[IPV4] ROUTE: Clean up proc files creation.
[linux-2.6/sactl.git] / block / elevator.c
blob8cd5775acd7a2d4c1111acb0f823a57a46819dc0
1 /*
2 * Block device elevator/IO-scheduler.
4 * Copyright (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
6 * 30042000 Jens Axboe <axboe@kernel.dk> :
8 * Split the elevator a bit so that it is possible to choose a different
9 * one or even write a new "plug in". There are three pieces:
10 * - elevator_fn, inserts a new request in the queue list
11 * - elevator_merge_fn, decides whether a new buffer can be merged with
12 * an existing request
13 * - elevator_dequeue_fn, called when a request is taken off the active list
15 * 20082000 Dave Jones <davej@suse.de> :
16 * Removed tests for max-bomb-segments, which was breaking elvtune
17 * when run without -bN
19 * Jens:
20 * - Rework again to work with bio instead of buffer_heads
21 * - loose bi_dev comparisons, partition handling is right now
22 * - completely modularize elevator setup and teardown
25 #include <linux/kernel.h>
26 #include <linux/fs.h>
27 #include <linux/blkdev.h>
28 #include <linux/elevator.h>
29 #include <linux/bio.h>
30 #include <linux/module.h>
31 #include <linux/slab.h>
32 #include <linux/init.h>
33 #include <linux/compiler.h>
34 #include <linux/delay.h>
35 #include <linux/blktrace_api.h>
36 #include <linux/hash.h>
38 #include <asm/uaccess.h>
40 static DEFINE_SPINLOCK(elv_list_lock);
41 static LIST_HEAD(elv_list);
44 * Merge hash stuff.
46 static const int elv_hash_shift = 6;
47 #define ELV_HASH_BLOCK(sec) ((sec) >> 3)
48 #define ELV_HASH_FN(sec) (hash_long(ELV_HASH_BLOCK((sec)), elv_hash_shift))
49 #define ELV_HASH_ENTRIES (1 << elv_hash_shift)
50 #define rq_hash_key(rq) ((rq)->sector + (rq)->nr_sectors)
51 #define ELV_ON_HASH(rq) (!hlist_unhashed(&(rq)->hash))
54 * Query io scheduler to see if the current process issuing bio may be
55 * merged with rq.
57 static int elv_iosched_allow_merge(struct request *rq, struct bio *bio)
59 struct request_queue *q = rq->q;
60 elevator_t *e = q->elevator;
62 if (e->ops->elevator_allow_merge_fn)
63 return e->ops->elevator_allow_merge_fn(q, rq, bio);
65 return 1;
69 * can we safely merge with this request?
71 inline int elv_rq_merge_ok(struct request *rq, struct bio *bio)
73 if (!rq_mergeable(rq))
74 return 0;
77 * different data direction or already started, don't merge
79 if (bio_data_dir(bio) != rq_data_dir(rq))
80 return 0;
83 * must be same device and not a special request
85 if (rq->rq_disk != bio->bi_bdev->bd_disk || rq->special)
86 return 0;
88 if (!elv_iosched_allow_merge(rq, bio))
89 return 0;
91 return 1;
93 EXPORT_SYMBOL(elv_rq_merge_ok);
95 static inline int elv_try_merge(struct request *__rq, struct bio *bio)
97 int ret = ELEVATOR_NO_MERGE;
100 * we can merge and sequence is ok, check if it's possible
102 if (elv_rq_merge_ok(__rq, bio)) {
103 if (__rq->sector + __rq->nr_sectors == bio->bi_sector)
104 ret = ELEVATOR_BACK_MERGE;
105 else if (__rq->sector - bio_sectors(bio) == bio->bi_sector)
106 ret = ELEVATOR_FRONT_MERGE;
109 return ret;
112 static struct elevator_type *elevator_find(const char *name)
114 struct elevator_type *e;
116 list_for_each_entry(e, &elv_list, list) {
117 if (!strcmp(e->elevator_name, name))
118 return e;
121 return NULL;
124 static void elevator_put(struct elevator_type *e)
126 module_put(e->elevator_owner);
129 static struct elevator_type *elevator_get(const char *name)
131 struct elevator_type *e;
133 spin_lock(&elv_list_lock);
135 e = elevator_find(name);
136 if (e && !try_module_get(e->elevator_owner))
137 e = NULL;
139 spin_unlock(&elv_list_lock);
141 return e;
144 static void *elevator_init_queue(struct request_queue *q,
145 struct elevator_queue *eq)
147 return eq->ops->elevator_init_fn(q);
150 static void elevator_attach(struct request_queue *q, struct elevator_queue *eq,
151 void *data)
153 q->elevator = eq;
154 eq->elevator_data = data;
157 static char chosen_elevator[16];
159 static int __init elevator_setup(char *str)
162 * Be backwards-compatible with previous kernels, so users
163 * won't get the wrong elevator.
