[POWERPC] Fake NUMA emulation for PowerPC
[linux-2.6/sactl.git] / drivers / char / keyboard.c
blobfc54d234507ace68d0470122f8c3dba967b977e5
1 /*
2 * linux/drivers/char/keyboard.c
4 * Written for linux by Johan Myreen as a translation from
5 * the assembly version by Linus (with diacriticals added)
7 * Some additional features added by Christoph Niemann (ChN), March 1993
9 * Loadable keymaps by Risto Kankkunen, May 1993
11 * Diacriticals redone & other small changes, aeb@cwi.nl, June 1993
12 * Added decr/incr_console, dynamic keymaps, Unicode support,
13 * dynamic function/string keys, led setting, Sept 1994
14 * `Sticky' modifier keys, 951006.
16 * 11-11-96: SAK should now work in the raw mode (Martin Mares)
18 * Modified to provide 'generic' keyboard support by Hamish Macdonald
19 * Merge with the m68k keyboard driver and split-off of the PC low-level
20 * parts by Geert Uytterhoeven, May 1997
22 * 27-05-97: Added support for the Magic SysRq Key (Martin Mares)
23 * 30-07-98: Dead keys redone, aeb@cwi.nl.
24 * 21-08-02: Converted to input API, major cleanup. (Vojtech Pavlik)
27 #include <linux/consolemap.h>
28 #include <linux/module.h>
29 #include <linux/sched.h>
30 #include <linux/tty.h>
31 #include <linux/tty_flip.h>
32 #include <linux/mm.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/slab.h>
36 #include <linux/irq.h>
38 #include <linux/kbd_kern.h>
39 #include <linux/kbd_diacr.h>
40 #include <linux/vt_kern.h>
41 #include <linux/consolemap.h>
42 #include <linux/sysrq.h>
43 #include <linux/input.h>
44 #include <linux/reboot.h>
45 #include <linux/notifier.h>
47 extern void ctrl_alt_del(void);
50 * Exported functions/variables
53 #define KBD_DEFMODE ((1 << VC_REPEAT) | (1 << VC_META))
56 * Some laptops take the 789uiojklm,. keys as number pad when NumLock is on.
57 * This seems a good reason to start with NumLock off. On HIL keyboards
58 * of PARISC machines however there is no NumLock key and everyone expects the keypad
59 * to be used for numbers.
62 #if defined(CONFIG_PARISC) && (defined(CONFIG_KEYBOARD_HIL) || defined(CONFIG_KEYBOARD_HIL_OLD))
63 #define KBD_DEFLEDS (1 << VC_NUMLOCK)
64 #else
65 #define KBD_DEFLEDS 0
66 #endif
68 #define KBD_DEFLOCK 0
70 void compute_shiftstate(void);
73 * Handler Tables.
76 #define K_HANDLERS\
77 k_self, k_fn, k_spec, k_pad,\
78 k_dead, k_cons, k_cur, k_shift,\
79 k_meta, k_ascii, k_lock, k_lowercase,\
80 k_slock, k_dead2, k_brl, k_ignore
82 typedef void (k_handler_fn)(struct vc_data *vc, unsigned char value,
83 char up_flag);
84 static k_handler_fn K_HANDLERS;
85 k_handler_fn *k_handler[16] = { K_HANDLERS };
86 EXPORT_SYMBOL_GPL(k_handler);
88 #define FN_HANDLERS\
89 fn_null, fn_enter, fn_show_ptregs, fn_show_mem,\
90 fn_show_state, fn_send_intr, fn_lastcons, fn_caps_toggle,\
91 fn_num, fn_hold, fn_scroll_forw, fn_scroll_back,\
92 fn_boot_it, fn_caps_on, fn_compose, fn_SAK,\
93 fn_dec_console, fn_inc_console, fn_spawn_con, fn_bare_num
95 typedef void (fn_handler_fn)(struct vc_data *vc);
96 static fn_handler_fn FN_HANDLERS;
97 static fn_handler_fn *fn_handler[] = { FN_HANDLERS };
100 * Variables exported for vt_ioctl.c
103 /* maximum values each key_handler can handle */
104 const int max_vals[] = {
105 255, ARRAY_SIZE(func_table) - 1, ARRAY_SIZE(fn_handler) - 1, NR_PAD - 1,
106 NR_DEAD - 1, 255, 3, NR_SHIFT - 1, 255, NR_ASCII - 1, NR_LOCK - 1,
107 255, NR_LOCK - 1, 255, NR_BRL - 1
110 const int NR_TYPES = ARRAY_SIZE(max_vals);
112 struct kbd_struct kbd_table[MAX_NR_CONSOLES];
113 static struct kbd_struct *kbd = kbd_table;
115 struct vt_spawn_console vt_spawn_con = {
116 .lock = __SPIN_LOCK_UNLOCKED(vt_spawn_con.lock),
117 .pid = NULL,
118 .sig = 0,
122 * Variables exported for vt.c
125 int shift_state = 0;
128 * Internal Data.
