b43: Workaround DMA quirks
[linux-2.6/sactl.git] / drivers / firewire / fw-ohci.c
blob4f02c55f13e15131b95bc615e540e2931ad63d96
1 /*
2 * Driver for OHCI 1394 controllers
4 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21 #include <linux/compiler.h>
22 #include <linux/delay.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/gfp.h>
25 #include <linux/init.h>
26 #include <linux/interrupt.h>
27 #include <linux/kernel.h>
28 #include <linux/mm.h>
29 #include <linux/module.h>
30 #include <linux/moduleparam.h>
31 #include <linux/pci.h>
32 #include <linux/spinlock.h>
34 #include <asm/page.h>
35 #include <asm/system.h>
37 #ifdef CONFIG_PPC_PMAC
38 #include <asm/pmac_feature.h>
39 #endif
41 #include "fw-ohci.h"
42 #include "fw-transaction.h"
44 #define DESCRIPTOR_OUTPUT_MORE 0
45 #define DESCRIPTOR_OUTPUT_LAST (1 << 12)
46 #define DESCRIPTOR_INPUT_MORE (2 << 12)
47 #define DESCRIPTOR_INPUT_LAST (3 << 12)
48 #define DESCRIPTOR_STATUS (1 << 11)
49 #define DESCRIPTOR_KEY_IMMEDIATE (2 << 8)
50 #define DESCRIPTOR_PING (1 << 7)
51 #define DESCRIPTOR_YY (1 << 6)
52 #define DESCRIPTOR_NO_IRQ (0 << 4)
53 #define DESCRIPTOR_IRQ_ERROR (1 << 4)
54 #define DESCRIPTOR_IRQ_ALWAYS (3 << 4)
55 #define DESCRIPTOR_BRANCH_ALWAYS (3 << 2)
56 #define DESCRIPTOR_WAIT (3 << 0)
58 struct descriptor {
59 __le16 req_count;
60 __le16 control;
61 __le32 data_address;
62 __le32 branch_address;
63 __le16 res_count;
64 __le16 transfer_status;
65 } __attribute__((aligned(16)));
67 struct db_descriptor {
68 __le16 first_size;
69 __le16 control;
70 __le16 second_req_count;
71 __le16 first_req_count;
72 __le32 branch_address;
73 __le16 second_res_count;
74 __le16 first_res_count;
75 __le32 reserved0;
76 __le32 first_buffer;
77 __le32 second_buffer;
78 __le32 reserved1;
79 } __attribute__((aligned(16)));
81 #define CONTROL_SET(regs) (regs)
82 #define CONTROL_CLEAR(regs) ((regs) + 4)
83 #define COMMAND_PTR(regs) ((regs) + 12)
84 #define CONTEXT_MATCH(regs) ((regs) + 16)
86 struct ar_buffer {
87 struct descriptor descriptor;
88 struct ar_buffer *next;
89 __le32 data[0];
92 struct ar_context {
93 struct fw_ohci *ohci;
94 struct ar_buffer *current_buffer;
95 struct ar_buffer *last_buffer;
96 void *pointer;
97 u32 regs;
98 struct tasklet_struct tasklet;
101 struct context;
103 typedef int (*descriptor_callback_t)(struct context *ctx,
104 struct descriptor *d,
105 struct descriptor *last);
108 * A buffer that contains a block of DMA-able coherent memory used for
109 * storing a portion of a DMA descriptor program.
111 struct descriptor_buffer {
112 struct list_head list;
113 dma_addr_t buffer_bus;
114 size_t buffer_size;
115 size_t used;
116 struct descriptor buffer[0];
119 struct context {
120 struct fw_ohci *ohci;
121 u32 regs;
122 int total_allocation;
125 * List of page-sized buffers for storing DMA descriptors.
126 * Head of list contains buffers in use and tail of list contains
127 * free buffers.
129 struct list_head buffer_list;
132 * Pointer to a buffer inside buffer_list that contains the tail
133 * end of the current DMA program.
135 struct descriptor_buffer *buffer_tail;
138 * The descriptor containing the branch address of the first
139 * descriptor that has not yet been filled by the device.
141 struct descriptor *last;
144 * The last descriptor in the DMA program. It contains the branch
145 * address that must be updated upon appending a new descriptor.
147 struct descriptor *prev;
149 descriptor_callback_t callback;
151 struct tasklet_struct tasklet;
154 #define IT_HEADER_SY(v) ((v) << 0)
155 #define IT_HEADER_TCODE(v) ((v) << 4)
156 #define IT_HEADER_CHANNEL(v) ((v) << 8)
157 #define IT_HEADER_TAG(v) ((v) << 14)
158 #define IT_HEADER_SPEED(v) ((v) << 16)
159 #define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
161 struct iso_context {
162 struct fw_iso_context base;
163 struct context context;
164 int excess_bytes;
165 void *header;
166 size_t header_length;
169 #define CONFIG_ROM_SIZE 1024
171 struct fw_ohci {
172 struct fw_card card;
174 u32 version;
175 __iomem char *registers;
176 dma_addr_t self_id_bus;
177 __le32 *self_id_cpu;
178 struct tasklet_struct bus_reset_tasklet;
179 int node_id;
180 int generation;
181 int request_generation; /* for timestamping incoming requests */
182 u32 bus_seconds;
183 bool old_uninorth;
184 bool bus_reset_packet_quirk;
187 * Spinlock for accessing fw_ohci data. Never call out of
188 * this driver with this lock held.
190 spinlock_t lock;
191 u32 self_id_buffer[512];
193 /* Config rom buffers */
194 __be32 *config_rom;
195 dma_addr_t config_rom_bus;
196 __be32 *next_config_rom;
197 dma_addr_t next_config_rom_bus;
198 u32 next_header;
200 struct ar_context ar_request_ctx;
201 struct ar_context ar_response_ctx;
202 struct context at_request_ctx;
203 struct context at_response_ctx;
205 u32 it_context_mask;
206 struct iso_context *it_context_list;
207 u32 ir_context_mask;
208 struct iso_context *ir_context_list;
211 static inline struct fw_ohci *fw_ohci(struct fw_card *card)
213 return container_of(card, struct fw_ohci, card);
216 #define IT_CONTEXT_CYCLE_MATCH_ENABLE 0x80000000
217 #define IR_CONTEXT_BUFFER_FILL 0x80000000
218 #define IR_CONTEXT_ISOCH_HEADER 0x40000000
219 #define IR_CONTEXT_CYCLE_MATCH_ENABLE 0x20000000
220 #define IR_CONTEXT_MULTI_CHANNEL_MODE 0x10000000
221 #define IR_CONTEXT_DUAL_BUFFER_MODE 0x08000000
223 #define CONTEXT_RUN 0x8000
224 #define CONTEXT_WAKE 0x1000
225 #define CONTEXT_DEAD 0x0800
226 #define CONTEXT_ACTIVE 0x0400
228 #define OHCI1394_MAX_AT_REQ_RETRIES 0x2
229 #define OHCI1394_MAX_AT_RESP_RETRIES 0x2
230 #define OHCI1394_MAX_PHYS_RESP_RETRIES 0x8
232 #define FW_OHCI_MAJOR 240
233 #define OHCI1394_REGISTER_SIZE 0x800
234 #define OHCI_LOOP_COUNT 500
235 #define OHCI1394_PCI_HCI_Control 0x40
236 #define SELF_ID_BUF_SIZE 0x800
237 #define OHCI_TCODE_PHY_PACKET 0x0e
238 #define OHCI_VERSION_1_1 0x010010
240 static char ohci_driver_name[] = KBUILD_MODNAME;
242 #ifdef CONFIG_FIREWIRE_OHCI_DEBUG
244 #define OHCI_PARAM_DEBUG_AT_AR 1
245 #define OHCI_PARAM_DEBUG_SELFIDS 2
246 #define OHCI_PARAM_DEBUG_IRQS 4
247 #define OHCI_PARAM_DEBUG_BUSRESETS 8 /* only effective before chip init */
249 static int param_debug;
250 module_param_named(debug, param_debug, int, 0644);
251 MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
252 ", AT/AR events = " __stringify(OHCI_PARAM_DEBUG_AT_AR)
253 ", self-IDs = " __stringify(OHCI_PARAM_DEBUG_SELFIDS)
254 ", IRQs = " __stringify(OHCI_PARAM_DEBUG_IRQS)
255 ", busReset events = " __stringify(OHCI_PARAM_DEBUG_BUSRESETS)
256 ", or a combination, or all = -1)");
258 static void log_irqs(u32 evt)
260 if (likely(!(param_debug &
261 (OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
262 return;
264 if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
265 !(evt & OHCI1394_busReset))
266 return;
268 printk(KERN_DEBUG KBUILD_MODNAME ": IRQ "
269 "%08x%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
270 evt,
271 evt & OHCI1394_selfIDComplete ? " selfID" : "",
272 evt & OHCI1394_RQPkt ? " AR_req" : "",
273 evt & OHCI1394_RSPkt ? " AR_resp" : "",
274 evt & OHCI1394_reqTxComplete ? " AT_req" : "",
275 evt & OHCI1394_respTxComplete ? " AT_resp" : "",
276 evt & OHCI1394_isochRx ? " IR" : "",
277 evt & OHCI1394_isochTx ? " IT" : "",
278 evt & OHCI1394_postedWriteErr ? " postedWriteErr" : "",
279 evt & OHCI1394_cycleTooLong ? " cycleTooLong" : "",
280 evt & OHCI1394_cycle64Seconds ? " cycle64Seconds" : "",
281 evt & OHCI1394_regAccessFail ? " regAccessFail" : "",
282 evt & OHCI1394_busReset ? " busReset" : "",
283 evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
284 OHCI1394_RSPkt | OHCI1394_reqTxComplete |
285 OHCI1394_respTxComplete | OHCI1394_isochRx |
286 OHCI1394_isochTx | OHCI1394_postedWriteErr |
287 OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
288 OHCI1394_regAccessFail | OHCI1394_busReset)
289 ? " ?" : "");
292 static const char *speed[] = {
293 [0] = "S100", [1] = "S200", [2] = "S400", [3] = "beta",
295 static const char *power[] = {
296 [0] = "+0W", [1] = "+15W", [2] = "+30W", [3] = "+45W",
297 [4] = "-3W", [5] = " ?W", [6] = "-3..-6W", [7] = "-3..-10W",
299 static const char port[] = { '.', '-', 'p', 'c', };
301 static char _p(u32 *s, int shift)
303 return port[*s >> shift & 3];
306 static void log_selfids(int node_id, int generation, int self_id_count, u32 *s)