165 if (!strcmp(str, "as"))
166 strcpy(chosen_elevator, "anticipatory");
167 else
168 strncpy(chosen_elevator, str, sizeof(chosen_elevator) - 1);
169 return 1;
172 __setup("elevator=", elevator_setup);
174 static struct kobj_type elv_ktype;
176 static elevator_t *elevator_alloc(struct request_queue *q,
177 struct elevator_type *e)
179 elevator_t *eq;
180 int i;
182 eq = kmalloc_node(sizeof(elevator_t), GFP_KERNEL | __GFP_ZERO, q->node);
183 if (unlikely(!eq))
184 goto err;
186 eq->ops = &e->ops;
187 eq->elevator_type = e;
188 kobject_init(&eq->kobj, &elv_ktype);
189 mutex_init(&eq->sysfs_lock);
191 eq->hash = kmalloc_node(sizeof(struct hlist_head) * ELV_HASH_ENTRIES,
192 GFP_KERNEL, q->node);
193 if (!eq->hash)
194 goto err;
196 for (i = 0; i < ELV_HASH_ENTRIES; i++)
197 INIT_HLIST_HEAD(&eq->hash[i]);
199 return eq;
200 err:
201 kfree(eq);
202 elevator_put(e);
203 return NULL;
206 static void elevator_release(struct kobject *kobj)
208 elevator_t *e = container_of(kobj, elevator_t, kobj);
210 elevator_put(e->elevator_type);
211 kfree(e->hash);
212 kfree(e);
215 int elevator_init(struct request_queue *q, char *name)
217 struct elevator_type *e = NULL;
218 struct elevator_queue *eq;
219 int ret = 0;
220 void *data;
222 INIT_LIST_HEAD(&q->queue_head);
223 q->last_merge = NULL;
224 q->end_sector = 0;
225 q->boundary_rq = NULL;
227 if (name && !(e = elevator_get(name)))
228 return -EINVAL;
230 if (!e && *chosen_elevator && !(e = elevator_get(chosen_elevator)))
231 printk("I/O scheduler %s not found\n", chosen_elevator);
233 if (!e && !(e = elevator_get(CONFIG_DEFAULT_IOSCHED))) {
234 printk("Default I/O scheduler not found, using no-op\n");
235 e = elevator_get("noop");
238 eq = elevator_alloc(q, e);
239 if (!eq)
240 return -ENOMEM;
242 data = elevator_init_queue(q, eq);
243 if (!data) {
244 kobject_put(&eq->kobj);
245 return -ENOMEM;
248 elevator_attach(q, eq, data);
249 return ret;
252 EXPORT_SYMBOL(elevator_init);
254 void elevator_exit(elevator_t *e)
256 mutex_lock(&e->sysfs_lock);
257 if (e->ops->elevator_exit_fn)
258 e->ops->elevator_exit_fn(e);
259 e->ops = NULL;
260 mutex_unlock(&e->sysfs_lock);
262 kobject_put(&e->kobj);
265 EXPORT_SYMBOL(elevator_exit);
267 static void elv_activate_rq(struct request_queue *q, struct request *rq)
269 elevator_t *e = q->elevator;
271 if (e->ops->elevator_activate_req_fn)
272 e->ops->elevator_activate_req_fn(q, rq);
275 static void elv_deactivate_rq(struct request_queue *q, struct request *rq)
277 elevator_t *e = q->elevator;
279 if (e->ops->elevator_deactivate_req_fn)
280 e->ops->elevator_deactivate_req_fn(q, rq);
283 static inline void __elv_rqhash_del(struct request *rq)
285 hlist_del_init(&rq->hash);
288 static void elv_rqhash_del(struct request_queue *q, struct request *rq)
290 if (ELV_ON_HASH(rq))
291 __elv_rqhash_del(rq);
294 static void elv_rqhash_add(struct request_queue *q, struct request *rq)
296 elevator_t *e = q->elevator;
298 BUG_ON(ELV_ON_HASH(rq));