131 static struct input_handler kbd_handler;
132 static unsigned long key_down[BITS_TO_LONGS(KEY_CNT)]; /* keyboard key bitmap */
133 static unsigned char shift_down[NR_SHIFT]; /* shift state counters.. */
134 static int dead_key_next;
135 static int npadch = -1; /* -1 or number assembled on pad */
136 static unsigned int diacr;
137 static char rep; /* flag telling character repeat */
139 static unsigned char ledstate = 0xff; /* undefined */
140 static unsigned char ledioctl;
142 static struct ledptr {
143 unsigned int *addr;
144 unsigned int mask;
145 unsigned char valid:1;
146 } ledptrs[3];
148 /* Simple translation table for the SysRq keys */
150 #ifdef CONFIG_MAGIC_SYSRQ
151 unsigned char kbd_sysrq_xlate[KEY_MAX + 1] =
152 "\000\0331234567890-=\177\t" /* 0x00 - 0x0f */
153 "qwertyuiop[]\r\000as" /* 0x10 - 0x1f */
154 "dfghjkl;'`\000\\zxcv" /* 0x20 - 0x2f */
155 "bnm,./\000*\000 \000\201\202\203\204\205" /* 0x30 - 0x3f */
156 "\206\207\210\211\212\000\000789-456+1" /* 0x40 - 0x4f */
157 "230\177\000\000\213\214\000\000\000\000\000\000\000\000\000\000" /* 0x50 - 0x5f */
158 "\r\000/"; /* 0x60 - 0x6f */
159 static int sysrq_down;
160 static int sysrq_alt_use;
161 #endif
162 static int sysrq_alt;
165 * Notifier list for console keyboard events
167 static ATOMIC_NOTIFIER_HEAD(keyboard_notifier_list);
169 int register_keyboard_notifier(struct notifier_block *nb)
171 return atomic_notifier_chain_register(&keyboard_notifier_list, nb);
173 EXPORT_SYMBOL_GPL(register_keyboard_notifier);
175 int unregister_keyboard_notifier(struct notifier_block *nb)
177 return atomic_notifier_chain_unregister(&keyboard_notifier_list, nb);
179 EXPORT_SYMBOL_GPL(unregister_keyboard_notifier);
182 * Translation of scancodes to keycodes. We set them on only the first
183 * keyboard in the list that accepts the scancode and keycode.
184 * Explanation for not choosing the first attached keyboard anymore:
185 * USB keyboards for example have two event devices: one for all "normal"
186 * keys and one for extra function keys (like "volume up", "make coffee",
187 * etc.). So this means that scancodes for the extra function keys won't
188 * be valid for the first event device, but will be for the second.
190 int getkeycode(unsigned int scancode)
192 struct input_handle *handle;
193 int keycode;
194 int error = -ENODEV;
196 list_for_each_entry(handle, &kbd_handler.h_list, h_node) {
197 error = handle->dev->getkeycode(handle->dev, scancode, &keycode);
198 if (!error)
199 return keycode;
202 return error;
205 int setkeycode(unsigned int scancode, unsigned int keycode)
207 struct input_handle *handle;
208 int error = -ENODEV;
210 list_for_each_entry(handle, &kbd_handler.h_list, h_node) {
211 error = handle->dev->setkeycode(handle->dev, scancode, keycode);
212 if (!error)
213 break;
216 return error;
220 * Making beeps and bells.
222 static void kd_nosound(unsigned long ignored)
224 struct input_handle *handle;
226 list_for_each_entry(handle, &kbd_handler.h_list, h_node) {
227 if (test_bit(EV_SND, handle->dev->evbit)) {
228 if (test_bit(SND_TONE, handle->dev->sndbit))
229 input_inject_event(handle, EV_SND, SND_TONE, 0);
230 if (test_bit(SND_BELL, handle->dev->sndbit))
231 input_inject_event(handle, EV_SND, SND_BELL, 0);
236 static DEFINE_TIMER(kd_mksound_timer, kd_nosound, 0, 0);
238 void kd_mksound(unsigned int hz, unsigned int ticks)
240 struct list_head *node;
242 del_timer(&kd_mksound_timer);
244 if (hz) {
245 list_for_each_prev(node, &kbd_handler.h_list) {
246 struct input_handle *handle = to_handle_h(node);
247 if (test_bit(EV_SND, handle->dev->evbit)) {
248 if (test_bit(SND_TONE, handle->dev->sndbit)) {
249 input_inject_event(handle, EV_SND, SND_TONE, hz);
250 break;
252 if (test_bit(SND_BELL, handle->dev->sndbit)) {
253 input_inject_event(handle, EV_SND, SND_BELL, 1);
254 break;
258 if (ticks)
259 mod_timer(&kd_mksound_timer, jiffies + ticks);
260 } else
261 kd_nosound(0);
265 * Setting the keyboard rate.
268 int kbd_rate(struct kbd_repeat *rep)
270 struct list_head *node;
271 unsigned int d = 0;
272 unsigned int p = 0;
274 list_for_each(node, &kbd_handler.h_list) {
275 struct input_handle *handle = to_handle_h(node);
276 struct input_dev *dev = handle->dev;
278 if (test_bit(EV_REP, dev->evbit)) {
279 if (rep->delay > 0)
280 input_inject_event(handle, EV_REP, REP_DELAY, rep->delay);
281 if (rep->period > 0)
282 input_inject_event(handle, EV_REP, REP_PERIOD, rep->period);
283 d = dev->rep[REP_DELAY];
284 p = dev->rep[REP_PERIOD];
287 rep->delay = d;
288 rep->period = p;
289 return 0;
293 * Helper Functions.
295 static void put_queue(struct vc_data *vc, int ch)
297 struct tty_struct *tty = vc->vc_tty;
299 if (tty) {
300 tty_insert_flip_char(tty, ch, 0);
301 con_schedule_flip(tty);
305 static void puts_queue(struct vc_data *vc, char *cp)
307 struct tty_struct *tty = vc->vc_tty;
309 if (!tty)
310 return;
312 while (*cp) {
313 tty_insert_flip_char(tty, *cp, 0);
314 cp++;
316 con_schedule_flip(tty);
319 static void applkey(struct vc_data *vc, int key, char mode)
321 static char buf[] = { 0x1b, 'O', 0x00, 0x00 };
323 buf[1] = (mode ? 'O' : '[');
324 buf[2] = key;
325 puts_queue(vc, buf);
329 * Many other routines do put_queue, but I think either
330 * they produce ASCII, or they produce some user-assigned
331 * string, and in both cases we might assume that it is
332 * in utf-8 already.
