[NET]: Change type of owner in sock_lock_t to int, rename
[linux-2.6/s3c2410-cpufreq.git] / drivers / kvm / kvm_main.c
blobcd0557954e50ef3614c03c334b38f06104ca0551
1 /*
2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * Copyright (C) 2006 Qumranet, Inc.
9 * Authors:
10 * Avi Kivity <avi@qumranet.com>
11 * Yaniv Kamay <yaniv@qumranet.com>
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
18 #include "kvm.h"
19 #include "x86_emulate.h"
20 #include "segment_descriptor.h"
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/gfp.h>
27 #include <linux/mm.h>
28 #include <linux/miscdevice.h>
29 #include <linux/vmalloc.h>
30 #include <linux/reboot.h>
31 #include <linux/debugfs.h>
32 #include <linux/highmem.h>
33 #include <linux/file.h>
34 #include <linux/sysdev.h>
35 #include <linux/cpu.h>
36 #include <linux/sched.h>
37 #include <linux/cpumask.h>
38 #include <linux/smp.h>
39 #include <linux/anon_inodes.h>
41 #include <asm/processor.h>
42 #include <asm/msr.h>
43 #include <asm/io.h>
44 #include <asm/uaccess.h>
45 #include <asm/desc.h>
47 MODULE_AUTHOR("Qumranet");
48 MODULE_LICENSE("GPL");
50 static DEFINE_SPINLOCK(kvm_lock);
51 static LIST_HEAD(vm_list);
53 static cpumask_t cpus_hardware_enabled;
55 struct kvm_arch_ops *kvm_arch_ops;
57 static void hardware_disable(void *ignored);
59 #define STAT_OFFSET(x) offsetof(struct kvm_vcpu, stat.x)
61 static struct kvm_stats_debugfs_item {
62 const char *name;
63 int offset;
64 struct dentry *dentry;
65 } debugfs_entries[] = {
66 { "pf_fixed", STAT_OFFSET(pf_fixed) },
67 { "pf_guest", STAT_OFFSET(pf_guest) },
68 { "tlb_flush", STAT_OFFSET(tlb_flush) },
69 { "invlpg", STAT_OFFSET(invlpg) },
70 { "exits", STAT_OFFSET(exits) },
71 { "io_exits", STAT_OFFSET(io_exits) },
72 { "mmio_exits", STAT_OFFSET(mmio_exits) },
73 { "signal_exits", STAT_OFFSET(signal_exits) },
74 { "irq_window", STAT_OFFSET(irq_window_exits) },
75 { "halt_exits", STAT_OFFSET(halt_exits) },
76 { "request_irq", STAT_OFFSET(request_irq_exits) },
77 { "irq_exits", STAT_OFFSET(irq_exits) },
78 { "light_exits", STAT_OFFSET(light_exits) },
79 { "efer_reload", STAT_OFFSET(efer_reload) },
80 { NULL }
83 static struct dentry *debugfs_dir;
85 #define MAX_IO_MSRS 256
87 #define CR0_RESEVED_BITS 0xffffffff1ffaffc0ULL
88 #define LMSW_GUEST_MASK 0x0eULL
89 #define CR4_RESEVED_BITS (~((1ULL << 11) - 1))
90 #define CR8_RESEVED_BITS (~0x0fULL)
91 #define EFER_RESERVED_BITS 0xfffffffffffff2fe
93 #ifdef CONFIG_X86_64
94 // LDT or TSS descriptor in the GDT. 16 bytes.
95 struct segment_descriptor_64 {
96 struct segment_descriptor s;
97 u32 base_higher;
98 u32 pad_zero;
101 #endif
103 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
104 unsigned long arg);
106 unsigned long segment_base(u16 selector)
108 struct descriptor_table gdt;
109 struct segment_descriptor *d;
110 unsigned long table_base;
111 typedef unsigned long ul;
112 unsigned long v;
114 if (selector == 0)
115 return 0;
117 asm ("sgdt %0" : "=m"(gdt));
118 table_base = gdt.base;
120 if (selector & 4) { /* from ldt */
121 u16 ldt_selector;
123 asm ("sldt %0" : "=g"(ldt_selector));
124 table_base = segment_base(ldt_selector);
126 d = (struct segment_descriptor *)(table_base + (selector & ~7));
127 v = d->base_low | ((ul)d->base_mid << 16) | ((ul)d->base_high << 24);
128 #ifdef CONFIG_X86_64
129 if (d->system == 0
130 && (d->type == 2 || d->type == 9 || d->type == 11))
131 v |= ((ul)((struct segment_descriptor_64 *)d)->base_higher) << 32;
132 #endif
133 return v;
135 EXPORT_SYMBOL_GPL(segment_base);
137 static inline int valid_vcpu(int n)
139 return likely(n >= 0 && n < KVM_MAX_VCPUS);
142 int kvm_read_guest(struct kvm_vcpu *vcpu, gva_t addr, unsigned long size,
143 void *dest)
145 unsigned char *host_buf = dest;
146 unsigned long req_size = size;
148 while (size) {
149 hpa_t paddr;
150 unsigned now;
151 unsigned offset;
152 hva_t guest_buf;
154 paddr = gva_to_hpa(vcpu, addr);
156 if (is_error_hpa(paddr))
157 break;
159 guest_buf = (hva_t)kmap_atomic(
160 pfn_to_page(paddr >> PAGE_SHIFT),
161 KM_USER0);
162 offset = addr & ~PAGE_MASK;
163 guest_buf |= offset;
164 now = min(size, PAGE_SIZE - offset);
165 memcpy(host_buf, (void*)guest_buf, now);
166 host_buf += now;
167 addr += now;
168 size -= now;
169 kunmap_atomic((void *)(guest_buf & PAGE_MASK), KM_USER0);
171 return req_size - size;
173 EXPORT_SYMBOL_GPL(kvm_read_guest);
175 int kvm_write_guest(struct kvm_vcpu *vcpu, gva_t addr, unsigned long size,
176 void *data)
178 unsigned char *host_buf = data;
179 unsigned long req_size = size;
181 while (size) {
182 hpa_t paddr;
183 unsigned now;
184 unsigned offset;
185 hva_t guest_buf;
186 gfn_t gfn;
188 paddr = gva_to_hpa(vcpu, addr);
190 if (is_error_hpa(paddr))
191 break;
193 gfn = vcpu->mmu.gva_to_gpa(vcpu, addr) >> PAGE_SHIFT;
194 mark_page_dirty(vcpu->kvm, gfn);
195 guest_buf = (hva_t)kmap_atomic(
196 pfn_to_page(paddr >> PAGE_SHIFT), KM_USER0);
197 offset = addr & ~PAGE_MASK;
198 guest_buf |= offset;
199 now = min(size, PAGE_SIZE - offset);
200 memcpy((void*)guest_buf, host_buf, now);
201 host_buf += now;
202 addr += now;
203 size -= now;
204 kunmap_atomic((void *)(guest_buf & PAGE_MASK), KM_USER0);
206 return req_size - size;
208 EXPORT_SYMBOL_GPL(kvm_write_guest);
210 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
212 if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
213 return;
215 vcpu->guest_fpu_loaded = 1;
216 fx_save(vcpu->host_fx_image);
217 fx_restore(vcpu->guest_fx_image);
219 EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
221 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
223 if (!vcpu->guest_fpu_loaded)
224 return;
226 vcpu->guest_fpu_loaded = 0;
227 fx_save(vcpu->guest_fx_image);
228 fx_restore(vcpu->host_fx_image);
230 EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
233 * Switches to specified vcpu, until a matching vcpu_put()
235 static void vcpu_load(struct kvm_vcpu *vcpu)
237 mutex_lock(&vcpu->mutex);
238 kvm_arch_ops->vcpu_load(vcpu);
241 static void vcpu_put(struct kvm_vcpu *vcpu)
243 kvm_arch_ops->vcpu_put(vcpu);
244 mutex_unlock(&vcpu->mutex);
247 static void ack_flush(void *_completed)
249 atomic_t *completed = _completed;
251 atomic_inc(completed);
254 void kvm_flush_remote_tlbs(struct kvm *kvm)
256 int i, cpu, needed;
257 cpumask_t cpus;
258 struct kvm_vcpu *vcpu;
259 atomic_t completed;
261 atomic_set(&completed, 0);
262 cpus_clear(cpus);
263 needed = 0;
264 for (i = 0; i < kvm->nvcpus; ++i) {
265 vcpu = &kvm->vcpus[i];
266 if (test_and_set_bit(KVM_TLB_FLUSH, &vcpu->requests))
267 continue;
268 cpu = vcpu->cpu;
269 if (cpu != -1 && cpu != raw_smp_processor_id())
270 if (!cpu_isset(cpu, cpus)) {
271 cpu_set(cpu, cpus);
272 ++needed;
277 * We really want smp_call_function_mask() here. But that's not
278 * available, so ipi all cpus in parallel and wait for them
279 * to complete.