308 if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
309 return;
311 printk(KERN_DEBUG KBUILD_MODNAME ": %d selfIDs, generation %d, "
312 "local node ID %04x\n", self_id_count, generation, node_id);
314 for (; self_id_count--; ++s)
315 if ((*s & 1 << 23) == 0)
316 printk(KERN_DEBUG "selfID 0: %08x, phy %d [%c%c%c] "
317 "%s gc=%d %s %s%s%s\n",
318 *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
319 speed[*s >> 14 & 3], *s >> 16 & 63,
320 power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
321 *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
322 else
323 printk(KERN_DEBUG "selfID n: %08x, phy %d "
324 "[%c%c%c%c%c%c%c%c]\n",
325 *s, *s >> 24 & 63,
326 _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
327 _p(s, 8), _p(s, 6), _p(s, 4), _p(s, 2));
330 static const char *evts[] = {
331 [0x00] = "evt_no_status", [0x01] = "-reserved-",
332 [0x02] = "evt_long_packet", [0x03] = "evt_missing_ack",
333 [0x04] = "evt_underrun", [0x05] = "evt_overrun",
334 [0x06] = "evt_descriptor_read", [0x07] = "evt_data_read",
335 [0x08] = "evt_data_write", [0x09] = "evt_bus_reset",
336 [0x0a] = "evt_timeout", [0x0b] = "evt_tcode_err",
337 [0x0c] = "-reserved-", [0x0d] = "-reserved-",
338 [0x0e] = "evt_unknown", [0x0f] = "evt_flushed",
339 [0x10] = "-reserved-", [0x11] = "ack_complete",
340 [0x12] = "ack_pending ", [0x13] = "-reserved-",
341 [0x14] = "ack_busy_X", [0x15] = "ack_busy_A",
342 [0x16] = "ack_busy_B", [0x17] = "-reserved-",
343 [0x18] = "-reserved-", [0x19] = "-reserved-",
344 [0x1a] = "-reserved-", [0x1b] = "ack_tardy",
345 [0x1c] = "-reserved-", [0x1d] = "ack_data_error",
346 [0x1e] = "ack_type_error", [0x1f] = "-reserved-",
347 [0x20] = "pending/cancelled",
349 static const char *tcodes[] = {
350 [0x0] = "QW req", [0x1] = "BW req",
351 [0x2] = "W resp", [0x3] = "-reserved-",
352 [0x4] = "QR req", [0x5] = "BR req",
353 [0x6] = "QR resp", [0x7] = "BR resp",
354 [0x8] = "cycle start", [0x9] = "Lk req",
355 [0xa] = "async stream packet", [0xb] = "Lk resp",
356 [0xc] = "-reserved-", [0xd] = "-reserved-",
357 [0xe] = "link internal", [0xf] = "-reserved-",
359 static const char *phys[] = {
360 [0x0] = "phy config packet", [0x1] = "link-on packet",
361 [0x2] = "self-id packet", [0x3] = "-reserved-",
364 static void log_ar_at_event(char dir, int speed, u32 *header, int evt)
366 int tcode = header[0] >> 4 & 0xf;
367 char specific[12];
369 if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
370 return;
372 if (unlikely(evt >= ARRAY_SIZE(evts)))
373 evt = 0x1f;
375 if (evt == OHCI1394_evt_bus_reset) {
376 printk(KERN_DEBUG "A%c evt_bus_reset, generation %d\n",
377 dir, (header[2] >> 16) & 0xff);
378 return;
381 if (header[0] == ~header[1]) {
382 printk(KERN_DEBUG "A%c %s, %s, %08x\n",
383 dir, evts[evt], phys[header[0] >> 30 & 0x3],
384 header[0]);
385 return;
388 switch (tcode) {
389 case 0x0: case 0x6: case 0x8:
390 snprintf(specific, sizeof(specific), " = %08x",
391 be32_to_cpu((__force __be32)header[3]));
392 break;
393 case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
394 snprintf(specific, sizeof(specific), " %x,%x",
395 header[3] >> 16, header[3] & 0xffff);
396 break;
397 default:
398 specific[0] = '\0';
401 switch (tcode) {
402 case 0xe: case 0xa:
403 printk(KERN_DEBUG "A%c %s, %s\n",
404 dir, evts[evt], tcodes[tcode]);
405 break;
406 case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
407 printk(KERN_DEBUG "A%c spd %x tl %02x, "
408 "%04x -> %04x, %s, "
409 "%s, %04x%08x%s\n",
410 dir, speed, header[0] >> 10 & 0x3f,
411 header[1] >> 16, header[0] >> 16, evts[evt],
412 tcodes[tcode], header[1] & 0xffff, header[2], specific);
413 break;
414 default:
415 printk(KERN_DEBUG "A%c spd %x tl %02x, "
416 "%04x -> %04x, %s, "
417 "%s%s\n",
418 dir, speed, header[0] >> 10 & 0x3f,
419 header[1] >> 16, header[0] >> 16, evts[evt],
420 tcodes[tcode], specific);
424 #else
426 #define log_irqs(evt)
427 #define log_selfids(node_id, generation, self_id_count, sid)
428 #define log_ar_at_event(dir, speed, header, evt)
430 #endif /* CONFIG_FIREWIRE_OHCI_DEBUG */
432 static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
434 writel(data, ohci->registers + offset);
437 static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
439 return readl(ohci->registers + offset);
442 static inline void flush_writes(const struct fw_ohci *ohci)
444 /* Do a dummy read to flush writes. */
445 reg_read(ohci, OHCI1394_Version);
448 static int
449 ohci_update_phy_reg(struct fw_card *card, int addr,
450 int clear_bits, int set_bits)
452 struct fw_ohci *ohci = fw_ohci(card);
453 u32 val, old;
455 reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
456 flush_writes(ohci);
457 msleep(2);
458 val = reg_read(ohci, OHCI1394_PhyControl);
459 if ((val & OHCI1394_PhyControl_ReadDone) == 0) {
460 fw_error("failed to set phy reg bits.\n");
461 return -EBUSY;
464 old = OHCI1394_PhyControl_ReadData(val);
465 old = (old & ~clear_bits) | set_bits;
466 reg_write(ohci, OHCI1394_PhyControl,
467 OHCI1394_PhyControl_Write(addr, old));
469 return 0;
472 static int ar_context_add_page(struct ar_context *ctx)
474 struct device *dev = ctx->ohci->card.device;
475 struct ar_buffer *ab;
476 dma_addr_t uninitialized_var(ab_bus);
477 size_t offset;
479 ab = dma_alloc_coherent(dev, PAGE_SIZE, &ab_bus, GFP_ATOMIC);
480 if (ab == NULL)
481 return -ENOMEM;
483 memset(&ab->descriptor, 0, sizeof(ab->descriptor));
484 ab->descriptor.control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
485 DESCRIPTOR_STATUS |
486 DESCRIPTOR_BRANCH_ALWAYS);
487 offset = offsetof(struct ar_buffer, data);
488 ab->descriptor.req_count = cpu_to_le16(PAGE_SIZE - offset);
489 ab->descriptor.data_address = cpu_to_le32(ab_bus + offset);
490 ab->descriptor.res_count = cpu_to_le16(PAGE_SIZE - offset);
491 ab->descriptor.branch_address = 0;
493 ctx->last_buffer->descriptor.branch_address = cpu_to_le32(ab_bus | 1);
494 ctx->last_buffer->next = ab;
495 ctx->last_buffer = ab;
497 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
498 flush_writes(ctx->ohci);
500 return 0;
503 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
504 #define cond_le32_to_cpu(v) \
505 (ohci->old_uninorth ? (__force __u32)(v) : le32_to_cpu(v))
506 #else
507 #define cond_le32_to_cpu(v) le32_to_cpu(v)
508 #endif
510 static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
512 struct fw_ohci *ohci = ctx->ohci;
513 struct fw_packet p;
514 u32 status, length, tcode;
515 int evt;
517 p.header[0] = cond_le32_to_cpu(buffer[0]);
518 p.header[1] = cond_le32_to_cpu(buffer[1]);
519 p.header[2] = cond_le32_to_cpu(buffer[2]);
521 tcode = (p.header[0] >> 4) & 0x0f;
522 switch (tcode) {
523 case TCODE_WRITE_QUADLET_REQUEST:
524 case TCODE_READ_QUADLET_RESPONSE:
525 p.header[3] = (__force __u32) buffer[3];
526 p.header_length = 16;
527 p.payload_length = 0;
528 break;
530 case TCODE_READ_BLOCK_REQUEST :
531 p.header[3] = cond_le32_to_cpu(buffer[3]);
532 p.header_length = 16;
533 p.payload_length = 0;
534 break;
536 case TCODE_WRITE_BLOCK_REQUEST:
537 case TCODE_READ_BLOCK_RESPONSE:
538 case TCODE_LOCK_REQUEST:
539 case TCODE_LOCK_RESPONSE:
540 p.header[3] = cond_le32_to_cpu(buffer[3]);
541 p.header_length = 16;
542 p.payload_length = p.header[3] >> 16;
543 break;
545 case TCODE_WRITE_RESPONSE:
546 case TCODE_READ_QUADLET_REQUEST:
547 case OHCI_TCODE_PHY_PACKET:
548 p.header_length = 12;
549 p.payload_length = 0;
550 break;
553 p.payload = (void *) buffer + p.header_length;
555 /* FIXME: What to do about evt_* errors? */
556 length = (p.header_length + p.payload_length + 3) / 4;
557 status = cond_le32_to_cpu(buffer[length]);
558 evt = (status >> 16) & 0x1f;
560 p.ack = evt - 16;
561 p.speed = (status >> 21) & 0x7;
562 p.timestamp = status & 0xffff;
563 p.generation = ohci->request_generation;
565 log_ar_at_event('R', p.speed, p.header, evt);
568 * The OHCI bus reset handler synthesizes a phy packet with
569 * the new generation number when a bus reset happens (see
570 * section 8.4.2.3). This helps us determine when a request
571 * was received and make sure we send the response in the same
572 * generation. We only need this for requests; for responses
573 * we use the unique tlabel for finding the matching
574 * request.
576 * Alas some chips sometimes emit bus reset packets with a
577 * wrong generation. We set the correct generation for these
578 * at a slightly incorrect time (in bus_reset_tasklet).
