80211_data_to_8023(rx
);
1341 return RX_DROP_UNUSABLE
;
1345 dev
->stats
.rx_packets
++;
1346 dev
->stats
.rx_bytes
+= skb
->len
;
1348 /* skip the wrapping header */
1349 eth
= (struct ethhdr
*) skb_pull(skb
, sizeof(struct ethhdr
));
1351 return RX_DROP_UNUSABLE
;
1353 while (skb
!= frame
) {
1355 __be16 len
= eth
->h_proto
;
1356 unsigned int subframe_len
= sizeof(struct ethhdr
) + ntohs(len
);
1358 remaining
= skb
->len
;
1359 memcpy(dst
, eth
->h_dest
, ETH_ALEN
);
1360 memcpy(src
, eth
->h_source
, ETH_ALEN
);
1362 padding
= ((4 - subframe_len
) & 0x3);
1363 /* the last MSDU has no padding */
1364 if (subframe_len
> remaining
)
1365 return RX_DROP_UNUSABLE
;
1367 skb_pull(skb
, sizeof(struct ethhdr
));
1368 /* if last subframe reuse skb */
1369 if (remaining
<= subframe_len
+ padding
)
1372 frame
= dev_alloc_skb(local
->hw
.extra_tx_headroom
+
1376 return RX_DROP_UNUSABLE
;
1378 skb_reserve(frame
, local
->hw
.extra_tx_headroom
+
1379 sizeof(struct ethhdr
));
1380 memcpy(skb_put(frame
, ntohs(len
)), skb
->data
,
1383 eth
= (struct ethhdr
*) skb_pull(skb
, ntohs(len
) +
1386 dev_kfree_skb(frame
);
1387 return RX_DROP_UNUSABLE
;
1391 skb_reset_network_header(frame
);
1393 frame
->priority
= skb
->priority
;
1396 payload
= frame
->data
;
1397 ethertype
= (payload
[6] << 8) | payload
[7];
1399 if (likely((compare_ether_addr(payload
, rfc1042_header
) == 0 &&
1400 ethertype
!= ETH_P_AARP
&& ethertype
!= ETH_P_IPX
) ||
1401 compare_ether_addr(payload
,
1402 bridge_tunnel_header
) == 0)) {
1403 /* remove RFC1042 or Bridge-Tunnel
1404 * encapsulation and replace EtherType */
1406 memcpy(skb_push(frame
, ETH_ALEN
), src
, ETH_ALEN
);
1407 memcpy(skb_push(frame
, ETH_ALEN
), dst
, ETH_ALEN
);
1409 memcpy(skb_push(frame
, sizeof(__be16
)),
1410 &len
, sizeof(__be16
));
1411 memcpy(skb_push(frame
, ETH_ALEN
), src
, ETH_ALEN
);
1412 memcpy(skb_push(frame
, ETH_ALEN
), dst
, ETH_ALEN
);
1415 if (!ieee80211_frame_allowed(rx
)) {
1416 if (skb
== frame
) /* last frame */
1417 return RX_DROP_UNUSABLE
;
1418 dev_kfree_skb(frame
);
1422 ieee80211_deliver_skb(rx
);
1428 static ieee80211_rx_result debug_noinline
1429 ieee80211_rx_h_data(struct ieee80211_rx_data
*rx
)
1431 struct net_device
*dev
= rx
->dev
;
1436 if (unlikely((fc
& IEEE80211_FCTL_FTYPE
) != IEEE80211_FTYPE_DATA
))
1439 if (unlikely(!WLAN_FC_DATA_PRESENT(fc
)))
1440 return RX_DROP_MONITOR
;
1442 err
= ieee80211_data_to_8023(rx
);
1444 return RX_DROP_UNUSABLE
;
1446 if (!ieee80211_frame_allowed(rx
))
1447 return RX_DROP_MONITOR
;
1451 dev
->stats
.rx_packets
++;
1452 dev
->stats
