[PATCH] ide: fix line break in ide messages
[linux-2.6/sactl.git] / net / sctp / outqueue.c
blob4eb81a1407b7e027c7da1302a8af43705be3015a
1 /* SCTP kernel reference Implementation
2 * (C) Copyright IBM Corp. 2001, 2004
3 * Copyright (c) 1999-2000 Cisco, Inc.
4 * Copyright (c) 1999-2001 Motorola, Inc.
5 * Copyright (c) 2001-2003 Intel Corp.
7 * This file is part of the SCTP kernel reference Implementation
9 * These functions implement the sctp_outq class. The outqueue handles
10 * bundling and queueing of outgoing SCTP chunks.
12 * The SCTP reference implementation is free software;
13 * you can redistribute it and/or modify it under the terms of
14 * the GNU General Public License as published by
15 * the Free Software Foundation; either version 2, or (at your option)
16 * any later version.
18 * The SCTP reference implementation is distributed in the hope that it
19 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
20 * ************************
21 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
22 * See the GNU General Public License for more details.
24 * You should have received a copy of the GNU General Public License
25 * along with GNU CC; see the file COPYING. If not, write to
26 * the Free Software Foundation, 59 Temple Place - Suite 330,
27 * Boston, MA 02111-1307, USA.
29 * Please send any bug reports or fixes you make to the
30 * email address(es):
31 * lksctp developers <lksctp-developers@lists.sourceforge.net>
33 * Or submit a bug report through the following website:
34 * http://www.sf.net/projects/lksctp
36 * Written or modified by:
37 * La Monte H.P. Yarroll <piggy@acm.org>
38 * Karl Knutson <karl@athena.chicago.il.us>
39 * Perry Melange <pmelange@null.cc.uic.edu>
40 * Xingang Guo <xingang.guo@intel.com>
41 * Hui Huang <hui.huang@nokia.com>
42 * Sridhar Samudrala <sri@us.ibm.com>
43 * Jon Grimm <jgrimm@us.ibm.com>
45 * Any bugs reported given to us we will try to fix... any fixes shared will
46 * be incorporated into the next SCTP release.
49 #include <linux/types.h>
50 #include <linux/list.h> /* For struct list_head */
51 #include <linux/socket.h>
52 #include <linux/ip.h>
53 #include <net/sock.h> /* For skb_set_owner_w */
55 #include <net/sctp/sctp.h>
56 #include <net/sctp/sm.h>
58 /* Declare internal functions here. */
59 static int sctp_acked(struct sctp_sackhdr *sack, __u32 tsn);
60 static void sctp_check_transmitted(struct sctp_outq *q,
61 struct list_head *transmitted_queue,
62 struct sctp_transport *transport,
63 struct sctp_sackhdr *sack,
64 __u32 highest_new_tsn);
66 static void sctp_mark_missing(struct sctp_outq *q,
67 struct list_head *transmitted_queue,
68 struct sctp_transport *transport,
69 __u32 highest_new_tsn,
70 int count_of_newacks);
72 static void sctp_generate_fwdtsn(struct sctp_outq *q, __u32 sack_ctsn);
74 /* Add data to the front of the queue. */
75 static inline void sctp_outq_head_data(struct sctp_outq *q,
76 struct sctp_chunk *ch)
78 __skb_queue_head(&q->out, (struct sk_buff *)ch);
79 q->out_qlen += ch->skb->len;
80 return;
83 /* Take data from the front of the queue. */
84 static inline struct sctp_chunk *sctp_outq_dequeue_data(struct sctp_outq *q)
86 struct sctp_chunk *ch;
87 ch = (struct sctp_chunk *)__skb_dequeue(&q->out);
88 if (ch)
89 q->out_qlen -= ch->skb->len;
90 return ch;
92 /* Add data chunk to the end of the queue. */
93 static inline void sctp_outq_tail_data(struct sctp_outq *q,
94 struct sctp_chunk *ch)
96 __skb_queue_tail(&q->out, (struct sk_buff *)ch);
97 q->out_qlen += ch->skb->len;
98 return;
102 * SFR-CACC algorithm:
103 * D) If count_of_newacks is greater than or equal to 2
104 * and t was not sent to the current primary then the
105 * sender MUST NOT increment missing report count for t.
107 static inline int sctp_cacc_skip_3_1_d(struct sctp_transport *primary,
108 struct sctp_transport *transport,
109 int count_of_newacks)
111 if (count_of_newacks >=2 && transport != primary)
112 return 1;
113 return 0;
117 * SFR-CACC algorithm:
118 * F) If count_of_newacks is less than 2, let d be the
119 * destination to which t was sent. If cacc_saw_newack
120 * is 0 for destination d, then the sender MUST NOT
121 * increment missing report count for t.
123 static inline int sctp_cacc_skip_3_1_f(struct sctp_transport *transport,
124 int count_of_newacks)
126 if (count_of_newacks < 2 && !transport->cacc.cacc_saw_newack)
127 return 1;
128 return 0;
132 * SFR-CACC algorithm:
133 * 3.1) If CYCLING_CHANGEOVER is 0, the sender SHOULD
134 * execute steps C, D, F.
136 * C has been implemented in sctp_outq_sack
138 static inline int sctp_cacc_skip_3_1(struct sctp_transport *primary,
139 struct sctp_transport *transport,
140 int count_of_newacks)
142 if (!primary->cacc.cycling_changeover) {
143 if (sctp_cacc_skip_3_1_d(primary, transport, count_of_newacks))
144 return 1;
145 if (sctp_cacc_skip_3_1_f(transport, count_of_newacks))
146 return 1;
147 return 0;
149 return 0;
153 * SFR-CACC algorithm:
154 * 3.2) Else if CYCLING_CHANGEOVER is 1, and t is less
155 * than next_tsn_at_change of the current primary, then
156 * the sender MUST NOT increment missing report count
157 * for t.
159 static inline int sctp_cacc_skip_3_2(struct sctp_transport *primary, __u32 tsn)
161 if (primary->cacc.cycling_changeover &&
162 TSN_lt(tsn, primary->cacc.next_tsn_at_change))
163 return 1;
164 return 0;
168 * SFR-CACC algorithm:
169 * 3) If the missing report count for TSN t is to be
170 * incremented according to [RFC2960] and
171 * [SCTP_STEWART-2002], and CHANGEOVER_ACTIVE is set,
172 * then the sender MUST futher execute steps 3.1 and
173 * 3.2 to determine if the missing report count for
174 * TSN t SHOULD NOT be incremented.
176 * 3.3) If 3.1 and 3.2 do not dictate that the missing
177 * report count for t should not be incremented, then
178 * the sender SOULD increment missing report count for
179 * t (according to [RFC2960] and [SCTP_STEWART_2002]).
181 static inline int sctp_cacc_skip(struct sctp_transport *primary,
182 struct sctp_transport *transport,
183 int count_of_newacks,
184 __u32 tsn)
186 if (primary->cacc.changeover_active &&
187 (sctp_cacc_skip_3_1(primary, transport, count_of_newacks)
188 || sctp_cacc_skip_3_2(primary, tsn)))
189 return 1;
190 return 0;
193 /* Initialize an existing sctp_outq. This does the boring stuff.
194 * You still need to define handlers if you really want to DO
195 * something with this structure...
197 void sctp_outq_init(struct sctp_association *asoc, struct sctp_outq *q)
199 q->asoc = asoc;
200 skb_queue_head_init(&q->out);
201 skb_queue_head_init(&q->control);
202 INIT_LIST_HEAD(&q->retransmit);
203 INIT_LIST_HEAD(&q->sacked);
204 INIT_LIST_HEAD(&q->abandoned);
206 q->outstanding_bytes = 0;
207 q->empty = 1;
208 q->cork = 0;
210 q->malloced = 0;
211 q->out_qlen = 0;
214 /* Free the outqueue structure and any related pending chunks.