334 static void to_utf8(struct vc_data *vc, uint c)
336 if (c < 0x80)
337 /* 0******* */
338 put_queue(vc, c);
339 else if (c < 0x800) {
340 /* 110***** 10****** */
341 put_queue(vc, 0xc0 | (c >> 6));
342 put_queue(vc, 0x80 | (c & 0x3f));
343 } else if (c < 0x10000) {
344 if (c >= 0xD800 && c < 0xE000)
345 return;
346 if (c == 0xFFFF)
347 return;
348 /* 1110**** 10****** 10****** */
349 put_queue(vc, 0xe0 | (c >> 12));
350 put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
351 put_queue(vc, 0x80 | (c & 0x3f));
352 } else if (c < 0x110000) {
353 /* 11110*** 10****** 10****** 10****** */
354 put_queue(vc, 0xf0 | (c >> 18));
355 put_queue(vc, 0x80 | ((c >> 12) & 0x3f));
356 put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
357 put_queue(vc, 0x80 | (c & 0x3f));
362 * Called after returning from RAW mode or when changing consoles - recompute
363 * shift_down[] and shift_state from key_down[] maybe called when keymap is
364 * undefined, so that shiftkey release is seen
366 void compute_shiftstate(void)
368 unsigned int i, j, k, sym, val;
370 shift_state = 0;
371 memset(shift_down, 0, sizeof(shift_down));
373 for (i = 0; i < ARRAY_SIZE(key_down); i++) {
375 if (!key_down[i])
376 continue;
378 k = i * BITS_PER_LONG;
380 for (j = 0; j < BITS_PER_LONG; j++, k++) {
382 if (!test_bit(k, key_down))
383 continue;
385 sym = U(key_maps[0][k]);
386 if (KTYP(sym) != KT_SHIFT && KTYP(sym) != KT_SLOCK)
387 continue;
389 val = KVAL(sym);
390 if (val == KVAL(K_CAPSSHIFT))
391 val = KVAL(K_SHIFT);
393 shift_down[val]++;
394 shift_state |= (1 << val);
400 * We have a combining character DIACR here, followed by the character CH.
401 * If the combination occurs in the table, return the corresponding value.
402 * Otherwise, if CH is a space or equals DIACR, return DIACR.
403 * Otherwise, conclude that DIACR was not combining after all,
404 * queue it and return CH.
406 static unsigned int handle_diacr(struct vc_data *vc, unsigned int ch)
408 unsigned int d = diacr;
409 unsigned int i;
411 diacr = 0;
413 if ((d & ~0xff) == BRL_UC_ROW) {
414 if ((ch & ~0xff) == BRL_UC_ROW)
415 return d | ch;
416 } else {
417 for (i = 0; i < accent_table_size; i++)
418 if (accent_table[i].diacr == d && accent_table[i].base == ch)
419 return accent_table[i].result;
422 if (ch == ' ' || ch == (BRL_UC_ROW|0) || ch == d)
423 return d;
425 if (kbd->kbdmode == VC_UNICODE)
426 to_utf8(vc, d);
427 else {
428 int c = conv_uni_to_8bit(d);
429 if (c != -1)
430 put_queue(vc, c);
433 return ch;
437 * Special function handlers
439 static void fn_enter(struct vc_data *vc)
441 if (diacr) {
442 if (kbd->kbdmode == VC_UNICODE)
443 to_utf8(vc, diacr);
444 else {
445 int c = conv_uni_to_8bit(diacr);
446 if (c != -1)
447 put_queue(vc, c);
449 diacr = 0;
451 put_queue(vc, 13);
452 if (vc_kbd_mode(kbd, VC_CRLF))
453 put_queue(vc, 10);
456 static void fn_caps_toggle(struct vc_data *vc)
458 if (rep)
459 return;
460 chg_vc_kbd_led(kbd, VC_CAPSLOCK);
463 static void fn_caps_on(struct vc_data *vc)
465 if (rep)
466 return;
467 set_vc_kbd_led(kbd, VC_CAPSLOCK);
470 static void fn_show_ptregs(struct vc_data *vc)
472 struct pt_regs *regs = get_irq_regs();
473 if (regs)
474 show_regs(regs);
477 static void fn_hold(struct vc_data *vc)
479 struct tty_struct *tty = vc->vc_tty;
481 if (rep || !tty)
482 return;
485 * Note: SCROLLOCK will be set (cleared) by stop_tty (start_tty);
486 * these routines are also activated by ^S/^Q.
487 * (And SCROLLOCK can also be set by the ioctl KDSKBLED.)
489 if (tty->stopped)
490 start_tty(tty);
491 else
492 stop_tty(tty);
495 static void fn_num(struct vc_data *vc)
497 if (vc_kbd_mode(kbd,VC_APPLIC))
498 applkey(vc, 'P', 1);
499 else
500 fn_bare_num(vc);
504 * Bind this to Shift-NumLock if you work in application keypad mode
505 * but want to be able to change the NumLock flag.
506 * Bind this to NumLock if you prefer that the NumLock key always
507 * changes the NumLock flag.