580 if (evt == OHCI1394_evt_bus_reset) {
581 if (!ohci->bus_reset_packet_quirk)
582 ohci->request_generation = (p.header[2] >> 16) & 0xff;
583 } else if (ctx == &ohci->ar_request_ctx) {
584 fw_core_handle_request(&ohci->card, &p);
585 } else {
586 fw_core_handle_response(&ohci->card, &p);
589 return buffer + length + 1;
592 static void ar_context_tasklet(unsigned long data)
594 struct ar_context *ctx = (struct ar_context *)data;
595 struct fw_ohci *ohci = ctx->ohci;
596 struct ar_buffer *ab;
597 struct descriptor *d;
598 void *buffer, *end;
600 ab = ctx->current_buffer;
601 d = &ab->descriptor;
603 if (d->res_count == 0) {
604 size_t size, rest, offset;
605 dma_addr_t start_bus;
606 void *start;
609 * This descriptor is finished and we may have a
610 * packet split across this and the next buffer. We
611 * reuse the page for reassembling the split packet.
614 offset = offsetof(struct ar_buffer, data);
615 start = buffer = ab;
616 start_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
618 ab = ab->next;
619 d = &ab->descriptor;
620 size = buffer + PAGE_SIZE - ctx->pointer;
621 rest = le16_to_cpu(d->req_count) - le16_to_cpu(d->res_count);
622 memmove(buffer, ctx->pointer, size);
623 memcpy(buffer + size, ab->data, rest);
624 ctx->current_buffer = ab;
625 ctx->pointer = (void *) ab->data + rest;
626 end = buffer + size + rest;
628 while (buffer < end)
629 buffer = handle_ar_packet(ctx, buffer);
631 dma_free_coherent(ohci->card.device, PAGE_SIZE,
632 start, start_bus);
633 ar_context_add_page(ctx);
634 } else {
635 buffer = ctx->pointer;
636 ctx->pointer = end =
637 (void *) ab + PAGE_SIZE - le16_to_cpu(d->res_count);
639 while (buffer < end)
640 buffer = handle_ar_packet(ctx, buffer);
644 static int
645 ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci, u32 regs)
647 struct ar_buffer ab;
649 ctx->regs = regs;
650 ctx->ohci = ohci;
651 ctx->last_buffer = &ab;
652 tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
654 ar_context_add_page(ctx);
655 ar_context_add_page(ctx);
656 ctx->current_buffer = ab.next;
657 ctx->pointer = ctx->current_buffer->data;
659 return 0;
662 static void ar_context_run(struct ar_context *ctx)
664 struct ar_buffer *ab = ctx->current_buffer;
665 dma_addr_t ab_bus;
666 size_t offset;
668 offset = offsetof(struct ar_buffer, data);
669 ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
671 reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ab_bus | 1);
672 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
673 flush_writes(ctx->ohci);
676 static struct descriptor *
677 find_branch_descriptor(struct descriptor *d, int z)
679 int b, key;
681 b = (le16_to_cpu(d->control) & DESCRIPTOR_BRANCH_ALWAYS) >> 2;
682 key = (le16_to_cpu(d->control) & DESCRIPTOR_KEY_IMMEDIATE) >> 8;
684 /* figure out which descriptor the branch address goes in */
685 if (z == 2 && (b == 3 || key == 2))
686 return d;
687 else
688 return d + z - 1;
691 static void context_tasklet(unsigned long data)
693 struct context *ctx = (struct context *) data;
694 struct descriptor *d, *last;
695 u32 address;
696 int z;
697 struct descriptor_buffer *desc;
699 desc = list_entry(ctx->buffer_list.next,
700 struct descriptor_buffer, list);
701 last = ctx->last;
702 while (last->branch_address != 0) {
703 struct descriptor_buffer *old_desc = desc;
704 address = le32_to_cpu(last->branch_address);
705 z = address & 0xf;
706 address &= ~0xf;
708 /* If the branch address points to a buffer outside of the
709 * current buffer, advance to the next buffer. */
710 if (address < desc->buffer_bus ||
711 address >= desc->buffer_bus + desc->used)
712 desc = list_entry(desc->list.next,
713 struct descriptor_buffer, list);
714 d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
715 last = find_branch_descriptor(d, z);
717 if (!ctx->callback(ctx, d, last))
718 break;
720 if (old_desc != desc) {
721 /* If we've advanced to the next buffer, move the
722 * previous buffer to the free list. */
723 unsigned long flags;
724 old_desc->used = 0;
725 spin_lock_irqsave(&ctx->ohci->lock, flags);
726 list_move_tail(&old_desc->list, &ctx->buffer_list);
727 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
729 ctx->last = last;
734 * Allocate a new buffer and add it to the list of free buffers for this
735 * context. Must be called with ohci->lock held.
737 static int
738 context_add_buffer(struct context *ctx)
740 struct descriptor_buffer *desc;
741 dma_addr_t uninitialized_var(bus_addr);
742 int offset;
745 * 16MB of descriptors should be far more than enough for any DMA
746 * program. This will catch run-away userspace or DoS attacks.
748 if (ctx->total_allocation >= 16*1024*1024)
749 return -ENOMEM;
751 desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
752 &bus_addr, GFP_ATOMIC);
753 if (!desc)
754 return -ENOMEM;
756 offset = (void *)&desc->buffer - (void *)desc;
757 desc->buffer_size = PAGE_SIZE - offset;
758 desc->buffer_bus = bus_addr + offset;
759 desc->used = 0;
761 list_add_tail(&desc->list, &ctx->buffer_list);
762 ctx->total_allocation += PAGE_SIZE;
764 return 0;
767 static int
768 context_init(struct context *ctx, struct fw_ohci *ohci,
769 u32 regs, descriptor_callback_t callback)
771 ctx->ohci = ohci;
772 ctx->regs = regs;
773 ctx->total_allocation = 0;
775 INIT_LIST_HEAD(&ctx->buffer_list);
776 if (context_add_buffer(ctx) < 0)
777 return -ENOMEM;
779 ctx->buffer_tail = list_entry(ctx->buffer_list.next,
780 struct descriptor_buffer, list);
782 tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
783 ctx->callback = callback;
786 * We put a dummy descriptor in the buffer that has a NULL
787 * branch address and looks like it's been sent. That way we
788 * have a descriptor to append DMA programs to.
790 memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
791 ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
792 ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
793 ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
794 ctx->last = ctx->buffer_tail->buffer;
795 ctx->prev = ctx->buffer_tail->buffer;
797 return 0;
800 static void
801 context_release(struct context *ctx)
803 struct fw_card *card = &ctx->ohci->card;
804 struct descriptor_buffer *desc, *tmp;
806 list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
807 dma_free_coherent(card->device, PAGE_SIZE, desc,
808 desc->buffer_bus -
809 ((void *)&desc->buffer - (void *)desc));
812 /* Must be called with ohci->lock held */
813 static struct descriptor *
814 context_get_descriptors(struct context *ctx, int z, dma_addr_t *d_bus)
816 struct descriptor *d = NULL;
817 struct descriptor_buffer *desc = ctx->buffer_tail;
819 if (z * sizeof(*d) > desc->buffer_size)
820 return NULL;
822 if (z * sizeof(*d) > desc->buffer_size - desc->used) {
823 /* No room for the descriptor in this buffer, so advance to the
824 * next one. */
826 if (desc->list.next == &ctx->buffer_list) {
827 /* If there is no free buffer next in the list,
828 * allocate one. */
829 if (context_add_buffer(ctx) < 0)
830 return NULL;
832 desc = list_entry(desc->list.next,
833 struct descriptor_buffer, list);
834 ctx->buffer_tail = desc;
837 d = desc->buffer + desc->used / sizeof(*d);
838 memset(d, 0, z * sizeof(*d));
839 *d_bus = desc->buffer_bus + desc->used;
841 return d;
844 static void context_run(struct context *ctx, u32 extra)
846 struct fw_ohci *ohci = ctx->ohci;
848 reg_write(ohci, COMMAND_PTR(ctx->regs),
849 le32_to_cpu(ctx->last->branch_address));
850 reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
851 reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
852 flush_writes(ohci);
855 static void context_append(struct context *ctx,
856 struct descriptor *d, int z, int extra)
858 dma_addr_t d_bus;
859 struct descriptor_buffer *desc = ctx->buffer_tail;
861 d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
863 desc->used += (z + extra) * sizeof(*d);
864 ctx->prev->branch_address = cpu_to_le32(d_bus | z);
865 ctx->prev = find_branch_descriptor(d, z);
867 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
868 flush_writes(ctx->ohci);
871 static void context_stop(struct context *ctx)
873 u32 reg;
874 int i;
876 reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
877 flush_writes(ctx->ohci);
879 for (i = 0; i < 10; i++) {
880 reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
881 if ((reg & CONTEXT_ACTIVE) == 0)
882 break;
884 fw_notify("context_stop: still active (0x%08x)\n", reg);
885 mdelay(1);
889 struct driver_data {
890 struct fw_packet *packet;
894 * This function apppends a packet to the DMA queue for transmission.
895 * Must always be called with the ochi->lock held to ensure proper
896 * generation handling and locking around packet queue manipulation.
898 static int
899 at_context_queue_packet(struct context *ctx, struct fw_packet *packet)
901 struct fw_ohci *ohci = ctx->ohci;
902 dma_addr_t d_bus, uninitialized_var(payload_bus);
903 struct driver_data *driver_data;
904 struct descriptor *d, *last;
905 __le32 *header;
906 int z, tcode;
907 u32 reg;
909 d = context_get_descriptors(ctx, 4, &d_bus);
910 if (d == NULL) {
911 packet->ack = RCODE_SEND_ERROR;
912 return -1;
915 d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
916 d[0].res_count = cpu_to_le16(packet->timestamp);
919 * The DMA format for asyncronous link packets is different
920 * from the IEEE1394 layout, so shift the fields around
921 * accordingly. If header_length is 8, it's a PHY packet, to
922 * which we need to prepend an extra quadlet.
925 header = (__le32 *) &d[1];
926 if (packet->header_length > 8) {
927 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
928 (packet->speed << 16));
929 header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
930 (packet->header[0] & 0xffff0000));
931 header[2] = cpu_to_le32(packet->header[2]);
933 tcode = (packet->header[0] >> 4) & 0x0f;
934 if (TCODE_IS_BLOCK_PACKET(tcode))
935 header[3] = cpu_to_le32(packet->header[3]);
936 else
937 header[3] = (__force __le32) packet->header[3];
939 d[0].req_count = cpu_to_le16(packet->header_length);
940 } else {
941 header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
942 (packet->speed << 16));
943 header[1] = cpu_to_le32(packet->header[0]);
944 header[2] = cpu_to_le32(packet->header[1]);
945 d[0].req_count = cpu_to_le16(12);
948 driver_data = (struct driver_data *) &d[3];
949 driver_data->packet = packet;
950 packet->driver_data = driver_data;
952 if (packet->payload_length > 0) {
953 payload_bus =
954 dma_map_single(ohci->card.device, packet->payload,
955 packet->payload_length, DMA_TO_DEVICE);
956 if (dma_mapping_error(payload_bus)) {
957 packet->ack = RCODE_SEND_ERROR;
958 return -1;
961 d[2].req_count = cpu_to_le16(packet->payload_length);
962 d[2].data_address = cpu_to_le32(payload_bus);
963 last = &d[2];
964 z = 3;
965 } else {
966 last = &d[0];
967 z = 2;
970 last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
971 DESCRIPTOR_IRQ_ALWAYS |
972 DESCRIPTOR_BRANCH_ALWAYS);
975 * If the controller and packet generations don't match, we need to
976 * bail out and try again. If IntEvent.busReset is set, the AT context
977 * is halted, so appending to the context and trying to run it is
978 * futile. Most controllers do the right thing and just flush the AT
979 * queue (per section 7.2.3.2 of the OHCI 1.1 specification), but
980 * some controllers (like a JMicron JMB381 PCI-e) misbehave and wind
981 * up stalling out. So we just bail out in software and try again
982 * later, and everyone is happy.
