1 /* D-Link DL2000-based Gigabit Ethernet Adapter Linux driver */
3 Copyright (c) 2001, 2002 by D-Link Corporation
4 Written by Edward Peng.<edward_peng@dlink.com.tw>
5 Created 03-May-2001, base on Linux' sundance.c.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
13 #define DRV_NAME "D-Link DL2000-based linux driver"
14 #define DRV_VERSION "v1.18"
15 #define DRV_RELDATE "2006/06/27"
17 #include <linux/dma-mapping.h>
19 static char version
[] __devinitdata
=
20 KERN_INFO DRV_NAME
" " DRV_VERSION
" " DRV_RELDATE
"\n";
22 static int mtu
[MAX_UNITS
];
23 static int vlan
[MAX_UNITS
];
24 static int jumbo
[MAX_UNITS
];
25 static char *media
[MAX_UNITS
];
26 static int tx_flow
=-1;
27 static int rx_flow
=-1;
28 static int copy_thresh
;
29 static int rx_coalesce
=10; /* Rx frame count each interrupt */
30 static int rx_timeout
=200; /* Rx DMA wait time in 640ns increments */
31 static int tx_coalesce
=16; /* HW xmit count each TxDMAComplete */
34 MODULE_AUTHOR ("Edward Peng");
35 MODULE_DESCRIPTION ("D-Link DL2000-based Gigabit Ethernet Adapter");
36 MODULE_LICENSE("GPL");
37 module_param_array(mtu
, int, NULL
, 0);
38 module_param_array(media
, charp
, NULL
, 0);
39 module_param_array(vlan
, int, NULL
, 0);
40 module_param_array(jumbo
, int, NULL
, 0);
41 module_param(tx_flow
, int, 0);
42 module_param(rx_flow
, int, 0);
43 module_param(copy_thresh
, int, 0);
44 module_param(rx_coalesce
, int, 0); /* Rx frame count each interrupt */
45 module_param(rx_timeout
, int, 0); /* Rx DMA wait time in 64ns increments */
46 module_param(tx_coalesce
, int, 0); /* HW xmit count each TxDMAComplete */
49 /* Enable the default interrupts */
50 #define DEFAULT_INTR (RxDMAComplete | HostError | IntRequested | TxDMAComplete| \
51 UpdateStats | LinkEvent)
53 writew(DEFAULT_INTR, ioaddr + IntEnable)
55 static const int max_intrloop
= 50;
56 static const int multicast_filter_limit
= 0x40;
58 static int rio_open (struct net_device
*dev
);
59 static void rio_timer (unsigned long data
);
60 static void rio_tx_timeout (struct net_device
*dev
);
61 static void alloc_list (struct net_device
*dev
);
62 static int start_xmit (struct sk_buff
*skb
, struct net_device
*dev
);
63 static irqreturn_t
rio_interrupt (int irq
, void *dev_instance
);
64 static void rio_free_tx (struct net_device
*dev
, int irq
);
65 static void tx_error (struct net_device
*dev
, int tx_status
);
66 static int receive_packet (struct net_device
*dev
);
67 static void rio_error (struct net_device
*dev
, int int_status
);
68 static int change_mtu (struct net_device
*dev
, int new_mtu
);
69 static void set_multicast (struct net_device
*dev
);
70 static struct net_device_stats
*get_stats (struct net_device
*dev
);
71 static int clear_stats (struct net_device
*dev
);
72 static int rio_ioctl (struct net_device
*dev
, struct ifreq
*rq
, int cmd
);
73 static int rio_close (struct net_device
*dev
);
74 static int find_miiphy (struct net_device
*dev
);
75 static int parse_eeprom (struct net_device
*dev
);
76 static int read_eeprom (long ioaddr
, int eep_addr
);
77 static int mii_wait_link (struct net_device
*dev
, int wait
);
78 static int mii_set_media (struct net_device
*dev
);
79 static int mii_get_media (struct net_device
*dev
);
80 static int mii_set_media_pcs (struct net_device
*dev
);
81 static int mii_get_media_pcs (struct net_device
*dev
);
82 static int mii_read (struct net_device
*dev
, int phy_addr
, int reg_num
);
83 static int mii_write (struct net_device
*dev
, int phy_addr
, int reg_num
,
86 static const struct ethtool_ops ethtool_ops
;
89 rio_probe1 (struct pci_dev
*pdev
, const struct pci_device_id
*ent
)
91 struct net_device
*dev
;
92 struct netdev_private
*np
;
94 int chip_idx
= ent
->driver_data
;
97 static int version_printed
;
101 if (!version_printed
++)
102 printk ("%s", version
);
104 err
= pci_enable_device (pdev
);
109 err
= pci_request_regions (pdev
, "dl2k");
111 goto err_out_disable
;
113 pci_set_master (pdev
);
114 dev
= alloc_etherdev (sizeof (*np
));
119 SET_MODULE_OWNER (dev
);
120 SET_NETDEV_DEV(dev
, &pdev
->dev
);
123 ioaddr
= pci_resource_start (pdev
, 1);
124 ioaddr
= (long) ioremap (ioaddr
, RIO_IO_SIZE
);
130 ioaddr
= pci_resource_start (pdev
, 0);
132 dev
->base_addr
= ioaddr
;
134 np
= netdev_priv(dev
);
135 np
->chip_id
= chip_idx
;
137 spin_lock_init (&np
->tx_lock
);
138 spin_lock_init (&np
->rx_lock
);
140 /* Parse manual configuration */
143 if (card_idx
< MAX_UNITS
) {
144 if (media
[card_idx
] != NULL
) {
146 if (strcmp (media
[card_idx
], "auto") == 0 ||
147 strcmp (media
[card_idx
], "autosense") == 0 ||
148 strcmp (media
[card_idx
], "0") == 0 ) {
150 } else if (strcmp (media
[card_idx
], "100mbps_fd") == 0 ||
151 strcmp (media
[card_idx
], "4") == 0) {
154 } else if (strcmp (media
[card_idx
], "100mbps_hd") == 0
155 || strcmp (media
[card_idx
], "3") == 0) {
158 } else if (strcmp (media
[card_idx
], "10mbps_fd") == 0 ||
159 strcmp (media
[card_idx
], "2") == 0) {
162 } else if (strcmp (media
[card_idx
], "10mbps_hd") == 0 ||
163 strcmp (media
[card_idx
], "1") == 0) {
166 } else if (strcmp (media
[card_idx
], "1000mbps_fd") == 0 ||
167 strcmp (media
[card_idx
], "6") == 0) {
170 } else if (strcmp (media
[card_idx
], "1000mbps_hd") == 0 ||
171 strcmp (media
[card_idx
], "5") == 0) {
178 if (jumbo
[card_idx
] != 0) {
180 dev
->mtu
= MAX_JUMBO
;
183 if (mtu
[card_idx
] > 0 && mtu
[card_idx
] < PACKET_SIZE
)
184 dev
->mtu
= mtu
[card_idx
];
186 np
->vlan
= (vlan
[card_idx
] > 0 && vlan
[card_idx
] < 4096) ?