.rx_bytes
+= rx
->skb
->len
;
1454 ieee80211_deliver_skb(rx
);
1459 static ieee80211_rx_result debug_noinline
1460 ieee80211_rx_h_ctrl(struct ieee80211_rx_data
*rx
)
1462 struct ieee80211_local
*local
= rx
->local
;
1463 struct ieee80211_hw
*hw
= &local
->hw
;
1464 struct sk_buff
*skb
= rx
->skb
;
1465 struct ieee80211_bar
*bar
= (struct ieee80211_bar
*)skb
->data
;
1466 struct tid_ampdu_rx
*tid_agg_rx
;
1470 if (likely(!ieee80211_is_ctl(bar
->frame_control
)))
1473 if (ieee80211_is_back_req(bar
->frame_control
)) {
1476 tid
= le16_to_cpu(bar
->control
) >> 12;
1477 if (rx
->sta
->ampdu_mlme
.tid_state_rx
[tid
]
1478 != HT_AGG_STATE_OPERATIONAL
)
1480 tid_agg_rx
= rx
->sta
->ampdu_mlme
.tid_rx
[tid
];
1482 start_seq_num
= le16_to_cpu(bar
->start_seq_num
) >> 4;
1484 /* reset session timer */
1485 if (tid_agg_rx
->timeout
) {
1486 unsigned long expires
=
1487 jiffies
+ (tid_agg_rx
->timeout
/ 1000) * HZ
;
1488 mod_timer(&tid_agg_rx
->session_timer
, expires
);
1491 /* manage reordering buffer according to requested */
1492 /* sequence number */
1494 ieee80211_sta_manage_reorder_buf(hw
, tid_agg_rx
, NULL
,
1497 return RX_DROP_UNUSABLE
;
1503 static ieee80211_rx_result debug_noinline
1504 ieee80211_rx_h_mgmt(struct ieee80211_rx_data
*rx
)
1506 struct ieee80211_sub_if_data
*sdata
;
1508 if (!(rx
->flags
& IEEE80211_RX_RA_MATCH
))
1509 return RX_DROP_MONITOR
;
1511 sdata
= IEEE80211_DEV_TO_SUB_IF(rx
->dev
);
1512 if ((sdata
->vif
.type
== IEEE80211_IF_TYPE_STA
||
1513 sdata
->vif
.type
== IEEE80211_IF_TYPE_IBSS
||
1514 sdata
->vif
.type
== IEEE80211_IF_TYPE_MESH_POINT
) &&
1515 !(sdata
->flags
& IEEE80211_SDATA_USERSPACE_MLME
))
1516 ieee80211_sta_rx_mgmt(rx
->dev
, rx
->skb
, rx
->status
);
1518 return RX_DROP_MONITOR
;
1523 static void ieee80211_rx_michael_mic_report(struct net_device
*dev
,
1524 struct ieee80211_hdr
*hdr
,
1525 struct ieee80211_rx_data
*rx
)
1528 unsigned int hdrlen
;
1529 DECLARE_MAC_BUF(mac
);
1530 DECLARE_MAC_BUF(mac2
);
1532 hdrlen
= ieee80211_hdrlen(hdr
->frame_control
);
1533 if (rx
->skb
->len
>= hdrlen
+ 4)
1534 keyidx
= rx
->skb
->data
[hdrlen
+ 3] >> 6;
1540 * Some hardware seem to generate incorrect Michael MIC
1541 * reports; ignore them to avoid triggering countermeasures.
1546 if (!ieee80211_has_protected(hdr
->frame_control
))
1549 if (rx
->sdata
->vif
.type
== IEEE80211_IF_TYPE_AP
&& keyidx
) {
1551 * APs with pairwise keys should never receive Michael MIC
1552 * errors for non-zero keyidx because these are reserved for
1553 * group keys and only the AP is sending real multicast
1554 * frames in the BSS.