299 hlist_add_head(&rq->hash, &e->hash[ELV_HASH_FN(rq_hash_key(rq))]);
302 static void elv_rqhash_reposition(struct request_queue *q, struct request *rq)
304 __elv_rqhash_del(rq);
305 elv_rqhash_add(q, rq);
308 static struct request *elv_rqhash_find(struct request_queue *q, sector_t offset)
310 elevator_t *e = q->elevator;
311 struct hlist_head *hash_list = &e->hash[ELV_HASH_FN(offset)];
312 struct hlist_node *entry, *next;
313 struct request *rq;
315 hlist_for_each_entry_safe(rq, entry, next, hash_list, hash) {
316 BUG_ON(!ELV_ON_HASH(rq));
318 if (unlikely(!rq_mergeable(rq))) {
319 __elv_rqhash_del(rq);
320 continue;
323 if (rq_hash_key(rq) == offset)
324 return rq;
327 return NULL;
331 * RB-tree support functions for inserting/lookup/removal of requests
332 * in a sorted RB tree.
334 struct request *elv_rb_add(struct rb_root *root, struct request *rq)
336 struct rb_node **p = &root->rb_node;
337 struct rb_node *parent = NULL;
338 struct request *__rq;
340 while (*p) {
341 parent = *p;
342 __rq = rb_entry(parent, struct request, rb_node);
344 if (rq->sector < __rq->sector)
345 p = &(*p)->rb_left;
346 else if (rq->sector > __rq->sector)
347 p = &(*p)->rb_right;
348 else
349 return __rq;
352 rb_link_node(&rq->rb_node, parent, p);
353 rb_insert_color(&rq->rb_node, root);
354 return NULL;
357 EXPORT_SYMBOL(elv_rb_add);
359 void elv_rb_del(struct rb_root *root, struct request *rq)
361 BUG_ON(RB_EMPTY_NODE(&rq->rb_node));
362 rb_erase(&rq->rb_node, root);
363 RB_CLEAR_NODE(&rq->rb_node);
366 EXPORT_SYMBOL(elv_rb_del);
368 struct request *elv_rb_find(struct rb_root *root, sector_t sector)
370 struct rb_node *n = root->rb_node;
371 struct request *rq;
373 while (n) {
374 rq = rb_entry(n, struct request, rb_node);
376 if (sector < rq->sector)
377 n = n->rb_left;
378 else if (sector > rq->sector)
379 n = n->rb_right;
380 else
381 return rq;
384 return NULL;
387 EXPORT_SYMBOL(elv_rb_find);
390 * Insert rq into dispatch queue of q. Queue lock must be held on
391 * entry. rq is sort instead into the dispatch queue. To be used by
392 * specific elevators.
394 void elv_dispatch_sort(struct request_queue *q, struct request *rq)
396 sector_t boundary;
397 struct list_head *entry;
399 if (q->last_merge == rq)
400 q->last_merge = NULL;
402 elv_rqhash_del(q, rq);
404 q->nr_sorted--;
406 boundary = q->end_sector;
408 list_for_each_prev(entry, &q->queue_head) {
409 struct request *pos = list_entry_rq(entry);
411 if (rq_data_dir(rq) != rq_data_dir(pos))
412 break;
413 if (pos->cmd_flags & (REQ_SOFTBARRIER|REQ_HARDBARRIER|REQ_STARTED))
414 break;
415 if (rq->sector >= boundary) {
416 if (pos->sector < boundary)
417 continue;
418 } else {
419 if (pos->sector >= boundary)
420 break;
422 if (rq->sector >= pos->sector)
423 break;
426 list_add(&rq->queuelist, entry);
429 EXPORT_SYMBOL(elv_dispatch_sort);
432 * Insert rq into dispatch queue of q. Queue lock must be held on
433 * entry. rq is added to the back of the dispatch queue. To be used by
434 * specific elevators.