983 * FIXME: Document how the locking works.
985 if (ohci->generation != packet->generation ||
986 reg_read(ohci, OHCI1394_IntEventSet) & OHCI1394_busReset) {
987 if (packet->payload_length > 0)
988 dma_unmap_single(ohci->card.device, payload_bus,
989 packet->payload_length, DMA_TO_DEVICE);
990 packet->ack = RCODE_GENERATION;
991 return -1;
994 context_append(ctx, d, z, 4 - z);
996 /* If the context isn't already running, start it up. */
997 reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
998 if ((reg & CONTEXT_RUN) == 0)
999 context_run(ctx, 0);
1001 return 0;
1004 static int handle_at_packet(struct context *context,
1005 struct descriptor *d,
1006 struct descriptor *last)
1008 struct driver_data *driver_data;
1009 struct fw_packet *packet;
1010 struct fw_ohci *ohci = context->ohci;
1011 dma_addr_t payload_bus;
1012 int evt;
1014 if (last->transfer_status == 0)
1015 /* This descriptor isn't done yet, stop iteration. */
1016 return 0;
1018 driver_data = (struct driver_data *) &d[3];
1019 packet = driver_data->packet;
1020 if (packet == NULL)
1021 /* This packet was cancelled, just continue. */
1022 return 1;
1024 payload_bus = le32_to_cpu(last->data_address);
1025 if (payload_bus != 0)
1026 dma_unmap_single(ohci->card.device, payload_bus,
1027 packet->payload_length, DMA_TO_DEVICE);
1029 evt = le16_to_cpu(last->transfer_status) & 0x1f;
1030 packet->timestamp = le16_to_cpu(last->res_count);
1032 log_ar_at_event('T', packet->speed, packet->header, evt);
1034 switch (evt) {
1035 case OHCI1394_evt_timeout:
1036 /* Async response transmit timed out. */
1037 packet->ack = RCODE_CANCELLED;
1038 break;
1040 case OHCI1394_evt_flushed:
1042 * The packet was flushed should give same error as
1043 * when we try to use a stale generation count.
1045 packet->ack = RCODE_GENERATION;
1046 break;
1048 case OHCI1394_evt_missing_ack:
1050 * Using a valid (current) generation count, but the
1051 * node is not on the bus or not sending acks.
1053 packet->ack = RCODE_NO_ACK;
1054 break;
1056 case ACK_COMPLETE + 0x10:
1057 case ACK_PENDING + 0x10:
1058 case ACK_BUSY_X + 0x10:
1059 case ACK_BUSY_A + 0x10:
1060 case ACK_BUSY_B + 0x10:
1061 case ACK_DATA_ERROR + 0x10:
1062 case ACK_TYPE_ERROR + 0x10:
1063 packet->ack = evt - 0x10;
1064 break;
1066 default:
1067 packet->ack = RCODE_SEND_ERROR;
1068 break;
1071 packet->callback(packet, &ohci->card, packet->ack);
1073 return 1;
1076 #define HEADER_GET_DESTINATION(q) (((q) >> 16) & 0xffff)
1077 #define HEADER_GET_TCODE(q) (((q) >> 4) & 0x0f)
1078 #define HEADER_GET_OFFSET_HIGH(q) (((q) >> 0) & 0xffff)
1079 #define HEADER_GET_DATA_LENGTH(q) (((q) >> 16) & 0xffff)
1080 #define HEADER_GET_EXTENDED_TCODE(q) (((q) >> 0) & 0xffff)
1082 static void
1083 handle_local_rom(struct fw_ohci *ohci, struct fw_packet *packet, u32 csr)
1085 struct fw_packet response;
1086 int tcode, length, i;
1088 tcode = HEADER_GET_TCODE(packet->header[0]);
1089 if (TCODE_IS_BLOCK_PACKET(tcode))
1090 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1091 else
1092 length = 4;
1094 i = csr - CSR_CONFIG_ROM;
1095 if (i + length > CONFIG_ROM_SIZE) {
1096 fw_fill_response(&response, packet->header,
1097 RCODE_ADDRESS_ERROR, NULL, 0);
1098 } else if (!TCODE_IS_READ_REQUEST(tcode)) {
1099 fw_fill_response(&response, packet->header,
1100 RCODE_TYPE_ERROR, NULL, 0);
1101 } else {
1102 fw_fill_response(&response, packet->header, RCODE_COMPLETE,
1103 (void *) ohci->config_rom + i, length);
1106 fw_core_handle_response(&ohci->card, &response);
1109 static void
1110 handle_local_lock(struct fw_ohci *ohci, struct fw_packet *packet, u32 csr)
1112 struct fw_packet response;
1113 int tcode, length, ext_tcode, sel;
1114 __be32 *payload, lock_old;
1115 u32 lock_arg, lock_data;
1117 tcode = HEADER_GET_TCODE(packet->header[0]);
1118 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1119 payload = packet->payload;
1120 ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1122 if (tcode == TCODE_LOCK_REQUEST &&
1123 ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
1124 lock_arg = be32_to_cpu(payload[0]);
1125 lock_data = be32_to_cpu(payload[1]);
1126 } else if (tcode == TCODE_READ_QUADLET_REQUEST) {
1127 lock_arg = 0;
1128 lock_data = 0;
1129 } else {
1130 fw_fill_response(&response, packet->header,
1131 RCODE_TYPE_ERROR, NULL, 0);
1132 goto out;
1135 sel = (csr - CSR_BUS_MANAGER_ID) / 4;
1136 reg_write(ohci, OHCI1394_CSRData, lock_data);
1137 reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
1138 reg_write(ohci, OHCI1394_CSRControl, sel);
1140 if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000)
1141 lock_old = cpu_to_be32(reg_read(ohci, OHCI1394_CSRData));
1142 else
1143 fw_notify("swap not done yet\n");
1145 fw_fill_response(&response, packet->header,
1146 RCODE_COMPLETE, &lock_old, sizeof(lock_old));
1147 out:
1148 fw_core_handle_response(&ohci->card, &response);
1151 static void
1152 handle_local_request(struct context *ctx, struct fw_packet *packet)
1154 u64 offset;
1155 u32 csr;
1157 if (ctx == &ctx->ohci->at_request_ctx) {
1158 packet->ack = ACK_PENDING;
1159 packet->callback(packet, &ctx->ohci->card, packet->ack);
1162 offset =
1163 ((unsigned long long)
1164 HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1165 packet->header[2];
1166 csr = offset - CSR_REGISTER_BASE;
1168 /* Handle config rom reads. */
1169 if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
1170 handle_local_rom(ctx->ohci, packet, csr);
1171 else switch (csr) {
1172 case CSR_BUS_MANAGER_ID:
1173 case CSR_BANDWIDTH_AVAILABLE:
1174 case CSR_CHANNELS_AVAILABLE_HI:
1175 case CSR_CHANNELS_AVAILABLE_LO:
1176 handle_local_lock(ctx->ohci, packet, csr);
1177 break;
1178 default:
1179 if (ctx == &ctx->ohci->at_request_ctx)
1180 fw_core_handle_request(&ctx->ohci->card, packet);
1181 else
1182 fw_core_handle_response(&ctx->ohci->card, packet);
1183 break;
1186 if (ctx == &ctx->ohci->at_response_ctx) {
1187 packet->ack = ACK_COMPLETE;
1188 packet->callback(packet, &ctx->ohci->card, packet->ack);
1192 static void
1193 at_context_transmit(struct context *ctx, struct fw_packet *packet)
1195 unsigned long flags;
1196 int retval;
1198 spin_lock_irqsave(&ctx->ohci->lock, flags);
1200 if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1201 ctx->ohci->generation == packet->generation) {
1202 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1203 handle_local_request(ctx, packet);
1204 return;
1207 retval = at_context_queue_packet(ctx, packet);
1208 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1210 if (retval < 0)
1211 packet->callback(packet, &ctx->ohci->card, packet->ack);
1215 static void bus_reset_tasklet(unsigned long data)
1217 struct fw_ohci *ohci = (struct fw_ohci *)data;
1218 int self_id_count, i, j, reg;
1219 int generation, new_generation;
1220 unsigned long flags;
1221 void *free_rom = NULL;
1222 dma_addr_t free_rom_bus = 0;
1224 reg = reg_read(ohci, OHCI1394_NodeID);
1225 if (!(reg & OHCI1394_NodeID_idValid)) {
1226 fw_notify("node ID not valid, new bus reset in progress\n");
1227 return;
1229 if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
1230 fw_notify("malconfigured bus\n");
1231 return;
1233 ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
1234 OHCI1394_NodeID_nodeNumber);
1236 reg = reg_read(ohci, OHCI1394_SelfIDCount);
1237 if (reg & OHCI1394_SelfIDCount_selfIDError) {
1238 fw_notify("inconsistent self IDs\n");
1239 return;
1242 * The count in the SelfIDCount register is the number of
1243 * bytes in the self ID receive buffer. Since we also receive
1244 * the inverted quadlets and a header quadlet, we shift one
1245 * bit extra to get the actual number of self IDs.
1247 self_id_count = (reg >> 3) & 0x3ff;
1248 if (self_id_count == 0) {
1249 fw_notify("inconsistent self IDs\n");
1250 return;
1252 generation = (cond_le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
1253 rmb();
1255 for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1256 if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1]) {
1257 fw_notify("inconsistent self IDs\n");
1258 return;
1260 ohci->self_id_buffer[j] =
1261 cond_le32_to_cpu(ohci->self_id_cpu[i]);
1263 rmb();
1266 * Check the consistency of the self IDs we just read. The
1267 * problem we face is that a new bus reset can start while we
1268 * read out the self IDs from the DMA buffer. If this happens,
1269 * the DMA buffer will be overwritten with new self IDs and we
1270 * will read out inconsistent data. The OHCI specification
1271 * (section 11.2) recommends a technique similar to
1272 * linux/seqlock.h, where we remember the generation of the
1273 * self IDs in the buffer before reading them out and compare
1274 * it to the current generation after reading them out. If
1275 * the two generations match we know we have a consistent set
1276 * of self IDs.