216 void sctp_outq_teardown(struct sctp_outq *q)
218 struct sctp_transport *transport;
219 struct list_head *lchunk, *pos, *temp;
220 struct sctp_chunk *chunk;
222 /* Throw away unacknowledged chunks. */
223 list_for_each(pos, &q->asoc->peer.transport_addr_list) {
224 transport = list_entry(pos, struct sctp_transport, transports);
225 while ((lchunk = sctp_list_dequeue(&transport->transmitted)) != NULL) {
226 chunk = list_entry(lchunk, struct sctp_chunk,
227 transmitted_list);
228 /* Mark as part of a failed message. */
229 sctp_chunk_fail(chunk, q->error);
230 sctp_chunk_free(chunk);
234 /* Throw away chunks that have been gap ACKed. */
235 list_for_each_safe(lchunk, temp, &q->sacked) {
236 list_del_init(lchunk);
237 chunk = list_entry(lchunk, struct sctp_chunk,
238 transmitted_list);
239 sctp_chunk_fail(chunk, q->error);
240 sctp_chunk_free(chunk);
243 /* Throw away any chunks in the retransmit queue. */
244 list_for_each_safe(lchunk, temp, &q->retransmit) {
245 list_del_init(lchunk);
246 chunk = list_entry(lchunk, struct sctp_chunk,
247 transmitted_list);
248 sctp_chunk_fail(chunk, q->error);
249 sctp_chunk_free(chunk);
252 /* Throw away any chunks that are in the abandoned queue. */
253 list_for_each_safe(lchunk, temp, &q->abandoned) {
254 list_del_init(lchunk);
255 chunk = list_entry(lchunk, struct sctp_chunk,
256 transmitted_list);
257 sctp_chunk_fail(chunk, q->error);
258 sctp_chunk_free(chunk);
261 /* Throw away any leftover data chunks. */
262 while ((chunk = sctp_outq_dequeue_data(q)) != NULL) {
264 /* Mark as send failure. */
265 sctp_chunk_fail(chunk, q->error);
266 sctp_chunk_free(chunk);
269 q->error = 0;
271 /* Throw away any leftover control chunks. */
272 while ((chunk = (struct sctp_chunk *) skb_dequeue(&q->control)) != NULL)
273 sctp_chunk_free(chunk);
276 /* Free the outqueue structure and any related pending chunks. */
277 void sctp_outq_free(struct sctp_outq *q)
279 /* Throw away leftover chunks. */
280 sctp_outq_teardown(q);
282 /* If we were kmalloc()'d, free the memory. */
283 if (q->malloced)
284 kfree(q);
287 /* Put a new chunk in an sctp_outq. */
288 int sctp_outq_tail(struct sctp_outq *q, struct sctp_chunk *chunk)
290 int error = 0;
292 SCTP_DEBUG_PRINTK("sctp_outq_tail(%p, %p[%s])\n",
293 q, chunk, chunk && chunk->chunk_hdr ?
294 sctp_cname(SCTP_ST_CHUNK(chunk->chunk_hdr->type))
295 : "Illegal Chunk");
297 /* If it is data, queue it up, otherwise, send it
298 * immediately.
300 if (SCTP_CID_DATA == chunk->chunk_hdr->type) {
301 /* Is it OK to queue data chunks? */
302 /* From 9. Termination of Association
304 * When either endpoint performs a shutdown, the
305 * association on each peer will stop accepting new
306 * data from its user and only deliver data in queue
307 * at the time of sending or receiving the SHUTDOWN
308 * chunk.
310 switch (q->asoc->state) {
311 case SCTP_STATE_EMPTY:
312 case SCTP_STATE_CLOSED:
313 case SCTP_STATE_SHUTDOWN_PENDING:
314 case SCTP_STATE_SHUTDOWN_SENT:
315 case SCTP_STATE_SHUTDOWN_RECEIVED:
316 case SCTP_STATE_SHUTDOWN_ACK_SENT:
317 /* Cannot send after transport endpoint shutdown */
318 error = -ESHUTDOWN;
319 break;
321 default:
322 SCTP_DEBUG_PRINTK("outqueueing (%p, %p[%s])\n",
323 q, chunk, chunk && chunk->chunk_hdr ?
324 sctp_cname(SCTP_ST_CHUNK(chunk->chunk_hdr->type))
325 : "Illegal Chunk");
327 sctp_outq_tail_data(q, chunk);
328 if (chunk->chunk_hdr->flags & SCTP_DATA_UNORDERED)
329 SCTP_INC_STATS(SCTP_MIB_OUTUNORDERCHUNKS);
330 else
331 SCTP_INC_STATS(SCTP_MIB_OUTORDERCHUNKS);
332 q->empty = 0;
333 break;
335 } else {
336 __skb_queue_tail(&q->control, (struct sk_buff *) chunk);
337 SCTP_INC_STATS(SCTP_MIB_OUTCTRLCHUNKS);
340 if (error < 0)
341 return error;
343 if (!q->cork)
344 error = sctp_outq_flush(q, 0);
346 return error;
349 /* Insert a chunk into the sorted list based on the TSNs. The retransmit list
350 * and the abandoned list are in ascending order.
352 static void sctp_insert_list(struct list_head *head, struct list_head *new)
354 struct list_head *pos;
355 struct sctp_chunk *nchunk, *lchunk;
356 __u32 ntsn, ltsn;
357 int done = 0;
359 nchunk = list_entry(new, struct sctp_chunk, transmitted_list);
360 ntsn = ntohl(nchunk->subh.data_hdr->tsn);
362 list_for_each(pos, head) {
363 lchunk = list_entry(pos, struct sctp_chunk, transmitted_list);
364 ltsn = ntohl(lchunk->subh.data_hdr->tsn);
365 if (TSN_lt(ntsn, ltsn)) {
366 list_add(new, pos->prev);
367 done = 1;
368 break;
371 if (!done)
372 list_add_tail(new, head);
375 /* Mark all the eligible packets on a transport for retransmission. */
376 void sctp_retransmit_mark(struct sctp_outq *q,
377 struct sctp_transport *transport,
378 __u8 fast_retransmit)
380 struct list_head *lchunk, *ltemp;
381 struct sctp_chunk *chunk;
383 /* Walk through the specified transmitted queue. */
384 list_for_each_safe(lchunk, ltemp, &transport->transmitted) {
385 chunk = list_entry(lchunk, struct sctp_chunk,
386 transmitted_list);
388 /* If the chunk is abandoned, move it to abandoned list. */
389 if (sctp_chunk_abandoned(chunk)) {
390 list_del_init(lchunk);
391 sctp_insert_list(&q->abandoned, lchunk);
392 continue;
395 /* If we are doing retransmission due to a fast retransmit,
396 * only the chunk's that are marked for fast retransmit
397 * should be added to the retransmit queue. If we are doing
398 * retransmission due to a timeout or pmtu discovery, only the
399 * chunks that are not yet acked should be added to the
400 * retransmit queue.
402 if ((fast_retransmit && chunk->fast_retransmit) ||
403 (!fast_retransmit && !chunk->tsn_gap_acked)) {
404 /* RFC 2960 6.2.1 Processing a Received SACK
406 * C) Any time a DATA chunk is marked for
407 * retransmission (via either T3-rtx timer expiration
408 * (Section 6.3.3) or via fast retransmit
409 * (Section 7.2.4)), add the data size of those
410 * chunks to the rwnd.
412 q->asoc->peer.rwnd += sctp_data_size(chunk);
413 q->outstanding_bytes -= sctp_data_size(chunk);
414 transport->flight_size -= sctp_data_size(chunk);
416 /* sctpimpguide-05 Section 2.8.2
417 * M5) If a T3-rtx timer expires, the
418 * 'TSN.Missing.Report' of all affected TSNs is set
419 * to 0.