188 if (rx_coalesce
> 0 && rx_timeout
> 0) {
189 np
->rx_coalesce
= rx_coalesce
;
190 np
->rx_timeout
= rx_timeout
;
193 np
->tx_flow
= (tx_flow
== 0) ? 0 : 1;
194 np
->rx_flow
= (rx_flow
== 0) ? 0 : 1;
198 else if (tx_coalesce
> TX_RING_SIZE
-1)
199 tx_coalesce
= TX_RING_SIZE
- 1;
201 dev
->open
= &rio_open
;
202 dev
->hard_start_xmit
= &start_xmit
;
203 dev
->stop
= &rio_close
;
204 dev
->get_stats
= &get_stats
;
205 dev
->set_multicast_list
= &set_multicast
;
206 dev
->do_ioctl
= &rio_ioctl
;
207 dev
->tx_timeout
= &rio_tx_timeout
;
208 dev
->watchdog_timeo
= TX_TIMEOUT
;
209 dev
->change_mtu
= &change_mtu
;
210 SET_ETHTOOL_OPS(dev
, ðtool_ops
);
212 dev
->features
= NETIF_F_IP_CSUM
;
214 pci_set_drvdata (pdev
, dev
);
216 ring_space
= pci_alloc_consistent (pdev
, TX_TOTAL_SIZE
, &ring_dma
);
218 goto err_out_iounmap
;
219 np
->tx_ring
= (struct netdev_desc
*) ring_space
;
220 np
->tx_ring_dma
= ring_dma
;
222 ring_space
= pci_alloc_consistent (pdev
, RX_TOTAL_SIZE
, &ring_dma
);
224 goto err_out_unmap_tx
;
225 np
->rx_ring
= (struct netdev_desc
*) ring_space
;
226 np
->rx_ring_dma
= ring_dma
;
228 /* Parse eeprom data */
231 /* Find PHY address */
232 err
= find_miiphy (dev
);
234 goto err_out_unmap_rx
;
237 np
->phy_media
= (readw(ioaddr
+ ASICCtrl
) & PhyMedia
) ? 1 : 0;
239 /* Set media and reset PHY */
241 /* default Auto-Negotiation for fiber deivices */
242 if (np
->an_enable
== 2) {
245 mii_set_media_pcs (dev
);
247 /* Auto-Negotiation is mandatory for 1000BASE-T,
248 IEEE 802.3ab Annex 28D page 14 */
249 if (np
->speed
== 1000)
254 err
= register_netdev (dev
);
256 goto err_out_unmap_rx
;
260 printk (KERN_INFO
"%s: %s, %02x:%02x:%02x:%02x:%02x:%02x, IRQ %d\n",
262 dev
->dev_addr
[0], dev
->dev_addr
[1], dev
->dev_addr
[2],
263 dev
->dev_addr
[3], dev
->dev_addr
[4], dev
->dev_addr
[5], irq
);
265 printk(KERN_INFO
"tx_coalesce:\t%d packets\n",
268 printk(KERN_INFO
"rx_coalesce:\t%d packets\n"
269 KERN_INFO
"rx_timeout: \t%d ns\n",
270 np
->rx_coalesce
, np
->rx_timeout
*640);
272 printk(KERN_INFO
"vlan(id):\t%d\n", np
->vlan
);
276 pci_free_consistent (pdev
, RX_TOTAL_SIZE
, np
->rx_ring
, np
->rx_ring_dma
);
278 pci_free_consistent (pdev
, TX_TOTAL_SIZE
, np
->tx_ring
, np
->tx_ring_dma
);
281 iounmap ((void *) ioaddr
);
288 pci_release_regions (pdev
);
291 pci_disable_device (pdev
);
296 find_miiphy (struct net_device
*dev
)
298 int i
, phy_found
= 0;
299 struct netdev_private
*np
;
301 np
= netdev_priv(dev
);
302 ioaddr
= dev
->base_addr
;
305 for (i
= 31; i
>= 0; i
--) {
306 int mii_status
= mii_read (dev
, i
, 1);
307 if (mii_status
!= 0xffff && mii_status
!= 0x0000) {
313 printk (KERN_ERR
"%s: No MII PHY found!\n", dev
->name
);
320 parse_eeprom (struct net_device
*dev
)
323 long ioaddr
= dev
->base_addr
;
327 PSROM_t psrom
= (PSROM_t
) sromdata
;
328 struct netdev_private
*np
= netdev_priv(dev
);
333 ioaddr
= pci_resource_start (np
->pdev
, 0);
336 for (i
= 0; i
< 128; i
++) {
337 ((u16
*) sromdata
)[i
] = le16_to_cpu (read_eeprom (ioaddr
, i
));
340 ioaddr
= dev
->base_addr
;
343 crc
= ~ether_crc_le (256 - 4, sromdata
);
344 if (psrom
->crc
!= crc
) {
345 printk (KERN_ERR
"%s: EEPROM data CRC error.\n", dev
->name
);
349 /* Set MAC address */
350 for (i
= 0; i
< 6; i
++)
351 dev
->dev_addr
[i
] = psrom
->mac_addr
[i
];
353 /* Parse Software Information Block */
355 psib
= (u8
*) sromdata
;
359 if ((cid
== 0 && next
== 0) || (cid
== 0xff && next
== 0xff)) {
360 printk (KERN_ERR
"Cell data error\n");
364 case 0: /* Format version */
366 case 1: /* End of cell */
368 case 2: /* Duplex Polarity */
369 np
->duplex_polarity
= psib
[i
];
370 writeb (readb (ioaddr
+ PhyCtrl
) | psib
[i
],
373 case 3: /* Wake Polarity */
374 np
->wake_polarity
= psib
[i
];
376 case 9: /* Adapter description */
377 j
= (next
- i
> 255) ? 255 : next
- i
;
378 memcpy (np
->name
, &(psib
[i
]), j
);
384 case 8: /* Reversed */
386 default: /* Unknown cell */
396 rio_open (struct net_device
*dev
)
398 struct netdev_private
*np
= netdev_priv(dev
);
399 long ioaddr
= dev
->base_addr
;
403 i
= request_irq (dev
->irq
, &rio_interrupt
, IRQF_SHARED
, dev
->name
, dev
);
407 /* Reset all logic functions */
408 writew (GlobalReset
| DMAReset
| FIFOReset
| NetworkReset
| HostReset
,
409 ioaddr
+ ASICCtrl
+ 2);
412 /* DebugCtrl bit 4, 5, 9 must set */
413 writel (readl (ioaddr
+ DebugCtrl
) | 0x0230, ioaddr
+ DebugCtrl
);
417 writew (MAX_JUMBO
+14, ioaddr
+ MaxFrameSize
);
421 /* Get station address */
422 for (i
= 0; i
< 6; i
++)
423 writeb (dev
->dev_addr
[i
], ioaddr
+ StationAddr0
+ i
);
427 writel (np
->rx_coalesce
| np
->rx_timeout
<< 16,
428 ioaddr
+ RxDMAIntCtrl
);
430 /* Set RIO to poll every N*320nsec. */
431 writeb (0x20, ioaddr
+ RxDMAPollPeriod
);
432 writeb (0xff, ioaddr
+ TxDMAPollPeriod
);
433 writeb (0x30, ioaddr
+ RxDMABurstThresh
);
434 writeb (0x30, ioaddr
+ RxDMAUrgentThresh
);
435 writel (0x0007ffff, ioaddr
+ RmonStatMask
);
436 /* clear statistics */
441 /* priority field in RxDMAIntCtrl */
442 writel (readl(ioaddr
+ RxDMAIntCtrl
) | 0x7 << 10,
443 ioaddr
+ RxDMAIntCtrl
);
445 writew (np
->vlan
, ioaddr
+ VLANId
);
446 /* Length/Type should be 0x8100 */
447 writel (0x8100 << 16 | np
->vlan
, ioaddr
+ VLANTag
);
448 /* Enable AutoVLANuntagging, but disable AutoVLANtagging.