1279 new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
1280 if (new_generation != generation) {
1281 fw_notify("recursive bus reset detected, "
1282 "discarding self ids\n");
1283 return;
1286 /* FIXME: Document how the locking works. */
1287 spin_lock_irqsave(&ohci->lock, flags);
1289 ohci->generation = generation;
1290 context_stop(&ohci->at_request_ctx);
1291 context_stop(&ohci->at_response_ctx);
1292 reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
1294 if (ohci->bus_reset_packet_quirk)
1295 ohci->request_generation = generation;
1298 * This next bit is unrelated to the AT context stuff but we
1299 * have to do it under the spinlock also. If a new config rom
1300 * was set up before this reset, the old one is now no longer
1301 * in use and we can free it. Update the config rom pointers
1302 * to point to the current config rom and clear the
1303 * next_config_rom pointer so a new udpate can take place.
1306 if (ohci->next_config_rom != NULL) {
1307 if (ohci->next_config_rom != ohci->config_rom) {
1308 free_rom = ohci->config_rom;
1309 free_rom_bus = ohci->config_rom_bus;
1311 ohci->config_rom = ohci->next_config_rom;
1312 ohci->config_rom_bus = ohci->next_config_rom_bus;
1313 ohci->next_config_rom = NULL;
1316 * Restore config_rom image and manually update
1317 * config_rom registers. Writing the header quadlet
1318 * will indicate that the config rom is ready, so we
1319 * do that last.
1321 reg_write(ohci, OHCI1394_BusOptions,
1322 be32_to_cpu(ohci->config_rom[2]));
1323 ohci->config_rom[0] = cpu_to_be32(ohci->next_header);
1324 reg_write(ohci, OHCI1394_ConfigROMhdr, ohci->next_header);
1327 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1328 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
1329 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
1330 #endif
1332 spin_unlock_irqrestore(&ohci->lock, flags);
1334 if (free_rom)
1335 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1336 free_rom, free_rom_bus);
1338 log_selfids(ohci->node_id, generation,
1339 self_id_count, ohci->self_id_buffer);
1341 fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
1342 self_id_count, ohci->self_id_buffer);
1345 static irqreturn_t irq_handler(int irq, void *data)
1347 struct fw_ohci *ohci = data;
1348 u32 event, iso_event, cycle_time;
1349 int i;
1351 event = reg_read(ohci, OHCI1394_IntEventClear);
1353 if (!event || !~event)
1354 return IRQ_NONE;
1356 /* busReset must not be cleared yet, see OHCI 1.1 clause 7.2.3.2 */
1357 reg_write(ohci, OHCI1394_IntEventClear, event & ~OHCI1394_busReset);
1358 log_irqs(event);
1360 if (event & OHCI1394_selfIDComplete)
1361 tasklet_schedule(&ohci->bus_reset_tasklet);
1363 if (event & OHCI1394_RQPkt)
1364 tasklet_schedule(&ohci->ar_request_ctx.tasklet);
1366 if (event & OHCI1394_RSPkt)
1367 tasklet_schedule(&ohci->ar_response_ctx.tasklet);
1369 if (event & OHCI1394_reqTxComplete)
1370 tasklet_schedule(&ohci->at_request_ctx.tasklet);
1372 if (event & OHCI1394_respTxComplete)
1373 tasklet_schedule(&ohci->at_response_ctx.tasklet);
1375 iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
1376 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
1378 while (iso_event) {
1379 i = ffs(iso_event) - 1;
1380 tasklet_schedule(&ohci->ir_context_list[i].context.tasklet);
1381 iso_event &= ~(1 << i);
1384 iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
1385 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
1387 while (iso_event) {
1388 i = ffs(iso_event) - 1;
1389 tasklet_schedule(&ohci->it_context_list[i].context.tasklet);
1390 iso_event &= ~(1 << i);
1393 if (unlikely(event & OHCI1394_regAccessFail))
1394 fw_error("Register access failure - "
1395 "please notify linux1394-devel@lists.sf.net\n");
1397 if (unlikely(event & OHCI1394_postedWriteErr))
1398 fw_error("PCI posted write error\n");
1400 if (unlikely(event & OHCI1394_cycleTooLong)) {
1401 if (printk_ratelimit())
1402 fw_notify("isochronous cycle too long\n");
1403 reg_write(ohci, OHCI1394_LinkControlSet,
1404 OHCI1394_LinkControl_cycleMaster);
1407 if (event & OHCI1394_cycle64Seconds) {
1408 cycle_time = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1409 if ((cycle_time & 0x80000000) == 0)
1410 ohci->bus_seconds++;
1413 return IRQ_HANDLED;
1416 static int software_reset(struct fw_ohci *ohci)
1418 int i;
1420 reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
1422 for (i = 0; i < OHCI_LOOP_COUNT; i++) {
1423 if ((reg_read(ohci, OHCI1394_HCControlSet) &
1424 OHCI1394_HCControl_softReset) == 0)
1425 return 0;
1426 msleep(1);
1429 return -EBUSY;
1432 static int ohci_enable(struct fw_card *card, u32 *config_rom, size_t length)
1434 struct fw_ohci *ohci = fw_ohci(card);
1435 struct pci_dev *dev = to_pci_dev(card->device);
1436 u32 lps;
1437 int i;
1439 if (software_reset(ohci)) {
1440 fw_error("Failed to reset ohci card.\n");
1441 return -EBUSY;
1445 * Now enable LPS, which we need in order to start accessing
1446 * most of the registers. In fact, on some cards (ALI M5251),
1447 * accessing registers in the SClk domain without LPS enabled
1448 * will lock up the machine. Wait 50msec to make sure we have
1449 * full link enabled. However, with some cards (well, at least
1450 * a JMicron PCIe card), we have to try again sometimes.
1452 reg_write(ohci, OHCI1394_HCControlSet,
1453 OHCI1394_HCControl_LPS |
1454 OHCI1394_HCControl_postedWriteEnable);
1455 flush_writes(ohci);
1457 for (lps = 0, i = 0; !lps && i < 3; i++) {
1458 msleep(50);
1459 lps = reg_read(ohci, OHCI1394_HCControlSet) &
1460 OHCI1394_HCControl_LPS;
1463 if (!lps) {
1464 fw_error("Failed to set Link Power Status\n");
1465 return -EIO;
1468 reg_write(ohci, OHCI1394_HCControlClear,
1469 OHCI1394_HCControl_noByteSwapData);
1471 reg_write(ohci, OHCI1394_LinkControlSet,
1472 OHCI1394_LinkControl_rcvSelfID |
1473 OHCI1394_LinkControl_cycleTimerEnable |
1474 OHCI1394_LinkControl_cycleMaster);
1476 reg_write(ohci, OHCI1394_ATRetries,
1477 OHCI1394_MAX_AT_REQ_RETRIES |
1478 (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
1479 (OHCI1394_MAX_PHYS_RESP_RETRIES << 8));
1481 ar_context_run(&ohci->ar_request_ctx);
1482 ar_context_run(&ohci->ar_response_ctx);
1484 reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
1485 reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
1486 reg_write(ohci, OHCI1394_IntEventClear, ~0);
1487 reg_write(ohci, OHCI1394_IntMaskClear, ~0);
1488 reg_write(ohci, OHCI1394_IntMaskSet,
1489 OHCI1394_selfIDComplete |
1490 OHCI1394_RQPkt | OHCI1394_RSPkt |
1491 OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
1492 OHCI1394_isochRx | OHCI1394_isochTx |
1493 OHCI1394_postedWriteErr | OHCI1394_cycleTooLong |
1494 OHCI1394_cycle64Seconds | OHCI1394_regAccessFail |
1495 OHCI1394_masterIntEnable);
1496 if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
1497 reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_busReset);
1499 /* Activate link_on bit and contender bit in our self ID packets.*/
1500 if (ohci_update_phy_reg(card, 4, 0,
1501 PHY_LINK_ACTIVE | PHY_CONTENDER) < 0)
1502 return -EIO;
1505 * When the link is not yet enabled, the atomic config rom
1506 * update mechanism described below in ohci_set_config_rom()
1507 * is not active. We have to update ConfigRomHeader and
1508 * BusOptions manually, and the write to ConfigROMmap takes
1509 * effect immediately. We tie this to the enabling of the
1510 * link, so we have a valid config rom before enabling - the
1511 * OHCI requires that ConfigROMhdr and BusOptions have valid
1512 * values before enabling.
1514 * However, when the ConfigROMmap is written, some controllers
1515 * always read back quadlets 0 and 2 from the config rom to
1516 * the ConfigRomHeader and BusOptions registers on bus reset.
1517 * They shouldn't do that in this initial case where the link
1518 * isn't enabled. This means we have to use the same
1519 * workaround here, setting the bus header to 0 and then write
1520 * the right values in the bus reset tasklet.
1523 if (config_rom) {
1524 ohci->next_config_rom =
1525 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1526 &ohci->next_config_rom_bus,
1527 GFP_KERNEL);
1528 if (ohci->next_config_rom == NULL)
1529 return -ENOMEM;
1531 memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
1532 fw_memcpy_to_be32(ohci->next_config_rom, config_rom, length * 4);
1533 } else {
1535 * In the suspend case, config_rom is NULL, which
1536 * means that we just reuse the old config rom.
1538 ohci->next_config_rom = ohci->config_rom;
1539 ohci->next_config_rom_bus = ohci->config_rom_bus;
1542 ohci->next_header = be32_to_cpu(ohci->next_config_rom[0]);
1543 ohci->next_config_rom[0] = 0;
1544 reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
1545 reg_write(ohci, OHCI1394_BusOptions,
1546 be32_to_cpu(ohci->next_config_rom[2]));
1547 reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
1549 reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
1551 if (request_irq(dev->irq, irq_handler,
1552 IRQF_SHARED, ohci_driver_name, ohci)) {
1553 fw_error("Failed to allocate shared interrupt %d.\n",
1554 dev->irq);
1555 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1556 ohci->config_rom, ohci->config_rom_bus);
1557 return -EIO;
1560 reg_write(ohci, OHCI1394_HCControlSet,
1561 OHCI1394_HCControl_linkEnable |
1562 OHCI1394_HCControl_BIBimageValid);
1563 flush_writes(ohci);
1566 * We are ready to go, initiate bus reset to finish the
1567 * initialization.