281 for (cpu = first_cpu(cpus); cpu != NR_CPUS; cpu = next_cpu(cpu, cpus))
282 smp_call_function_single(cpu, ack_flush, &completed, 1, 0);
283 while (atomic_read(&completed) != needed) {
284 cpu_relax();
285 barrier();
289 static struct kvm *kvm_create_vm(void)
291 struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
292 int i;
294 if (!kvm)
295 return ERR_PTR(-ENOMEM);
297 kvm_io_bus_init(&kvm->pio_bus);
298 spin_lock_init(&kvm->lock);
299 INIT_LIST_HEAD(&kvm->active_mmu_pages);
300 kvm_io_bus_init(&kvm->mmio_bus);
301 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
302 struct kvm_vcpu *vcpu = &kvm->vcpus[i];
304 mutex_init(&vcpu->mutex);
305 vcpu->cpu = -1;
306 vcpu->kvm = kvm;
307 vcpu->mmu.root_hpa = INVALID_PAGE;
309 spin_lock(&kvm_lock);
310 list_add(&kvm->vm_list, &vm_list);
311 spin_unlock(&kvm_lock);
312 return kvm;
315 static int kvm_dev_open(struct inode *inode, struct file *filp)
317 return 0;
321 * Free any memory in @free but not in @dont.
323 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
324 struct kvm_memory_slot *dont)
326 int i;
328 if (!dont || free->phys_mem != dont->phys_mem)
329 if (free->phys_mem) {
330 for (i = 0; i < free->npages; ++i)
331 if (free->phys_mem[i])
332 __free_page(free->phys_mem[i]);
333 vfree(free->phys_mem);
336 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
337 vfree(free->dirty_bitmap);
339 free->phys_mem = NULL;
340 free->npages = 0;
341 free->dirty_bitmap = NULL;
344 static void kvm_free_physmem(struct kvm *kvm)
346 int i;
348 for (i = 0; i < kvm->nmemslots; ++i)
349 kvm_free_physmem_slot(&kvm->memslots[i], NULL);
352 static void free_pio_guest_pages(struct kvm_vcpu *vcpu)
354 int i;
356 for (i = 0; i < 2; ++i)
357 if (vcpu->pio.guest_pages[i]) {
358 __free_page(vcpu->pio.guest_pages[i]);
359 vcpu->pio.guest_pages[i] = NULL;
363 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
365 if (!vcpu->vmcs)
366 return;
368 vcpu_load(vcpu);
369 kvm_mmu_unload(vcpu);
370 vcpu_put(vcpu);
373 static void kvm_free_vcpu(struct kvm_vcpu *vcpu)
375 if (!vcpu->vmcs)
376 return;
378 vcpu_load(vcpu);
379 kvm_mmu_destroy(vcpu);
380 vcpu_put(vcpu);
381 kvm_arch_ops->vcpu_free(vcpu);
382 free_page((unsigned long)vcpu->run);
383 vcpu->run = NULL;
384 free_page((unsigned long)vcpu->pio_data);
385 vcpu->pio_data = NULL;
386 free_pio_guest_pages(vcpu);
389 static void kvm_free_vcpus(struct kvm *kvm)
391 unsigned int i;
394 * Unpin any mmu pages first.
396 for (i = 0; i < KVM_MAX_VCPUS; ++i)
397 kvm_unload_vcpu_mmu(&kvm->vcpus[i]);
398 for (i = 0; i < KVM_MAX_VCPUS; ++i)
399 kvm_free_vcpu(&kvm->vcpus[i]);
402 static int kvm_dev_release(struct inode *inode, struct file *filp)
404 return 0;
407 static void kvm_destroy_vm(struct kvm *kvm)
409 spin_lock(&kvm_lock);
410 list_del(&kvm->vm_list);
411 spin_unlock(&kvm_lock);
412 kvm_io_bus_destroy(&kvm->pio_bus);
413 kvm_io_bus_destroy(&kvm->mmio_bus);
414 kvm_free_vcpus(kvm);
415 kvm_free_physmem(kvm);
416 kfree(kvm);
419 static int kvm_vm_release(struct inode *inode, struct file *filp)
421 struct kvm *kvm = filp->private_data;
423 kvm_destroy_vm(kvm);
424 return 0;
427 static void inject_gp(struct kvm_vcpu *vcpu)
429 kvm_arch_ops->inject_gp(vcpu, 0);
433 * Load the pae pdptrs. Return true is they are all valid.
435 static int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
437 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
438 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
439 int i;
440 u64 pdpte;
441 u64 *pdpt;
442 int ret;
443 struct page *page;
445 spin_lock(&vcpu->kvm->lock);
446 page = gfn_to_page(vcpu->kvm, pdpt_gfn);
447 /* FIXME: !page - emulate? 0xff? */
448 pdpt = kmap_atomic(page, KM_USER0);
450 ret = 1;
451 for (i = 0; i < 4; ++i) {
452 pdpte = pdpt[offset + i];
453 if ((pdpte & 1) && (pdpte & 0xfffffff0000001e6ull)) {
454 ret = 0;
455 goto out;
459 for (i = 0; i < 4; ++i)
460 vcpu->pdptrs[i] = pdpt[offset + i];
462 out:
463 kunmap_atomic(pdpt, KM_USER0);
464 spin_unlock(&vcpu->kvm->lock);
466 return ret;
469 void set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
471 if (cr0 & CR0_RESEVED_BITS) {
472 printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
473 cr0, vcpu->cr0);
474 inject_gp(vcpu);
475 return;
478 if ((cr0 & CR0_NW_MASK) && !(cr0 & CR0_CD_MASK)) {
479 printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
480 inject_gp(vcpu);
481 return;
484 if ((cr0 & CR0_PG_MASK) && !(cr0 & CR0_PE_MASK)) {
485 printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
486 "and a clear PE flag\n");
487 inject_gp(vcpu);
488 return;
491 if (!is_paging(vcpu) && (cr0 & CR0_PG_MASK)) {
492 #ifdef CONFIG_X86_64
493 if ((vcpu->shadow_efer & EFER_LME)) {
494 int cs_db, cs_l;
496 if (!is_pae(vcpu)) {
497 printk(KERN_DEBUG "set_cr0: #GP, start paging "
498 "in long mode while PAE is disabled\n");
499 inject_gp(vcpu);
500 return;
502 kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
503 if (cs_l) {
504 printk(KERN_DEBUG "set_cr0: #GP, start paging "
505 "in long mode while CS.L == 1\n");
506 inject_gp(vcpu);
507 return;
510 } else
511 #endif
512 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->cr3)) {
513 printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
514 "reserved bits\n");
515 inject_gp(vcpu);
516 return;
521 kvm_arch_ops->set_cr0(vcpu, cr0);
522 vcpu->cr0 = cr0;
524 spin_lock(&vcpu->kvm->lock);
525 kvm_mmu_reset_context(vcpu);
526 spin_unlock(&vcpu->kvm->lock);
527 return;
529 EXPORT_SYMBOL_GPL(set_cr0);
531 void lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
533 set_cr0(vcpu, (vcpu->cr0 & ~0x0ful) | (msw & 0x0f));
535 EXPORT_SYMBOL_GPL(lmsw);
537 void set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
539 if (cr4 & CR4_RESEVED_BITS) {
540 printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
541 inject_gp(vcpu);
542 return;
545 if (is_long_mode(vcpu)) {
546 if (!(cr4 & CR4_PAE_MASK)) {
547 printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
548 "in long mode\n");
549 inject_gp(vcpu);
550 return;
552 } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & CR4_PAE_MASK)
553 && !load_pdptrs(vcpu, vcpu->cr3)) {
554 printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
555 inject_gp(vcpu);
558 if (cr4 & CR4_VMXE_MASK) {
559 printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
560 inject_gp(vcpu);
561 return;
563 kvm_arch_ops->set_cr4(vcpu, cr4);
564 spin_lock(&vcpu->kvm->lock);
565 kvm_mmu_reset_context(vcpu);
566 spin_unlock(&vcpu->kvm->lock);
568 EXPORT_SYMBOL_GPL(set_cr4);
570 void set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
572 if (is_long_mode(vcpu)) {
573 if (cr3 & CR3_L_MODE_RESEVED_BITS) {
574 printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
575 inject_gp(vcpu);
576 return;
578 } else {
579 if (cr3 & CR3_RESEVED_BITS) {
580 printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
581 inject_gp(vcpu);
582 return;
584 if (is_paging(vcpu) && is_pae(vcpu) &&
585 !load_pdptrs(vcpu, cr3)) {
586 printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
587 "reserved bits\n");
588 inject_gp(vcpu);
589 return;
593 vcpu->cr3 = cr3;
594 spin_lock(&vcpu->kvm->lock);
596 * Does the new cr3 value map to physical memory? (Note, we
597 * catch an invalid cr3 even in real-mode, because it would
598 * cause trouble later on when we turn on paging anyway.)