436 void elv_dispatch_add_tail(struct request_queue *q, struct request *rq)
438 if (q->last_merge == rq)
439 q->last_merge = NULL;
441 elv_rqhash_del(q, rq);
443 q->nr_sorted--;
445 q->end_sector = rq_end_sector(rq);
446 q->boundary_rq = rq;
447 list_add_tail(&rq->queuelist, &q->queue_head);
450 EXPORT_SYMBOL(elv_dispatch_add_tail);
452 int elv_merge(struct request_queue *q, struct request **req, struct bio *bio)
454 elevator_t *e = q->elevator;
455 struct request *__rq;
456 int ret;
459 * First try one-hit cache.
461 if (q->last_merge) {
462 ret = elv_try_merge(q->last_merge, bio);
463 if (ret != ELEVATOR_NO_MERGE) {
464 *req = q->last_merge;
465 return ret;
470 * See if our hash lookup can find a potential backmerge.
472 __rq = elv_rqhash_find(q, bio->bi_sector);
473 if (__rq && elv_rq_merge_ok(__rq, bio)) {
474 *req = __rq;
475 return ELEVATOR_BACK_MERGE;
478 if (e->ops->elevator_merge_fn)
479 return e->ops->elevator_merge_fn(q, req, bio);
481 return ELEVATOR_NO_MERGE;
484 void elv_merged_request(struct request_queue *q, struct request *rq, int type)
486 elevator_t *e = q->elevator;
488 if (e->ops->elevator_merged_fn)
489 e->ops->elevator_merged_fn(q, rq, type);
491 if (type == ELEVATOR_BACK_MERGE)
492 elv_rqhash_reposition(q, rq);
494 q->last_merge = rq;
497 void elv_merge_requests(struct request_queue *q, struct request *rq,
498 struct request *next)
500 elevator_t *e = q->elevator;
502 if (e->ops->elevator_merge_req_fn)
503 e->ops->elevator_merge_req_fn(q, rq, next);
505 elv_rqhash_reposition(q, rq);
506 elv_rqhash_del(q, next);
508 q->nr_sorted--;
509 q->last_merge = rq;
512 void elv_requeue_request(struct request_queue *q, struct request *rq)
515 * it already went through dequeue, we need to decrement the
516 * in_flight count again
518 if (blk_account_rq(rq)) {
519 q->in_flight--;
520 if (blk_sorted_rq(rq))
521 elv_deactivate_rq(q, rq);
524 rq->cmd_flags &= ~REQ_STARTED;
526 elv_insert(q, rq, ELEVATOR_INSERT_REQUEUE);
529 static void elv_drain_elevator(struct request_queue *q)
531 static int printed;
532 while (q->elevator->ops->elevator_dispatch_fn(q, 1))
534 if (q->nr_sorted == 0)
535 return;
536 if (printed++ < 10) {
537 printk(KERN_ERR "%s: forced dispatching is broken "
538 "(nr_sorted=%u), please report this\n",
539 q->elevator->elevator_type->elevator_name, q->nr_sorted);
543 void elv_insert(struct request_queue *q, struct request *rq, int where)
545 struct list_head *pos;
546 unsigned ordseq;
547 int unplug_it = 1;
549 blk_add_trace_rq(q, rq, BLK_TA_INSERT);
551 rq->q = q;
553 switch (where) {
554 case ELEVATOR_INSERT_FRONT:
555 rq->cmd_flags |= REQ_SOFTBARRIER;
557 list_add(&rq->queuelist, &q->queue_head);
558 break;
560 case ELEVATOR_INSERT_BACK:
561 rq->cmd_flags |= REQ_SOFTBARRIER;
562 elv_drain_elevator(q);
563 list_add_tail(&rq->queuelist, &q->queue_head);
565 * We kick the queue here for the following reasons.
566 * - The elevator might have returned NULL previously
567 * to delay requests and returned them now. As the
568 * queue wasn't empty before this request, ll_rw_blk
569 * won't run the queue on return, resulting in hang.
570 * - Usually, back inserted requests won't be merged
571 * with anything. There's no point in delaying queue
572 * processing.