509 static void fn_bare_num(struct vc_data *vc)
511 if (!rep)
512 chg_vc_kbd_led(kbd, VC_NUMLOCK);
515 static void fn_lastcons(struct vc_data *vc)
517 /* switch to the last used console, ChN */
518 set_console(last_console);
521 static void fn_dec_console(struct vc_data *vc)
523 int i, cur = fg_console;
525 /* Currently switching? Queue this next switch relative to that. */
526 if (want_console != -1)
527 cur = want_console;
529 for (i = cur - 1; i != cur; i--) {
530 if (i == -1)
531 i = MAX_NR_CONSOLES - 1;
532 if (vc_cons_allocated(i))
533 break;
535 set_console(i);
538 static void fn_inc_console(struct vc_data *vc)
540 int i, cur = fg_console;
542 /* Currently switching? Queue this next switch relative to that. */
543 if (want_console != -1)
544 cur = want_console;
546 for (i = cur+1; i != cur; i++) {
547 if (i == MAX_NR_CONSOLES)
548 i = 0;
549 if (vc_cons_allocated(i))
550 break;
552 set_console(i);
555 static void fn_send_intr(struct vc_data *vc)
557 struct tty_struct *tty = vc->vc_tty;
559 if (!tty)
560 return;
561 tty_insert_flip_char(tty, 0, TTY_BREAK);
562 con_schedule_flip(tty);
565 static void fn_scroll_forw(struct vc_data *vc)
567 scrollfront(vc, 0);
570 static void fn_scroll_back(struct vc_data *vc)
572 scrollback(vc, 0);
575 static void fn_show_mem(struct vc_data *vc)
577 show_mem();
580 static void fn_show_state(struct vc_data *vc)
582 show_state();
585 static void fn_boot_it(struct vc_data *vc)
587 ctrl_alt_del();
590 static void fn_compose(struct vc_data *vc)
592 dead_key_next = 1;
595 static void fn_spawn_con(struct vc_data *vc)
597 spin_lock(&vt_spawn_con.lock);
598 if (vt_spawn_con.pid)
599 if (kill_pid(vt_spawn_con.pid, vt_spawn_con.sig, 1)) {
600 put_pid(vt_spawn_con.pid);
601 vt_spawn_con.pid = NULL;
603 spin_unlock(&vt_spawn_con.lock);
606 static void fn_SAK(struct vc_data *vc)
608 struct work_struct *SAK_work = &vc_cons[fg_console].SAK_work;
609 schedule_work(SAK_work);
612 static void fn_null(struct vc_data *vc)
614 compute_shiftstate();
618 * Special key handlers
620 static void k_ignore(struct vc_data *vc, unsigned char value, char up_flag)
624 static void k_spec(struct vc_data *vc, unsigned char value, char up_flag)
626 if (up_flag)
627 return;
628 if (value >= ARRAY_SIZE(fn_handler))
629 return;
630 if ((kbd->kbdmode == VC_RAW ||
631 kbd->kbdmode == VC_MEDIUMRAW) &&
632 value != KVAL(K_SAK))
633 return; /* SAK is allowed even in raw mode */
634 fn_handler[value](vc);
637 static void k_lowercase(struct vc_data *vc, unsigned char value, char up_flag)
639 printk(KERN_ERR "keyboard.c: k_lowercase was called - impossible\n");
642 static void k_unicode(struct vc_data *vc, unsigned int value, char up_flag)
644 if (up_flag)
645 return; /* no action, if this is a key release */
647 if (diacr)
648 value = handle_diacr(vc, value);
650 if (dead_key_next) {
651 dead_key_next = 0;
652 diacr = value;
653 return;
655 if (kbd->kbdmode == VC_UNICODE)
656 to_utf8(vc, value);
657 else {
658 int c = conv_uni_to_8bit(value);
659 if (c != -1)
660 put_queue(vc, c);
665 * Handle dead key. Note that we now may have several
666 * dead keys modifying the same character. Very useful
667 * for Vietnamese.
669 static void k_deadunicode(struct vc_data *vc, unsigned int value, char up_flag)
671 if (up_flag)
672 return;
673 diacr = (diacr ? handle_diacr(vc, value) : value);
676 static void k_self(struct vc_data *vc, unsigned char value, char up_flag)
678 unsigned int uni;
679 if (kbd->kbdmode == VC_UNICODE)
680 uni = value;
681 else
682 uni = conv_8bit_to_uni(value);
683 k_unicode(vc, uni, up_flag);
686 static void k_dead2(struct vc_data *vc, unsigned char value, char up_flag)
688 k_deadunicode(vc, value, up_flag);
692 * Obsolete - for backwards compatibility only
694 static void k_dead(struct vc_data *vc, unsigned char value, char up_flag)
696 static const unsigned char ret_diacr[NR_DEAD] = {'`', '\'', '^', '~', '"', ',' };
697 value = ret_diacr[value];
698 k_deadunicode(vc, value, up_flag);
701 static void k_cons(struct vc_data *vc, unsigned char value, char up_flag)
703 if (up_flag)
704 return;
705 set_console(value);
708 static void k_fn(struct vc_data *vc, unsigned char value, char up_flag)
710 unsigned v;
712 if (up_flag)
713 return;
714 v = value;
715 if (v < ARRAY_SIZE(func_table)) {
716 if (func_table[value])
717 puts_queue(vc, func_table[value]);
718 } else
719 printk(KERN_ERR "k_fn called with value=%d\n", value);
722 static void k_cur(struct vc_data *vc, unsigned char value, char up_flag)
724 static const char cur_chars[] = "BDCA";
726 if (up_flag)
727 return;
728 applkey(vc, cur_chars[value], vc_kbd_mode(kbd, VC_CKMODE));
731 static void k_pad(struct vc_data *vc, unsigned char value, char up_flag)
733 static const char pad_chars[] = "0123456789+-*/\015,.?()#";
734 static const char app_map[] = "pqrstuvwxylSRQMnnmPQS";
736 if (up_flag)
737 return; /* no action, if this is a key release */
739 /* kludge... shift forces cursor/number keys */
740 if (vc_kbd_mode(kbd, VC_APPLIC) && !shift_down[KG_SHIFT]) {