600 * A real CPU would silently accept an invalid cr3 and would
601 * attempt to use it - with largely undefined (and often hard
602 * to debug) behavior on the guest side.
604 if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
605 inject_gp(vcpu);
606 else
607 vcpu->mmu.new_cr3(vcpu);
608 spin_unlock(&vcpu->kvm->lock);
610 EXPORT_SYMBOL_GPL(set_cr3);
612 void set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
614 if ( cr8 & CR8_RESEVED_BITS) {
615 printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
616 inject_gp(vcpu);
617 return;
619 vcpu->cr8 = cr8;
621 EXPORT_SYMBOL_GPL(set_cr8);
623 void fx_init(struct kvm_vcpu *vcpu)
625 struct __attribute__ ((__packed__)) fx_image_s {
626 u16 control; //fcw
627 u16 status; //fsw
628 u16 tag; // ftw
629 u16 opcode; //fop
630 u64 ip; // fpu ip
631 u64 operand;// fpu dp
632 u32 mxcsr;
633 u32 mxcsr_mask;
635 } *fx_image;
637 fx_save(vcpu->host_fx_image);
638 fpu_init();
639 fx_save(vcpu->guest_fx_image);
640 fx_restore(vcpu->host_fx_image);
642 fx_image = (struct fx_image_s *)vcpu->guest_fx_image;
643 fx_image->mxcsr = 0x1f80;
644 memset(vcpu->guest_fx_image + sizeof(struct fx_image_s),
645 0, FX_IMAGE_SIZE - sizeof(struct fx_image_s));
647 EXPORT_SYMBOL_GPL(fx_init);
650 * Allocate some memory and give it an address in the guest physical address
651 * space.
653 * Discontiguous memory is allowed, mostly for framebuffers.
655 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
656 struct kvm_memory_region *mem)
658 int r;
659 gfn_t base_gfn;
660 unsigned long npages;
661 unsigned long i;
662 struct kvm_memory_slot *memslot;
663 struct kvm_memory_slot old, new;
664 int memory_config_version;
666 r = -EINVAL;
667 /* General sanity checks */
668 if (mem->memory_size & (PAGE_SIZE - 1))
669 goto out;
670 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
671 goto out;
672 if (mem->slot >= KVM_MEMORY_SLOTS)
673 goto out;
674 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
675 goto out;
677 memslot = &kvm->memslots[mem->slot];
678 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
679 npages = mem->memory_size >> PAGE_SHIFT;
681 if (!npages)
682 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
684 raced:
685 spin_lock(&kvm->lock);
687 memory_config_version = kvm->memory_config_version;
688 new = old = *memslot;
690 new.base_gfn = base_gfn;
691 new.npages = npages;
692 new.flags = mem->flags;
694 /* Disallow changing a memory slot's size. */
695 r = -EINVAL;
696 if (npages && old.npages && npages != old.npages)
697 goto out_unlock;
699 /* Check for overlaps */
700 r = -EEXIST;
701 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
702 struct kvm_memory_slot *s = &kvm->memslots[i];
704 if (s == memslot)
705 continue;
706 if (!((base_gfn + npages <= s->base_gfn) ||
707 (base_gfn >= s->base_gfn + s->npages)))
708 goto out_unlock;
711 * Do memory allocations outside lock. memory_config_version will
712 * detect any races.
714 spin_unlock(&kvm->lock);
716 /* Deallocate if slot is being removed */
717 if (!npages)
718 new.phys_mem = NULL;
720 /* Free page dirty bitmap if unneeded */
721 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
722 new.dirty_bitmap = NULL;
724 r = -ENOMEM;
726 /* Allocate if a slot is being created */
727 if (npages && !new.phys_mem) {
728 new.phys_mem = vmalloc(npages * sizeof(struct page *));
730 if (!new.phys_mem)
731 goto out_free;
733 memset(new.phys_mem, 0, npages * sizeof(struct page *));
734 for (i = 0; i < npages; ++i) {
735 new.phys_mem[i] = alloc_page(GFP_HIGHUSER
736 | __GFP_ZERO);
737 if (!new.phys_mem[i])
738 goto out_free;
739 set_page_private(new.phys_mem[i],0);
743 /* Allocate page dirty bitmap if needed */
744 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
745 unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
747 new.dirty_bitmap = vmalloc(dirty_bytes);
748 if (!new.dirty_bitmap)
749 goto out_free;
750 memset(new.dirty_bitmap, 0, dirty_bytes);
753 spin_lock(&kvm->lock);
755 if (memory_config_version != kvm->memory_config_version) {
756 spin_unlock(&kvm->lock);
757 kvm_free_physmem_slot(&new, &old);
758 goto raced;
761 r = -EAGAIN;
762 if (kvm->busy)
763 goto out_unlock;
765 if (mem->slot >= kvm->nmemslots)
766 kvm->nmemslots = mem->slot + 1;
768 *memslot = new;
769 ++kvm->memory_config_version;
771 kvm_mmu_slot_remove_write_access(kvm, mem->slot);
772 kvm_flush_remote_tlbs(kvm);
774 spin_unlock(&kvm->lock);
776 kvm_free_physmem_slot(&old, &new);
777 return 0;
779 out_unlock:
780 spin_unlock(&kvm->lock);
781 out_free:
782 kvm_free_physmem_slot(&new, &old);
783 out:
784 return r;
788 * Get (and clear) the dirty memory log for a memory slot.
790 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
791 struct kvm_dirty_log *log)
793 struct kvm_memory_slot *memslot;
794 int r, i;
795 int n;
796 unsigned long any = 0;
798 spin_lock(&kvm->lock);
801 * Prevent changes to guest memory configuration even while the lock
802 * is not taken.
804 ++kvm->busy;
805 spin_unlock(&kvm->lock);
806 r = -EINVAL;
807 if (log->slot >= KVM_MEMORY_SLOTS)
808 goto out;
810 memslot = &kvm->memslots[log->slot];
811 r = -ENOENT;
812 if (!memslot->dirty_bitmap)
813 goto out;
815 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
817 for (i = 0; !any && i < n/sizeof(long); ++i)
818 any = memslot->dirty_bitmap[i];
820 r = -EFAULT;
821 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
822 goto out;
824 spin_lock(&kvm->lock);
825 kvm_mmu_slot_remove_write_access(kvm, log->slot);
826 kvm_flush_remote_tlbs(kvm);
827 memset(memslot->dirty_bitmap, 0, n);
828 spin_unlock(&kvm->lock);
830 r = 0;
832 out:
833 spin_lock(&kvm->lock);
834 --kvm->busy;
835 spin_unlock(&kvm->lock);
836 return r;
840 * Set a new alias region. Aliases map a portion of physical memory into
841 * another portion. This is useful for memory windows, for example the PC
842 * VGA region.