449 VLAN information tagged by TFC' VID, CFI fields. */
450 writel (readl (ioaddr
+ MACCtrl
) | AutoVLANuntagging
,
454 init_timer (&np
->timer
);
455 np
->timer
.expires
= jiffies
+ 1*HZ
;
456 np
->timer
.data
= (unsigned long) dev
;
457 np
->timer
.function
= &rio_timer
;
458 add_timer (&np
->timer
);
461 writel (readl (ioaddr
+ MACCtrl
) | StatsEnable
| RxEnable
| TxEnable
,
465 macctrl
|= (np
->vlan
) ? AutoVLANuntagging
: 0;
466 macctrl
|= (np
->full_duplex
) ? DuplexSelect
: 0;
467 macctrl
|= (np
->tx_flow
) ? TxFlowControlEnable
: 0;
468 macctrl
|= (np
->rx_flow
) ? RxFlowControlEnable
: 0;
469 writew(macctrl
, ioaddr
+ MACCtrl
);
471 netif_start_queue (dev
);
473 /* Enable default interrupts */
479 rio_timer (unsigned long data
)
481 struct net_device
*dev
= (struct net_device
*)data
;
482 struct netdev_private
*np
= netdev_priv(dev
);
484 int next_tick
= 1*HZ
;
487 spin_lock_irqsave(&np
->rx_lock
, flags
);
488 /* Recover rx ring exhausted error */
489 if (np
->cur_rx
- np
->old_rx
>= RX_RING_SIZE
) {
490 printk(KERN_INFO
"Try to recover rx ring exhausted...\n");
491 /* Re-allocate skbuffs to fill the descriptor ring */
492 for (; np
->cur_rx
- np
->old_rx
> 0; np
->old_rx
++) {
494 entry
= np
->old_rx
% RX_RING_SIZE
;
495 /* Dropped packets don't need to re-allocate */
496 if (np
->rx_skbuff
[entry
] == NULL
) {
497 skb
= dev_alloc_skb (np
->rx_buf_sz
);
499 np
->rx_ring
[entry
].fraginfo
= 0;
501 "%s: Still unable to re-allocate Rx skbuff.#%d\n",
505 np
->rx_skbuff
[entry
] = skb
;
506 /* 16 byte align the IP header */
507 skb_reserve (skb
, 2);
508 np
->rx_ring
[entry
].fraginfo
=
509 cpu_to_le64 (pci_map_single
510 (np
->pdev
, skb
->data
, np
->rx_buf_sz
,
511 PCI_DMA_FROMDEVICE
));
513 np
->rx_ring
[entry
].fraginfo
|=
514 cpu_to_le64 (np
->rx_buf_sz
) << 48;
515 np
->rx_ring
[entry
].status
= 0;
518 spin_unlock_irqrestore (&np
->rx_lock
, flags
);
519 np
->timer
.expires
= jiffies
+ next_tick
;
520 add_timer(&np
->timer
);
524 rio_tx_timeout (struct net_device
*dev
)
526 long ioaddr
= dev
->base_addr
;
528 printk (KERN_INFO
"%s: Tx timed out (%4.4x), is buffer full?\n",
529 dev
->name
, readl (ioaddr
+ TxStatus
));
532 dev
->trans_start
= jiffies
;
535 /* allocate and initialize Tx and Rx descriptors */
537 alloc_list (struct net_device
*dev
)
539 struct netdev_private
*np
= netdev_priv(dev
);
542 np
->cur_rx
= np
->cur_tx
= 0;
543 np
->old_rx
= np
->old_tx
= 0;
544 np
->rx_buf_sz
= (dev
->mtu
<= 1500 ? PACKET_SIZE
: dev
->mtu
+ 32);
546 /* Initialize Tx descriptors, TFDListPtr leaves in start_xmit(). */
547 for (i
= 0; i
< TX_RING_SIZE
; i
++) {
548 np
->tx_skbuff
[i
] = NULL
;
549 np
->tx_ring
[i
].status
= cpu_to_le64 (TFDDone
);
550 np
->tx_ring
[i
].next_desc
= cpu_to_le64 (np
->tx_ring_dma
+
551 ((i
+1)%TX_RING_SIZE
) *
552 sizeof (struct netdev_desc
));
555 /* Initialize Rx descriptors */
556 for (i
= 0; i
< RX_RING_SIZE
; i
++) {
557 np
->rx_ring
[i
].next_desc
= cpu_to_le64 (np
->rx_ring_dma
+
558 ((i
+ 1) % RX_RING_SIZE
) *
559 sizeof (struct netdev_desc
));
560 np
->rx_ring
[i
].status
= 0;
561 np
->rx_ring
[i
].fraginfo
= 0;
562 np
->rx_skbuff
[i
] = NULL
;
565 /* Allocate the rx buffers */
566 for (i
= 0; i
< RX_RING_SIZE
; i
++) {
567 /* Allocated fixed size of skbuff */
568 struct sk_buff
*skb
= dev_alloc_skb (np
->rx_buf_sz
);
569 np
->rx_skbuff
[i
] = skb
;
572 "%s: alloc_list: allocate Rx buffer error! ",
576 skb_reserve (skb
, 2); /* 16 byte align the IP header. */
577 /* Rubicon now supports 40 bits of addressing space. */
578 np
->rx_ring
[i
].fraginfo
=
579 cpu_to_le64 ( pci_map_single (
580 np
->pdev
, skb
->data
, np
->rx_buf_sz
,
581 PCI_DMA_FROMDEVICE
));
582 np
->rx_ring
[i
].fraginfo
|= cpu_to_le64 (np
->rx_buf_sz
) << 48;
586 writel (cpu_to_le32 (np
->rx_ring_dma
), dev
->base_addr
+ RFDListPtr0
);
587 writel (0, dev
->base_addr
+ RFDListPtr1
);
593 start_xmit (struct sk_buff
*skb
, struct net_device
*dev
)
595 struct netdev_private
*np
= netdev_priv(dev
);
596 struct netdev_desc
*txdesc
;
599 u64 tfc_vlan_tag
= 0;
601 if (np
->link_status
== 0) { /* Link Down */
605 ioaddr
= dev
->base_addr
;
606 entry
= np
->cur_tx
% TX_RING_SIZE
;
607 np
->tx_skbuff
[entry
] = skb
;
608 txdesc
= &np
->tx_ring
[entry
];
611 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
613 cpu_to_le64 (TCPChecksumEnable
| UDPChecksumEnable
|
619 cpu_to_le64 (VLANTagInsert
) |
620 (cpu_to_le64 (np
->vlan
) << 32) |
621 (cpu_to_le64 (skb
->priority
) << 45);
623 txdesc
->fraginfo
= cpu_to_le64 (pci_map_single (np
->pdev
, skb
->data
,
626 txdesc
->fraginfo
|= cpu_to_le64 (skb
->len
) << 48;
628 /* DL2K bug: DMA fails to get next descriptor ptr in 10Mbps mode
629 * Work around: Always use 1 descriptor in 10Mbps mode */
630 if (entry
% np
->tx_coalesce
== 0 || np
->speed
== 10)
631 txdesc
->status
= cpu_to_le64 (entry
| tfc_vlan_tag
|
634 (1 << FragCountShift
));
636 txdesc
->status
= cpu_to_le64 (entry
| tfc_vlan_tag
|
638 (1 << FragCountShift
));
641 writel (readl (ioaddr
+ DMACtrl
) | 0x00001000, ioaddr
+ DMACtrl
);
643 writel(10000, ioaddr
+ CountDown
);
644 np
->cur_tx
= (np
->cur_tx
+ 1) % TX_RING_SIZE
;
645 if ((np
->cur_tx
- np
->old_tx
+ TX_RING_SIZE
) % TX_RING_SIZE
646 < TX_QUEUE_LEN
- 1 && np
->speed
!= 10) {
648 } else if (!netif_queue_stopped(dev
)) {
649 netif_stop_queue (dev
);
652 /* The first TFDListPtr */
653 if (readl (dev
->base_addr
+ TFDListPtr0
) == 0) {
654 writel (np
->tx_ring_dma
+ entry
* sizeof (struct netdev_desc
),
655 dev
->base_addr
+ TFDListPtr0
);
656 writel (0, dev
->base_addr
+ TFDListPtr1
);
659 /* NETDEV WATCHDOG timer */
660 dev
->trans_start
= jiffies
;
665 rio_interrupt (int irq
, void *dev_instance
)
667 struct net_device
*dev
= dev_instance
;
668 struct netdev_private
*np
;
671 int cnt
= max_intrloop
;
674 ioaddr
= dev
->base_addr
;
675 np
= netdev_priv(dev
);
677 int_status
= readw (ioaddr
+ IntStatus
);
678 writew (int_status
, ioaddr
+ IntStatus
);
679 int_status
&= DEFAULT_INTR
;
680 if (int_status
== 0 || --cnt
< 0)
683 /* Processing received packets */
684 if (int_status
& RxDMAComplete
)
685 receive_packet (dev
);
686 /* TxDMAComplete interrupt */
687 if ((int_status
& (TxDMAComplete
|IntRequested
))) {