741 applkey(vc, app_map[value], 1);
742 return;
745 if (!vc_kbd_led(kbd, VC_NUMLOCK))
746 switch (value) {
747 case KVAL(K_PCOMMA):
748 case KVAL(K_PDOT):
749 k_fn(vc, KVAL(K_REMOVE), 0);
750 return;
751 case KVAL(K_P0):
752 k_fn(vc, KVAL(K_INSERT), 0);
753 return;
754 case KVAL(K_P1):
755 k_fn(vc, KVAL(K_SELECT), 0);
756 return;
757 case KVAL(K_P2):
758 k_cur(vc, KVAL(K_DOWN), 0);
759 return;
760 case KVAL(K_P3):
761 k_fn(vc, KVAL(K_PGDN), 0);
762 return;
763 case KVAL(K_P4):
764 k_cur(vc, KVAL(K_LEFT), 0);
765 return;
766 case KVAL(K_P6):
767 k_cur(vc, KVAL(K_RIGHT), 0);
768 return;
769 case KVAL(K_P7):
770 k_fn(vc, KVAL(K_FIND), 0);
771 return;
772 case KVAL(K_P8):
773 k_cur(vc, KVAL(K_UP), 0);
774 return;
775 case KVAL(K_P9):
776 k_fn(vc, KVAL(K_PGUP), 0);
777 return;
778 case KVAL(K_P5):
779 applkey(vc, 'G', vc_kbd_mode(kbd, VC_APPLIC));
780 return;
783 put_queue(vc, pad_chars[value]);
784 if (value == KVAL(K_PENTER) && vc_kbd_mode(kbd, VC_CRLF))
785 put_queue(vc, 10);
788 static void k_shift(struct vc_data *vc, unsigned char value, char up_flag)
790 int old_state = shift_state;
792 if (rep)
793 return;
795 * Mimic typewriter:
796 * a CapsShift key acts like Shift but undoes CapsLock
798 if (value == KVAL(K_CAPSSHIFT)) {
799 value = KVAL(K_SHIFT);
800 if (!up_flag)
801 clr_vc_kbd_led(kbd, VC_CAPSLOCK);
804 if (up_flag) {
806 * handle the case that two shift or control
807 * keys are depressed simultaneously
809 if (shift_down[value])
810 shift_down[value]--;
811 } else
812 shift_down[value]++;
814 if (shift_down[value])
815 shift_state |= (1 << value);
816 else
817 shift_state &= ~(1 << value);
819 /* kludge */
820 if (up_flag && shift_state != old_state && npadch != -1) {
821 if (kbd->kbdmode == VC_UNICODE)
822 to_utf8(vc, npadch);
823 else
824 put_queue(vc, npadch & 0xff);
825 npadch = -1;
829 static void k_meta(struct vc_data *vc, unsigned char value, char up_flag)
831 if (up_flag)
832 return;
834 if (vc_kbd_mode(kbd, VC_META)) {
835 put_queue(vc, '\033');
836 put_queue(vc, value);
837 } else
838 put_queue(vc, value | 0x80);
841 static void k_ascii(struct vc_data *vc, unsigned char value, char up_flag)
843 int base;
845 if (up_flag)
846 return;
848 if (value < 10) {
849 /* decimal input of code, while Alt depressed */
850 base = 10;
851 } else {
852 /* hexadecimal input of code, while AltGr depressed */
853 value -= 10;
854 base = 16;
857 if (npadch == -1)
858 npadch = value;
859 else
860 npadch = npadch * base + value;
863 static void k_lock(struct vc_data *vc, unsigned char value, char up_flag)
865 if (up_flag || rep)
866 return;
867 chg_vc_kbd_lock(kbd, value);
870 static void k_slock(struct vc_data *vc, unsigned char value, char up_flag)
872 k_shift(vc, value, up_flag);
873 if (up_flag || rep)
874 return;
875 chg_vc_kbd_slock(kbd, value);
876 /* try to make Alt, oops, AltGr and such work */
877 if (!key_maps[kbd->lockstate ^ kbd->slockstate]) {
878 kbd->slockstate = 0;
879 chg_vc_kbd_slock(kbd, value);
883 /* by default, 300ms interval for combination release */
884 static unsigned brl_timeout = 300;
885 MODULE_PARM_DESC(brl_timeout, "Braille keys release delay in ms (0 for commit on first key release)");
886 module_param(brl_timeout, uint, 0644);
888 static unsigned brl_nbchords = 1;
889 MODULE_PARM_DESC(brl_nbchords, "Number of chords that produce a braille pattern (0 for dead chords)");
890 module_param(brl_nbchords, uint, 0644);
892 static void k_brlcommit(struct vc_data *vc, unsigned int pattern, char up_flag)
894 static unsigned long chords;
895 static unsigned committed;
897 if (!brl_nbchords)
898 k_deadunicode(vc, BRL_UC_ROW | pattern, up_flag);
899 else {
900 committed |= pattern;
901 chords++;
902 if (chords == brl_nbchords) {
903 k_unicode(vc, BRL_UC_ROW | committed, up_flag);
904 chords = 0;
905 committed = 0;
910 static void k_brl(struct vc_data *vc, unsigned char value, char up_flag)
912 static unsigned pressed,committing;
913 static unsigned long releasestart;
915 if (kbd->kbdmode != VC_UNICODE) {
916 if (!up_flag)
917 printk("keyboard mode must be unicode for braille patterns\n");
918 return;
921 if (!value) {
922 k_unicode(vc, BRL_UC_ROW, up_flag);
923 return;
926 if (value > 8)
927 return;
929 if (up_flag) {
930 if (brl_timeout) {
931 if (!committing ||
932 jiffies - releasestart > (brl_timeout * HZ) / 1000) {
933 committing = pressed;
934 releasestart = jiffies;
936 pressed &= ~(1 << (value - 1));
937 if (!pressed) {
938 if (committing) {
939 k_brlcommit(vc, committing, 0);
940 committing = 0;
943 } else {
944 if (committing) {
945 k_brlcommit(vc, committing, 0);
946 committing = 0;
948 pressed &= ~(1 << (value - 1));
950 } else {
951 pressed |= 1 << (value - 1);
952 if (!brl_timeout)
953 committing = pressed;
958 * The leds display either (i) the status of NumLock, CapsLock, ScrollLock,
959 * or (ii) whatever pattern of lights people want to show using KDSETLED,
960 * or (iii) specified bits of specified words in kernel memory.