1559 if (!ieee80211_is_data(hdr
->frame_control
) &&
1560 !ieee80211_is_auth(hdr
->frame_control
))
1563 mac80211_ev_michael_mic_failure(rx
->dev
, keyidx
, hdr
);
1565 dev_kfree_skb(rx
->skb
);
1569 /* TODO: use IEEE80211_RX_FRAGMENTED */
1570 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data
*rx
)
1572 struct ieee80211_sub_if_data
*sdata
;
1573 struct ieee80211_local
*local
= rx
->local
;
1574 struct ieee80211_rtap_hdr
{
1575 struct ieee80211_radiotap_header hdr
;
1580 } __attribute__ ((packed
)) *rthdr
;
1581 struct sk_buff
*skb
= rx
->skb
, *skb2
;
1582 struct net_device
*prev_dev
= NULL
;
1583 struct ieee80211_rx_status
*status
= rx
->status
;
1585 if (rx
->flags
& IEEE80211_RX_CMNTR_REPORTED
)
1588 if (skb_headroom(skb
) < sizeof(*rthdr
) &&
1589 pskb_expand_head(skb
, sizeof(*rthdr
), 0, GFP_ATOMIC
))
1592 rthdr
= (void *)skb_push(skb
, sizeof(*rthdr
));
1593 memset(rthdr
, 0, sizeof(*rthdr
));
1594 rthdr
->hdr
.it_len
= cpu_to_le16(sizeof(*rthdr
));
1595 rthdr
->hdr
.it_present
=
1596 cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS
) |
1597 (1 << IEEE80211_RADIOTAP_RATE
) |
1598 (1 << IEEE80211_RADIOTAP_CHANNEL
));
1600 rthdr
->rate
= rx
->rate
->bitrate
/ 5;
1601 rthdr
->chan_freq
= cpu_to_le16(status
->freq
);
1603 if (status
->band
== IEEE80211_BAND_5GHZ
)
1604 rthdr
->chan_flags
= cpu_to_le16(IEEE80211_CHAN_OFDM
|
1605 IEEE80211_CHAN_5GHZ
);
1607 rthdr
->chan_flags
= cpu_to_le16(IEEE80211_CHAN_DYN
|
1608 IEEE80211_CHAN_2GHZ
);
1610 skb_set_mac_header(skb
, 0);
1611 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
1612 skb
->pkt_type
= PACKET_OTHERHOST
;
1613 skb
->protocol
= htons(ETH_P_802_2
);
1615 list_for_each_entry_rcu(sdata
, &local
->interfaces
, list
) {
1616 if (!netif_running(sdata
->dev
))
1619 if (sdata
->vif
.type
!= IEEE80211_IF_TYPE_MNTR
||
1620 !(sdata
->u
.mntr_flags
& MONITOR_FLAG_COOK_FRAMES
))
1624 skb2
= skb_clone(skb
, GFP_ATOMIC
);
1626 skb2
->dev
= prev_dev
;
1631 prev_dev
= sdata
->dev
;
1632 sdata
->dev
->stats
.rx_packets
++;
1633 sdata
->dev
->stats
.rx_bytes
+= skb
->len
;
1637 skb
->dev
= prev_dev
;
1643 rx
->flags
|= IEEE80211_RX_CMNTR_REPORTED
;
1651 static void ieee80211_invoke_rx_handlers(struct ieee80211_sub_if_data
*sdata
,
1652 struct ieee80211_rx_data
*rx
,
1653 struct sk_buff
*skb
)
1655 ieee80211_rx_result res
= RX_DROP_MONITOR
;
1659 rx
->dev
= sdata
->dev
;
1661 #define CALL_RXH(rxh) \
1663 if (res != RX_CONTINUE) \
1666 CALL_RXH(ieee80211_rx_h_passive_scan
)
1667 CALL_RXH(ieee80211_rx_h_check
)
1668 CALL_RXH(ieee80211_rx_h_decrypt
)
1669 CALL_RXH(ieee80211_rx_h_sta_process
)
1670 CALL_RXH(ieee80211_rx_h_defragment
)
1671 CALL_RXH(ieee80211_rx_h_ps_poll
)
1672 CALL_RXH(ieee80211_rx_h_michael_mic_verify
)
1673 /* must be after MMIC verify so header is counted in MPDU mic */