574 blk_remove_plug(q);
575 q->request_fn(q);
576 break;
578 case ELEVATOR_INSERT_SORT:
579 BUG_ON(!blk_fs_request(rq));
580 rq->cmd_flags |= REQ_SORTED;
581 q->nr_sorted++;
582 if (rq_mergeable(rq)) {
583 elv_rqhash_add(q, rq);
584 if (!q->last_merge)
585 q->last_merge = rq;
589 * Some ioscheds (cfq) run q->request_fn directly, so
590 * rq cannot be accessed after calling
591 * elevator_add_req_fn.
593 q->elevator->ops->elevator_add_req_fn(q, rq);
594 break;
596 case ELEVATOR_INSERT_REQUEUE:
598 * If ordered flush isn't in progress, we do front
599 * insertion; otherwise, requests should be requeued
600 * in ordseq order.
602 rq->cmd_flags |= REQ_SOFTBARRIER;
605 * Most requeues happen because of a busy condition,
606 * don't force unplug of the queue for that case.
608 unplug_it = 0;
610 if (q->ordseq == 0) {
611 list_add(&rq->queuelist, &q->queue_head);
612 break;
615 ordseq = blk_ordered_req_seq(rq);
617 list_for_each(pos, &q->queue_head) {
618 struct request *pos_rq = list_entry_rq(pos);
619 if (ordseq <= blk_ordered_req_seq(pos_rq))
620 break;
623 list_add_tail(&rq->queuelist, pos);
624 break;
626 default:
627 printk(KERN_ERR "%s: bad insertion point %d\n",
628 __FUNCTION__, where);
629 BUG();
632 if (unplug_it && blk_queue_plugged(q)) {
633 int nrq = q->rq.count[READ] + q->rq.count[WRITE]
634 - q->in_flight;
636 if (nrq >= q->unplug_thresh)
637 __generic_unplug_device(q);
641 void __elv_add_request(struct request_queue *q, struct request *rq, int where,
642 int plug)
644 if (q->ordcolor)
645 rq->cmd_flags |= REQ_ORDERED_COLOR;
647 if (rq->cmd_flags & (REQ_SOFTBARRIER | REQ_HARDBARRIER)) {
649 * toggle ordered color
651 if (blk_barrier_rq(rq))
652 q->ordcolor ^= 1;
655 * barriers implicitly indicate back insertion
657 if (where == ELEVATOR_INSERT_SORT)
658 where = ELEVATOR_INSERT_BACK;
661 * this request is scheduling boundary, update
662 * end_sector
664 if (blk_fs_request(rq)) {
665 q->end_sector = rq_end_sector(rq);
666 q->boundary_rq = rq;
668 } else if (!(rq->cmd_flags & REQ_ELVPRIV) && where == ELEVATOR_INSERT_SORT)
669 where = ELEVATOR_INSERT_BACK;
671 if (plug)
672 blk_plug_device(q);
674 elv_insert(q, rq, where);
677 EXPORT_SYMBOL(__elv_add_request);
679 void elv_add_request(struct request_queue *q, struct request *rq, int where,
680 int plug)
682 unsigned long flags;
684 spin_lock_irqsave(q->queue_lock, flags);
685 __elv_add_request(q, rq, where, plug);
686 spin_unlock_irqrestore(q->queue_lock, flags);
689 EXPORT_SYMBOL(elv_add_request);
691 static inline struct request *__elv_next_request(struct request_queue *q)
693 struct request *rq;
695 while (1) {
696 while (!list_empty(&q->queue_head)) {
697 rq = list_entry_rq(q->queue_head.next);
698 if (blk_do_ordered(q, &rq))
699 return rq;
702 if (!q->elevator->ops->elevator_dispatch_fn(q, 0))
703 return NULL;
707 struct request *elv_next_request(struct request_queue *q)
709 struct request *rq;
710 int ret;
712 while ((rq = __elv_next_request(q)) != NULL) {
714 * Kill the empty barrier place holder, the driver must
715 * not ever see it.
717 if (blk_empty_barrier(rq)) {
718 end_queued_request(rq, 1);
719 continue;
721 if (!(rq->cmd_flags & REQ_STARTED)) {
723 * This is the first time the device driver
724 * sees this request (possibly after
725 * requeueing). Notify IO scheduler.