962 unsigned char getledstate(void)
964 return ledstate;
967 void setledstate(struct kbd_struct *kbd, unsigned int led)
969 if (!(led & ~7)) {
970 ledioctl = led;
971 kbd->ledmode = LED_SHOW_IOCTL;
972 } else
973 kbd->ledmode = LED_SHOW_FLAGS;
974 set_leds();
977 static inline unsigned char getleds(void)
979 struct kbd_struct *kbd = kbd_table + fg_console;
980 unsigned char leds;
981 int i;
983 if (kbd->ledmode == LED_SHOW_IOCTL)
984 return ledioctl;
986 leds = kbd->ledflagstate;
988 if (kbd->ledmode == LED_SHOW_MEM) {
989 for (i = 0; i < 3; i++)
990 if (ledptrs[i].valid) {
991 if (*ledptrs[i].addr & ledptrs[i].mask)
992 leds |= (1 << i);
993 else
994 leds &= ~(1 << i);
997 return leds;
1001 * This routine is the bottom half of the keyboard interrupt
1002 * routine, and runs with all interrupts enabled. It does
1003 * console changing, led setting and copy_to_cooked, which can
1004 * take a reasonably long time.
1006 * Aside from timing (which isn't really that important for
1007 * keyboard interrupts as they happen often), using the software
1008 * interrupt routines for this thing allows us to easily mask
1009 * this when we don't want any of the above to happen.
1010 * This allows for easy and efficient race-condition prevention
1011 * for kbd_start => input_inject_event(dev, EV_LED, ...) => ...
1014 static void kbd_bh(unsigned long dummy)
1016 struct list_head *node;
1017 unsigned char leds = getleds();
1019 if (leds != ledstate) {
1020 list_for_each(node, &kbd_handler.h_list) {
1021 struct input_handle *handle = to_handle_h(node);
1022 input_inject_event(handle, EV_LED, LED_SCROLLL, !!(leds & 0x01));
1023 input_inject_event(handle, EV_LED, LED_NUML, !!(leds & 0x02));
1024 input_inject_event(handle, EV_LED, LED_CAPSL, !!(leds & 0x04));
1025 input_inject_event(handle, EV_SYN, SYN_REPORT, 0);
1029 ledstate = leds;
1032 DECLARE_TASKLET_DISABLED(keyboard_tasklet, kbd_bh, 0);
1034 #if defined(CONFIG_X86) || defined(CONFIG_IA64) || defined(CONFIG_ALPHA) ||\
1035 defined(CONFIG_MIPS) || defined(CONFIG_PPC) || defined(CONFIG_SPARC) ||\
1036 defined(CONFIG_PARISC) || defined(CONFIG_SUPERH) ||\
1037 (defined(CONFIG_ARM) && defined(CONFIG_KEYBOARD_ATKBD) && !defined(CONFIG_ARCH_RPC))
1039 #define HW_RAW(dev) (test_bit(EV_MSC, dev->evbit) && test_bit(MSC_RAW, dev->mscbit) &&\
1040 ((dev)->id.bustype == BUS_I8042) && ((dev)->id.vendor == 0x0001) && ((dev)->id.product == 0x0001))
1042 static const unsigned short x86_keycodes[256] =
1043 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
1044 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
1045 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
1046 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
1047 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
1048 80, 81, 82, 83, 84,118, 86, 87, 88,115,120,119,121,112,123, 92,
1049 284,285,309, 0,312, 91,327,328,329,331,333,335,336,337,338,339,
1050 367,288,302,304,350, 89,334,326,267,126,268,269,125,347,348,349,
1051 360,261,262,263,268,376,100,101,321,316,373,286,289,102,351,355,
1052 103,104,105,275,287,279,258,106,274,107,294,364,358,363,362,361,
1053 291,108,381,281,290,272,292,305,280, 99,112,257,306,359,113,114,
1054 264,117,271,374,379,265,266, 93, 94, 95, 85,259,375,260, 90,116,
1055 377,109,111,277,278,282,283,295,296,297,299,300,301,293,303,307,
1056 308,310,313,314,315,317,318,319,320,357,322,323,324,325,276,330,
1057 332,340,365,342,343,344,345,346,356,270,341,368,369,370,371,372 };
1059 #ifdef CONFIG_SPARC
1060 static int sparc_l1_a_state = 0;
1061 extern void sun_do_break(void);
1062 #endif
1064 static int emulate_raw(struct vc_data *vc, unsigned int keycode,
1065 unsigned char up_flag)
1067 int code;
1069 switch (keycode) {
1070 case KEY_PAUSE:
1071 put_queue(vc, 0xe1);
1072 put_queue(vc, 0x1d | up_flag);
1073 put_queue(vc, 0x45 | up_flag);
1074 break;
1076 case KEY_HANGEUL:
1077 if (!up_flag)
1078 put_queue(vc, 0xf2);
1079 break;
1081 case KEY_HANJA:
1082 if (!up_flag)
1083 put_queue(vc, 0xf1);
1084 break;
1086 case KEY_SYSRQ:
1088 * Real AT keyboards (that's what we're trying
1089 * to emulate here emit 0xe0 0x2a 0xe0 0x37 when
1090 * pressing PrtSc/SysRq alone, but simply 0x54
1091 * when pressing Alt+PrtSc/SysRq.