844 static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
845 struct kvm_memory_alias *alias)
847 int r, n;
848 struct kvm_mem_alias *p;
850 r = -EINVAL;
851 /* General sanity checks */
852 if (alias->memory_size & (PAGE_SIZE - 1))
853 goto out;
854 if (alias->guest_phys_addr & (PAGE_SIZE - 1))
855 goto out;
856 if (alias->slot >= KVM_ALIAS_SLOTS)
857 goto out;
858 if (alias->guest_phys_addr + alias->memory_size
859 < alias->guest_phys_addr)
860 goto out;
861 if (alias->target_phys_addr + alias->memory_size
862 < alias->target_phys_addr)
863 goto out;
865 spin_lock(&kvm->lock);
867 p = &kvm->aliases[alias->slot];
868 p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
869 p->npages = alias->memory_size >> PAGE_SHIFT;
870 p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
872 for (n = KVM_ALIAS_SLOTS; n > 0; --n)
873 if (kvm->aliases[n - 1].npages)
874 break;
875 kvm->naliases = n;
877 kvm_mmu_zap_all(kvm);
879 spin_unlock(&kvm->lock);
881 return 0;
883 out:
884 return r;
887 static gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
889 int i;
890 struct kvm_mem_alias *alias;
892 for (i = 0; i < kvm->naliases; ++i) {
893 alias = &kvm->aliases[i];
894 if (gfn >= alias->base_gfn
895 && gfn < alias->base_gfn + alias->npages)
896 return alias->target_gfn + gfn - alias->base_gfn;
898 return gfn;
901 static struct kvm_memory_slot *__gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
903 int i;
905 for (i = 0; i < kvm->nmemslots; ++i) {
906 struct kvm_memory_slot *memslot = &kvm->memslots[i];
908 if (gfn >= memslot->base_gfn
909 && gfn < memslot->base_gfn + memslot->npages)
910 return memslot;
912 return NULL;
915 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
917 gfn = unalias_gfn(kvm, gfn);
918 return __gfn_to_memslot(kvm, gfn);
921 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
923 struct kvm_memory_slot *slot;
925 gfn = unalias_gfn(kvm, gfn);
926 slot = __gfn_to_memslot(kvm, gfn);
927 if (!slot)
928 return NULL;
929 return slot->phys_mem[gfn - slot->base_gfn];
931 EXPORT_SYMBOL_GPL(gfn_to_page);
933 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
935 int i;
936 struct kvm_memory_slot *memslot;
937 unsigned long rel_gfn;
939 for (i = 0; i < kvm->nmemslots; ++i) {
940 memslot = &kvm->memslots[i];
942 if (gfn >= memslot->base_gfn
943 && gfn < memslot->base_gfn + memslot->npages) {
945 if (!memslot->dirty_bitmap)
946 return;
948 rel_gfn = gfn - memslot->base_gfn;
950 /* avoid RMW */
951 if (!test_bit(rel_gfn, memslot->dirty_bitmap))
952 set_bit(rel_gfn, memslot->dirty_bitmap);
953 return;
958 static int emulator_read_std(unsigned long addr,
959 void *val,
960 unsigned int bytes,
961 struct x86_emulate_ctxt *ctxt)
963 struct kvm_vcpu *vcpu = ctxt->vcpu;
964 void *data = val;
966 while (bytes) {
967 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
968 unsigned offset = addr & (PAGE_SIZE-1);
969 unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
970 unsigned long pfn;
971 struct page *page;
972 void *page_virt;
974 if (gpa == UNMAPPED_GVA)
975 return X86EMUL_PROPAGATE_FAULT;
976 pfn = gpa >> PAGE_SHIFT;
977 page = gfn_to_page(vcpu->kvm, pfn);
978 if (!page)
979 return X86EMUL_UNHANDLEABLE;
980 page_virt = kmap_atomic(page, KM_USER0);
982 memcpy(data, page_virt + offset, tocopy);
984 kunmap_atomic(page_virt, KM_USER0);
986 bytes -= tocopy;
987 data += tocopy;
988 addr += tocopy;
991 return X86EMUL_CONTINUE;
994 static int emulator_write_std(unsigned long addr,
995 const void *val,
996 unsigned int bytes,
997 struct x86_emulate_ctxt *ctxt)
999 printk(KERN_ERR "emulator_write_std: addr %lx n %d\n",
1000 addr, bytes);
1001 return X86EMUL_UNHANDLEABLE;
1004 static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
1005 gpa_t addr)
1008 * Note that its important to have this wrapper function because
1009 * in the very near future we will be checking for MMIOs against
1010 * the LAPIC as well as the general MMIO bus
1012 return kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr);
1015 static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
1016 gpa_t addr)
1018 return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr);
1021 static int emulator_read_emulated(unsigned long addr,
1022 void *val,
1023 unsigned int bytes,
1024 struct x86_emulate_ctxt *ctxt)
1026 struct kvm_vcpu *vcpu = ctxt->vcpu;
1027 struct kvm_io_device *mmio_dev;
1028 gpa_t gpa;
1030 if (vcpu->mmio_read_completed) {
1031 memcpy(val, vcpu->mmio_data, bytes);
1032 vcpu->mmio_read_completed = 0;
1033 return X86EMUL_CONTINUE;
1034 } else if (emulator_read_std(addr, val, bytes, ctxt)
1035 == X86EMUL_CONTINUE)
1036 return X86EMUL_CONTINUE;
1038 gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
1039 if (gpa == UNMAPPED_GVA)
1040 return X86EMUL_PROPAGATE_FAULT;
1043 * Is this MMIO handled locally?
1045 mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
1046 if (mmio_dev) {
1047 kvm_iodevice_read(mmio_dev, gpa, bytes, val);
1048 return X86EMUL_CONTINUE;
1051 vcpu->mmio_needed = 1;
1052 vcpu->mmio_phys_addr = gpa;
1053 vcpu->mmio_size = bytes;
1054 vcpu->mmio_is_write = 0;
1056 return X86EMUL_UNHANDLEABLE;
1059 static int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
1060 const void *val, int bytes)
1062 struct page *page;
1063 void *virt;
1064 unsigned offset = offset_in_page(gpa);
1066 if (((gpa + bytes - 1) >> PAGE_SHIFT) != (gpa >> PAGE_SHIFT))
1067 return 0;
1068 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1069 if (!page)
1070 return 0;
1071 mark_page_dirty(vcpu->kvm, gpa >> PAGE_SHIFT);
1072 virt = kmap_atomic(page, KM_USER0);
1073 kvm_mmu_pte_write(vcpu, gpa, virt + offset, val, bytes);
1074 memcpy(virt + offset_in_page(gpa), val, bytes);
1075 kunmap_atomic(virt, KM_USER0);
1076 return 1;
1079 static int emulator_write_emulated_onepage(unsigned long addr,
1080 const void *val,
1081 unsigned int bytes,
1082 struct x86_emulate_ctxt *ctxt)
1084 struct kvm_vcpu *vcpu = ctxt->vcpu;
1085 struct kvm_io_device *mmio_dev;
1086 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
1088 if (gpa == UNMAPPED_GVA) {
1089 kvm_arch_ops->inject_page_fault(vcpu, addr, 2);
1090 return X86EMUL_PROPAGATE_FAULT;
1093 if (emulator_write_phys(vcpu, gpa, val, bytes))
1094 return X86EMUL_CONTINUE;
1097 * Is this MMIO handled locally?
1099 mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
1100 if (mmio_dev) {
1101 kvm_iodevice_write(mmio_dev, gpa, bytes, val);
1102 return X86EMUL_CONTINUE;
1105 vcpu->mmio_needed = 1;
1106 vcpu->mmio_phys_addr = gpa;
1107 vcpu->mmio_size = bytes;
1108 vcpu->mmio_is_write = 1;
1109 memcpy(vcpu->mmio_data, val, bytes);
1111 return X86EMUL_CONTINUE;
1114 static int emulator_write_emulated(unsigned long addr,
1115 const void *val,
1116 unsigned int bytes,
1117 struct x86_emulate_ctxt *ctxt)
1119 /* Crossing a page boundary? */
1120 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
1121 int rc, now;
1123 now = -addr & ~PAGE_MASK;
1124 rc = emulator_write_emulated_onepage(addr, val, now, ctxt);
1125 if (rc != X86EMUL_CONTINUE)
1126 return rc;
1127 addr += now;
1128 val += now;
1129 bytes -= now;
1131 return emulator_write_emulated_onepage(addr, val, bytes, ctxt);
1134 static int emulator_cmpxchg_emulated(unsigned long addr,
1135 const void *old,
1136 const void *new,
1137 unsigned int bytes,
1138 struct x86_emulate_ctxt *ctxt)
1140 static int reported;
1142 if (!reported) {
1143 reported = 1;
1144 printk(KERN_WARNING "kvm: emulating exchange as write\n");
1146 return emulator_write_emulated(addr, new, bytes, ctxt);
1149 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
1151 return kvm_arch_ops->get_segment_base(vcpu, seg);
1154 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
1156 return X86EMUL_CONTINUE;
1159 int emulate_clts(struct kvm_vcpu *vcpu)
1161 unsigned long cr0;
1163 cr0 = vcpu->cr0 & ~CR0_TS_MASK;
1164 kvm_arch_ops->set_cr0(vcpu, cr0);
1165 return X86EMUL_CONTINUE;
1168 int emulator_get_dr(struct x86_emulate_ctxt* ctxt, int dr, unsigned long *dest)
1170 struct kvm_vcpu *vcpu = ctxt->vcpu;
1172 switch (dr) {
1173 case 0 ... 3:
1174 *dest = kvm_arch_ops->get_dr(vcpu, dr);
1175 return X86EMUL_CONTINUE;
1176 default:
1177 printk(KERN_DEBUG "%s: unexpected dr %u\n",
1178 __FUNCTION__, dr);
1179 return X86EMUL_UNHANDLEABLE;
1183 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
1185 unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
1186 int exception;
1188 kvm_arch_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
1189 if (exception) {
1190 /* FIXME: better handling */
1191 return X86EMUL_UNHANDLEABLE;
1193 return X86EMUL_CONTINUE;
1196 static void report_emulation_failure(struct x86_emulate_ctxt *ctxt)
1198 static int reported;
1199 u8 opcodes[4];
1200 unsigned long rip = ctxt->vcpu->rip;
1201 unsigned long rip_linear;
1203 rip_linear = rip + get_segment_base(ctxt->vcpu, VCPU_SREG_CS);
1205 if (reported)
1206 return;
1208 emulator_read_std(rip_linear, (void *)opcodes, 4, ctxt);
1210 printk(KERN_ERR "emulation failed but !mmio_needed?"