421 chunk->tsn_missing_report = 0;
423 /* If a chunk that is being used for RTT measurement
424 * has to be retransmitted, we cannot use this chunk
425 * anymore for RTT measurements. Reset rto_pending so
426 * that a new RTT measurement is started when a new
427 * data chunk is sent.
429 if (chunk->rtt_in_progress) {
430 chunk->rtt_in_progress = 0;
431 transport->rto_pending = 0;
434 /* Move the chunk to the retransmit queue. The chunks
435 * on the retransmit queue are always kept in order.
437 list_del_init(lchunk);
438 sctp_insert_list(&q->retransmit, lchunk);
442 SCTP_DEBUG_PRINTK("%s: transport: %p, fast_retransmit: %d, "
443 "cwnd: %d, ssthresh: %d, flight_size: %d, "
444 "pba: %d\n", __FUNCTION__,
445 transport, fast_retransmit,
446 transport->cwnd, transport->ssthresh,
447 transport->flight_size,
448 transport->partial_bytes_acked);
452 /* Mark all the eligible packets on a transport for retransmission and force
453 * one packet out.
455 void sctp_retransmit(struct sctp_outq *q, struct sctp_transport *transport,
456 sctp_retransmit_reason_t reason)
458 int error = 0;
459 __u8 fast_retransmit = 0;
461 switch(reason) {
462 case SCTP_RTXR_T3_RTX:
463 sctp_transport_lower_cwnd(transport, SCTP_LOWER_CWND_T3_RTX);
464 /* Update the retran path if the T3-rtx timer has expired for
465 * the current retran path.
467 if (transport == transport->asoc->peer.retran_path)
468 sctp_assoc_update_retran_path(transport->asoc);
469 break;
470 case SCTP_RTXR_FAST_RTX:
471 sctp_transport_lower_cwnd(transport, SCTP_LOWER_CWND_FAST_RTX);
472 fast_retransmit = 1;
473 break;
474 case SCTP_RTXR_PMTUD:
475 default:
476 break;
479 sctp_retransmit_mark(q, transport, fast_retransmit);
481 /* PR-SCTP A5) Any time the T3-rtx timer expires, on any destination,
482 * the sender SHOULD try to advance the "Advanced.Peer.Ack.Point" by
483 * following the procedures outlined in C1 - C5.
485 sctp_generate_fwdtsn(q, q->asoc->ctsn_ack_point);
487 error = sctp_outq_flush(q, /* rtx_timeout */ 1);
489 if (error)
490 q->asoc->base.sk->sk_err = -error;
494 * Transmit DATA chunks on the retransmit queue. Upon return from
495 * sctp_outq_flush_rtx() the packet 'pkt' may contain chunks which
496 * need to be transmitted by the caller.
497 * We assume that pkt->transport has already been set.
499 * The return value is a normal kernel error return value.
501 static int sctp_outq_flush_rtx(struct sctp_outq *q, struct sctp_packet *pkt,
502 int rtx_timeout, int *start_timer)
504 struct list_head *lqueue;
505 struct list_head *lchunk, *lchunk1;
506 struct sctp_transport *transport = pkt->transport;
507 sctp_xmit_t status;
508 struct sctp_chunk *chunk, *chunk1;
509 struct sctp_association *asoc;
510 int error = 0;
512 asoc = q->asoc;
513 lqueue = &q->retransmit;
515 /* RFC 2960 6.3.3 Handle T3-rtx Expiration
517 * E3) Determine how many of the earliest (i.e., lowest TSN)
518 * outstanding DATA chunks for the address for which the
519 * T3-rtx has expired will fit into a single packet, subject
520 * to the MTU constraint for the path corresponding to the
521 * destination transport address to which the retransmission
522 * is being sent (this may be different from the address for
523 * which the timer expires [see Section 6.4]). Call this value
524 * K. Bundle and retransmit those K DATA chunks in a single
525 * packet to the destination endpoint.
527 * [Just to be painfully clear, if we are retransmitting
528 * because a timeout just happened, we should send only ONE
529 * packet of retransmitted data.]
531 lchunk = sctp_list_dequeue(lqueue);
533 while (lchunk) {
534 chunk = list_entry(lchunk, struct sctp_chunk,
535 transmitted_list);
537 /* Make sure that Gap Acked TSNs are not retransmitted. A
538 * simple approach is just to move such TSNs out of the
539 * way and into a 'transmitted' queue and skip to the
540 * next chunk.
542 if (chunk->tsn_gap_acked) {
543 list_add_tail(lchunk, &transport->transmitted);
544 lchunk = sctp_list_dequeue(lqueue);
545 continue;
548 /* Attempt to append this chunk to the packet. */
549 status = sctp_packet_append_chunk(pkt, chunk);
551 switch (status) {
552 case SCTP_XMIT_PMTU_FULL:
553 /* Send this packet. */
554 if ((error = sctp_packet_transmit(pkt)) == 0)
555 *start_timer = 1;
557 /* If we are retransmitting, we should only
558 * send a single packet.
560 if (rtx_timeout) {
561 list_add(lchunk, lqueue);
562 lchunk = NULL;
565 /* Bundle lchunk in the next round. */
566 break;
568 case SCTP_XMIT_RWND_FULL:
569 /* Send this packet. */
570 if ((error = sctp_packet_transmit(pkt)) == 0)
571 *start_timer = 1;
573 /* Stop sending DATA as there is no more room
574 * at the receiver.
576 list_add(lchunk, lqueue);
577 lchunk = NULL;
578 break;
580 case SCTP_XMIT_NAGLE_DELAY:
581 /* Send this packet. */
582 if ((error = sctp_packet_transmit(pkt)) == 0)
583 *start_timer = 1;
585 /* Stop sending DATA because of nagle delay. */
586 list_add(lchunk, lqueue);
587 lchunk = NULL;
588 break;
590 default:
591 /* The append was successful, so add this chunk to
592 * the transmitted list.
594 list_add_tail(lchunk, &transport->transmitted);
596 /* Mark the chunk as ineligible for fast retransmit
597 * after it is retransmitted.
599 chunk->fast_retransmit = 0;
601 *start_timer = 1;
602 q->empty = 0;
604 /* Retrieve a new chunk to bundle. */
605 lchunk = sctp_list_dequeue(lqueue);
606 break;
609 /* If we are here due to a retransmit timeout or a fast
610 * retransmit and if there are any chunks left in the retransmit
611 * queue that could not fit in the PMTU sized packet, they need * to be marked as ineligible for a subsequent fast retransmit.
613 if (rtx_timeout && !lchunk) {
614 list_for_each(lchunk1, lqueue) {
615 chunk1 = list_entry(lchunk1, struct sctp_chunk,
616 transmitted_list);
617 chunk1->fast_retransmit = 0;
622 return error;
625 /* Cork the outqueue so queued chunks are really queued. */
626 int sctp_outq_uncork(struct sctp_outq *q)
628 int error = 0;
629 if (q->cork) {
630 q->cork = 0;
631 error = sctp_outq_flush(q, 0);
633 return error;
637 * Try to flush an outqueue.
639 * Description: Send everything in q which we legally can, subject to
640 * congestion limitations.
641 * * Note: This function can be called from multiple contexts so appropriate
642 * locking concerns must be made. Today we use the sock lock to protect
643 * this function.
645 int sctp_outq_flush(struct sctp_outq *q, int rtx_timeout)
647 struct sctp_packet *packet;
648 struct sctp_packet singleton;
649 struct sctp_association *asoc = q->asoc;
650 __u16 sport = asoc->base.bind_addr.port;
651 __u16 dport = asoc->peer.port;
652 __u32 vtag = asoc->peer.i.init_tag;
653 struct sk_buff_head *queue;
654 struct sctp_transport *transport = NULL;
655 struct sctp_transport *new_transport;
656 struct sctp_chunk *chunk;
657 sctp_xmit_t status;
658 int error = 0;
659 int start_timer = 0;
661 /* These transports have chunks to send. */
662 struct list_head transport_list;
663 struct list_head *ltransport;
665 INIT_LIST_HEAD(&transport_list);
666 packet = NULL;
669 * 6.10 Bundling
670 * ...