689 tx_status
= readl (ioaddr
+ TxStatus
);
690 if (tx_status
& 0x01)
691 tx_error (dev
, tx_status
);
692 /* Free used tx skbuffs */
693 rio_free_tx (dev
, 1);
696 /* Handle uncommon events */
698 (HostError
| LinkEvent
| UpdateStats
))
699 rio_error (dev
, int_status
);
701 if (np
->cur_tx
!= np
->old_tx
)
702 writel (100, ioaddr
+ CountDown
);
703 return IRQ_RETVAL(handled
);
707 rio_free_tx (struct net_device
*dev
, int irq
)
709 struct netdev_private
*np
= netdev_priv(dev
);
710 int entry
= np
->old_tx
% TX_RING_SIZE
;
712 unsigned long flag
= 0;
715 spin_lock(&np
->tx_lock
);
717 spin_lock_irqsave(&np
->tx_lock
, flag
);
719 /* Free used tx skbuffs */
720 while (entry
!= np
->cur_tx
) {
723 if (!(np
->tx_ring
[entry
].status
& TFDDone
))
725 skb
= np
->tx_skbuff
[entry
];
726 pci_unmap_single (np
->pdev
,
727 np
->tx_ring
[entry
].fraginfo
& DMA_48BIT_MASK
,
728 skb
->len
, PCI_DMA_TODEVICE
);
730 dev_kfree_skb_irq (skb
);
734 np
->tx_skbuff
[entry
] = NULL
;
735 entry
= (entry
+ 1) % TX_RING_SIZE
;
739 spin_unlock(&np
->tx_lock
);
741 spin_unlock_irqrestore(&np
->tx_lock
, flag
);
744 /* If the ring is no longer full, clear tx_full and
745 call netif_wake_queue() */
747 if (netif_queue_stopped(dev
) &&
748 ((np
->cur_tx
- np
->old_tx
+ TX_RING_SIZE
) % TX_RING_SIZE
749 < TX_QUEUE_LEN
- 1 || np
->speed
== 10)) {
750 netif_wake_queue (dev
);
755 tx_error (struct net_device
*dev
, int tx_status
)
757 struct netdev_private
*np
;
758 long ioaddr
= dev
->base_addr
;
762 np
= netdev_priv(dev
);
764 frame_id
= (tx_status
& 0xffff0000);
765 printk (KERN_ERR
"%s: Transmit error, TxStatus %4.4x, FrameId %d.\n",
766 dev
->name
, tx_status
, frame_id
);
767 np
->stats
.tx_errors
++;
768 /* Ttransmit Underrun */
769 if (tx_status
& 0x10) {
770 np
->stats
.tx_fifo_errors
++;
771 writew (readw (ioaddr
+ TxStartThresh
) + 0x10,
772 ioaddr
+ TxStartThresh
);
773 /* Transmit Underrun need to set TxReset, DMARest, FIFOReset */
774 writew (TxReset
| DMAReset
| FIFOReset
| NetworkReset
,
775 ioaddr
+ ASICCtrl
+ 2);
776 /* Wait for ResetBusy bit clear */
777 for (i
= 50; i
> 0; i
--) {
778 if ((readw (ioaddr
+ ASICCtrl
+ 2) & ResetBusy
) == 0)
782 rio_free_tx (dev
, 1);
783 /* Reset TFDListPtr */
784 writel (np
->tx_ring_dma
+
785 np
->old_tx
* sizeof (struct netdev_desc
),
786 dev
->base_addr
+ TFDListPtr0
);
787 writel (0, dev
->base_addr
+ TFDListPtr1
);
789 /* Let TxStartThresh stay default value */
792 if (tx_status
& 0x04) {
793 np
->stats
.tx_fifo_errors
++;
794 /* TxReset and clear FIFO */
795 writew (TxReset
| FIFOReset
, ioaddr
+ ASICCtrl
+ 2);
796 /* Wait reset done */
797 for (i
= 50; i
> 0; i
--) {
798 if ((readw (ioaddr
+ ASICCtrl
+ 2) & ResetBusy
) == 0)
802 /* Let TxStartThresh stay default value */
804 /* Maximum Collisions */
806 if (tx_status
& 0x08)
807 np
->stats
.collisions16
++;
809 if (tx_status
& 0x08)
810 np
->stats
.collisions
++;
813 writel (readw (dev
->base_addr
+ MACCtrl
) | TxEnable
, ioaddr
+ MACCtrl
);
817 receive_packet (struct net_device
*dev
)
819 struct netdev_private
*np
= netdev_priv(dev
);
820 int entry
= np
->cur_rx
% RX_RING_SIZE
;
823 /* If RFDDone, FrameStart and FrameEnd set, there is a new packet in. */
825 struct netdev_desc
*desc
= &np
->rx_ring
[entry
];
829 if (!(desc
->status
& RFDDone
) ||
830 !(desc
->status
& FrameStart
) || !(desc
->status
& FrameEnd
))
833 /* Chip omits the CRC. */
834 pkt_len
= le64_to_cpu (desc
->status
& 0xffff);
835 frame_status
= le64_to_cpu (desc
->status
);
838 /* Update rx error statistics, drop packet. */
839 if (frame_status
& RFS_Errors
) {
840 np
->stats
.rx_errors
++;
841 if (frame_status
& (RxRuntFrame
| RxLengthError
))
842 np
->stats
.rx_length_errors
++;
843 if (frame_status
& RxFCSError
)
844 np
->stats
.rx_crc_errors
++;
845 if (frame_status
& RxAlignmentError
&& np
->speed
!= 1000)
846 np
->stats
.rx_frame_errors
++;
847 if (frame_status
& RxFIFOOverrun
)
848 np
->stats
.rx_fifo_errors
++;
852 /* Small skbuffs for short packets */
853 if (pkt_len
> copy_thresh
) {
854 pci_unmap_single (np
->pdev
,
855 desc
->fraginfo
& DMA_48BIT_MASK
,
858 skb_put (skb
= np
->rx_skbuff
[entry
], pkt_len
);
859 np
->rx_skbuff
[entry
] = NULL
;
860 } else if ((skb
= dev_alloc_skb (pkt_len
+ 2)) != NULL
) {
861 pci_dma_sync_single_for_cpu(np
->pdev
,
866 /* 16 byte align the IP header */
867 skb_reserve (skb
, 2);
868 skb_copy_to_linear_data (skb
,
869 np
->rx_skbuff
[entry
]->data
,
871 skb_put (skb
, pkt_len
);
872 pci_dma_sync_single_for_device(np
->pdev
,
878 skb
->protocol
= eth_type_trans (skb
, dev
);
880 /* Checksum done by hw, but csum value unavailable. */
881 if (np
->pdev
->pci_rev_id
>= 0x0c &&
882 !(frame_status
& (TCPError
| UDPError
| IPError
))) {
883 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
887 dev
->last_rx
= jiffies
;
889 entry
= (entry
+ 1) % RX_RING_SIZE
;
891 spin_lock(&np
->rx_lock
);
893 /* Re-allocate skbuffs to fill the descriptor ring */
895 while (entry
!= np
->cur_rx
) {
897 /* Dropped packets don't need to re-allocate */
898 if (np
->rx_skbuff
[entry
] == NULL
) {
899 skb
= dev_alloc_skb (np
->rx_buf_sz
);
901 np
->rx_ring
[entry
].fraginfo
= 0;
903 "%s: receive_packet: "
904 "Unable to re-allocate Rx skbuff.#%d\n",
908 np
->rx_skbuff
[entry
] = skb
;
909 /* 16 byte align the IP header */
910 skb_reserve (skb
, 2);
911 np
->rx_ring
[entry
].fraginfo
=
912 cpu_to_le64 (pci_map_single
913 (np
->pdev
, skb
->data
, np
->rx_buf_sz
,
914 PCI_DMA_FROMDEVICE
));
916 np
->rx_ring
[entry
].fraginfo
|=
917 cpu_to_le64 (np
->rx_buf_sz
) << 48;
918 np
->rx_ring
[entry
].status
= 0;
919 entry
= (entry
+ 1) % RX_RING_SIZE
;
922 spin_unlock(&np
->rx_lock
);
927 rio_error (struct net_device
*dev
, int int_status
)
929 long ioaddr
= dev
->base_addr
;
930 struct netdev_private
*np
= netdev_priv(dev
);
933 /* Link change event */
934 if (int_status
& LinkEvent
) {
935 if (mii_wait_link (dev
, 10) == 0) {
936 printk (KERN_INFO
"%s: Link up\n", dev
->name
);
938 mii_get_media_pcs (dev
);
941 if (np
->speed
== 1000)
942 np
->tx_coalesce
= tx_coalesce
;
946 macctrl
|= (np
->vlan
) ? AutoVLANuntagging
: 0;
947 macctrl
|= (np
->full_duplex
) ? DuplexSelect
: 0;
948 macctrl
|= (np
->tx_flow
) ?