1093 if (sysrq_alt) {
1094 put_queue(vc, 0x54 | up_flag);
1095 } else {
1096 put_queue(vc, 0xe0);
1097 put_queue(vc, 0x2a | up_flag);
1098 put_queue(vc, 0xe0);
1099 put_queue(vc, 0x37 | up_flag);
1101 break;
1103 default:
1104 if (keycode > 255)
1105 return -1;
1107 code = x86_keycodes[keycode];
1108 if (!code)
1109 return -1;
1111 if (code & 0x100)
1112 put_queue(vc, 0xe0);
1113 put_queue(vc, (code & 0x7f) | up_flag);
1115 break;
1118 return 0;
1121 #else
1123 #define HW_RAW(dev) 0
1125 #warning "Cannot generate rawmode keyboard for your architecture yet."
1127 static int emulate_raw(struct vc_data *vc, unsigned int keycode, unsigned char up_flag)
1129 if (keycode > 127)
1130 return -1;
1132 put_queue(vc, keycode | up_flag);
1133 return 0;
1135 #endif
1137 static void kbd_rawcode(unsigned char data)
1139 struct vc_data *vc = vc_cons[fg_console].d;
1140 kbd = kbd_table + fg_console;
1141 if (kbd->kbdmode == VC_RAW)
1142 put_queue(vc, data);
1145 static void kbd_keycode(unsigned int keycode, int down, int hw_raw)
1147 struct vc_data *vc = vc_cons[fg_console].d;
1148 unsigned short keysym, *key_map;
1149 unsigned char type, raw_mode;
1150 struct tty_struct *tty;
1151 int shift_final;
1152 struct keyboard_notifier_param param = { .vc = vc, .value = keycode, .down = down };
1154 tty = vc->vc_tty;
1156 if (tty && (!tty->driver_data)) {
1157 /* No driver data? Strange. Okay we fix it then. */
1158 tty->driver_data = vc;
1161 kbd = kbd_table + fg_console;
1163 if (keycode == KEY_LEFTALT || keycode == KEY_RIGHTALT)
1164 sysrq_alt = down ? keycode : 0;
1165 #ifdef CONFIG_SPARC
1166 if (keycode == KEY_STOP)
1167 sparc_l1_a_state = down;
1168 #endif
1170 rep = (down == 2);
1172 #ifdef CONFIG_MAC_EMUMOUSEBTN
1173 if (mac_hid_mouse_emulate_buttons(1, keycode, down))
1174 return;
1175 #endif /* CONFIG_MAC_EMUMOUSEBTN */
1177 if ((raw_mode = (kbd->kbdmode == VC_RAW)) && !hw_raw)
1178 if (emulate_raw(vc, keycode, !down << 7))
1179 if (keycode < BTN_MISC && printk_ratelimit())
1180 printk(KERN_WARNING "keyboard.c: can't emulate rawmode for keycode %d\n", keycode);
1182 #ifdef CONFIG_MAGIC_SYSRQ /* Handle the SysRq Hack */
1183 if (keycode == KEY_SYSRQ && (sysrq_down || (down == 1 && sysrq_alt))) {
1184 if (!sysrq_down) {
1185 sysrq_down = down;
1186 sysrq_alt_use = sysrq_alt;
1188 return;
1190 if (sysrq_down && !down && keycode == sysrq_alt_use)
1191 sysrq_down = 0;
1192 if (sysrq_down && down && !rep) {
1193 handle_sysrq(kbd_sysrq_xlate[keycode], tty);
1194 return;
1196 #endif
1197 #ifdef CONFIG_SPARC
1198 if (keycode == KEY_A && sparc_l1_a_state) {
1199 sparc_l1_a_state = 0;
1200 sun_do_break();
1202 #endif
1204 if (kbd->kbdmode == VC_MEDIUMRAW) {
1206 * This is extended medium raw mode, with keys above 127
1207 * encoded as 0, high 7 bits, low 7 bits, with the 0 bearing
1208 * the 'up' flag if needed. 0 is reserved, so this shouldn't
1209 * interfere with anything else. The two bytes after 0 will
1210 * always have the up flag set not to interfere with older
1211 * applications. This allows for 16384 different keycodes,
1212 * which should be enough.
1214 if (keycode < 128) {
1215 put_queue(vc, keycode | (!down << 7));
1216 } else {
1217 put_queue(vc, !down << 7);
1218 put_queue(vc, (keycode >> 7) | 0x80);
1219 put_queue(vc, keycode | 0x80);
1221 raw_mode = 1;
1224 if (down)
1225 set_bit(keycode, key_down);
1226 else
1227 clear_bit(keycode, key_down);
1229 if (rep &&
1230 (!vc_kbd_mode(kbd, VC_REPEAT) ||
1231 (tty && !L_ECHO(tty) && tty->driver->chars_in_buffer(tty)))) {
1233 * Don't repeat a key if the input buffers are not empty and the
1234 * characters get aren't echoed locally. This makes key repeat
1235 * usable with slow applications and under heavy loads.