671 * When bundling control chunks with DATA chunks, an
672 * endpoint MUST place control chunks first in the outbound
673 * SCTP packet. The transmitter MUST transmit DATA chunks
674 * within a SCTP packet in increasing order of TSN.
675 * ...
678 queue = &q->control;
679 while ((chunk = (struct sctp_chunk *)skb_dequeue(queue)) != NULL) {
680 /* Pick the right transport to use. */
681 new_transport = chunk->transport;
683 if (!new_transport) {
684 new_transport = asoc->peer.active_path;
685 } else if (new_transport->state == SCTP_INACTIVE) {
686 /* If the chunk is Heartbeat or Heartbeat Ack,
687 * send it to chunk->transport, even if it's
688 * inactive.
690 * 3.3.6 Heartbeat Acknowledgement:
691 * ...
692 * A HEARTBEAT ACK is always sent to the source IP
693 * address of the IP datagram containing the
694 * HEARTBEAT chunk to which this ack is responding.
695 * ...
697 if (chunk->chunk_hdr->type != SCTP_CID_HEARTBEAT &&
698 chunk->chunk_hdr->type != SCTP_CID_HEARTBEAT_ACK)
699 new_transport = asoc->peer.active_path;
702 /* Are we switching transports?
703 * Take care of transport locks.
705 if (new_transport != transport) {
706 transport = new_transport;
707 if (list_empty(&transport->send_ready)) {
708 list_add_tail(&transport->send_ready,
709 &transport_list);
711 packet = &transport->packet;
712 sctp_packet_config(packet, vtag,
713 asoc->peer.ecn_capable);
716 switch (chunk->chunk_hdr->type) {
718 * 6.10 Bundling
719 * ...
720 * An endpoint MUST NOT bundle INIT, INIT ACK or SHUTDOWN
721 * COMPLETE with any other chunks. [Send them immediately.]
723 case SCTP_CID_INIT:
724 case SCTP_CID_INIT_ACK:
725 case SCTP_CID_SHUTDOWN_COMPLETE:
726 sctp_packet_init(&singleton, transport, sport, dport);
727 sctp_packet_config(&singleton, vtag, 0);
728 sctp_packet_append_chunk(&singleton, chunk);
729 error = sctp_packet_transmit(&singleton);
730 if (error < 0)
731 return error;
732 break;
734 case SCTP_CID_ABORT:
735 case SCTP_CID_SACK:
736 case SCTP_CID_HEARTBEAT:
737 case SCTP_CID_HEARTBEAT_ACK:
738 case SCTP_CID_SHUTDOWN:
739 case SCTP_CID_SHUTDOWN_ACK:
740 case SCTP_CID_ERROR:
741 case SCTP_CID_COOKIE_ECHO:
742 case SCTP_CID_COOKIE_ACK:
743 case SCTP_CID_ECN_ECNE:
744 case SCTP_CID_ECN_CWR:
745 case SCTP_CID_ASCONF:
746 case SCTP_CID_ASCONF_ACK:
747 case SCTP_CID_FWD_TSN:
748 sctp_packet_transmit_chunk(packet, chunk);
749 break;
751 default:
752 /* We built a chunk with an illegal type! */
753 BUG();
757 /* Is it OK to send data chunks? */
758 switch (asoc->state) {
759 case SCTP_STATE_COOKIE_ECHOED:
760 /* Only allow bundling when this packet has a COOKIE-ECHO
761 * chunk.
763 if (!packet || !packet->has_cookie_echo)
764 break;
766 /* fallthru */
767 case SCTP_STATE_ESTABLISHED:
768 case SCTP_STATE_SHUTDOWN_PENDING:
769 case SCTP_STATE_SHUTDOWN_RECEIVED:
771 * RFC 2960 6.1 Transmission of DATA Chunks
773 * C) When the time comes for the sender to transmit,
774 * before sending new DATA chunks, the sender MUST
775 * first transmit any outstanding DATA chunks which
776 * are marked for retransmission (limited by the
777 * current cwnd).
779 if (!list_empty(&q->retransmit)) {
780 if (transport == asoc->peer.retran_path)
781 goto retran;
783 /* Switch transports & prepare the packet. */
785 transport = asoc->peer.retran_path;
787 if (list_empty(&transport->send_ready)) {
788 list_add_tail(&transport->send_ready,
789 &transport_list);
792 packet = &transport->packet;
793 sctp_packet_config(packet, vtag,
794 asoc->peer.ecn_capable);
795 retran:
796 error = sctp_outq_flush_rtx(q, packet,
797 rtx_timeout, &start_timer);
799 if (start_timer)
800 sctp_transport_reset_timers(transport);
802 /* This can happen on COOKIE-ECHO resend. Only
803 * one chunk can get bundled with a COOKIE-ECHO.
805 if (packet->has_cookie_echo)
806 goto sctp_flush_out;
808 /* Don't send new data if there is still data
809 * waiting to retransmit.
811 if (!list_empty(&q->retransmit))
812 goto sctp_flush_out;
815 /* Finally, transmit new packets. */
816 start_timer = 0;
817 queue = &q->out;
819 while ((chunk = sctp_outq_dequeue_data(q)) != NULL) {
820 /* RFC 2960 6.5 Every DATA chunk MUST carry a valid
821 * stream identifier.
823 if (chunk->sinfo.sinfo_stream >=
824 asoc->c.sinit_num_ostreams) {
826 /* Mark as failed send. */
827 sctp_chunk_fail(chunk, SCTP_ERROR_INV_STRM);
828 sctp_chunk_free(chunk);
829 continue;
832 /* Has this chunk expired? */
833 if (sctp_chunk_abandoned(chunk)) {
834 sctp_chunk_fail(chunk, 0);
835 sctp_chunk_free(chunk);
836 continue;
839 /* If there is a specified transport, use it.
840 * Otherwise, we want to use the active path.
842 new_transport = chunk->transport;
843 if (!new_transport ||
844 new_transport->state == SCTP_INACTIVE)
845 new_transport = asoc->peer.active_path;
847 /* Change packets if necessary. */
848 if (new_transport != transport) {
849 transport = new_transport;
851 /* Schedule to have this transport's
852 * packet flushed.
854 if (list_empty(&transport->send_ready)) {
855 list_add_tail(&transport->send_ready,
856 &transport_list);
859 packet = &transport->packet;
860 sctp_packet_config(packet, vtag,
861 asoc->peer.ecn_capable);
864 SCTP_DEBUG_PRINTK("sctp_outq_flush(%p, %p[%s]), ",
865 q, chunk,
866 chunk && chunk->chunk_hdr ?
867 sctp_cname(SCTP_ST_CHUNK(
868 chunk->chunk_hdr->type))
869 : "Illegal Chunk");
871 SCTP_DEBUG_PRINTK("TX TSN 0x%x skb->head "
872 "%p skb->users %d.\n",
873 ntohl(chunk->subh.data_hdr->tsn),
874 chunk->skb ?chunk->skb->head : NULL,
875 chunk->skb ?
876 atomic_read(&chunk->skb->users) : -1);
878 /* Add the chunk to the packet. */
879 status = sctp_packet_transmit_chunk(packet, chunk);
881 switch (status) {
882 case SCTP_XMIT_PMTU_FULL:
883 case SCTP_XMIT_RWND_FULL:
884 case SCTP_XMIT_NAGLE_DELAY:
885 /* We could not append this chunk, so put
886 * the chunk back on the output queue.