949 TxFlowControlEnable
: 0;
950 macctrl
|= (np
->rx_flow
) ?
951 RxFlowControlEnable
: 0;
952 writew(macctrl
, ioaddr
+ MACCtrl
);
954 netif_carrier_on(dev
);
956 printk (KERN_INFO
"%s: Link off\n", dev
->name
);
958 netif_carrier_off(dev
);
962 /* UpdateStats statistics registers */
963 if (int_status
& UpdateStats
) {
967 /* PCI Error, a catastronphic error related to the bus interface
968 occurs, set GlobalReset and HostReset to reset. */
969 if (int_status
& HostError
) {
970 printk (KERN_ERR
"%s: HostError! IntStatus %4.4x.\n",
971 dev
->name
, int_status
);
972 writew (GlobalReset
| HostReset
, ioaddr
+ ASICCtrl
+ 2);
977 static struct net_device_stats
*
978 get_stats (struct net_device
*dev
)
980 long ioaddr
= dev
->base_addr
;
981 struct netdev_private
*np
= netdev_priv(dev
);
985 unsigned int stat_reg
;
987 /* All statistics registers need to be acknowledged,
988 else statistic overflow could cause problems */
990 np
->stats
.rx_packets
+= readl (ioaddr
+ FramesRcvOk
);
991 np
->stats
.tx_packets
+= readl (ioaddr
+ FramesXmtOk
);
992 np
->stats
.rx_bytes
+= readl (ioaddr
+ OctetRcvOk
);
993 np
->stats
.tx_bytes
+= readl (ioaddr
+ OctetXmtOk
);
995 np
->stats
.multicast
= readl (ioaddr
+ McstFramesRcvdOk
);
996 np
->stats
.collisions
+= readl (ioaddr
+ SingleColFrames
)
997 + readl (ioaddr
+ MultiColFrames
);
999 /* detailed tx errors */
1000 stat_reg
= readw (ioaddr
+ FramesAbortXSColls
);
1001 np
->stats
.tx_aborted_errors
+= stat_reg
;
1002 np
->stats
.tx_errors
+= stat_reg
;
1004 stat_reg
= readw (ioaddr
+ CarrierSenseErrors
);
1005 np
->stats
.tx_carrier_errors
+= stat_reg
;
1006 np
->stats
.tx_errors
+= stat_reg
;
1008 /* Clear all other statistic register. */
1009 readl (ioaddr
+ McstOctetXmtOk
);
1010 readw (ioaddr
+ BcstFramesXmtdOk
);
1011 readl (ioaddr
+ McstFramesXmtdOk
);
1012 readw (ioaddr
+ BcstFramesRcvdOk
);
1013 readw (ioaddr
+ MacControlFramesRcvd
);
1014 readw (ioaddr
+ FrameTooLongErrors
);
1015 readw (ioaddr
+ InRangeLengthErrors
);
1016 readw (ioaddr
+ FramesCheckSeqErrors
);
1017 readw (ioaddr
+ FramesLostRxErrors
);
1018 readl (ioaddr
+ McstOctetXmtOk
);
1019 readl (ioaddr
+ BcstOctetXmtOk
);
1020 readl (ioaddr
+ McstFramesXmtdOk
);
1021 readl (ioaddr
+ FramesWDeferredXmt
);
1022 readl (ioaddr
+ LateCollisions
);
1023 readw (ioaddr
+ BcstFramesXmtdOk
);
1024 readw (ioaddr
+ MacControlFramesXmtd
);
1025 readw (ioaddr
+ FramesWEXDeferal
);
1028 for (i
= 0x100; i
<= 0x150; i
+= 4)
1031 readw (ioaddr
+ TxJumboFrames
);
1032 readw (ioaddr
+ RxJumboFrames
);
1033 readw (ioaddr
+ TCPCheckSumErrors
);
1034 readw (ioaddr
+ UDPCheckSumErrors
);
1035 readw (ioaddr
+ IPCheckSumErrors
);
1040 clear_stats (struct net_device
*dev
)
1042 long ioaddr
= dev
->base_addr
;
1047 /* All statistics registers need to be acknowledged,
1048 else statistic overflow could cause problems */
1049 readl (ioaddr
+ FramesRcvOk
);
1050 readl (ioaddr
+ FramesXmtOk
);
1051 readl (ioaddr
+ OctetRcvOk
);
1052 readl (ioaddr
+ OctetXmtOk
);
1054 readl (ioaddr
+ McstFramesRcvdOk
);
1055 readl (ioaddr
+ SingleColFrames
);
1056 readl (ioaddr
+ MultiColFrames
);
1057 readl (ioaddr
+ LateCollisions
);
1058 /* detailed rx errors */
1059 readw (ioaddr
+ FrameTooLongErrors
);
1060 readw (ioaddr
+ InRangeLengthErrors
);
1061 readw (ioaddr
+ FramesCheckSeqErrors
);
1062 readw (ioaddr
+ FramesLostRxErrors
);
1064 /* detailed tx errors */
1065 readw (ioaddr
+ FramesAbortXSColls
);
1066 readw (ioaddr
+ CarrierSenseErrors
);
1068 /* Clear all other statistic register. */
1069 readl (ioaddr
+ McstOctetXmtOk
);
1070 readw (ioaddr
+ BcstFramesXmtdOk
);
1071 readl (ioaddr
+ McstFramesXmtdOk
);
1072 readw (ioaddr
+ BcstFramesRcvdOk
);
1073 readw (ioaddr
+ MacControlFramesRcvd
);
1074 readl (ioaddr
+ McstOctetXmtOk
);
1075 readl (ioaddr
+ BcstOctetXmtOk
);
1076 readl (ioaddr
+ McstFramesXmtdOk
);
1077 readl (ioaddr
+ FramesWDeferredXmt
);
1078 readw (ioaddr
+ BcstFramesXmtdOk
);
1079 readw (ioaddr
+ MacControlFramesXmtd
);
1080 readw (ioaddr
+ FramesWEXDeferal
);
1082 for (i
= 0x100; i
<= 0x150; i
+= 4)
1085 readw (ioaddr
+ TxJumboFrames
);
1086 readw (ioaddr
+ RxJumboFrames
);
1087 readw (ioaddr
+ TCPCheckSumErrors
);
1088 readw (ioaddr
+ UDPCheckSumErrors
);
1089 readw (ioaddr
+ IPCheckSumErrors
);
1095 change_mtu (struct net_device
*dev
, int new_mtu
)
1097 struct netdev_private
*np
= netdev_priv(dev
);
1098 int max
= (np
->jumbo
) ? MAX_JUMBO
: 1536;
1100 if ((new_mtu
< 68) || (new_mtu
> max
)) {
1110 set_multicast (struct net_device
*dev
)
1112 long ioaddr
= dev
->base_addr
;
1115 struct netdev_private
*np
= netdev_priv(dev
);
1117 hash_table
[0] = hash_table
[1] = 0;
1118 /* RxFlowcontrol DA: 01-80-C2-00-00-01. Hash index=0x39 */
1119 hash_table
[1] |= cpu_to_le32(0x02000000);
1120 if (dev
->flags
& IFF_PROMISC
) {
1121 /* Receive all frames promiscuously. */
1122 rx_mode
= ReceiveAllFrames
;
1123 } else if ((dev
->flags
& IFF_ALLMULTI
) ||
1124 (dev
->mc_count
> multicast_filter_limit
)) {
1125 /* Receive broadcast and multicast frames */
1126 rx_mode
= ReceiveBroadcast
| ReceiveMulticast
| ReceiveUnicast
;
1127 } else if (dev
->mc_count
> 0) {
1129 struct dev_mc_list
*mclist
;
1130 /* Receive broadcast frames and multicast frames filtering
1133 ReceiveBroadcast
| ReceiveMulticastHash
| ReceiveUnicast
;
1134 for (i
=0, mclist
= dev
->mc_list
; mclist
&& i
< dev
->mc_count