1211 " rip %lx %02x %02x %02x %02x\n",
1212 rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
1213 reported = 1;
1216 struct x86_emulate_ops emulate_ops = {
1217 .read_std = emulator_read_std,
1218 .write_std = emulator_write_std,
1219 .read_emulated = emulator_read_emulated,
1220 .write_emulated = emulator_write_emulated,
1221 .cmpxchg_emulated = emulator_cmpxchg_emulated,
1224 int emulate_instruction(struct kvm_vcpu *vcpu,
1225 struct kvm_run *run,
1226 unsigned long cr2,
1227 u16 error_code)
1229 struct x86_emulate_ctxt emulate_ctxt;
1230 int r;
1231 int cs_db, cs_l;
1233 vcpu->mmio_fault_cr2 = cr2;
1234 kvm_arch_ops->cache_regs(vcpu);
1236 kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
1238 emulate_ctxt.vcpu = vcpu;
1239 emulate_ctxt.eflags = kvm_arch_ops->get_rflags(vcpu);
1240 emulate_ctxt.cr2 = cr2;
1241 emulate_ctxt.mode = (emulate_ctxt.eflags & X86_EFLAGS_VM)
1242 ? X86EMUL_MODE_REAL : cs_l
1243 ? X86EMUL_MODE_PROT64 : cs_db
1244 ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
1246 if (emulate_ctxt.mode == X86EMUL_MODE_PROT64) {
1247 emulate_ctxt.cs_base = 0;
1248 emulate_ctxt.ds_base = 0;
1249 emulate_ctxt.es_base = 0;
1250 emulate_ctxt.ss_base = 0;
1251 } else {
1252 emulate_ctxt.cs_base = get_segment_base(vcpu, VCPU_SREG_CS);
1253 emulate_ctxt.ds_base = get_segment_base(vcpu, VCPU_SREG_DS);
1254 emulate_ctxt.es_base = get_segment_base(vcpu, VCPU_SREG_ES);
1255 emulate_ctxt.ss_base = get_segment_base(vcpu, VCPU_SREG_SS);
1258 emulate_ctxt.gs_base = get_segment_base(vcpu, VCPU_SREG_GS);
1259 emulate_ctxt.fs_base = get_segment_base(vcpu, VCPU_SREG_FS);
1261 vcpu->mmio_is_write = 0;
1262 r = x86_emulate_memop(&emulate_ctxt, &emulate_ops);
1264 if ((r || vcpu->mmio_is_write) && run) {
1265 run->mmio.phys_addr = vcpu->mmio_phys_addr;
1266 memcpy(run->mmio.data, vcpu->mmio_data, 8);
1267 run->mmio.len = vcpu->mmio_size;
1268 run->mmio.is_write = vcpu->mmio_is_write;
1271 if (r) {
1272 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
1273 return EMULATE_DONE;
1274 if (!vcpu->mmio_needed) {
1275 report_emulation_failure(&emulate_ctxt);
1276 return EMULATE_FAIL;
1278 return EMULATE_DO_MMIO;
1281 kvm_arch_ops->decache_regs(vcpu);
1282 kvm_arch_ops->set_rflags(vcpu, emulate_ctxt.eflags);
1284 if (vcpu->mmio_is_write) {
1285 vcpu->mmio_needed = 0;
1286 return EMULATE_DO_MMIO;
1289 return EMULATE_DONE;
1291 EXPORT_SYMBOL_GPL(emulate_instruction);
1293 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
1295 if (vcpu->irq_summary)
1296 return 1;
1298 vcpu->run->exit_reason = KVM_EXIT_HLT;
1299 ++vcpu->stat.halt_exits;
1300 return 0;
1302 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
1304 int kvm_hypercall(struct kvm_vcpu *vcpu, struct kvm_run *run)
1306 unsigned long nr, a0, a1, a2, a3, a4, a5, ret;
1308 kvm_arch_ops->cache_regs(vcpu);
1309 ret = -KVM_EINVAL;
1310 #ifdef CONFIG_X86_64
1311 if (is_long_mode(vcpu)) {
1312 nr = vcpu->regs[VCPU_REGS_RAX];
1313 a0 = vcpu->regs[VCPU_REGS_RDI];
1314 a1 = vcpu->regs[VCPU_REGS_RSI];
1315 a2 = vcpu->regs[VCPU_REGS_RDX];
1316 a3 = vcpu->regs[VCPU_REGS_RCX];
1317 a4 = vcpu->regs[VCPU_REGS_R8];
1318 a5 = vcpu->regs[VCPU_REGS_R9];
1319 } else
1320 #endif
1322 nr = vcpu->regs[VCPU_REGS_RBX] & -1u;
1323 a0 = vcpu->regs[VCPU_REGS_RAX] & -1u;
1324 a1 = vcpu->regs[VCPU_REGS_RCX] & -1u;
1325 a2 = vcpu->regs[VCPU_REGS_RDX] & -1u;
1326 a3 = vcpu->regs[VCPU_REGS_RSI] & -1u;
1327 a4 = vcpu->regs[VCPU_REGS_RDI] & -1u;
1328 a5 = vcpu->regs[VCPU_REGS_RBP] & -1u;
1330 switch (nr) {
1331 default:
1332 run->hypercall.args[0] = a0;
1333 run->hypercall.args[1] = a1;
1334 run->hypercall.args[2] = a2;
1335 run->hypercall.args[3] = a3;
1336 run->hypercall.args[4] = a4;
1337 run->hypercall.args[5] = a5;
1338 run->hypercall.ret = ret;
1339 run->hypercall.longmode = is_long_mode(vcpu);
1340 kvm_arch_ops->decache_regs(vcpu);
1341 return 0;
1343 vcpu->regs[VCPU_REGS_RAX] = ret;
1344 kvm_arch_ops->decache_regs(vcpu);
1345 return 1;
1347 EXPORT_SYMBOL_GPL(kvm_hypercall);
1349 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
1351 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
1354 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
1356 struct descriptor_table dt = { limit, base };
1358 kvm_arch_ops->set_gdt(vcpu, &dt);
1361 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
1363 struct descriptor_table dt = { limit, base };
1365 kvm_arch_ops->set_idt(vcpu, &dt);
1368 void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
1369 unsigned long *rflags)
1371 lmsw(vcpu, msw);
1372 *rflags = kvm_arch_ops->get_rflags(vcpu);
1375 unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
1377 kvm_arch_ops->decache_cr4_guest_bits(vcpu);
1378 switch (cr) {
1379 case 0:
1380 return vcpu->cr0;
1381 case 2:
1382 return vcpu->cr2;
1383 case 3:
1384 return vcpu->cr3;
1385 case 4:
1386 return vcpu->cr4;
1387 default:
1388 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
1389 return 0;
1393 void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
1394 unsigned long *rflags)
1396 switch (cr) {
1397 case 0:
1398 set_cr0(vcpu, mk_cr_64(vcpu->cr0, val));
1399 *rflags = kvm_arch_ops->get_rflags(vcpu);
1400 break;
1401 case 2:
1402 vcpu->cr2 = val;
1403 break;
1404 case 3:
1405 set_cr3(vcpu, val);
1406 break;
1407 case 4:
1408 set_cr4(vcpu, mk_cr_64(vcpu->cr4, val));
1409 break;
1410 default:
1411 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
1416 * Register the para guest with the host:
1418 static int vcpu_register_para(struct kvm_vcpu *vcpu, gpa_t para_state_gpa)
1420 struct kvm_vcpu_para_state *para_state;
1421 hpa_t para_state_hpa, hypercall_hpa;
1422 struct page *para_state_page;
1423 unsigned char *hypercall;
1424 gpa_t hypercall_gpa;
1426 printk(KERN_DEBUG "kvm: guest trying to enter paravirtual mode\n");
1427 printk(KERN_DEBUG ".... para_state_gpa: %08Lx\n", para_state_gpa);
1430 * Needs to be page aligned:
1432 if (para_state_gpa != PAGE_ALIGN(para_state_gpa))
1433 goto err_gp;
1435 para_state_hpa = gpa_to_hpa(vcpu, para_state_gpa);