1237 return;
1240 param.shift = shift_final = (shift_state | kbd->slockstate) ^ kbd->lockstate;
1241 key_map = key_maps[shift_final];
1243 if (atomic_notifier_call_chain(&keyboard_notifier_list, KBD_KEYCODE, &param) == NOTIFY_STOP || !key_map) {
1244 atomic_notifier_call_chain(&keyboard_notifier_list, KBD_UNBOUND_KEYCODE, &param);
1245 compute_shiftstate();
1246 kbd->slockstate = 0;
1247 return;
1250 if (keycode > NR_KEYS)
1251 if (keycode >= KEY_BRL_DOT1 && keycode <= KEY_BRL_DOT8)
1252 keysym = K(KT_BRL, keycode - KEY_BRL_DOT1 + 1);
1253 else
1254 return;
1255 else
1256 keysym = key_map[keycode];
1258 type = KTYP(keysym);
1260 if (type < 0xf0) {
1261 param.value = keysym;
1262 if (atomic_notifier_call_chain(&keyboard_notifier_list, KBD_UNICODE, &param) == NOTIFY_STOP)
1263 return;
1264 if (down && !raw_mode)
1265 to_utf8(vc, keysym);
1266 return;
1269 type -= 0xf0;
1271 if (type == KT_LETTER) {
1272 type = KT_LATIN;
1273 if (vc_kbd_led(kbd, VC_CAPSLOCK)) {
1274 key_map = key_maps[shift_final ^ (1 << KG_SHIFT)];
1275 if (key_map)
1276 keysym = key_map[keycode];
1279 param.value = keysym;
1281 if (atomic_notifier_call_chain(&keyboard_notifier_list, KBD_KEYSYM, &param) == NOTIFY_STOP)
1282 return;
1284 if (raw_mode && type != KT_SPEC && type != KT_SHIFT)
1285 return;
1287 (*k_handler[type])(vc, keysym & 0xff, !down);
1289 atomic_notifier_call_chain(&keyboard_notifier_list, KBD_POST_KEYSYM, &param);
1291 if (type != KT_SLOCK)
1292 kbd->slockstate = 0;
1295 static void kbd_event(struct input_handle *handle, unsigned int event_type,
1296 unsigned int event_code, int value)
1298 if (event_type == EV_MSC && event_code == MSC_RAW && HW_RAW(handle->dev))
1299 kbd_rawcode(value);
1300 if (event_type == EV_KEY)
1301 kbd_keycode(event_code, value, HW_RAW(handle->dev));
1302 tasklet_schedule(&keyboard_tasklet);
1303 do_poke_blanked_console = 1;
1304 schedule_console_callback();
1308 * When a keyboard (or other input device) is found, the kbd_connect
1309 * function is called. The function then looks at the device, and if it
1310 * likes it, it can open it and get events from it. In this (kbd_connect)
1311 * function, we should decide which VT to bind that keyboard to initially.
1313 static int kbd_connect(struct input_handler *handler, struct input_dev *dev,
1314 const struct input_device_id *id)
1316 struct input_handle *handle;
1317 int error;
1318 int i;
1320 for (i = KEY_RESERVED; i < BTN_MISC; i++)
1321 if (test_bit(i, dev->keybit))
1322 break;
1324 if (i == BTN_MISC && !test_bit(EV_SND, dev->evbit))
1325 return -ENODEV;
1327 handle = kzalloc(sizeof(struct input_handle), GFP_KERNEL);
1328 if (!handle)
1329 return -ENOMEM;
1331 handle->dev = dev;
1332 handle->handler = handler;
1333 handle->name = "kbd";
1335 error = input_register_handle(handle);
1336 if (error)
1337 goto err_free_handle;
1339 error = input_open_device(handle);
1340 if (error)
1341 goto err_unregister_handle;
1343 return 0;
1345 err_unregister_handle:
1346 input_unregister_handle(handle);
1347 err_free_handle:
1348 kfree(handle);
1349 return error;
1352 static void kbd_disconnect(struct input_handle *handle)
1354 input_close_device(handle);
1355 input_unregister_handle(handle);
1356 kfree(handle);
1360 * Start keyboard handler on the new keyboard by refreshing LED state to
1361 * match the rest of the system.
1363 static void kbd_start(struct input_handle *handle)
1365 unsigned char leds = ledstate;
1367 tasklet_disable(&keyboard_tasklet);
1368 if (leds != 0xff) {
1369 input_inject_event(handle, EV_LED, LED_SCROLLL, !!(leds & 0x01));
1370 input_inject_event(handle, EV_LED, LED_NUML, !!(leds & 0x02));
1371 input_inject_event(handle, EV_LED, LED_CAPSL, !!(leds & 0x04));
1372 input_inject_event(handle, EV_SYN, SYN_REPORT, 0);
1374 tasklet_enable(&keyboard_tasklet);
1377 static const struct input_device_id kbd_ids[] = {
1379 .flags = INPUT_DEVICE_ID_MATCH_EVBIT,
1380 .evbit = { BIT_MASK(EV_KEY) },
1384 .flags = INPUT_DEVICE_ID_MATCH_EVBIT,
1385 .evbit = { BIT_MASK(EV_SND) },
1388 { }, /* Terminating entry */
1391 MODULE_DEVICE_TABLE(input, kbd_ids);
1393 static struct input_handler kbd_handler = {
1394 .event = kbd_event,
1395 .connect = kbd_connect,
1396 .disconnect = kbd_disconnect,
1397 .start = kbd_start,
1398 .name = "kbd",
1399 .id_table = kbd_ids,
1402 int __init kbd_init(void)
1404 int i;
1405 int error;
1407 for (i = 0; i < MAX_NR_CONSOLES; i++) {
1408 kbd_table[i].ledflagstate = KBD_DEFLEDS;
1409 kbd_table[i].default_ledflagstate = KBD_DEFLEDS;
1410 kbd_table[i].ledmode = LED_SHOW_FLAGS;
1411 kbd_table[i].lockstate = KBD_DEFLOCK;
1412 kbd_table[i].slockstate = 0;
1413 kbd_table[i].modeflags = KBD_DEFMODE;
1414 kbd_table[i].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE;
1417 error = input_register_handler(&kbd_handler);
1418 if (error)
1419 return error;
1421 tasklet_enable(&keyboard_tasklet);
1422 tasklet_schedule(&keyboard_tasklet);
1424 return 0;