;
1135 i
++, mclist
=mclist
->next
)
1138 int crc
= ether_crc_le (ETH_ALEN
, mclist
->dmi_addr
);
1139 /* The inverted high significant 6 bits of CRC are
1140 used as an index to hashtable */
1141 for (bit
= 0; bit
< 6; bit
++)
1142 if (crc
& (1 << (31 - bit
)))
1143 index
|= (1 << bit
);
1144 hash_table
[index
/ 32] |= (1 << (index
% 32));
1147 rx_mode
= ReceiveBroadcast
| ReceiveUnicast
;
1150 /* ReceiveVLANMatch field in ReceiveMode */
1151 rx_mode
|= ReceiveVLANMatch
;
1154 writel (hash_table
[0], ioaddr
+ HashTable0
);
1155 writel (hash_table
[1], ioaddr
+ HashTable1
);
1156 writew (rx_mode
, ioaddr
+ ReceiveMode
);
1159 static void rio_get_drvinfo(struct net_device
*dev
, struct ethtool_drvinfo
*info
)
1161 struct netdev_private
*np
= netdev_priv(dev
);
1162 strcpy(info
->driver
, "dl2k");
1163 strcpy(info
->version
, DRV_VERSION
);
1164 strcpy(info
->bus_info
, pci_name(np
->pdev
));
1167 static int rio_get_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
1169 struct netdev_private
*np
= netdev_priv(dev
);
1170 if (np
->phy_media
) {
1172 cmd
->supported
= SUPPORTED_Autoneg
| SUPPORTED_FIBRE
;
1173 cmd
->advertising
= ADVERTISED_Autoneg
| ADVERTISED_FIBRE
;
1174 cmd
->port
= PORT_FIBRE
;
1175 cmd
->transceiver
= XCVR_INTERNAL
;
1178 cmd
->supported
= SUPPORTED_10baseT_Half
|
1179 SUPPORTED_10baseT_Full
| SUPPORTED_100baseT_Half
1180 | SUPPORTED_100baseT_Full
| SUPPORTED_1000baseT_Full
|
1181 SUPPORTED_Autoneg
| SUPPORTED_MII
;
1182 cmd
->advertising
= ADVERTISED_10baseT_Half
|
1183 ADVERTISED_10baseT_Full
| ADVERTISED_100baseT_Half
|
1184 ADVERTISED_100baseT_Full
| ADVERTISED_1000baseT_Full
|
1185 ADVERTISED_Autoneg
| ADVERTISED_MII
;
1186 cmd
->port
= PORT_MII
;
1187 cmd
->transceiver
= XCVR_INTERNAL
;
1189 if ( np
->link_status
) {
1190 cmd
->speed
= np
->speed
;
1191 cmd
->duplex
= np
->full_duplex
? DUPLEX_FULL
: DUPLEX_HALF
;
1197 cmd
->autoneg
= AUTONEG_ENABLE
;
1199 cmd
->autoneg
= AUTONEG_DISABLE
;
1201 cmd
->phy_address
= np
->phy_addr
;
1205 static int rio_set_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
1207 struct netdev_private
*np
= netdev_priv(dev
);
1208 netif_carrier_off(dev
);
1209 if (cmd
->autoneg
== AUTONEG_ENABLE
) {
1219 if (np
->speed
== 1000) {
1220 cmd
->speed
= SPEED_100
;
1221 cmd
->duplex
= DUPLEX_FULL
;
1222 printk("Warning!! Can't disable Auto negotiation in 1000Mbps, change to Manual 100Mbps, Full duplex.\n");
1224 switch(cmd
->speed
+ cmd
->duplex
) {
1226 case SPEED_10
+ DUPLEX_HALF
:
1228 np
->full_duplex
= 0;
1231 case SPEED_10
+ DUPLEX_FULL
:
1233 np
->full_duplex
= 1;
1235 case SPEED_100
+ DUPLEX_HALF
:
1237 np
->full_duplex
= 0;
1239 case SPEED_100
+ DUPLEX_FULL
:
1241 np
->full_duplex
= 1;
1243 case SPEED_1000
+ DUPLEX_HALF
:/* not supported */
1244 case SPEED_1000
+ DUPLEX_FULL
:/* not supported */
1253 static u32
rio_get_link(struct net_device
*dev
)
1255 struct netdev_private
*np
= netdev_priv(dev
);
1256 return np
->link_status
;
1259 static const struct ethtool_ops ethtool_ops
= {
1260 .get_drvinfo
= rio_get_drvinfo
,
1261 .get_settings
= rio_get_settings
,
1262 .set_settings
= rio_set_settings
,
1263 .get_link
= rio_get_link
,
1267 rio_ioctl (struct net_device
*dev
, struct ifreq
*rq
, int cmd
)
1270 struct netdev_private
*np
= netdev_priv(dev
);
1271 struct mii_data
*miidata
= (struct mii_data
*) &rq
->ifr_ifru
;
1273 struct netdev_desc
*desc
;
1276 phy_addr
= np
->phy_addr
;
1278 case SIOCDEVPRIVATE
:
1281 case SIOCDEVPRIVATE
+ 1:
1282 miidata
->out_value
= mii_read (dev
, phy_addr
, miidata
->reg_num
);
1284 case SIOCDEVPRIVATE
+ 2:
1285 mii_write (dev
, phy_addr
, miidata
->reg_num
, miidata
->in_value
);
1287 case SIOCDEVPRIVATE
+ 3:
1289 case SIOCDEVPRIVATE
+ 4:
1291 case SIOCDEVPRIVATE
+ 5:
1292 netif_stop_queue (dev
);
1294 case SIOCDEVPRIVATE
+ 6:
1295 netif_wake_queue (dev
);
1297 case SIOCDEVPRIVATE
+ 7:
1299 ("tx_full=%x cur_tx=%lx old_tx=%lx cur_rx=%lx old_rx=%lx\n",
1300 netif_queue_stopped(dev
), np
->cur_tx
, np
->old_tx
, np
->cur_rx
,
1303 case SIOCDEVPRIVATE
+ 8:
1304 printk("TX ring:\n");
1305 for (i
= 0; i
< TX_RING_SIZE
; i
++) {
1306 desc
= &np
->tx_ring
[i
];
1308 ("%02x:cur:%08x next:%08x status:%08x frag1:%08x frag0:%08x",
1310 (u32
) (np
->tx_ring_dma
+ i
* sizeof (*desc
)),
1311 (u32
) desc
->next_desc
,
1312 (u32
) desc
->status
, (u32
) (desc
->fraginfo
>> 32),
1313 (u32
) desc
->fraginfo
);
1325 #define EEP_READ 0x0200
1326 #define EEP_BUSY 0x8000
1327 /* Read the EEPROM word */
1328 /* We use I/O instruction to read/write eeprom to avoid fail on some machines */
1330 read_eeprom (long ioaddr
, int eep_addr
)
1333 outw (EEP_READ
| (eep_addr
& 0xff), ioaddr
+ EepromCtrl
);
1335 if (!(inw (ioaddr
+ EepromCtrl
) & EEP_BUSY
)) {
1336 return inw (ioaddr
+ EepromData
);
1342 enum phy_ctrl_bits
{
1343 MII_READ
= 0x00, MII_CLK
= 0x01, MII_DATA1
= 0x02, MII_WRITE
= 0x04,
1347 #define mii_delay() readb(ioaddr)
1349 mii_sendbit (struct net_device
*dev
, u32 data
)
1351 long ioaddr
= dev
->base_addr
+ PhyCtrl
;
1352 data
= (data
) ? MII_DATA1
: 0;
1354 data
|= (readb (ioaddr
) & 0xf8) | MII_WRITE
;
1355 writeb (data
, ioaddr
);
1357 writeb (data
| MII_CLK
, ioaddr
);
1362 mii_getbit (struct net_device
*dev
)
1364 long ioaddr
= dev
->base_addr
+ PhyCtrl
;
1367 data
= (readb (ioaddr
) & 0xf8) | MII_READ
;
1368 writeb (data
, ioaddr
);
1370 writeb (data
| MII_CLK