727 if (blk_sorted_rq(rq))
728 elv_activate_rq(q, rq);
731 * just mark as started even if we don't start
732 * it, a request that has been delayed should
733 * not be passed by new incoming requests
735 rq->cmd_flags |= REQ_STARTED;
736 blk_add_trace_rq(q, rq, BLK_TA_ISSUE);
739 if (!q->boundary_rq || q->boundary_rq == rq) {
740 q->end_sector = rq_end_sector(rq);
741 q->boundary_rq = NULL;
744 if (rq->cmd_flags & REQ_DONTPREP)
745 break;
747 if (q->dma_drain_size && rq->data_len) {
749 * make sure space for the drain appears we
750 * know we can do this because max_hw_segments
751 * has been adjusted to be one fewer than the
752 * device can handle
754 rq->nr_phys_segments++;
755 rq->nr_hw_segments++;
758 if (!q->prep_rq_fn)
759 break;
761 ret = q->prep_rq_fn(q, rq);
762 if (ret == BLKPREP_OK) {
763 break;
764 } else if (ret == BLKPREP_DEFER) {
766 * the request may have been (partially) prepped.
767 * we need to keep this request in the front to
768 * avoid resource deadlock. REQ_STARTED will
769 * prevent other fs requests from passing this one.
771 if (q->dma_drain_size && rq->data_len &&
772 !(rq->cmd_flags & REQ_DONTPREP)) {
774 * remove the space for the drain we added
775 * so that we don't add it again
777 --rq->nr_phys_segments;
778 --rq->nr_hw_segments;
781 rq = NULL;
782 break;
783 } else if (ret == BLKPREP_KILL) {
784 rq->cmd_flags |= REQ_QUIET;
785 end_queued_request(rq, 0);
786 } else {
787 printk(KERN_ERR "%s: bad return=%d\n", __FUNCTION__,
788 ret);
789 break;
793 return rq;
796 EXPORT_SYMBOL(elv_next_request);
798 void elv_dequeue_request(struct request_queue *q, struct request *rq)
800 BUG_ON(list_empty(&rq->queuelist));
801 BUG_ON(ELV_ON_HASH(rq));
803 list_del_init(&rq->queuelist);
806 * the time frame between a request being removed from the lists
807 * and to it is freed is accounted as io that is in progress at
808 * the driver side.
810 if (blk_account_rq(rq))
811 q->in_flight++;
814 EXPORT_SYMBOL(elv_dequeue_request);
816 int elv_queue_empty(struct request_queue *q)
818 elevator_t *e = q->elevator;
820 if (!list_empty(&q->queue_head))
821 return 0;
823 if (e->ops->elevator_queue_empty_fn)
824 return e->ops->elevator_queue_empty_fn(q);
826 return 1;
829 EXPORT_SYMBOL(elv_queue_empty);
831 struct request *elv_latter_request(struct request_queue *q, struct request *rq)
833 elevator_t *e = q->elevator;
835 if (e->ops->elevator_latter_req_fn)
836 return e->ops->elevator_latter_req_fn(q, rq);
837 return NULL;
840 struct request *elv_former_request(struct request_queue *q, struct request *rq)
842 elevator_t *e = q->elevator;
844 if (e->ops->elevator_former_req_fn)
845 return e->ops->elevator_former_req_fn(q, rq);
846 return NULL;
849 int elv_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
851 elevator_t *e = q->elevator;
853 if (e->ops->elevator_set_req_fn)
854 return e->ops->elevator_set_req_fn(q, rq, gfp_mask);
856 rq->elevator_private = NULL;
857 return 0;
860 void elv_put_request(struct request_queue *q, struct request *rq)
862 elevator_t *e = q->elevator;
864 if (e->ops->elevator_put_req_fn)
865 e->ops->elevator_put_req_fn(rq);
868 int elv_may_queue(struct request_queue *q, int rw)
870 elevator_t *e = q->elevator;
872 if (e->ops->elevator_may_queue_fn)
873 return e->ops->elevator_may_queue_fn(q, rw);
875 return ELV_MQUEUE_MAY;
878 void elv_completed_request(struct request_queue *q, struct request *rq)
880 elevator_t *e = q->elevator;
883 * request is released from the driver, io must be done
885 if (blk_account_rq(rq)) {
886 q->in_flight--;
887 if (blk_sorted_rq(rq) && e->ops->elevator_completed_req_fn)
888 e->ops->elevator_completed_req_fn(q, rq);
892 * Check if the queue is waiting for fs requests to be
893 * drained for flush sequence.