1570 fw_core_initiate_bus_reset(&ohci->card, 1);
1572 return 0;
1575 static int
1576 ohci_set_config_rom(struct fw_card *card, u32 *config_rom, size_t length)
1578 struct fw_ohci *ohci;
1579 unsigned long flags;
1580 int retval = -EBUSY;
1581 __be32 *next_config_rom;
1582 dma_addr_t uninitialized_var(next_config_rom_bus);
1584 ohci = fw_ohci(card);
1587 * When the OHCI controller is enabled, the config rom update
1588 * mechanism is a bit tricky, but easy enough to use. See
1589 * section 5.5.6 in the OHCI specification.
1591 * The OHCI controller caches the new config rom address in a
1592 * shadow register (ConfigROMmapNext) and needs a bus reset
1593 * for the changes to take place. When the bus reset is
1594 * detected, the controller loads the new values for the
1595 * ConfigRomHeader and BusOptions registers from the specified
1596 * config rom and loads ConfigROMmap from the ConfigROMmapNext
1597 * shadow register. All automatically and atomically.
1599 * Now, there's a twist to this story. The automatic load of
1600 * ConfigRomHeader and BusOptions doesn't honor the
1601 * noByteSwapData bit, so with a be32 config rom, the
1602 * controller will load be32 values in to these registers
1603 * during the atomic update, even on litte endian
1604 * architectures. The workaround we use is to put a 0 in the
1605 * header quadlet; 0 is endian agnostic and means that the
1606 * config rom isn't ready yet. In the bus reset tasklet we
1607 * then set up the real values for the two registers.
1609 * We use ohci->lock to avoid racing with the code that sets
1610 * ohci->next_config_rom to NULL (see bus_reset_tasklet).
1613 next_config_rom =
1614 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1615 &next_config_rom_bus, GFP_KERNEL);
1616 if (next_config_rom == NULL)
1617 return -ENOMEM;
1619 spin_lock_irqsave(&ohci->lock, flags);
1621 if (ohci->next_config_rom == NULL) {
1622 ohci->next_config_rom = next_config_rom;
1623 ohci->next_config_rom_bus = next_config_rom_bus;
1625 memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
1626 fw_memcpy_to_be32(ohci->next_config_rom, config_rom,
1627 length * 4);
1629 ohci->next_header = config_rom[0];
1630 ohci->next_config_rom[0] = 0;
1632 reg_write(ohci, OHCI1394_ConfigROMmap,
1633 ohci->next_config_rom_bus);
1634 retval = 0;
1637 spin_unlock_irqrestore(&ohci->lock, flags);
1640 * Now initiate a bus reset to have the changes take
1641 * effect. We clean up the old config rom memory and DMA
1642 * mappings in the bus reset tasklet, since the OHCI
1643 * controller could need to access it before the bus reset
1644 * takes effect.
1646 if (retval == 0)
1647 fw_core_initiate_bus_reset(&ohci->card, 1);
1648 else
1649 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1650 next_config_rom, next_config_rom_bus);
1652 return retval;
1655 static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
1657 struct fw_ohci *ohci = fw_ohci(card);
1659 at_context_transmit(&ohci->at_request_ctx, packet);
1662 static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
1664 struct fw_ohci *ohci = fw_ohci(card);
1666 at_context_transmit(&ohci->at_response_ctx, packet);
1669 static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
1671 struct fw_ohci *ohci = fw_ohci(card);
1672 struct context *ctx = &ohci->at_request_ctx;
1673 struct driver_data *driver_data = packet->driver_data;
1674 int retval = -ENOENT;
1676 tasklet_disable(&ctx->tasklet);
1678 if (packet->ack != 0)
1679 goto out;
1681 log_ar_at_event('T', packet->speed, packet->header, 0x20);
1682 driver_data->packet = NULL;
1683 packet->ack = RCODE_CANCELLED;
1684 packet->callback(packet, &ohci->card, packet->ack);
1685 retval = 0;
1687 out:
1688 tasklet_enable(&ctx->tasklet);
1690 return retval;
1693 static int
1694 ohci_enable_phys_dma(struct fw_card *card, int node_id, int generation)
1696 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1697 return 0;
1698 #else
1699 struct fw_ohci *ohci = fw_ohci(card);
1700 unsigned long flags;
1701 int n, retval = 0;
1704 * FIXME: Make sure this bitmask is cleared when we clear the busReset
1705 * interrupt bit. Clear physReqResourceAllBuses on bus reset.
1708 spin_lock_irqsave(&ohci->lock, flags);
1710 if (ohci->generation != generation) {
1711 retval = -ESTALE;
1712 goto out;
1716 * Note, if the node ID contains a non-local bus ID, physical DMA is
1717 * enabled for _all_ nodes on remote buses.
1720 n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
1721 if (n < 32)
1722 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
1723 else
1724 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
1726 flush_writes(ohci);
1727 out:
1728 spin_unlock_irqrestore(&ohci->lock, flags);
1729 return retval;
1730 #endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
1733 static u64
1734 ohci_get_bus_time(struct fw_card *card)
1736 struct fw_ohci *ohci = fw_ohci(card);
1737 u32 cycle_time;
1738 u64 bus_time;
1740 cycle_time = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1741 bus_time = ((u64) ohci->bus_seconds << 32) | cycle_time;
1743 return bus_time;
1746 static int handle_ir_dualbuffer_packet(struct context *context,
1747 struct descriptor *d,
1748 struct descriptor *last)
1750 struct iso_context *ctx =
1751 container_of(context, struct iso_context, context);
1752 struct db_descriptor *db = (struct db_descriptor *) d;
1753 __le32 *ir_header;
1754 size_t header_length;
1755 void *p, *end;
1756 int i;
1758 if (db->first_res_count != 0 && db->second_res_count != 0) {
1759 if (ctx->excess_bytes <= le16_to_cpu(db->second_req_count)) {
1760 /* This descriptor isn't done yet, stop iteration. */
1761 return 0;
1763 ctx->excess_bytes -= le16_to_cpu(db->second_req_count);
1766 header_length = le16_to_cpu(db->first_req_count) -
1767 le16_to_cpu(db->first_res_count);
1769 i = ctx->header_length;
1770 p = db + 1;
1771 end = p + header_length;
1772 while (p < end && i + ctx->base.header_size <= PAGE_SIZE) {
1774 * The iso header is byteswapped to little endian by
1775 * the controller, but the remaining header quadlets
1776 * are big endian. We want to present all the headers
1777 * as big endian, so we have to swap the first
1778 * quadlet.
1780 *(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
1781 memcpy(ctx->header + i + 4, p + 8, ctx->base.header_size - 4);
1782 i += ctx->base.header_size;
1783 ctx->excess_bytes +=
1784 (le32_to_cpu(*(__le32 *)(p + 4)) >> 16) & 0xffff;
1785 p += ctx->base.header_size + 4;
1787 ctx->header_length = i;
1789 ctx->excess_bytes -= le16_to_cpu(db->second_req_count) -
1790 le16_to_cpu(db->second_res_count);
1792 if (le16_to_cpu(db->control) & DESCRIPTOR_IRQ_ALWAYS) {
1793 ir_header = (__le32 *) (db + 1);
1794 ctx->base.callback(&ctx->base,
1795 le32_to_cpu(ir_header[0]) & 0xffff,
1796 ctx->header_length, ctx->header,
1797 ctx->base.callback_data);
1798 ctx->header_length = 0;
1801 return 1;
1804 static int handle_ir_packet_per_buffer(struct context *context,
1805 struct descriptor *d,
1806 struct descriptor *last)
1808 struct iso_context *ctx =
1809 container_of(context, struct iso_context, context);
1810 struct descriptor *pd;
1811 __le32 *ir_header;
1812 void *p;
1813 int i;
1815 for (pd = d; pd <= last; pd++) {
1816 if (pd->transfer_status)
1817 break;
1819 if (pd > last)
1820 /* Descriptor(s) not done yet, stop iteration */
1821 return 0;
1823 i = ctx->header_length;
1824 p = last + 1;
1826 if (ctx->base.header_size > 0 &&
1827 i + ctx->base.header_size <= PAGE_SIZE) {
1829 * The iso header is byteswapped to little endian by
1830 * the controller, but the remaining header quadlets
1831 * are big endian. We want to present all the headers
1832 * as big endian, so we have to swap the first quadlet.