1674 CALL_RXH(ieee80211_rx_h_remove_qos_control
)
1675 CALL_RXH(ieee80211_rx_h_amsdu
)
1676 CALL_RXH(ieee80211_rx_h_data
)
1677 CALL_RXH(ieee80211_rx_h_ctrl
)
1678 CALL_RXH(ieee80211_rx_h_mgmt
)
1684 case RX_DROP_MONITOR
:
1685 I802_DEBUG_INC(sdata
->local
->rx_handlers_drop
);
1687 rx
->sta
->rx_dropped
++;
1690 ieee80211_rx_cooked_monitor(rx
);
1692 case RX_DROP_UNUSABLE
:
1693 I802_DEBUG_INC(sdata
->local
->rx_handlers_drop
);
1695 rx
->sta
->rx_dropped
++;
1696 dev_kfree_skb(rx
->skb
);
1699 I802_DEBUG_INC(sdata
->local
->rx_handlers_queued
);
1704 /* main receive path */
1706 static int prepare_for_handlers(struct ieee80211_sub_if_data
*sdata
,
1707 u8
*bssid
, struct ieee80211_rx_data
*rx
,
1708 struct ieee80211_hdr
*hdr
)
1710 int multicast
= is_multicast_ether_addr(hdr
->addr1
);
1712 switch (sdata
->vif
.type
) {
1713 case IEEE80211_IF_TYPE_STA
:
1716 if (!ieee80211_bssid_match(bssid
, sdata
->u
.sta
.bssid
)) {
1717 if (!(rx
->flags
& IEEE80211_RX_IN_SCAN
))
1719 rx
->flags
&= ~IEEE80211_RX_RA_MATCH
;
1720 } else if (!multicast
&&
1721 compare_ether_addr(sdata
->dev
->dev_addr
,
1723 if (!(sdata
->dev
->flags
& IFF_PROMISC
))
1725 rx
->flags
&= ~IEEE80211_RX_RA_MATCH
;
1728 case IEEE80211_IF_TYPE_IBSS
:
1731 if (ieee80211_is_beacon(hdr
->frame_control
)) {
1733 rx
->sta
= ieee80211_ibss_add_sta(sdata
->dev
,
1734 rx
->skb
, bssid
, hdr
->addr2
,
1735 BIT(rx
->status
->rate_idx
));
1738 else if (!ieee80211_bssid_match(bssid
, sdata
->u
.sta
.bssid
)) {
1739 if (!(rx
->flags
& IEEE80211_RX_IN_SCAN
))
1741 rx
->flags
&= ~IEEE80211_RX_RA_MATCH
;
1742 } else if (!multicast
&&
1743 compare_ether_addr(sdata
->dev
->dev_addr
,
1745 if (!(sdata
->dev
->flags
& IFF_PROMISC
))
1747 rx
->flags
&= ~IEEE80211_RX_RA_MATCH
;
1748 } else if (!rx
->sta
)
1749 rx
->sta
= ieee80211_ibss_add_sta(sdata
->dev
, rx
->skb
,
1751 BIT(rx
->status
->rate_idx
));
1753 case IEEE80211_IF_TYPE_MESH_POINT
:
1755 compare_ether_addr(sdata
->dev
->dev_addr
,
1757 if (!(sdata
->dev
->flags
& IFF_PROMISC
))
1760 rx
->flags
&= ~IEEE80211_RX_RA_MATCH
;
1763 case IEEE80211_IF_TYPE_VLAN
:
1764 case IEEE80211_IF_TYPE_AP
:
1766 if (compare_ether_addr(sdata
->dev
->dev_addr
,
1769 } else if (!ieee80211_bssid_match(bssid
,
1770 sdata
->dev
->dev_addr
)) {
1771 if (!(rx
->flags
& IEEE80211_RX_IN_SCAN
))
1773 rx
->flags
&= ~IEEE80211_RX_RA_MATCH
;
1776 case IEEE80211_IF_TYPE_WDS
:
1777 if (bssid
|| !ieee80211_is_data(hdr
->frame_control
))
1779 if (compare_ether_addr(sdata
->u
.wds
.remote_addr
, hdr
->addr2
))
1782 case IEEE80211_IF_TYPE_MNTR
:
1783 /* take everything */
1785 case IEEE80211_IF_TYPE_INVALID
:
1786 /* should never get here */
1795 * This is the actual Rx frames handler. as it blongs to Rx path it must
1796 * be called with rcu_read_lock protection.