895 if (unlikely(q->ordseq)) {
896 struct request *first_rq = list_entry_rq(q->queue_head.next);
897 if (q->in_flight == 0 &&
898 blk_ordered_cur_seq(q) == QUEUE_ORDSEQ_DRAIN &&
899 blk_ordered_req_seq(first_rq) > QUEUE_ORDSEQ_DRAIN) {
900 blk_ordered_complete_seq(q, QUEUE_ORDSEQ_DRAIN, 0);
901 q->request_fn(q);
906 #define to_elv(atr) container_of((atr), struct elv_fs_entry, attr)
908 static ssize_t
909 elv_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
911 elevator_t *e = container_of(kobj, elevator_t, kobj);
912 struct elv_fs_entry *entry = to_elv(attr);
913 ssize_t error;
915 if (!entry->show)
916 return -EIO;
918 mutex_lock(&e->sysfs_lock);
919 error = e->ops ? entry->show(e, page) : -ENOENT;
920 mutex_unlock(&e->sysfs_lock);
921 return error;
924 static ssize_t
925 elv_attr_store(struct kobject *kobj, struct attribute *attr,
926 const char *page, size_t length)
928 elevator_t *e = container_of(kobj, elevator_t, kobj);
929 struct elv_fs_entry *entry = to_elv(attr);
930 ssize_t error;
932 if (!entry->store)
933 return -EIO;
935 mutex_lock(&e->sysfs_lock);
936 error = e->ops ? entry->store(e, page, length) : -ENOENT;
937 mutex_unlock(&e->sysfs_lock);
938 return error;
941 static struct sysfs_ops elv_sysfs_ops = {
942 .show = elv_attr_show,
943 .store = elv_attr_store,
946 static struct kobj_type elv_ktype = {
947 .sysfs_ops = &elv_sysfs_ops,
948 .release = elevator_release,
951 int elv_register_queue(struct request_queue *q)
953 elevator_t *e = q->elevator;
954 int error;
956 error = kobject_add(&e->kobj, &q->kobj, "%s", "iosched");
957 if (!error) {
958 struct elv_fs_entry *attr = e->elevator_type->elevator_attrs;
959 if (attr) {
960 while (attr->attr.name) {
961 if (sysfs_create_file(&e->kobj, &attr->attr))
962 break;
963 attr++;
966 kobject_uevent(&e->kobj, KOBJ_ADD);
968 return error;
971 static void __elv_unregister_queue(elevator_t *e)
973 kobject_uevent(&e->kobj, KOBJ_REMOVE);
974 kobject_del(&e->kobj);
977 void elv_unregister_queue(struct request_queue *q)
979 if (q)
980 __elv_unregister_queue(q->elevator);
983 void elv_register(struct elevator_type *e)
985 char *def = "";
987 spin_lock(&elv_list_lock);
988 BUG_ON(elevator_find(e->elevator_name));
989 list_add_tail(&e->list, &elv_list);
990 spin_unlock(&elv_list_lock);
992 if (!strcmp(e->elevator_name, chosen_elevator) ||
993 (!*chosen_elevator &&
994 !strcmp(e->elevator_name, CONFIG_DEFAULT_IOSCHED)))
995 def = " (default)";
997 printk(KERN_INFO "io scheduler %s registered%s\n", e->elevator_name, def);
999 EXPORT_SYMBOL_GPL(elv_register);
1001 void elv_unregister(struct elevator_type *e)
1003 struct task_struct *g, *p;
1006 * Iterate every thread in the process to remove the io contexts.
1008 if (e->ops.trim) {
1009 read_lock(&tasklist_lock);
1010 do_each_thread(g, p) {
1011 task_lock(p);
1012 if (p->io_context)
1013 e->ops.trim(p->io_context);
1014 task_unlock(p);
1015 } while_each_thread(g, p);
1016 read_unlock(&tasklist_lock);
1019 spin_lock(&elv_list_lock);
1020 list_del_init(&e->list);
1021 spin_unlock(&elv_list_lock);
1023 EXPORT_SYMBOL_GPL(elv_unregister);
1026 * switch to new_e io scheduler. be careful not to introduce deadlocks -
1027 * we don't free the old io scheduler, before we have allocated what we
1028 * need for the new one. this way we have a chance of going back to the old
1029 * one, if the new one fails init for some reason.