1834 *(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
1835 memcpy(ctx->header + i + 4, p + 8, ctx->base.header_size - 4);
1836 ctx->header_length += ctx->base.header_size;
1839 if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
1840 ir_header = (__le32 *) p;
1841 ctx->base.callback(&ctx->base,
1842 le32_to_cpu(ir_header[0]) & 0xffff,
1843 ctx->header_length, ctx->header,
1844 ctx->base.callback_data);
1845 ctx->header_length = 0;
1848 return 1;
1851 static int handle_it_packet(struct context *context,
1852 struct descriptor *d,
1853 struct descriptor *last)
1855 struct iso_context *ctx =
1856 container_of(context, struct iso_context, context);
1858 if (last->transfer_status == 0)
1859 /* This descriptor isn't done yet, stop iteration. */
1860 return 0;
1862 if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS)
1863 ctx->base.callback(&ctx->base, le16_to_cpu(last->res_count),
1864 0, NULL, ctx->base.callback_data);
1866 return 1;
1869 static struct fw_iso_context *
1870 ohci_allocate_iso_context(struct fw_card *card, int type, size_t header_size)
1872 struct fw_ohci *ohci = fw_ohci(card);
1873 struct iso_context *ctx, *list;
1874 descriptor_callback_t callback;
1875 u32 *mask, regs;
1876 unsigned long flags;
1877 int index, retval = -ENOMEM;
1879 if (type == FW_ISO_CONTEXT_TRANSMIT) {
1880 mask = &ohci->it_context_mask;
1881 list = ohci->it_context_list;
1882 callback = handle_it_packet;
1883 } else {
1884 mask = &ohci->ir_context_mask;
1885 list = ohci->ir_context_list;
1886 if (ohci->version >= OHCI_VERSION_1_1)
1887 callback = handle_ir_dualbuffer_packet;
1888 else
1889 callback = handle_ir_packet_per_buffer;
1892 spin_lock_irqsave(&ohci->lock, flags);
1893 index = ffs(*mask) - 1;
1894 if (index >= 0)
1895 *mask &= ~(1 << index);
1896 spin_unlock_irqrestore(&ohci->lock, flags);
1898 if (index < 0)
1899 return ERR_PTR(-EBUSY);
1901 if (type == FW_ISO_CONTEXT_TRANSMIT)
1902 regs = OHCI1394_IsoXmitContextBase(index);
1903 else
1904 regs = OHCI1394_IsoRcvContextBase(index);
1906 ctx = &list[index];
1907 memset(ctx, 0, sizeof(*ctx));
1908 ctx->header_length = 0;
1909 ctx->header = (void *) __get_free_page(GFP_KERNEL);
1910 if (ctx->header == NULL)
1911 goto out;
1913 retval = context_init(&ctx->context, ohci, regs, callback);
1914 if (retval < 0)
1915 goto out_with_header;
1917 return &ctx->base;
1919 out_with_header:
1920 free_page((unsigned long)ctx->header);
1921 out:
1922 spin_lock_irqsave(&ohci->lock, flags);
1923 *mask |= 1 << index;
1924 spin_unlock_irqrestore(&ohci->lock, flags);
1926 return ERR_PTR(retval);
1929 static int ohci_start_iso(struct fw_iso_context *base,
1930 s32 cycle, u32 sync, u32 tags)
1932 struct iso_context *ctx = container_of(base, struct iso_context, base);
1933 struct fw_ohci *ohci = ctx->context.ohci;
1934 u32 control, match;
1935 int index;
1937 if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
1938 index = ctx - ohci->it_context_list;
1939 match = 0;
1940 if (cycle >= 0)
1941 match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
1942 (cycle & 0x7fff) << 16;
1944 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
1945 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
1946 context_run(&ctx->context, match);
1947 } else {
1948 index = ctx - ohci->ir_context_list;
1949 control = IR_CONTEXT_ISOCH_HEADER;
1950 if (ohci->version >= OHCI_VERSION_1_1)
1951 control |= IR_CONTEXT_DUAL_BUFFER_MODE;
1952 match = (tags << 28) | (sync << 8) | ctx->base.channel;
1953 if (cycle >= 0) {
1954 match |= (cycle & 0x07fff) << 12;
1955 control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
1958 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
1959 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
1960 reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
1961 context_run(&ctx->context, control);
1964 return 0;
1967 static int ohci_stop_iso(struct fw_iso_context *base)
1969 struct fw_ohci *ohci = fw_ohci(base->card);
1970 struct iso_context *ctx = container_of(base, struct iso_context, base);
1971 int index;
1973 if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
1974 index = ctx - ohci->it_context_list;
1975 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
1976 } else {
1977 index = ctx - ohci->ir_context_list;
1978 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
1980 flush_writes(ohci);
1981 context_stop(&ctx->context);
1983 return 0;
1986 static void ohci_free_iso_context(struct fw_iso_context *base)
1988 struct fw_ohci *ohci = fw_ohci(base->card);
1989 struct iso_context *ctx = container_of(base, struct iso_context, base);
1990 unsigned long flags;
1991 int index;
1993 ohci_stop_iso(base);
1994 context_release(&ctx->context);
1995 free_page((unsigned long)ctx->header);
1997 spin_lock_irqsave(&ohci->lock, flags);
1999 if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
2000 index = ctx - ohci->it_context_list;
2001 ohci->it_context_mask |= 1 << index;
2002 } else {
2003 index = ctx - ohci->ir_context_list;
2004 ohci->ir_context_mask |= 1 << index;
2007 spin_unlock_irqrestore(&ohci->lock, flags);
2010 static int
2011 ohci_queue_iso_transmit(struct fw_iso_context *base,
2012 struct fw_iso_packet *packet,
2013 struct fw_iso_buffer *buffer,
2014 unsigned long payload)
2016 struct iso_context *ctx = container_of(base, struct iso_context, base);
2017 struct descriptor *d, *last, *pd;
2018 struct fw_iso_packet *p;
2019 __le32 *header;
2020 dma_addr_t d_bus, page_bus;
2021 u32 z, header_z, payload_z, irq;
2022 u32 payload_index, payload_end_index, next_page_index;
2023 int page, end_page, i, length, offset;
2026 * FIXME: Cycle lost behavior should be configurable: lose
2027 * packet, retransmit or terminate..
2030 p = packet;
2031 payload_index = payload;
2033 if (p->skip)
2034 z = 1;
2035 else
2036 z = 2;
2037 if (p->header_length > 0)
2038 z++;
2040 /* Determine the first page the payload isn't contained in. */
2041 end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
2042 if (p->payload_length > 0)
2043 payload_z = end_page - (payload_index >> PAGE_SHIFT);
2044 else
2045 payload_z = 0;
2047 z += payload_z;
2049 /* Get header size in number of descriptors. */
2050 header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
2052 d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
2053 if (d == NULL)
2054 return -ENOMEM;
2056 if (!p->skip) {
2057 d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
2058 d[0].req_count = cpu_to_le16(8);
2060 header = (__le32 *) &d[1];
2061 header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
2062 IT_HEADER_TAG(p->tag) |
2063 IT_HEADER_TCODE(TCODE_STREAM_DATA) |
2064 IT_HEADER_CHANNEL(ctx->base.channel) |
2065 IT_HEADER_SPEED(ctx->base.speed));
2066 header[1] =
2067 cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
2068 p->payload_length));
2071 if (p->header_length > 0) {
2072 d[2].req_count = cpu_to_le16(p->header_length);
2073 d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
2074 memcpy(&d[z], p->header, p->header_length);
2077 pd = d + z - payload_z;
2078 payload_end_index = payload_index + p->payload_length;
2079 for (i = 0; i < payload_z; i++) {
2080 page = payload_index >> PAGE_SHIFT;
2081 offset = payload_index & ~PAGE_MASK;
2082 next_page_index = (page + 1) << PAGE_SHIFT;
2083 length =
2084 min(next_page_index, payload_end_index) - payload_index;
2085 pd[i].req_count = cpu_to_le16(length);
2087 page_bus = page_private(buffer->pages[page]);
2088 pd[i].data_address = cpu_to_le32(page_bus + offset);
2090 payload_index += length;
2093 if (p->interrupt)
2094 irq = DESCRIPTOR_IRQ_ALWAYS;
2095 else
2096 irq = DESCRIPTOR_NO_IRQ;
2098 last = z == 2 ? d : d + z - 1;
2099 last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
2100 DESCRIPTOR_STATUS |
2101 DESCRIPTOR_BRANCH_ALWAYS |
2102 irq);
2104 context_append(&ctx->context, d, z, header_z);
2106 return 0;
2109 static int
2110 ohci_queue_iso_receive_dualbuffer(struct fw_iso_context *base,
2111 struct fw_iso_packet *packet,
2112 struct fw_iso_buffer *buffer,
2113 unsigned long payload)
2115 struct iso_context *ctx = container_of(base, struct iso_context, base);
2116 struct db_descriptor *db = NULL;
2117 struct descriptor *d;
2118 struct fw_iso_packet *p;
2119 dma_addr_t d_bus, page_bus;
2120 u32 z, header_z, length, rest;
2121 int page, offset, packet_count, header_size;
2124 * FIXME: Cycle lost behavior should be configurable: lose
2125 * packet, retransmit or terminate..
2128 p = packet;
2129 z = 2;
2132 * The OHCI controller puts the status word in the header
2133 * buffer too, so we need 4 extra bytes per packet.
2135 packet_count = p->header_length / ctx->base.header_size;
2136 header_size = packet_count * (ctx->base.header_size + 4);
2138 /* Get header size in number of descriptors. */
2139 header_z = DIV_ROUND_UP(header_size, sizeof(*d));
2140 page = payload >> PAGE_SHIFT;
2141 offset = payload & ~PAGE_MASK;
2142 rest = p->payload_length;
2144 /* FIXME: make packet-per-buffer/dual-buffer a context option */
2145 while (rest > 0) {
2146 d = context_get_descriptors(&ctx->context,
2147 z + header_z, &d_bus);
2148 if (d == NULL)
2149 return -ENOMEM;
2151 db = (struct db_descriptor *) d;
2152 db->control = cpu_to_le16(DESCRIPTOR_STATUS |
2153 DESCRIPTOR_BRANCH_ALWAYS);
2154 db->first_size = cpu_to_le16(ctx->base.header_size + 4);
2155 if (p->skip && rest == p->payload_length) {
2156 db->control |= cpu_to_le16(DESCRIPTOR_WAIT);
2157 db->first_req_count = db->first_size;
2158 } else {
2159 db->first_req_count = cpu_to_le16(header_size);
2161 db->first_res_count = db->first_req_count;
2162 db->first_buffer = cpu_to_le32(d_bus + sizeof(*db));
2164 if (p->skip && rest == p->payload_length)
2165 length = 4;
2166 else if (offset + rest < PAGE_SIZE)
2167 length = rest;
2168 else
2169 length = PAGE_SIZE - offset;
2171 db->second_req_count = cpu_to_le16(length);
2172 db->second_res_count = db->second_req_count;
2173 page_bus = page_private(buffer->pages[page]);
2174 db->second_buffer = cpu_to_le32(page_bus + offset);
2176 if (p->interrupt && length == rest)
2177 db->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
2179 context_append(&ctx->context, d, z, header_z);
2180 offset = (offset + length) & ~PAGE_MASK;
2181 rest -= length;
2182 if (offset == 0)
2183 page++;
2186 return 0;
2189 static int
2190 ohci_queue_iso_receive_packet_per_buffer(struct fw_iso_context *base,
2191 struct fw_iso_packet *packet,
2192 struct fw_iso_buffer *buffer,
2193 unsigned long payload)
2195 struct iso_context *ctx = container_of(base, struct iso_context, base);
2196 struct descriptor *d = NULL, *pd = NULL;
2197 struct fw_iso_packet *p = packet;
2198 dma_addr_t d_bus, page_bus;
2199 u32 z, header_z, rest;
2200 int i, j, length;
2201 int page, offset, packet_count, header_size, payload_per_buffer;
2204 * The OHCI controller puts the status word in the
2205 * buffer too, so we need 4 extra bytes per packet.