1798 static void __ieee80211_rx_handle_packet(struct ieee80211_hw
*hw
,
1799 struct sk_buff
*skb
,
1800 struct ieee80211_rx_status
*status
,
1801 struct ieee80211_rate
*rate
)
1803 struct ieee80211_local
*local
= hw_to_local(hw
);
1804 struct ieee80211_sub_if_data
*sdata
;
1805 struct ieee80211_hdr
*hdr
;
1806 struct ieee80211_rx_data rx
;
1809 struct ieee80211_sub_if_data
*prev
= NULL
;
1810 struct sk_buff
*skb_new
;
1813 hdr
= (struct ieee80211_hdr
*) skb
->data
;
1814 memset(&rx
, 0, sizeof(rx
));
1820 rx
.fc
= le16_to_cpu(hdr
->frame_control
);
1821 type
= rx
.fc
& IEEE80211_FCTL_FTYPE
;
1823 if (type
== IEEE80211_FTYPE_DATA
|| type
== IEEE80211_FTYPE_MGMT
)
1824 local
->dot11ReceivedFragmentCount
++;
1826 rx
.sta
= sta_info_get(local
, hdr
->addr2
);
1828 rx
.sdata
= rx
.sta
->sdata
;
1829 rx
.dev
= rx
.sta
->sdata
->dev
;
1832 if ((status
->flag
& RX_FLAG_MMIC_ERROR
)) {
1833 ieee80211_rx_michael_mic_report(local
->mdev
, hdr
, &rx
);
1837 if (unlikely(local
->sta_sw_scanning
|| local
->sta_hw_scanning
))
1838 rx
.flags
|= IEEE80211_RX_IN_SCAN
;
1840 ieee80211_parse_qos(&rx
);
1841 ieee80211_verify_ip_alignment(&rx
);
1845 list_for_each_entry_rcu(sdata
, &local
->interfaces
, list
) {
1846 if (!netif_running(sdata
->dev
))
1849 if (sdata
->vif
.type
== IEEE80211_IF_TYPE_MNTR
)
1852 bssid
= ieee80211_get_bssid(hdr
, skb
->len
, sdata
->vif
.type
);
1853 rx
.flags
|= IEEE80211_RX_RA_MATCH
;
1854 prepares
= prepare_for_handlers(sdata
, bssid
, &rx
, hdr
);
1860 * frame is destined for this interface, but if it's not
1861 * also for the previous one we handle that after the
1862 * loop to avoid copying the SKB once too much
1871 * frame was destined for the previous interface
1872 * so invoke RX handlers for it
1875 skb_new
= skb_copy(skb
, GFP_ATOMIC
);
1877 if (net_ratelimit())
1878 printk(KERN_DEBUG
"%s: failed to copy "
1879 "multicast frame for %s\n",
1880 wiphy_name(local
->hw
.wiphy
),
1884 rx
.fc
= le16_to_cpu(hdr
->frame_control
);
1885 ieee80211_invoke_rx_handlers(prev
, &rx
, skb_new
);
1889 rx
.fc
= le16_to_cpu(hdr
->frame_control
);
1890 ieee80211_invoke_rx_handlers(prev
, &rx
, skb
);
1895 #define SEQ_MODULO 0x1000
1896 #define SEQ_MASK 0xfff
1898 static inline int seq_less(u16 sq1
, u16 sq2
)
1900 return (((sq1
- sq2
) & SEQ_MASK
) > (SEQ_MODULO
>> 1));
1903 static inline u16
seq_inc(u16 sq
)
1905 return ((sq
+ 1) & SEQ_MASK
);
1908 static inline u16
seq_sub(u16 sq1
, u16 sq2
)
1910 return ((sq1
- sq2
) & SEQ_MASK
);
1915 * As it function blongs to Rx path it must be called with
1916 * the proper rcu_read_lock protection for its flow.