1436 printk(KERN_DEBUG ".... para_state_hpa: %08Lx\n", para_state_hpa);
1437 if (is_error_hpa(para_state_hpa))
1438 goto err_gp;
1440 mark_page_dirty(vcpu->kvm, para_state_gpa >> PAGE_SHIFT);
1441 para_state_page = pfn_to_page(para_state_hpa >> PAGE_SHIFT);
1442 para_state = kmap_atomic(para_state_page, KM_USER0);
1444 printk(KERN_DEBUG ".... guest version: %d\n", para_state->guest_version);
1445 printk(KERN_DEBUG ".... size: %d\n", para_state->size);
1447 para_state->host_version = KVM_PARA_API_VERSION;
1449 * We cannot support guests that try to register themselves
1450 * with a newer API version than the host supports:
1452 if (para_state->guest_version > KVM_PARA_API_VERSION) {
1453 para_state->ret = -KVM_EINVAL;
1454 goto err_kunmap_skip;
1457 hypercall_gpa = para_state->hypercall_gpa;
1458 hypercall_hpa = gpa_to_hpa(vcpu, hypercall_gpa);
1459 printk(KERN_DEBUG ".... hypercall_hpa: %08Lx\n", hypercall_hpa);
1460 if (is_error_hpa(hypercall_hpa)) {
1461 para_state->ret = -KVM_EINVAL;
1462 goto err_kunmap_skip;
1465 printk(KERN_DEBUG "kvm: para guest successfully registered.\n");
1466 vcpu->para_state_page = para_state_page;
1467 vcpu->para_state_gpa = para_state_gpa;
1468 vcpu->hypercall_gpa = hypercall_gpa;
1470 mark_page_dirty(vcpu->kvm, hypercall_gpa >> PAGE_SHIFT);
1471 hypercall = kmap_atomic(pfn_to_page(hypercall_hpa >> PAGE_SHIFT),
1472 KM_USER1) + (hypercall_hpa & ~PAGE_MASK);
1473 kvm_arch_ops->patch_hypercall(vcpu, hypercall);
1474 kunmap_atomic(hypercall, KM_USER1);
1476 para_state->ret = 0;
1477 err_kunmap_skip:
1478 kunmap_atomic(para_state, KM_USER0);
1479 return 0;
1480 err_gp:
1481 return 1;
1484 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1486 u64 data;
1488 switch (msr) {
1489 case 0xc0010010: /* SYSCFG */
1490 case 0xc0010015: /* HWCR */
1491 case MSR_IA32_PLATFORM_ID:
1492 case MSR_IA32_P5_MC_ADDR:
1493 case MSR_IA32_P5_MC_TYPE:
1494 case MSR_IA32_MC0_CTL:
1495 case MSR_IA32_MCG_STATUS:
1496 case MSR_IA32_MCG_CAP:
1497 case MSR_IA32_MC0_MISC:
1498 case MSR_IA32_MC0_MISC+4:
1499 case MSR_IA32_MC0_MISC+8:
1500 case MSR_IA32_MC0_MISC+12:
1501 case MSR_IA32_MC0_MISC+16:
1502 case MSR_IA32_UCODE_REV:
1503 case MSR_IA32_PERF_STATUS:
1504 case MSR_IA32_EBL_CR_POWERON:
1505 /* MTRR registers */
1506 case 0xfe:
1507 case 0x200 ... 0x2ff:
1508 data = 0;
1509 break;
1510 case 0xcd: /* fsb frequency */
1511 data = 3;
1512 break;
1513 case MSR_IA32_APICBASE:
1514 data = vcpu->apic_base;
1515 break;
1516 case MSR_IA32_MISC_ENABLE:
1517 data = vcpu->ia32_misc_enable_msr;
1518 break;
1519 #ifdef CONFIG_X86_64
1520 case MSR_EFER:
1521 data = vcpu->shadow_efer;
1522 break;
1523 #endif
1524 default:
1525 printk(KERN_ERR "kvm: unhandled rdmsr: 0x%x\n", msr);
1526 return 1;
1528 *pdata = data;
1529 return 0;
1531 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
1534 * Reads an msr value (of 'msr_index') into 'pdata'.
1535 * Returns 0 on success, non-0 otherwise.
1536 * Assumes vcpu_load() was already called.
1538 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1540 return kvm_arch_ops->get_msr(vcpu, msr_index, pdata);
1543 #ifdef CONFIG_X86_64
1545 static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
1547 if (efer & EFER_RESERVED_BITS) {
1548 printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
1549 efer);
1550 inject_gp(vcpu);
1551 return;
1554 if (is_paging(vcpu)
1555 && (vcpu->shadow_efer & EFER_LME) != (efer & EFER_LME)) {
1556 printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
1557 inject_gp(vcpu);
1558 return;
1561 kvm_arch_ops->set_efer(vcpu, efer);
1563 efer &= ~EFER_LMA;
1564 efer |= vcpu->shadow_efer & EFER_LMA;
1566 vcpu->shadow_efer = efer;
1569 #endif
1571 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1573 switch (msr) {
1574 #ifdef CONFIG_X86_64
1575 case MSR_EFER:
1576 set_efer(vcpu, data);
1577 break;
1578 #endif
1579 case MSR_IA32_MC0_STATUS:
1580 printk(KERN_WARNING "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
1581 __FUNCTION__, data);
1582 break;
1583 case MSR_IA32_MCG_STATUS:
1584 printk(KERN_WARNING "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
1585 __FUNCTION__, data);
1586 break;
1587 case MSR_IA32_UCODE_REV:
1588 case MSR_IA32_UCODE_WRITE:
1589 case 0x200 ... 0x2ff: /* MTRRs */
1590 break;
1591 case MSR_IA32_APICBASE:
1592 vcpu->apic_base = data;
1593 break;
1594 case MSR_IA32_MISC_ENABLE:
1595 vcpu->ia32_misc_enable_msr = data;
1596 break;
1598 * This is the 'probe whether the host is KVM' logic:
1600 case MSR_KVM_API_MAGIC:
1601 return vcpu_register_para(vcpu, data);
1603 default:
1604 printk(KERN_ERR "kvm: unhandled wrmsr: 0x%x\n", msr);
1605 return 1;
1607 return 0;
1609 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
1612 * Writes msr value into into the appropriate "register".
1613 * Returns 0 on success, non-0 otherwise.
1614 * Assumes vcpu_load() was already called.
1616 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1618 return kvm_arch_ops->set_msr(vcpu, msr_index, data);
1621 void kvm_resched(struct kvm_vcpu *vcpu)
1623 if (!need_resched())
1624 return;
1625 vcpu_put(vcpu);
1626 cond_resched();
1627 vcpu_load(vcpu);
1629 EXPORT_SYMBOL_GPL(kvm_resched);
1631 void load_msrs(struct vmx_msr_entry *e, int n)
1633 int i;
1635 for (i = 0; i < n; ++i)
1636 wrmsrl(e[i].index, e[i].data);
1638 EXPORT_SYMBOL_GPL(load_msrs);
1640 void save_msrs(struct vmx_msr_entry *e, int n)
1642 int i;
1644 for (i = 0; i < n; ++i)
1645 rdmsrl(e[i].index, e[i].data);
1647 EXPORT_SYMBOL_GPL(save_msrs);
1649 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
1651 int i;
1652 u32 function;
1653 struct kvm_cpuid_entry *e, *best;
1655 kvm_arch_ops->cache_regs(vcpu);
1656 function = vcpu->regs[VCPU_REGS_RAX];
1657 vcpu->regs[VCPU_REGS_RAX] = 0;
1658 vcpu->regs[VCPU_REGS_RBX] = 0;
1659 vcpu->regs[VCPU_REGS_RCX] = 0;
1660 vcpu->regs[VCPU_REGS_RDX] = 0;
1661 best = NULL;
1662 for (i = 0; i < vcpu->cpuid_nent; ++i) {
1663 e = &vcpu->cpuid_entries[i];
1664 if (e->function == function) {
1665 best = e;
1666 break;
1669 * Both basic or both extended?