888 SCTP_DEBUG_PRINTK("sctp_outq_flush: could "
889 "not transmit TSN: 0x%x, status: %d\n",
890 ntohl(chunk->subh.data_hdr->tsn),
891 status);
892 sctp_outq_head_data(q, chunk);
893 goto sctp_flush_out;
894 break;
896 case SCTP_XMIT_OK:
897 break;
899 default:
900 BUG();
903 /* BUG: We assume that the sctp_packet_transmit()
904 * call below will succeed all the time and add the
905 * chunk to the transmitted list and restart the
906 * timers.
907 * It is possible that the call can fail under OOM
908 * conditions.
910 * Is this really a problem? Won't this behave
911 * like a lost TSN?
913 list_add_tail(&chunk->transmitted_list,
914 &transport->transmitted);
916 sctp_transport_reset_timers(transport);
918 q->empty = 0;
920 /* Only let one DATA chunk get bundled with a
921 * COOKIE-ECHO chunk.
923 if (packet->has_cookie_echo)
924 goto sctp_flush_out;
926 break;
928 default:
929 /* Do nothing. */
930 break;
933 sctp_flush_out:
935 /* Before returning, examine all the transports touched in
936 * this call. Right now, we bluntly force clear all the
937 * transports. Things might change after we implement Nagle.
938 * But such an examination is still required.
940 * --xguo
942 while ((ltransport = sctp_list_dequeue(&transport_list)) != NULL ) {
943 struct sctp_transport *t = list_entry(ltransport,
944 struct sctp_transport,
945 send_ready);
946 packet = &t->packet;
947 if (!sctp_packet_empty(packet))
948 error = sctp_packet_transmit(packet);
951 return error;
954 /* Update unack_data based on the incoming SACK chunk */
955 static void sctp_sack_update_unack_data(struct sctp_association *assoc,
956 struct sctp_sackhdr *sack)
958 sctp_sack_variable_t *frags;
959 __u16 unack_data;
960 int i;
962 unack_data = assoc->next_tsn - assoc->ctsn_ack_point - 1;
964 frags = sack->variable;
965 for (i = 0; i < ntohs(sack->num_gap_ack_blocks); i++) {
966 unack_data -= ((ntohs(frags[i].gab.end) -
967 ntohs(frags[i].gab.start) + 1));
970 assoc->unack_data = unack_data;
973 /* Return the highest new tsn that is acknowledged by the given SACK chunk. */
974 static __u32 sctp_highest_new_tsn(struct sctp_sackhdr *sack,
975 struct sctp_association *asoc)
977 struct list_head *ltransport, *lchunk;
978 struct sctp_transport *transport;
979 struct sctp_chunk *chunk;
980 __u32 highest_new_tsn, tsn;
981 struct list_head *transport_list = &asoc->peer.transport_addr_list;
983 highest_new_tsn = ntohl(sack->cum_tsn_ack);
985 list_for_each(ltransport, transport_list) {
986 transport = list_entry(ltransport, struct sctp_transport,
987 transports);
988 list_for_each(lchunk, &transport->transmitted) {
989 chunk = list_entry(lchunk, struct sctp_chunk,
990 transmitted_list);
991 tsn = ntohl(chunk->subh.data_hdr->tsn);
993 if (!chunk->tsn_gap_acked &&
994 TSN_lt(highest_new_tsn, tsn) &&
995 sctp_acked(sack, tsn))
996 highest_new_tsn = tsn;
1000 return highest_new_tsn;
1003 /* This is where we REALLY process a SACK.
1005 * Process the SACK against the outqueue. Mostly, this just frees
1006 * things off the transmitted queue.
1008 int sctp_outq_sack(struct sctp_outq *q, struct sctp_sackhdr *sack)
1010 struct sctp_association *asoc = q->asoc;
1011 struct sctp_transport *transport;
1012 struct sctp_chunk *tchunk = NULL;
1013 struct list_head *lchunk, *transport_list, *pos, *temp;
1014 sctp_sack_variable_t *frags = sack->variable;
1015 __u32 sack_ctsn, ctsn, tsn;
1016 __u32 highest_tsn, highest_new_tsn;
1017 __u32 sack_a_rwnd;
1018 unsigned outstanding;
1019 struct sctp_transport *primary = asoc->peer.primary_path;
1020 int count_of_newacks = 0;
1022 /* Grab the association's destination address list. */
1023 transport_list = &asoc->peer.transport_addr_list;
1025 sack_ctsn = ntohl(sack->cum_tsn_ack);
1028 * SFR-CACC algorithm:
1029 * On receipt of a SACK the sender SHOULD execute the
1030 * following statements.
1032 * 1) If the cumulative ack in the SACK passes next tsn_at_change
1033 * on the current primary, the CHANGEOVER_ACTIVE flag SHOULD be
1034 * cleared. The CYCLING_CHANGEOVER flag SHOULD also be cleared for
1035 * all destinations.
1037 if (TSN_lte(primary->cacc.next_tsn_at_change, sack_ctsn)) {
1038 primary->cacc.changeover_active = 0;
1039 list_for_each(pos, transport_list) {
1040 transport = list_entry(pos, struct sctp_transport,
1041 transports);
1042 transport->cacc.cycling_changeover = 0;
1047 * SFR-CACC algorithm:
1048 * 2) If the SACK contains gap acks and the flag CHANGEOVER_ACTIVE
1049 * is set the receiver of the SACK MUST take the following actions:
1051 * A) Initialize the cacc_saw_newack to 0 for all destination
1052 * addresses.
1054 if (sack->num_gap_ack_blocks > 0 &&
1055 primary->cacc.changeover_active) {
1056 list_for_each(pos, transport_list) {
1057 transport = list_entry(pos, struct sctp_transport,
1058 transports);
1059 transport->cacc.cacc_saw_newack = 0;
1063 /* Get the highest TSN in the sack. */
1064 highest_tsn = sack_ctsn;
1065 if (sack->num_gap_ack_blocks)
1066 highest_tsn +=
1067 ntohs(frags[ntohs(sack->num_gap_ack_blocks) - 1].gab.end);
1069 if (TSN_lt(asoc->highest_sacked, highest_tsn)) {
1070 highest_new_tsn = highest_tsn;
1071 asoc->highest_sacked = highest_tsn;
1072 } else {
1073 highest_new_tsn = sctp_highest_new_tsn(sack, asoc);
1076 /* Run through the retransmit queue. Credit bytes received
1077 * and free those chunks that we can.
1079 sctp_check_transmitted(q, &q->retransmit, NULL, sack, highest_new_tsn);
1080 sctp_mark_missing(q, &q->retransmit, NULL, highest_new_tsn, 0);
1082 /* Run through the transmitted queue.
1083 * Credit bytes received and free those chunks which we can.
1085 * This is a MASSIVE candidate for optimization.
1087 list_for_each(pos, transport_list) {
1088 transport = list_entry(pos, struct sctp_transport,
1089 transports);
1090 sctp_check_transmitted(q, &transport->transmitted,
1091 transport, sack, highest_new_tsn);
1093 * SFR-CACC algorithm:
1094 * C) Let count_of_newacks be the number of
1095 * destinations for which cacc_saw_newack is set.
1097 if (transport->cacc.cacc_saw_newack)
1098 count_of_newacks ++;
1101 list_for_each(pos, transport_list) {
1102 transport = list_entry(pos, struct sctp_transport,
1103 transports);
1104 sctp_mark_missing(q, &transport->transmitted, transport,
1105 highest_new_tsn, count_of_newacks);
1108 /* Move the Cumulative TSN Ack Point if appropriate. */
1109 if (TSN_lt(asoc->ctsn_ack_point, sack_ctsn))
1110 asoc->ctsn_ack_point = sack_ctsn;
1112 /* Update unack_data field in the assoc. */
1113 sctp_sack_update_unack_data(asoc, sack);
1115 ctsn = asoc->ctsn_ack_point;
1117 /* Throw away stuff rotting on the sack queue. */
1118 list_for_each_safe(lchunk, temp, &q->sacked) {
1119 tchunk = list_entry(lchunk, struct sctp_chunk,
1120 transmitted_list);
1121 tsn = ntohl(tchunk->subh.data_hdr->tsn);
1122 if (TSN_lte(tsn, ctsn))
1123 sctp_chunk_free(tchunk);
1126 /* ii) Set rwnd equal to the newly received a_rwnd minus the
1127 * number of bytes still outstanding after processing the
1128 * Cumulative TSN Ack and the Gap Ack Blocks.