2207 packet_count = p->header_length / ctx->base.header_size;
2208 header_size = ctx->base.header_size + 4;
2210 /* Get header size in number of descriptors. */
2211 header_z = DIV_ROUND_UP(header_size, sizeof(*d));
2212 page = payload >> PAGE_SHIFT;
2213 offset = payload & ~PAGE_MASK;
2214 payload_per_buffer = p->payload_length / packet_count;
2216 for (i = 0; i < packet_count; i++) {
2217 /* d points to the header descriptor */
2218 z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
2219 d = context_get_descriptors(&ctx->context,
2220 z + header_z, &d_bus);
2221 if (d == NULL)
2222 return -ENOMEM;
2224 d->control = cpu_to_le16(DESCRIPTOR_STATUS |
2225 DESCRIPTOR_INPUT_MORE);
2226 if (p->skip && i == 0)
2227 d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
2228 d->req_count = cpu_to_le16(header_size);
2229 d->res_count = d->req_count;
2230 d->transfer_status = 0;
2231 d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
2233 rest = payload_per_buffer;
2234 for (j = 1; j < z; j++) {
2235 pd = d + j;
2236 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
2237 DESCRIPTOR_INPUT_MORE);
2239 if (offset + rest < PAGE_SIZE)
2240 length = rest;
2241 else
2242 length = PAGE_SIZE - offset;
2243 pd->req_count = cpu_to_le16(length);
2244 pd->res_count = pd->req_count;
2245 pd->transfer_status = 0;
2247 page_bus = page_private(buffer->pages[page]);
2248 pd->data_address = cpu_to_le32(page_bus + offset);
2250 offset = (offset + length) & ~PAGE_MASK;
2251 rest -= length;
2252 if (offset == 0)
2253 page++;
2255 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
2256 DESCRIPTOR_INPUT_LAST |
2257 DESCRIPTOR_BRANCH_ALWAYS);
2258 if (p->interrupt && i == packet_count - 1)
2259 pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
2261 context_append(&ctx->context, d, z, header_z);
2264 return 0;
2267 static int
2268 ohci_queue_iso(struct fw_iso_context *base,
2269 struct fw_iso_packet *packet,
2270 struct fw_iso_buffer *buffer,
2271 unsigned long payload)
2273 struct iso_context *ctx = container_of(base, struct iso_context, base);
2274 unsigned long flags;
2275 int retval;
2277 spin_lock_irqsave(&ctx->context.ohci->lock, flags);
2278 if (base->type == FW_ISO_CONTEXT_TRANSMIT)
2279 retval = ohci_queue_iso_transmit(base, packet, buffer, payload);
2280 else if (ctx->context.ohci->version >= OHCI_VERSION_1_1)
2281 retval = ohci_queue_iso_receive_dualbuffer(base, packet,
2282 buffer, payload);
2283 else
2284 retval = ohci_queue_iso_receive_packet_per_buffer(base, packet,
2285 buffer,
2286 payload);
2287 spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);
2289 return retval;
2292 static const struct fw_card_driver ohci_driver = {
2293 .name = ohci_driver_name,
2294 .enable = ohci_enable,
2295 .update_phy_reg = ohci_update_phy_reg,
2296 .set_config_rom = ohci_set_config_rom,
2297 .send_request = ohci_send_request,
2298 .send_response = ohci_send_response,
2299 .cancel_packet = ohci_cancel_packet,
2300 .enable_phys_dma = ohci_enable_phys_dma,
2301 .get_bus_time = ohci_get_bus_time,
2303 .allocate_iso_context = ohci_allocate_iso_context,
2304 .free_iso_context = ohci_free_iso_context,
2305 .queue_iso = ohci_queue_iso,
2306 .start_iso = ohci_start_iso,
2307 .stop_iso = ohci_stop_iso,
2310 #ifdef CONFIG_PPC_PMAC
2311 static void ohci_pmac_on(struct pci_dev *dev)
2313 if (machine_is(powermac)) {
2314 struct device_node *ofn = pci_device_to_OF_node(dev);
2316 if (ofn) {
2317 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
2318 pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
2323 static void ohci_pmac_off(struct pci_dev *dev)
2325 if (machine_is(powermac)) {
2326 struct device_node *ofn = pci_device_to_OF_node(dev);
2328 if (ofn) {
2329 pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
2330 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
2334 #else
2335 #define ohci_pmac_on(dev)
2336 #define ohci_pmac_off(dev)
2337 #endif /* CONFIG_PPC_PMAC */
2339 static int __devinit
2340 pci_probe(struct pci_dev *dev, const struct pci_device_id *ent)
2342 struct fw_ohci *ohci;
2343 u32 bus_options, max_receive, link_speed;
2344 u64 guid;
2345 int err;
2346 size_t size;
2348 ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
2349 if (ohci == NULL) {
2350 fw_error("Could not malloc fw_ohci data.\n");
2351 return -ENOMEM;
2354 fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
2356 ohci_pmac_on(dev);
2358 err = pci_enable_device(dev);
2359 if (err) {
2360 fw_error("Failed to enable OHCI hardware.\n");
2361 goto fail_free;
2364 pci_set_master(dev);
2365 pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
2366 pci_set_drvdata(dev, ohci);
2368 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
2369 ohci->old_uninorth = dev->vendor == PCI_VENDOR_ID_APPLE &&
2370 dev->device == PCI_DEVICE_ID_APPLE_UNI_N_FW;
2371 #endif
2372 ohci->bus_reset_packet_quirk = dev->vendor == PCI_VENDOR_ID_TI;
2374 spin_lock_init(&ohci->lock);
2376 tasklet_init(&ohci->bus_reset_tasklet,
2377 bus_reset_tasklet, (unsigned long)ohci);
2379 err = pci_request_region(dev, 0, ohci_driver_name);
2380 if (err) {
2381 fw_error("MMIO resource unavailable\n");
2382 goto fail_disable;
2385 ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
2386 if (ohci->registers == NULL) {
2387 fw_error("Failed to remap registers\n");
2388 err = -ENXIO;
2389 goto fail_iomem;
2392 ar_context_init(&ohci->ar_request_ctx, ohci,
2393 OHCI1394_AsReqRcvContextControlSet);
2395 ar_context_init(&ohci->ar_response_ctx, ohci,
2396 OHCI1394_AsRspRcvContextControlSet);
2398 context_init(&ohci->at_request_ctx, ohci,
2399 OHCI1394_AsReqTrContextControlSet, handle_at_packet);
2401 context_init(&ohci->at_response_ctx, ohci,
2402 OHCI1394_AsRspTrContextControlSet, handle_at_packet);
2404 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
2405 ohci->it_context_mask = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
2406 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
2407 size = sizeof(struct iso_context) * hweight32(ohci->it_context_mask);
2408 ohci->it_context_list = kzalloc(size, GFP_KERNEL);
2410 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
2411 ohci->ir_context_mask = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
2412 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
2413 size = sizeof(struct iso_context) * hweight32(ohci->ir_context_mask);
2414 ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
2416 if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
2417 fw_error("Out of memory for it/ir contexts.\n");
2418 err = -ENOMEM;
2419 goto fail_registers;
2422 /* self-id dma buffer allocation */
2423 ohci->self_id_cpu = dma_alloc_coherent(ohci->card.device,
2424 SELF_ID_BUF_SIZE,
2425 &ohci->self_id_bus,
2426 GFP_KERNEL);
2427 if (ohci->self_id_cpu == NULL) {
2428 fw_error("Out of memory for self ID buffer.\n");
2429 err = -ENOMEM;
2430 goto fail_registers;
2433 bus_options = reg_read(ohci, OHCI1394_BusOptions);
2434 max_receive = (bus_options >> 12) & 0xf;
2435 link_speed = bus_options & 0x7;
2436 guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
2437 reg_read(ohci, OHCI1394_GUIDLo);
2439 err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
2440 if (err < 0)
2441 goto fail_self_id;
2443 ohci->version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2444 fw_notify("Added fw-ohci device %s, OHCI version %x.%x\n",
2445 dev->dev.bus_id, ohci->version >> 16, ohci->version & 0xff);
2446 return 0;
2448 fail_self_id:
2449 dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
2450 ohci->self_id_cpu, ohci->self_id_bus);
2451 fail_registers:
2452 kfree(ohci->it_context_list);
2453 kfree(ohci->ir_context_list);
2454 pci_iounmap(dev, ohci->registers);
2455 fail_iomem:
2456 pci_release_region(dev, 0);
2457 fail_disable:
2458 pci_disable_device(dev);
2459 fail_free:
2460 kfree(&ohci->card);
2461 ohci_pmac_off(dev);
2463 return err;
2466 static void pci_remove(struct pci_dev *dev)
2468 struct fw_ohci *ohci;
2470 ohci = pci_get_drvdata(dev);
2471 reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2472 flush_writes(ohci);
2473 fw_core_remove_card(&ohci->card);
2476 * FIXME: Fail all pending packets here, now that the upper
2477 * layers can't queue any more.
2480 software_reset(ohci);
2481 free_irq(dev->irq, ohci);
2482 dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
2483 ohci->self_id_cpu, ohci->self_id_bus);
2484 kfree(ohci->it_context_list);
2485 kfree(ohci->ir_context_list);
2486 pci_iounmap(dev, ohci->registers);
2487 pci_release_region(dev, 0);
2488 pci_disable_device(dev);
2489 kfree(&ohci->card);
2490 ohci_pmac_off(dev);
2492 fw_notify("Removed fw-ohci device.\n");
2495 #ifdef CONFIG_PM
2496 static int pci_suspend(struct pci_dev *dev, pm_message_t state)
2498 struct fw_ohci *ohci = pci_get_drvdata(dev);
2499 int err;
2501 software_reset(ohci);
2502 free_irq(dev->irq, ohci);
2503 err = pci_save_state(dev);
2504 if (err) {
2505 fw_error("pci_save_state failed\n");
2506 return err;
2508 err = pci_set_power_state(dev, pci_choose_state(dev, state));
2509 if (err)
2510 fw_error("pci_set_power_state failed with %d\n", err);
2511 ohci_pmac_off(dev);
2513 return 0;
2516 static int pci_resume(struct pci_dev *dev)
2518 struct fw_ohci *ohci = pci_get_drvdata(dev);
2519 int err;
2521 ohci_pmac_on(dev);
2522 pci_set_power_state(dev, PCI_D0);
2523 pci_restore_state(dev);
2524 err = pci_enable_device(dev);
2525 if (err) {
2526 fw_error("pci_enable_device failed\n");
2527 return err;
2530 return ohci_enable(&ohci->card, NULL, 0);
2532 #endif
2534 static struct pci_device_id pci_table[] = {
2535 { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
2539 MODULE_DEVICE_TABLE(pci, pci_table);
2541 static struct pci_driver fw_ohci_pci_driver = {
2542 .name = ohci_driver_name,
2543 .id_table = pci_table,
2544 .probe = pci_probe,
2545 .remove = pci_remove,
2546 #ifdef CONFIG_PM
2547 .resume = pci_resume,
2548 .suspend = pci_suspend,
2549 #endif
2552 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
2553 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
2554 MODULE_LICENSE("GPL");
2556 /* Provide a module alias so root-on-sbp2 initrds don't break. */
2557 #ifndef CONFIG_IEEE1394_OHCI1394_MODULE
2558 MODULE_ALIAS("ohci1394");
2559 #endif
2561 static int __init fw_ohci_init(void)
2563 return pci_register_driver(&fw_ohci_pci_driver);
2566 static void __exit fw_ohci_cleanup(void)
2568 pci_unregister_driver(&fw_ohci_pci_driver);
2571 module_init(fw_ohci_init);
2572 module_exit(fw_ohci_cleanup);