1031 static int elevator_switch(struct request_queue *q, struct elevator_type *new_e)
1033 elevator_t *old_elevator, *e;
1034 void *data;
1037 * Allocate new elevator
1039 e = elevator_alloc(q, new_e);
1040 if (!e)
1041 return 0;
1043 data = elevator_init_queue(q, e);
1044 if (!data) {
1045 kobject_put(&e->kobj);
1046 return 0;
1050 * Turn on BYPASS and drain all requests w/ elevator private data
1052 spin_lock_irq(q->queue_lock);
1054 set_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
1056 elv_drain_elevator(q);
1058 while (q->rq.elvpriv) {
1059 blk_remove_plug(q);
1060 q->request_fn(q);
1061 spin_unlock_irq(q->queue_lock);
1062 msleep(10);
1063 spin_lock_irq(q->queue_lock);
1064 elv_drain_elevator(q);
1068 * Remember old elevator.
1070 old_elevator = q->elevator;
1073 * attach and start new elevator
1075 elevator_attach(q, e, data);
1077 spin_unlock_irq(q->queue_lock);
1079 __elv_unregister_queue(old_elevator);
1081 if (elv_register_queue(q))
1082 goto fail_register;
1085 * finally exit old elevator and turn off BYPASS.
1087 elevator_exit(old_elevator);
1088 clear_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
1089 return 1;
1091 fail_register:
1093 * switch failed, exit the new io scheduler and reattach the old
1094 * one again (along with re-adding the sysfs dir)
1096 elevator_exit(e);
1097 q->elevator = old_elevator;
1098 elv_register_queue(q);
1099 clear_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
1100 return 0;
1103 ssize_t elv_iosched_store(struct request_queue *q, const char *name,
1104 size_t count)
1106 char elevator_name[ELV_NAME_MAX];
1107 size_t len;
1108 struct elevator_type *e;
1110 elevator_name[sizeof(elevator_name) - 1] = '\0';
1111 strncpy(elevator_name, name, sizeof(elevator_name) - 1);
1112 len = strlen(elevator_name);
1114 if (len && elevator_name[len - 1] == '\n')
1115 elevator_name[len - 1] = '\0';
1117 e = elevator_get(elevator_name);
1118 if (!e) {
1119 printk(KERN_ERR "elevator: type %s not found\n", elevator_name);
1120 return -EINVAL;
1123 if (!strcmp(elevator_name, q->elevator->elevator_type->elevator_name)) {
1124 elevator_put(e);
1125 return count;
1128 if (!elevator_switch(q, e))
1129 printk(KERN_ERR "elevator: switch to %s failed\n",elevator_name);
1130 return count;
1133 ssize_t elv_iosched_show(struct request_queue *q, char *name)
1135 elevator_t *e = q->elevator;
1136 struct elevator_type *elv = e->elevator_type;
1137 struct elevator_type *__e;
1138 int len = 0;
1140 spin_lock(&elv_list_lock);
1141 list_for_each_entry(__e, &elv_list, list) {
1142 if (!strcmp(elv->elevator_name, __e->elevator_name))
1143 len += sprintf(name+len, "[%s] ", elv->elevator_name);
1144 else
1145 len += sprintf(name+len, "%s ", __e->elevator_name);
1147 spin_unlock(&elv_list_lock);
1149 len += sprintf(len+name, "\n");
1150 return len;
1153 struct request *elv_rb_former_request(struct request_queue *q,
1154 struct request *rq)
1156 struct rb_node *rbprev = rb_prev(&rq->rb_node);
1158 if (rbprev)
1159 return rb_entry_rq(rbprev);
1161 return NULL;
1164 EXPORT_SYMBOL(elv_rb_former_request);
1166 struct request *elv_rb_latter_request(struct request_queue *q,
1167 struct request *rq)
1169 struct rb_node *rbnext = rb_next(&rq->rb_node);
1171 if (rbnext)
1172 return rb_entry_rq(rbnext);
1174 return NULL;
1177 EXPORT_SYMBOL(elv_rb_latter_request);