1131 sack_a_rwnd = ntohl(sack->a_rwnd);
1132 outstanding = q->outstanding_bytes;
1134 if (outstanding < sack_a_rwnd)
1135 sack_a_rwnd -= outstanding;
1136 else
1137 sack_a_rwnd = 0;
1139 asoc->peer.rwnd = sack_a_rwnd;
1141 sctp_generate_fwdtsn(q, sack_ctsn);
1143 SCTP_DEBUG_PRINTK("%s: sack Cumulative TSN Ack is 0x%x.\n",
1144 __FUNCTION__, sack_ctsn);
1145 SCTP_DEBUG_PRINTK("%s: Cumulative TSN Ack of association, "
1146 "%p is 0x%x. Adv peer ack point: 0x%x\n",
1147 __FUNCTION__, asoc, ctsn, asoc->adv_peer_ack_point);
1149 /* See if all chunks are acked.
1150 * Make sure the empty queue handler will get run later.
1152 q->empty = skb_queue_empty(&q->out) && skb_queue_empty(&q->control) &&
1153 list_empty(&q->retransmit);
1154 if (!q->empty)
1155 goto finish;
1157 list_for_each(pos, transport_list) {
1158 transport = list_entry(pos, struct sctp_transport,
1159 transports);
1160 q->empty = q->empty && list_empty(&transport->transmitted);
1161 if (!q->empty)
1162 goto finish;
1165 SCTP_DEBUG_PRINTK("sack queue is empty.\n");
1166 finish:
1167 return q->empty;
1170 /* Is the outqueue empty? */
1171 int sctp_outq_is_empty(const struct sctp_outq *q)
1173 return q->empty;
1176 /********************************************************************
1177 * 2nd Level Abstractions
1178 ********************************************************************/
1180 /* Go through a transport's transmitted list or the association's retransmit
1181 * list and move chunks that are acked by the Cumulative TSN Ack to q->sacked.
1182 * The retransmit list will not have an associated transport.
1184 * I added coherent debug information output. --xguo
1186 * Instead of printing 'sacked' or 'kept' for each TSN on the
1187 * transmitted_queue, we print a range: SACKED: TSN1-TSN2, TSN3, TSN4-TSN5.
1188 * KEPT TSN6-TSN7, etc.
1190 static void sctp_check_transmitted(struct sctp_outq *q,
1191 struct list_head *transmitted_queue,
1192 struct sctp_transport *transport,
1193 struct sctp_sackhdr *sack,
1194 __u32 highest_new_tsn_in_sack)
1196 struct list_head *lchunk;
1197 struct sctp_chunk *tchunk;
1198 struct list_head tlist;
1199 __u32 tsn;
1200 __u32 sack_ctsn;
1201 __u32 rtt;
1202 __u8 restart_timer = 0;
1203 int bytes_acked = 0;
1205 /* These state variables are for coherent debug output. --xguo */
1207 #if SCTP_DEBUG
1208 __u32 dbg_ack_tsn = 0; /* An ACKed TSN range starts here... */
1209 __u32 dbg_last_ack_tsn = 0; /* ...and finishes here. */
1210 __u32 dbg_kept_tsn = 0; /* An un-ACKed range starts here... */
1211 __u32 dbg_last_kept_tsn = 0; /* ...and finishes here. */
1213 /* 0 : The last TSN was ACKed.
1214 * 1 : The last TSN was NOT ACKed (i.e. KEPT).
1215 * -1: We need to initialize.
1217 int dbg_prt_state = -1;
1218 #endif /* SCTP_DEBUG */
1220 sack_ctsn = ntohl(sack->cum_tsn_ack);
1222 INIT_LIST_HEAD(&tlist);
1224 /* The while loop will skip empty transmitted queues. */
1225 while (NULL != (lchunk = sctp_list_dequeue(transmitted_queue))) {
1226 tchunk = list_entry(lchunk, struct sctp_chunk,
1227 transmitted_list);
1229 if (sctp_chunk_abandoned(tchunk)) {
1230 /* Move the chunk to abandoned list. */
1231 sctp_insert_list(&q->abandoned, lchunk);
1232 continue;
1235 tsn = ntohl(tchunk->subh.data_hdr->tsn);
1236 if (sctp_acked(sack, tsn)) {
1237 /* If this queue is the retransmit queue, the
1238 * retransmit timer has already reclaimed
1239 * the outstanding bytes for this chunk, so only
1240 * count bytes associated with a transport.
1242 if (transport) {
1243 /* If this chunk is being used for RTT
1244 * measurement, calculate the RTT and update
1245 * the RTO using this value.
1247 * 6.3.1 C5) Karn's algorithm: RTT measurements
1248 * MUST NOT be made using packets that were
1249 * retransmitted (and thus for which it is
1250 * ambiguous whether the reply was for the
1251 * first instance of the packet or a later
1252 * instance).
1254 if (!tchunk->tsn_gap_acked &&
1255 !tchunk->resent &&
1256 tchunk->rtt_in_progress) {
1257 rtt = jiffies - tchunk->sent_at;
1258 sctp_transport_update_rto(transport,
1259 rtt);
1262 if (TSN_lte(tsn, sack_ctsn)) {
1263 /* RFC 2960 6.3.2 Retransmission Timer Rules
1265 * R3) Whenever a SACK is received
1266 * that acknowledges the DATA chunk
1267 * with the earliest outstanding TSN
1268 * for that address, restart T3-rtx
1269 * timer for that address with its
1270 * current RTO.
1272 restart_timer = 1;
1274 if (!tchunk->tsn_gap_acked) {
1275 tchunk->tsn_gap_acked = 1;
1276 bytes_acked += sctp_data_size(tchunk);
1278 * SFR-CACC algorithm:
1279 * 2) If the SACK contains gap acks
1280 * and the flag CHANGEOVER_ACTIVE is
1281 * set the receiver of the SACK MUST
1282 * take the following action:
1284 * B) For each TSN t being acked that
1285 * has not been acked in any SACK so
1286 * far, set cacc_saw_newack to 1 for
1287 * the destination that the TSN was
1288 * sent to.
1290 if (transport &&
1291 sack->num_gap_ack_blocks &&
1292 q->asoc->peer.primary_path->cacc.
1293 changeover_active)
1294 transport->cacc.cacc_saw_newack
1295 = 1;
1298 list_add_tail(&tchunk->transmitted_list,
1299 &q->sacked);
1300 } else {
1301 /* RFC2960 7.2.4, sctpimpguide-05 2.8.2
1302 * M2) Each time a SACK arrives reporting
1303 * 'Stray DATA chunk(s)' record the highest TSN
1304 * reported as newly acknowledged, call this
1305 * value 'HighestTSNinSack'. A newly
1306 * acknowledged DATA chunk is one not
1307 * previously acknowledged in a SACK.
1309 * When the SCTP sender of data receives a SACK
1310 * chunk that acknowledges, for the first time,
1311 * the receipt of a DATA chunk, all the still
1312 * unacknowledged DATA chunks whose TSN is
1313 * older than that newly acknowledged DATA
1314 * chunk, are qualified as 'Stray DATA chunks'.
1316 if (!tchunk->tsn_gap_acked) {
1317 tchunk->tsn_gap_acked = 1;
1318 bytes_acked += sctp_data_size(tchunk);
1320 list_add_tail(lchunk, &tlist);
1323 #if SCTP_DEBUG
1324 switch (dbg_prt_state) {
1325 case 0: /* last TSN was ACKed */
1326 if (dbg_last_ack_tsn + 1 == tsn) {
1327 /* This TSN belongs to the
1328 * current ACK range.