1918 u8
ieee80211_sta_manage_reorder_buf(struct ieee80211_hw
*hw
,
1919 struct tid_ampdu_rx
*tid_agg_rx
,
1920 struct sk_buff
*skb
, u16 mpdu_seq_num
,
1923 struct ieee80211_local
*local
= hw_to_local(hw
);
1924 struct ieee80211_rx_status status
;
1925 u16 head_seq_num
, buf_size
;
1927 struct ieee80211_supported_band
*sband
;
1928 struct ieee80211_rate
*rate
;
1930 buf_size
= tid_agg_rx
->buf_size
;
1931 head_seq_num
= tid_agg_rx
->head_seq_num
;
1933 /* frame with out of date sequence number */
1934 if (seq_less(mpdu_seq_num
, head_seq_num
)) {
1939 /* if frame sequence number exceeds our buffering window size or
1940 * block Ack Request arrived - release stored frames */
1941 if ((!seq_less(mpdu_seq_num
, head_seq_num
+ buf_size
)) || (bar_req
)) {
1942 /* new head to the ordering buffer */
1944 head_seq_num
= mpdu_seq_num
;
1947 seq_inc(seq_sub(mpdu_seq_num
, buf_size
));
1948 /* release stored frames up to new head to stack */
1949 while (seq_less(tid_agg_rx
->head_seq_num
, head_seq_num
)) {
1950 index
= seq_sub(tid_agg_rx
->head_seq_num
,
1952 % tid_agg_rx
->buf_size
;
1954 if (tid_agg_rx
->reorder_buf
[index
]) {
1955 /* release the reordered frames to stack */
1957 tid_agg_rx
->reorder_buf
[index
]->cb
,
1959 sband
= local
->hw
.wiphy
->bands
[status
.band
];
1960 rate
= &sband
->bitrates
[status
.rate_idx
];
1961 __ieee80211_rx_handle_packet(hw
,
1962 tid_agg_rx
->reorder_buf
[index
],
1964 tid_agg_rx
->stored_mpdu_num
--;
1965 tid_agg_rx
->reorder_buf
[index
] = NULL
;
1967 tid_agg_rx
->head_seq_num
=
1968 seq_inc(tid_agg_rx
->head_seq_num
);
1974 /* now the new frame is always in the range of the reordering */
1976 index
= seq_sub(mpdu_seq_num
, tid_agg_rx
->ssn
)
1977 % tid_agg_rx
->buf_size
;
1978 /* check if we already stored this frame */
1979 if (tid_agg_rx
->reorder_buf
[index
]) {
1984 /* if arrived mpdu is in the right order and nothing else stored */
1985 /* release it immediately */
1986 if (mpdu_seq_num
== tid_agg_rx
->head_seq_num
&&
1987 tid_agg_rx
->stored_mpdu_num
== 0) {
1988 tid_agg_rx
->head_seq_num
=
1989 seq_inc(tid_agg_rx
->head_seq_num
);
1993 /* put the frame in the reordering buffer */
1994 tid_agg_rx
->reorder_buf
[index
] = skb
;
1995 tid_agg_rx
->stored_mpdu_num
++;
1996 /* release the buffer until next missing frame */
1997 index
= seq_sub(tid_agg_rx
->head_seq_num
, tid_agg_rx
->ssn
)
1998 % tid_agg_rx
->buf_size
;
1999 while (tid_agg_rx
->reorder_buf
[index
]) {
2000 /* release the reordered frame back to stack */
2001 memcpy(&status
, tid_agg_rx
->reorder_buf
[index
]->cb
,
2003 sband
= local
->hw
.wiphy
->bands
[status
.band
];
2004 rate
= &sband
->bitrates
[status
.rate_idx
];
2005 __ieee80211_rx_handle_packet(hw
, tid_agg_rx
->reorder_buf
[index
],
2007 tid_agg_rx
->stored_mpdu_num
--;
2008 tid_agg_rx
->reorder_buf
[index
] = NULL
;
2009 tid_agg_rx
->head_seq_num
= seq_inc(tid_agg_rx
->head_seq_num
);
2010 index
= seq_sub(tid_agg_rx
->head_seq_num
,
2011 tid_agg_rx
->ssn
) % tid_agg_rx
->buf_size
;
2016 static u8
ieee80211_rx_reorder_ampdu(struct ieee80211_local
*local
,
2017 struct sk_buff
*skb
)
2019 struct ieee80211_hw
*hw
= &local
->hw
;
2020 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*) skb
->data
;
2021 struct sta_info
*sta
;
2022 struct tid_ampdu_rx