, ioaddr
);
1372 return ((readb (ioaddr
) >> 1) & 1);
1376 mii_send_bits (struct net_device
*dev
, u32 data
, int len
)
1379 for (i
= len
- 1; i
>= 0; i
--) {
1380 mii_sendbit (dev
, data
& (1 << i
));
1385 mii_read (struct net_device
*dev
, int phy_addr
, int reg_num
)
1392 mii_send_bits (dev
, 0xffffffff, 32);
1393 /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1394 /* ST,OP = 0110'b for read operation */
1395 cmd
= (0x06 << 10 | phy_addr
<< 5 | reg_num
);
1396 mii_send_bits (dev
, cmd
, 14);
1398 if (mii_getbit (dev
))
1401 for (i
= 0; i
< 16; i
++) {
1402 retval
|= mii_getbit (dev
);
1407 return (retval
>> 1) & 0xffff;
1413 mii_write (struct net_device
*dev
, int phy_addr
, int reg_num
, u16 data
)
1418 mii_send_bits (dev
, 0xffffffff, 32);
1419 /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1420 /* ST,OP,AAAAA,RRRRR,TA = 0101xxxxxxxxxx10'b = 0x5002 for write */
1421 cmd
= (0x5002 << 16) | (phy_addr
<< 23) | (reg_num
<< 18) | data
;
1422 mii_send_bits (dev
, cmd
, 32);
1428 mii_wait_link (struct net_device
*dev
, int wait
)
1432 struct netdev_private
*np
;
1434 np
= netdev_priv(dev
);
1435 phy_addr
= np
->phy_addr
;
1438 bmsr
.image
= mii_read (dev
, phy_addr
, MII_BMSR
);
1439 if (bmsr
.bits
.link_status
)
1442 } while (--wait
> 0);
1446 mii_get_media (struct net_device
*dev
)
1454 struct netdev_private
*np
;
1456 np
= netdev_priv(dev
);
1457 phy_addr
= np
->phy_addr
;
1459 bmsr
.image
= mii_read (dev
, phy_addr
, MII_BMSR
);
1460 if (np
->an_enable
) {
1461 if (!bmsr
.bits
.an_complete
) {
1462 /* Auto-Negotiation not completed */
1465 negotiate
.image
= mii_read (dev
, phy_addr
, MII_ANAR
) &
1466 mii_read (dev
, phy_addr
, MII_ANLPAR
);
1467 mscr
.image
= mii_read (dev
, phy_addr
, MII_MSCR
);
1468 mssr
.image
= mii_read (dev
, phy_addr
, MII_MSSR
);
1469 if (mscr
.bits
.media_1000BT_FD
& mssr
.bits
.lp_1000BT_FD
) {
1471 np
->full_duplex
= 1;
1472 printk (KERN_INFO
"Auto 1000 Mbps, Full duplex\n");
1473 } else if (mscr
.bits
.media_1000BT_HD
& mssr
.bits
.lp_1000BT_HD
) {
1475 np
->full_duplex
= 0;
1476 printk (KERN_INFO
"Auto 1000 Mbps, Half duplex\n");
1477 } else if (negotiate
.bits
.media_100BX_FD
) {
1479 np
->full_duplex
= 1;
1480 printk (KERN_INFO
"Auto 100 Mbps, Full duplex\n");
1481 } else if (negotiate
.bits
.media_100BX_HD
) {
1483 np
->full_duplex
= 0;
1484 printk (KERN_INFO
"Auto 100 Mbps, Half duplex\n");
1485 } else if (negotiate
.bits
.media_10BT_FD
) {
1487 np
->full_duplex
= 1;
1488 printk (KERN_INFO
"Auto 10 Mbps, Full duplex\n");
1489 } else if (negotiate
.bits
.media_10BT_HD
) {
1491 np
->full_duplex
= 0;
1492 printk (KERN_INFO
"Auto 10 Mbps, Half duplex\n");
1494 if (negotiate
.bits
.pause
) {
1497 } else if (negotiate
.bits
.asymmetric
) {
1501 /* else tx_flow, rx_flow = user select */
1503 bmcr
.image
= mii_read (dev
, phy_addr
, MII_BMCR
);
1504 if (bmcr
.bits
.speed100
== 1 && bmcr
.bits
.speed1000
== 0) {
1505 printk (KERN_INFO
"Operating at 100 Mbps, ");
1506 } else if (bmcr
.bits
.speed100
== 0 && bmcr
.bits
.speed1000
== 0) {
1507 printk (KERN_INFO
"Operating at 10 Mbps, ");
1508 } else if (bmcr
.bits
.speed100
== 0 && bmcr
.bits
.speed1000
== 1) {
1509 printk (KERN_INFO
"Operating at 1000 Mbps, ");
1511 if (bmcr
.bits
.duplex_mode
) {
1512 printk ("Full duplex\n");
1514 printk ("Half duplex\n");
1518 printk(KERN_INFO
"Enable Tx Flow Control\n");
1520 printk(KERN_INFO
"Disable Tx Flow Control\n");
1522 printk(KERN_INFO
"Enable Rx Flow Control\n");
1524 printk(KERN_INFO
"Disable Rx Flow Control\n");
1530 mii_set_media (struct net_device
*dev
)
1537 struct netdev_private
*np
;
1538 np
= netdev_priv(dev
);
1539 phy_addr
= np
->phy_addr
;
1541 /* Does user set speed? */
1542 if (np
->an_enable
) {
1543 /* Advertise capabilities */
1544 bmsr
.image
= mii_read (dev
, phy_addr
, MII_BMSR
);
1545 anar
.image
= mii_read (dev
, phy_addr
, MII_ANAR
);
1546 anar
.bits
.media_100BX_FD
= bmsr
.bits
.media_100BX_FD
;
1547 anar
.bits
.media_100BX_HD
= bmsr
.bits
.media_100BX_HD
;
1548 anar
.bits
.media_100BT4
= bmsr
.bits
.media_100BT4
;
1549 anar
.bits
.media_10BT_FD
= bmsr
.bits
.media_10BT_FD
;
1550 anar
.bits
.media_10BT_HD
= bmsr
.bits
.media_10BT_HD
;
1551 anar
.bits
.pause
= 1;
1552 anar
.bits
.asymmetric
= 1;
1553 mii_write (dev
, phy_addr
, MII_ANAR
, anar
.image
);
1555 /* Enable Auto crossover */
1556 pscr
.image
= mii_read (dev
, phy_addr
, MII_PHY_SCR
);
1557 pscr
.bits
.mdi_crossover_mode
= 3; /* 11'b */
1558 mii_write (dev
, phy_addr
, MII_PHY_SCR
, pscr
.image
);
1560 /* Soft reset PHY */
1561 mii_write (dev
, phy_addr
, MII_BMCR
, MII_BMCR_RESET
);
1563 bmcr
.bits
.an_enable
= 1;
1564 bmcr
.bits
.restart_an
= 1;
1565 bmcr
.bits
.reset
= 1;
1566 mii_write (dev
, phy_addr
, MII_BMCR
, bmcr
.image
);
1569 /* Force speed setting */
1570 /* 1) Disable Auto crossover */
1571 pscr
.image
= mii_read (dev
, phy_addr
, MII_PHY_SCR
);
1572 pscr
.bits
.mdi_crossover_mode
= 0;
1573 mii_write (dev
, phy_addr
, MII_PHY_SCR
, pscr
.image
);
1576 bmcr
.image
= mii_read (dev
, phy_addr
, MII_BMCR
);
1577 bmcr
.bits
.reset
= 1;
1578 mii_write (dev
, phy_addr
, MII_BMCR
, bmcr
.image
);
1581 bmcr
.image
= 0x1940; /* must be 0x1940 */
1582 mii_write (dev
, phy_addr
, MII_BMCR
, bmcr
.image
);
1583 mdelay (100); /* wait a certain time */
1585 /* 4) Advertise nothing */
1586 mii_write (dev
, phy_addr
, MII_ANAR
, 0);