1330 break;
1333 if (dbg_last_ack_tsn != dbg_ack_tsn) {
1334 /* Display the end of the
1335 * current range.
1337 SCTP_DEBUG_PRINTK("-%08x",
1338 dbg_last_ack_tsn);
1341 /* Start a new range. */
1342 SCTP_DEBUG_PRINTK(",%08x", tsn);
1343 dbg_ack_tsn = tsn;
1344 break;
1346 case 1: /* The last TSN was NOT ACKed. */
1347 if (dbg_last_kept_tsn != dbg_kept_tsn) {
1348 /* Display the end of current range. */
1349 SCTP_DEBUG_PRINTK("-%08x",
1350 dbg_last_kept_tsn);
1353 SCTP_DEBUG_PRINTK("\n");
1355 /* FALL THROUGH... */
1356 default:
1357 /* This is the first-ever TSN we examined. */
1358 /* Start a new range of ACK-ed TSNs. */
1359 SCTP_DEBUG_PRINTK("ACKed: %08x", tsn);
1360 dbg_prt_state = 0;
1361 dbg_ack_tsn = tsn;
1364 dbg_last_ack_tsn = tsn;
1365 #endif /* SCTP_DEBUG */
1367 } else {
1368 if (tchunk->tsn_gap_acked) {
1369 SCTP_DEBUG_PRINTK("%s: Receiver reneged on "
1370 "data TSN: 0x%x\n",
1371 __FUNCTION__,
1372 tsn);
1373 tchunk->tsn_gap_acked = 0;
1375 bytes_acked -= sctp_data_size(tchunk);
1377 /* RFC 2960 6.3.2 Retransmission Timer Rules
1379 * R4) Whenever a SACK is received missing a
1380 * TSN that was previously acknowledged via a
1381 * Gap Ack Block, start T3-rtx for the
1382 * destination address to which the DATA
1383 * chunk was originally
1384 * transmitted if it is not already running.
1386 restart_timer = 1;
1389 list_add_tail(lchunk, &tlist);
1391 #if SCTP_DEBUG
1392 /* See the above comments on ACK-ed TSNs. */
1393 switch (dbg_prt_state) {
1394 case 1:
1395 if (dbg_last_kept_tsn + 1 == tsn)
1396 break;
1398 if (dbg_last_kept_tsn != dbg_kept_tsn)
1399 SCTP_DEBUG_PRINTK("-%08x",
1400 dbg_last_kept_tsn);
1402 SCTP_DEBUG_PRINTK(",%08x", tsn);
1403 dbg_kept_tsn = tsn;
1404 break;
1406 case 0:
1407 if (dbg_last_ack_tsn != dbg_ack_tsn)
1408 SCTP_DEBUG_PRINTK("-%08x",
1409 dbg_last_ack_tsn);
1410 SCTP_DEBUG_PRINTK("\n");
1412 /* FALL THROUGH... */
1413 default:
1414 SCTP_DEBUG_PRINTK("KEPT: %08x",tsn);
1415 dbg_prt_state = 1;
1416 dbg_kept_tsn = tsn;
1419 dbg_last_kept_tsn = tsn;
1420 #endif /* SCTP_DEBUG */
1424 #if SCTP_DEBUG
1425 /* Finish off the last range, displaying its ending TSN. */
1426 switch (dbg_prt_state) {
1427 case 0:
1428 if (dbg_last_ack_tsn != dbg_ack_tsn) {
1429 SCTP_DEBUG_PRINTK("-%08x\n", dbg_last_ack_tsn);
1430 } else {
1431 SCTP_DEBUG_PRINTK("\n");
1433 break;
1435 case 1:
1436 if (dbg_last_kept_tsn != dbg_kept_tsn) {
1437 SCTP_DEBUG_PRINTK("-%08x\n", dbg_last_kept_tsn);
1438 } else {
1439 SCTP_DEBUG_PRINTK("\n");
1442 #endif /* SCTP_DEBUG */
1443 if (transport) {
1444 if (bytes_acked) {
1445 /* 8.2. When an outstanding TSN is acknowledged,
1446 * the endpoint shall clear the error counter of
1447 * the destination transport address to which the
1448 * DATA chunk was last sent.
1449 * The association's overall error counter is
1450 * also cleared.
1452 transport->error_count = 0;
1453 transport->asoc->overall_error_count = 0;
1455 /* Mark the destination transport address as
1456 * active if it is not so marked.
1458 if (transport->state == SCTP_INACTIVE) {
1459 sctp_assoc_control_transport(
1460 transport->asoc,
1461 transport,
1462 SCTP_TRANSPORT_UP,
1463 SCTP_RECEIVED_SACK);
1466 sctp_transport_raise_cwnd(transport, sack_ctsn,
1467 bytes_acked);
1469 transport->flight_size -= bytes_acked;
1470 q->outstanding_bytes -= bytes_acked;
1471 } else {
1472 /* RFC 2960 6.1, sctpimpguide-06 2.15.2
1473 * When a sender is doing zero window probing, it
1474 * should not timeout the association if it continues
1475 * to receive new packets from the receiver. The
1476 * reason is that the receiver MAY keep its window
1477 * closed for an indefinite time.
1478 * A sender is doing zero window probing when the
1479 * receiver's advertised window is zero, and there is
1480 * only one data chunk in flight to the receiver.
1482 if (!q->asoc->peer.rwnd &&
1483 !list_empty(&tlist) &&
1484 (sack_ctsn+2 == q->asoc->next_tsn)) {
1485 SCTP_DEBUG_PRINTK("%s: SACK received for zero "
1486 "window probe: %u\n",
1487 __FUNCTION__, sack_ctsn);
1488 q->asoc->overall_error_count = 0;
1489 transport->error_count = 0;
1493 /* RFC 2960 6.3.2 Retransmission Timer Rules
1495 * R2) Whenever all outstanding data sent to an address have
1496 * been acknowledged, turn off the T3-rtx timer of that
1497 * address.
1499 if (!transport->flight_size) {
1500 if (timer_pending(&transport->T3_rtx_timer) &&
1501 del_timer(&transport->T3_rtx_timer)) {
1502 sctp_transport_put(transport);
1504 } else if (restart_timer) {
1505 if (!mod_timer(&transport->T3_rtx_timer,
1506 jiffies + transport->rto))
1507 sctp_transport_hold(transport);
1511 list_splice(&tlist, transmitted_queue);
1514 /* Mark chunks as missing and consequently may get retransmitted. */
1515 static void sctp_mark_missing(struct sctp_outq *q,
1516 struct list_head *transmitted_queue,
1517 struct sctp_transport *transport,
1518 __u32 highest_new_tsn_in_sack,
1519 int count_of_newacks)
1521 struct sctp_chunk *chunk;
1522 struct list_head *pos;
1523 __u32 tsn;
1524 char do_fast_retransmit = 0;
1525 struct sctp_transport *primary = q->asoc->peer.primary_path;
1527 list_for_each(pos, transmitted_queue) {
1529 chunk = list_entry(pos, struct sctp_chunk, transmitted_list);
1530 tsn = ntohl(chunk->subh.data_hdr->tsn);
1532 /* RFC 2960 7.2.4, sctpimpguide-05 2.8.2 M3) Examine all
1533 * 'Unacknowledged TSN's', if the TSN number of an
1534 * 'Unacknowledged TSN' is smaller than the 'HighestTSNinSack'
1535 * value, increment the 'TSN.Missing.Report' count on that
1536 * chunk if it has NOT been fast retransmitted or marked for
1537 * fast retransmit already.
1539 if (!chunk->fast_retransmit &&
1540 !chunk->tsn_gap_acked &&
1541 TSN_lt(tsn, highest_new_tsn_in_sack)) {
1543 /* SFR-CACC may require us to skip marking
1544 * this chunk as missing.