*tid_agg_rx
;
2028 sta
= sta_info_get(local
, hdr
->addr2
);
2032 /* filter the QoS data rx stream according to
2033 * STA/TID and check if this STA/TID is on aggregation */
2034 if (!ieee80211_is_data_qos(hdr
->frame_control
))
2037 tid
= *ieee80211_get_qos_ctl(hdr
) & IEEE80211_QOS_CTL_TID_MASK
;
2039 if (sta
->ampdu_mlme
.tid_state_rx
[tid
] != HT_AGG_STATE_OPERATIONAL
)
2042 tid_agg_rx
= sta
->ampdu_mlme
.tid_rx
[tid
];
2044 /* qos null data frames are excluded */
2045 if (unlikely(hdr
->frame_control
& cpu_to_le16(IEEE80211_STYPE_NULLFUNC
)))
2048 /* new un-ordered ampdu frame - process it */
2050 /* reset session timer */
2051 if (tid_agg_rx
->timeout
) {
2052 unsigned long expires
=
2053 jiffies
+ (tid_agg_rx
->timeout
/ 1000) * HZ
;
2054 mod_timer(&tid_agg_rx
->session_timer
, expires
);
2057 /* if this mpdu is fragmented - terminate rx aggregation session */
2058 sc
= le16_to_cpu(hdr
->seq_ctrl
);
2059 if (sc
& IEEE80211_SCTL_FRAG
) {
2060 ieee80211_sta_stop_rx_ba_session(sta
->sdata
->dev
, sta
->addr
,
2061 tid
, 0, WLAN_REASON_QSTA_REQUIRE_SETUP
);
2066 /* according to mpdu sequence number deal with reordering buffer */
2067 mpdu_seq_num
= (sc
& IEEE80211_SCTL_SEQ
) >> 4;
2068 ret
= ieee80211_sta_manage_reorder_buf(hw
, tid_agg_rx
, skb
,
2075 * This is the receive path handler. It is called by a low level driver when an
2076 * 802.11 MPDU is received from the hardware.
2078 void __ieee80211_rx(struct ieee80211_hw
*hw
, struct sk_buff
*skb
,
2079 struct ieee80211_rx_status
*status
)
2081 struct ieee80211_local
*local
= hw_to_local(hw
);
2082 struct ieee80211_rate
*rate
= NULL
;
2083 struct ieee80211_supported_band
*sband
;
2085 if (status
->band
< 0 ||
2086 status
->band
>= IEEE80211_NUM_BANDS
) {
2091 sband
= local
->hw
.wiphy
->bands
[status
->band
];
2094 status
->rate_idx
< 0 ||
2095 status
->rate_idx
>= sband
->n_bitrates
) {
2100 rate
= &sband
->bitrates
[status
->rate_idx
];
2103 * key references and virtual interfaces are protected using RCU
2104 * and this requires that we are in a read-side RCU section during
2105 * receive processing
2110 * Frames with failed FCS/PLCP checksum are not returned,
2111 * all other frames are returned without radiotap header
2112 * if it was previously present.
2113 * Also, frames with less than 16 bytes are dropped.
2115 skb
= ieee80211_rx_monitor(local
, skb
, status
, rate
);
2121 if (!ieee80211_rx_reorder_ampdu(local
, skb
))
2122 __ieee80211_rx_handle_packet(hw
, skb
, status
, rate
);
2126 EXPORT_SYMBOL(__ieee80211_rx
);
2128 /* This is a version of the rx handler that can be called from hard irq
2129 * context. Post the skb on the queue and schedule the tasklet */
2130 void ieee80211_rx_irqsafe(struct ieee80211_hw
*hw
, struct sk_buff
*skb
,
2131 struct ieee80211_rx_status
*status
)
2133 struct ieee80211_local
*local
= hw_to_local(hw
);
2135 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status
) > sizeof(skb
->cb
));
2137 skb
->dev
= local
->mdev
;
2138 /* copy status into skb->cb for use by tasklet */
2139 memcpy(skb
->cb
, status
, sizeof(*status
));
2140 skb
->pkt_type
= IEEE80211_RX_MSG
;
2141 skb_queue_tail(&local
->skb_queue
, skb
);
2142 tasklet_schedule(&local
->tasklet
);
2144 EXPORT_SYMBOL(ieee80211_rx_irqsafe
);