1671 if (((e->function ^ function) & 0x80000000) == 0)
1672 if (!best || e->function > best->function)
1673 best = e;
1675 if (best) {
1676 vcpu->regs[VCPU_REGS_RAX] = best->eax;
1677 vcpu->regs[VCPU_REGS_RBX] = best->ebx;
1678 vcpu->regs[VCPU_REGS_RCX] = best->ecx;
1679 vcpu->regs[VCPU_REGS_RDX] = best->edx;
1681 kvm_arch_ops->decache_regs(vcpu);
1682 kvm_arch_ops->skip_emulated_instruction(vcpu);
1684 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
1686 static int pio_copy_data(struct kvm_vcpu *vcpu)
1688 void *p = vcpu->pio_data;
1689 void *q;
1690 unsigned bytes;
1691 int nr_pages = vcpu->pio.guest_pages[1] ? 2 : 1;
1693 kvm_arch_ops->vcpu_put(vcpu);
1694 q = vmap(vcpu->pio.guest_pages, nr_pages, VM_READ|VM_WRITE,
1695 PAGE_KERNEL);
1696 if (!q) {
1697 kvm_arch_ops->vcpu_load(vcpu);
1698 free_pio_guest_pages(vcpu);
1699 return -ENOMEM;
1701 q += vcpu->pio.guest_page_offset;
1702 bytes = vcpu->pio.size * vcpu->pio.cur_count;
1703 if (vcpu->pio.in)
1704 memcpy(q, p, bytes);
1705 else
1706 memcpy(p, q, bytes);
1707 q -= vcpu->pio.guest_page_offset;
1708 vunmap(q);
1709 kvm_arch_ops->vcpu_load(vcpu);
1710 free_pio_guest_pages(vcpu);
1711 return 0;
1714 static int complete_pio(struct kvm_vcpu *vcpu)
1716 struct kvm_pio_request *io = &vcpu->pio;
1717 long delta;
1718 int r;
1720 kvm_arch_ops->cache_regs(vcpu);
1722 if (!io->string) {
1723 if (io->in)
1724 memcpy(&vcpu->regs[VCPU_REGS_RAX], vcpu->pio_data,
1725 io->size);
1726 } else {
1727 if (io->in) {
1728 r = pio_copy_data(vcpu);
1729 if (r) {
1730 kvm_arch_ops->cache_regs(vcpu);
1731 return r;
1735 delta = 1;
1736 if (io->rep) {
1737 delta *= io->cur_count;
1739 * The size of the register should really depend on
1740 * current address size.
1742 vcpu->regs[VCPU_REGS_RCX] -= delta;
1744 if (io->down)
1745 delta = -delta;
1746 delta *= io->size;
1747 if (io->in)
1748 vcpu->regs[VCPU_REGS_RDI] += delta;
1749 else
1750 vcpu->regs[VCPU_REGS_RSI] += delta;
1753 kvm_arch_ops->decache_regs(vcpu);
1755 io->count -= io->cur_count;
1756 io->cur_count = 0;
1758 if (!io->count)
1759 kvm_arch_ops->skip_emulated_instruction(vcpu);
1760 return 0;
1763 void kernel_pio(struct kvm_io_device *pio_dev, struct kvm_vcpu *vcpu)
1765 /* TODO: String I/O for in kernel device */
1767 if (vcpu->pio.in)
1768 kvm_iodevice_read(pio_dev, vcpu->pio.port,
1769 vcpu->pio.size,
1770 vcpu->pio_data);
1771 else
1772 kvm_iodevice_write(pio_dev, vcpu->pio.port,
1773 vcpu->pio.size,
1774 vcpu->pio_data);
1777 int kvm_setup_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
1778 int size, unsigned long count, int string, int down,
1779 gva_t address, int rep, unsigned port)
1781 unsigned now, in_page;
1782 int i;
1783 int nr_pages = 1;
1784 struct page *page;
1785 struct kvm_io_device *pio_dev;
1787 vcpu->run->exit_reason = KVM_EXIT_IO;
1788 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
1789 vcpu->run->io.size = size;
1790 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
1791 vcpu->run->io.count = count;
1792 vcpu->run->io.port = port;
1793 vcpu->pio.count = count;
1794 vcpu->pio.cur_count = count;
1795 vcpu->pio.size = size;
1796 vcpu->pio.in = in;
1797 vcpu->pio.port = port;
1798 vcpu->pio.string = string;
1799 vcpu->pio.down = down;
1800 vcpu->pio.guest_page_offset = offset_in_page(address);
1801 vcpu->pio.rep = rep;
1803 pio_dev = vcpu_find_pio_dev(vcpu, port);
1804 if (!string) {
1805 kvm_arch_ops->cache_regs(vcpu);
1806 memcpy(vcpu->pio_data, &vcpu->regs[VCPU_REGS_RAX], 4);
1807 kvm_arch_ops->decache_regs(vcpu);
1808 if (pio_dev) {
1809 kernel_pio(pio_dev, vcpu);
1810 complete_pio(vcpu);
1811 return 1;
1813 return 0;
1815 /* TODO: String I/O for in kernel device */
1816 if (pio_dev)
1817 printk(KERN_ERR "kvm_setup_pio: no string io support\n");
1819 if (!count) {
1820 kvm_arch_ops->skip_emulated_instruction(vcpu);
1821 return 1;
1824 now = min(count, PAGE_SIZE / size);
1826 if (!down)
1827 in_page = PAGE_SIZE - offset_in_page(address);
1828 else
1829 in_page = offset_in_page(address) + size;
1830 now = min(count, (unsigned long)in_page / size);
1831 if (!now) {
1833 * String I/O straddles page boundary. Pin two guest pages
1834 * so that we satisfy atomicity constraints. Do just one
1835 * transaction to avoid complexity.
1837 nr_pages = 2;
1838 now = 1;
1840 if (down) {
1842 * String I/O in reverse. Yuck. Kill the guest, fix later.
1844 printk(KERN_ERR "kvm: guest string pio down\n");
1845 inject_gp(vcpu);
1846 return 1;
1848 vcpu->run->io.count = now;
1849 vcpu->pio.cur_count = now;
1851 for (i = 0; i < nr_pages; ++i) {
1852 spin_lock(&vcpu->kvm->lock);
1853 page = gva_to_page(vcpu, address + i * PAGE_SIZE);
1854 if (page)
1855 get_page(page);
1856 vcpu->pio.guest_pages[i] = page;
1857 spin_unlock(&vcpu->kvm->lock);
1858 if (!page) {
1859 inject_gp(vcpu);
1860 free_pio_guest_pages(vcpu);
1861 return 1;
1865 if (!vcpu->pio.in)
1866 return pio_copy_data(vcpu);
1867 return 0;
1869 EXPORT_SYMBOL_GPL(kvm_setup_pio);
1871 static int kvm_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1873 int r;
1874 sigset_t sigsaved;
1876 vcpu_load(vcpu);
1878 if (vcpu->sigset_active)
1879 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
1881 /* re-sync apic's tpr */
1882 vcpu->cr8 = kvm_run->cr8;
1884 if (vcpu->pio.cur_count) {
1885 r = complete_pio(vcpu);
1886 if (r)
1887 goto out;
1890 if (vcpu->mmio_needed) {
1891 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
1892 vcpu->mmio_read_completed = 1;
1893 vcpu->mmio_needed = 0;
1894 r = emulate_instruction(vcpu, kvm_run,
1895 vcpu->mmio_fault_cr2, 0);
1896 if (r == EMULATE_DO_MMIO) {
1898 * Read-modify-write. Back to userspace.