1588 /* 5) Set media and Power Up */
1590 bmcr
.bits
.power_down
= 1;
1591 if (np
->speed
== 100) {
1592 bmcr
.bits
.speed100
= 1;
1593 bmcr
.bits
.speed1000
= 0;
1594 printk (KERN_INFO
"Manual 100 Mbps, ");
1595 } else if (np
->speed
== 10) {
1596 bmcr
.bits
.speed100
= 0;
1597 bmcr
.bits
.speed1000
= 0;
1598 printk (KERN_INFO
"Manual 10 Mbps, ");
1600 if (np
->full_duplex
) {
1601 bmcr
.bits
.duplex_mode
= 1;
1602 printk ("Full duplex\n");
1604 bmcr
.bits
.duplex_mode
= 0;
1605 printk ("Half duplex\n");
1608 /* Set 1000BaseT Master/Slave setting */
1609 mscr
.image
= mii_read (dev
, phy_addr
, MII_MSCR
);
1610 mscr
.bits
.cfg_enable
= 1;
1611 mscr
.bits
.cfg_value
= 0;
1613 mii_write (dev
, phy_addr
, MII_BMCR
, bmcr
.image
);
1620 mii_get_media_pcs (struct net_device
*dev
)
1622 ANAR_PCS_t negotiate
;
1626 struct netdev_private
*np
;
1628 np
= netdev_priv(dev
);
1629 phy_addr
= np
->phy_addr
;
1631 bmsr
.image
= mii_read (dev
, phy_addr
, PCS_BMSR
);
1632 if (np
->an_enable
) {
1633 if (!bmsr
.bits
.an_complete
) {
1634 /* Auto-Negotiation not completed */
1637 negotiate
.image
= mii_read (dev
, phy_addr
, PCS_ANAR
) &
1638 mii_read (dev
, phy_addr
, PCS_ANLPAR
);
1640 if (negotiate
.bits
.full_duplex
) {
1641 printk (KERN_INFO
"Auto 1000 Mbps, Full duplex\n");
1642 np
->full_duplex
= 1;
1644 printk (KERN_INFO
"Auto 1000 Mbps, half duplex\n");
1645 np
->full_duplex
= 0;
1647 if (negotiate
.bits
.pause
) {
1650 } else if (negotiate
.bits
.asymmetric
) {
1654 /* else tx_flow, rx_flow = user select */
1656 bmcr
.image
= mii_read (dev
, phy_addr
, PCS_BMCR
);
1657 printk (KERN_INFO
"Operating at 1000 Mbps, ");
1658 if (bmcr
.bits
.duplex_mode
) {
1659 printk ("Full duplex\n");
1661 printk ("Half duplex\n");
1665 printk(KERN_INFO
"Enable Tx Flow Control\n");
1667 printk(KERN_INFO
"Disable Tx Flow Control\n");
1669 printk(KERN_INFO
"Enable Rx Flow Control\n");
1671 printk(KERN_INFO
"Disable Rx Flow Control\n");
1677 mii_set_media_pcs (struct net_device
*dev
)
1683 struct netdev_private
*np
;
1684 np
= netdev_priv(dev
);
1685 phy_addr
= np
->phy_addr
;
1687 /* Auto-Negotiation? */
1688 if (np
->an_enable
) {
1689 /* Advertise capabilities */
1690 esr
.image
= mii_read (dev
, phy_addr
, PCS_ESR
);
1691 anar
.image
= mii_read (dev
, phy_addr
, MII_ANAR
);
1692 anar
.bits
.half_duplex
=
1693 esr
.bits
.media_1000BT_HD
| esr
.bits
.media_1000BX_HD
;
1694 anar
.bits
.full_duplex
=
1695 esr
.bits
.media_1000BT_FD
| esr
.bits
.media_1000BX_FD
;
1696 anar
.bits
.pause
= 1;
1697 anar
.bits
.asymmetric
= 1;
1698 mii_write (dev
, phy_addr
, MII_ANAR
, anar
.image
);
1700 /* Soft reset PHY */
1701 mii_write (dev
, phy_addr
, MII_BMCR
, MII_BMCR_RESET
);
1703 bmcr
.bits
.an_enable
= 1;
1704 bmcr
.bits
.restart_an
= 1;
1705 bmcr
.bits
.reset
= 1;
1706 mii_write (dev
, phy_addr
, MII_BMCR
, bmcr
.image
);
1709 /* Force speed setting */
1712 bmcr
.bits
.reset
= 1;
1713 mii_write (dev
, phy_addr
, MII_BMCR
, bmcr
.image
);
1716 bmcr
.bits
.an_enable
= 0;
1717 if (np
->full_duplex
) {
1718 bmcr
.bits
.duplex_mode
= 1;
1719 printk (KERN_INFO
"Manual full duplex\n");
1721 bmcr
.bits
.duplex_mode
= 0;
1722 printk (KERN_INFO
"Manual half duplex\n");
1724 mii_write (dev
, phy_addr
, MII_BMCR
, bmcr
.image
);
1727 /* Advertise nothing */
1728 mii_write (dev
, phy_addr
, MII_ANAR
, 0);
1735 rio_close (struct net_device
*dev
)
1737 long ioaddr
= dev
->base_addr
;
1738 struct netdev_private
*np
= netdev_priv(dev
);
1739 struct sk_buff
*skb
;
1742 netif_stop_queue (dev
);
1744 /* Disable interrupts */
1745 writew (0, ioaddr
+ IntEnable
);
1747 /* Stop Tx and Rx logics */
1748 writel (TxDisable
| RxDisable
| StatsDisable
, ioaddr
+ MACCtrl
);
1749 synchronize_irq (dev
->irq
);
1750 free_irq (dev
->irq
, dev
);
1751 del_timer_sync (&np
->timer
);
1753 /* Free all the skbuffs in the queue. */
1754 for (i
= 0; i
< RX_RING_SIZE
; i
++) {
1755 np
->rx_ring
[i
].status
= 0;
1756 np
->rx_ring
[i
].fraginfo
= 0;
1757 skb
= np
->rx_skbuff
[i
];
1759 pci_unmap_single(np
->pdev
,
1760 np
->rx_ring
[i
].fraginfo
& DMA_48BIT_MASK
,
1761 skb
->len
, PCI_DMA_FROMDEVICE
);
1762 dev_kfree_skb (skb
);
1763 np
->rx_skbuff
[i
] = NULL
;
1766 for (i
= 0; i
< TX_RING_SIZE
; i
++) {
1767 skb
= np
->tx_skbuff
[i
];
1769 pci_unmap_single(np
->pdev
,
1770 np
->tx_ring
[i
].fraginfo
& DMA_48BIT_MASK
,
1771 skb
->len
, PCI_DMA_TODEVICE
);
1772 dev_kfree_skb (skb
);
1773 np
->tx_skbuff
[i
] = NULL
;
1780 static void __devexit
1781 rio_remove1 (struct pci_dev
*pdev
)
1783 struct net_device
*dev
= pci_get_drvdata (pdev
);
1786 struct netdev_private
*np
= netdev_priv(dev
);
1788 unregister_netdev (dev
);
1789 pci_free_consistent (pdev
, RX_TOTAL_SIZE
, np
->rx_ring
,
1791 pci_free_consistent (pdev
, TX_TOTAL_SIZE
, np
->tx_ring
,
1794 iounmap ((char *) (dev
->base_addr
));
1797 pci_release_regions (pdev
);
1798 pci_disable_device (pdev
);
1800 pci_set_drvdata (pdev
, NULL
);
1803 static struct pci_driver rio_driver
= {
1805 .id_table
= rio_pci_tbl
,
1806 .probe
= rio_probe1
,
1807 .remove
= __devexit_p(rio_remove1
),
1813 return pci_register_driver(&rio_driver
);
1819 pci_unregister_driver (&rio_driver
);
1822 module_init (rio_init
);
1823 module_exit (rio_exit
);
1829 gcc -D__KERNEL__ -DMODULE -I/usr/src/linux/include -Wall -Wstrict-prototypes -O2 -c dl2k.c
1831 Read Documentation/networking/dl2k.txt for details.