1546 if (!transport || !sctp_cacc_skip(primary, transport,
1547 count_of_newacks, tsn)) {
1548 chunk->tsn_missing_report++;
1550 SCTP_DEBUG_PRINTK(
1551 "%s: TSN 0x%x missing counter: %d\n",
1552 __FUNCTION__, tsn,
1553 chunk->tsn_missing_report);
1557 * M4) If any DATA chunk is found to have a
1558 * 'TSN.Missing.Report'
1559 * value larger than or equal to 4, mark that chunk for
1560 * retransmission and start the fast retransmit procedure.
1563 if (chunk->tsn_missing_report >= 4) {
1564 chunk->fast_retransmit = 1;
1565 do_fast_retransmit = 1;
1569 if (transport) {
1570 if (do_fast_retransmit)
1571 sctp_retransmit(q, transport, SCTP_RTXR_FAST_RTX);
1573 SCTP_DEBUG_PRINTK("%s: transport: %p, cwnd: %d, "
1574 "ssthresh: %d, flight_size: %d, pba: %d\n",
1575 __FUNCTION__, transport, transport->cwnd,
1576 transport->ssthresh, transport->flight_size,
1577 transport->partial_bytes_acked);
1581 /* Is the given TSN acked by this packet? */
1582 static int sctp_acked(struct sctp_sackhdr *sack, __u32 tsn)
1584 int i;
1585 sctp_sack_variable_t *frags;
1586 __u16 gap;
1587 __u32 ctsn = ntohl(sack->cum_tsn_ack);
1589 if (TSN_lte(tsn, ctsn))
1590 goto pass;
1592 /* 3.3.4 Selective Acknowledgement (SACK) (3):
1594 * Gap Ack Blocks:
1595 * These fields contain the Gap Ack Blocks. They are repeated
1596 * for each Gap Ack Block up to the number of Gap Ack Blocks
1597 * defined in the Number of Gap Ack Blocks field. All DATA
1598 * chunks with TSNs greater than or equal to (Cumulative TSN
1599 * Ack + Gap Ack Block Start) and less than or equal to
1600 * (Cumulative TSN Ack + Gap Ack Block End) of each Gap Ack
1601 * Block are assumed to have been received correctly.
1604 frags = sack->variable;
1605 gap = tsn - ctsn;
1606 for (i = 0; i < ntohs(sack->num_gap_ack_blocks); ++i) {
1607 if (TSN_lte(ntohs(frags[i].gab.start), gap) &&
1608 TSN_lte(gap, ntohs(frags[i].gab.end)))
1609 goto pass;
1612 return 0;
1613 pass:
1614 return 1;
1617 static inline int sctp_get_skip_pos(struct sctp_fwdtsn_skip *skiplist,
1618 int nskips, __u16 stream)
1620 int i;
1622 for (i = 0; i < nskips; i++) {
1623 if (skiplist[i].stream == stream)
1624 return i;
1626 return i;
1629 /* Create and add a fwdtsn chunk to the outq's control queue if needed. */
1630 static void sctp_generate_fwdtsn(struct sctp_outq *q, __u32 ctsn)
1632 struct sctp_association *asoc = q->asoc;
1633 struct sctp_chunk *ftsn_chunk = NULL;
1634 struct sctp_fwdtsn_skip ftsn_skip_arr[10];
1635 int nskips = 0;
1636 int skip_pos = 0;
1637 __u32 tsn;
1638 struct sctp_chunk *chunk;
1639 struct list_head *lchunk, *temp;
1641 /* PR-SCTP C1) Let SackCumAck be the Cumulative TSN ACK carried in the
1642 * received SACK.
1644 * If (Advanced.Peer.Ack.Point < SackCumAck), then update
1645 * Advanced.Peer.Ack.Point to be equal to SackCumAck.
1647 if (TSN_lt(asoc->adv_peer_ack_point, ctsn))
1648 asoc->adv_peer_ack_point = ctsn;
1650 /* PR-SCTP C2) Try to further advance the "Advanced.Peer.Ack.Point"
1651 * locally, that is, to move "Advanced.Peer.Ack.Point" up as long as
1652 * the chunk next in the out-queue space is marked as "abandoned" as
1653 * shown in the following example:
1655 * Assuming that a SACK arrived with the Cumulative TSN ACK 102
1656 * and the Advanced.Peer.Ack.Point is updated to this value:
1658 * out-queue at the end of ==> out-queue after Adv.Ack.Point
1659 * normal SACK processing local advancement
1660 * ... ...
1661 * Adv.Ack.Pt-> 102 acked 102 acked
1662 * 103 abandoned 103 abandoned
1663 * 104 abandoned Adv.Ack.P-> 104 abandoned
1664 * 105 105
1665 * 106 acked 106 acked
1666 * ... ...
1668 * In this example, the data sender successfully advanced the
1669 * "Advanced.Peer.Ack.Point" from 102 to 104 locally.
1671 list_for_each_safe(lchunk, temp, &q->abandoned) {
1672 chunk = list_entry(lchunk, struct sctp_chunk,
1673 transmitted_list);
1674 tsn = ntohl(chunk->subh.data_hdr->tsn);
1676 /* Remove any chunks in the abandoned queue that are acked by
1677 * the ctsn.
1679 if (TSN_lte(tsn, ctsn)) {
1680 list_del_init(lchunk);
1681 if (!chunk->tsn_gap_acked) {
1682 chunk->transport->flight_size -=
1683 sctp_data_size(chunk);
1684 q->outstanding_bytes -= sctp_data_size(chunk);
1686 sctp_chunk_free(chunk);
1687 } else {
1688 if (TSN_lte(tsn, asoc->adv_peer_ack_point+1)) {
1689 asoc->adv_peer_ack_point = tsn;
1690 if (chunk->chunk_hdr->flags &
1691 SCTP_DATA_UNORDERED)
1692 continue;
1693 skip_pos = sctp_get_skip_pos(&ftsn_skip_arr[0],
1694 nskips,
1695 chunk->subh.data_hdr->stream);
1696 ftsn_skip_arr[skip_pos].stream =
1697 chunk->subh.data_hdr->stream;
1698 ftsn_skip_arr[skip_pos].ssn =
1699 chunk->subh.data_hdr->ssn;
1700 if (skip_pos == nskips)
1701 nskips++;
1702 if (nskips == 10)
1703 break;
1704 } else
1705 break;
1709 /* PR-SCTP C3) If, after step C1 and C2, the "Advanced.Peer.Ack.Point"
1710 * is greater than the Cumulative TSN ACK carried in the received
1711 * SACK, the data sender MUST send the data receiver a FORWARD TSN
1712 * chunk containing the latest value of the
1713 * "Advanced.Peer.Ack.Point".
1715 * C4) For each "abandoned" TSN the sender of the FORWARD TSN SHOULD
1716 * list each stream and sequence number in the forwarded TSN. This
1717 * information will enable the receiver to easily find any
1718 * stranded TSN's waiting on stream reorder queues. Each stream
1719 * SHOULD only be reported once; this means that if multiple
1720 * abandoned messages occur in the same stream then only the
1721 * highest abandoned stream sequence number is reported. If the
1722 * total size of the FORWARD TSN does NOT fit in a single MTU then
1723 * the sender of the FORWARD TSN SHOULD lower the
1724 * Advanced.Peer.Ack.Point to the last TSN that will fit in a
1725 * single MTU.
1727 if (asoc->adv_peer_ack_point > ctsn)
1728 ftsn_chunk = sctp_make_fwdtsn(asoc, asoc->adv_peer_ack_point,
1729 nskips, &ftsn_skip_arr[0]);
1731 if (ftsn_chunk) {
1732 __skb_queue_tail(&q->control, (struct sk_buff *)ftsn_chunk);
1733 SCTP_INC_STATS(SCTP_MIB_OUTCTRLCHUNKS);