1900 kvm_run->exit_reason = KVM_EXIT_MMIO;
1901 r = 0;
1902 goto out;
1906 if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL) {
1907 kvm_arch_ops->cache_regs(vcpu);
1908 vcpu->regs[VCPU_REGS_RAX] = kvm_run->hypercall.ret;
1909 kvm_arch_ops->decache_regs(vcpu);
1912 r = kvm_arch_ops->run(vcpu, kvm_run);
1914 out:
1915 if (vcpu->sigset_active)
1916 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
1918 vcpu_put(vcpu);
1919 return r;
1922 static int kvm_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu,
1923 struct kvm_regs *regs)
1925 vcpu_load(vcpu);
1927 kvm_arch_ops->cache_regs(vcpu);
1929 regs->rax = vcpu->regs[VCPU_REGS_RAX];
1930 regs->rbx = vcpu->regs[VCPU_REGS_RBX];
1931 regs->rcx = vcpu->regs[VCPU_REGS_RCX];
1932 regs->rdx = vcpu->regs[VCPU_REGS_RDX];
1933 regs->rsi = vcpu->regs[VCPU_REGS_RSI];
1934 regs->rdi = vcpu->regs[VCPU_REGS_RDI];
1935 regs->rsp = vcpu->regs[VCPU_REGS_RSP];
1936 regs->rbp = vcpu->regs[VCPU_REGS_RBP];
1937 #ifdef CONFIG_X86_64
1938 regs->r8 = vcpu->regs[VCPU_REGS_R8];
1939 regs->r9 = vcpu->regs[VCPU_REGS_R9];
1940 regs->r10 = vcpu->regs[VCPU_REGS_R10];
1941 regs->r11 = vcpu->regs[VCPU_REGS_R11];
1942 regs->r12 = vcpu->regs[VCPU_REGS_R12];
1943 regs->r13 = vcpu->regs[VCPU_REGS_R13];
1944 regs->r14 = vcpu->regs[VCPU_REGS_R14];
1945 regs->r15 = vcpu->regs[VCPU_REGS_R15];
1946 #endif
1948 regs->rip = vcpu->rip;
1949 regs->rflags = kvm_arch_ops->get_rflags(vcpu);
1952 * Don't leak debug flags in case they were set for guest debugging
1954 if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
1955 regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
1957 vcpu_put(vcpu);
1959 return 0;
1962 static int kvm_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu,
1963 struct kvm_regs *regs)
1965 vcpu_load(vcpu);
1967 vcpu->regs[VCPU_REGS_RAX] = regs->rax;
1968 vcpu->regs[VCPU_REGS_RBX] = regs->rbx;
1969 vcpu->regs[VCPU_REGS_RCX] = regs->rcx;
1970 vcpu->regs[VCPU_REGS_RDX] = regs->rdx;
1971 vcpu->regs[VCPU_REGS_RSI] = regs->rsi;
1972 vcpu->regs[VCPU_REGS_RDI] = regs->rdi;
1973 vcpu->regs[VCPU_REGS_RSP] = regs->rsp;
1974 vcpu->regs[VCPU_REGS_RBP] = regs->rbp;
1975 #ifdef CONFIG_X86_64
1976 vcpu->regs[VCPU_REGS_R8] = regs->r8;
1977 vcpu->regs[VCPU_REGS_R9] = regs->r9;
1978 vcpu->regs[VCPU_REGS_R10] = regs->r10;
1979 vcpu->regs[VCPU_REGS_R11] = regs->r11;
1980 vcpu->regs[VCPU_REGS_R12] = regs->r12;
1981 vcpu->regs[VCPU_REGS_R13] = regs->r13;
1982 vcpu->regs[VCPU_REGS_R14] = regs->r14;
1983 vcpu->regs[VCPU_REGS_R15] = regs->r15;
1984 #endif
1986 vcpu->rip = regs->rip;
1987 kvm_arch_ops->set_rflags(vcpu, regs->rflags);
1989 kvm_arch_ops->decache_regs(vcpu);
1991 vcpu_put(vcpu);
1993 return 0;
1996 static void get_segment(struct kvm_vcpu *vcpu,
1997 struct kvm_segment *var, int seg)
1999 return kvm_arch_ops->get_segment(vcpu, var, seg);
2002 static int kvm_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
2003 struct kvm_sregs *sregs)
2005 struct descriptor_table dt;
2007 vcpu_load(vcpu);
2009 get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
2010 get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
2011 get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
2012 get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
2013 get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
2014 get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
2016 get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
2017 get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
2019 kvm_arch_ops->get_idt(vcpu, &dt);
2020 sregs->idt.limit = dt.limit;
2021 sregs->idt.base = dt.base;
2022 kvm_arch_ops->get_gdt(vcpu, &dt);
2023 sregs->gdt.limit = dt.limit;
2024 sregs->gdt.base = dt.base;
2026 kvm_arch_ops->decache_cr4_guest_bits(vcpu);
2027 sregs->cr0 = vcpu->cr0;
2028 sregs->cr2 = vcpu->cr2;
2029 sregs->cr3 = vcpu->cr3;
2030 sregs->cr4 = vcpu->cr4;
2031 sregs->cr8 = vcpu->cr8;
2032 sregs->efer = vcpu->shadow_efer;
2033 sregs->apic_base = vcpu->apic_base;
2035 memcpy(sregs->interrupt_bitmap, vcpu->irq_pending,
2036 sizeof sregs->interrupt_bitmap);
2038 vcpu_put(vcpu);
2040 return 0;
2043 static void set_segment(struct kvm_vcpu *vcpu,
2044 struct kvm_segment *var, int seg)
2046 return kvm_arch_ops->set_segment(vcpu, var, seg);
2049 static int kvm_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
2050 struct kvm_sregs *sregs)
2052 int mmu_reset_needed = 0;
2053 int i;
2054 struct descriptor_table dt;
2056 vcpu_load(vcpu);
2058 dt.limit = sregs->idt.limit;
2059 dt.base = sregs->idt.base;
2060 kvm_arch_ops->set_idt(vcpu, &dt);
2061 dt.limit = sregs->gdt.limit;
2062 dt.base = sregs->gdt.base;
2063 kvm_arch_ops->set_gdt(vcpu, &dt);
2065 vcpu->cr2 = sregs->cr2;
2066 mmu_reset_needed |= vcpu->cr3 != sregs->cr3;
2067 vcpu->cr3 = sregs->cr3;
2069 vcpu->cr8 = sregs->cr8;
2071 mmu_reset_needed |= vcpu->shadow_efer != sregs->efer;
2072 #ifdef CONFIG_X86_64
2073 kvm_arch_ops->set_efer(vcpu, sregs->efer);
2074 #endif
2075 vcpu->apic_base = sregs->apic_base;
2077 kvm_arch_ops->decache_cr4_guest_bits(vcpu);
2079 mmu_reset_needed |= vcpu->cr0 != sregs->cr0;
2080 kvm_arch_ops->set_cr0(vcpu, sregs->cr0);
2082 mmu_reset_needed |= vcpu->cr4 != sregs->cr4;
2083 kvm_arch_ops->set_cr4(vcpu, sregs->cr4);
2084 if (!is_long_mode(vcpu) && is_pae(vcpu))
2085 load_pdptrs(vcpu, vcpu->cr3);
2087 if (mmu_reset_needed)
2088 kvm_mmu_reset_context(vcpu);
2090 memcpy(vcpu->irq_pending, sregs->interrupt_bitmap,
2091 sizeof vcpu->irq_pending);
2092 vcpu->irq_summary = 0;
2093 for (i = 0; i < NR_IRQ_WORDS; ++i)
2094 if (vcpu->irq_pending[i])
2095 __set_bit(i, &vcpu->irq_summary);
2097 set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
2098 set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
2099 set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
2100 set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
2101 set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
2102 set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
2104 set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
2105 set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
2107 vcpu_put(vcpu);
2109 return 0;
2113 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
2114 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
2116 * This list is modified at module load time to reflect the
2117 * capabilities of the host cpu.
2119 static u32 msrs_to_save[] = {
2120 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
2121 MSR_K6_STAR,
2122 #ifdef CONFIG_X86_64
2123 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
2124 #endif
2125 MSR_IA32_TIME_STAMP_COUNTER,
2128 static unsigned num_msrs_to_save;
2130 static u32 emulated_msrs[] = {
2131 MSR_IA32_MISC_ENABLE,
2134 static __init void kvm_init_msr_list(void)
2136 u32 dummy[2];
2137 unsigned i, j;
2139 for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
2140 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
2141 continue;
2142 if (j < i)
2143 msrs_to_save[j] = msrs_to_save[i];
2144 j++;
2146 num_msrs_to_save = j;
2150 * Adapt set_msr() to msr_io()'s calling convention
2152 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2154 return kvm_set_msr(vcpu, index, *data);
2158 * Read or write a bunch of msrs. All parameters are kernel addresses.
2160 * @return number of msrs set successfully.
2162 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2163 struct kvm_msr_entry *entries,
2164 int (*do_msr)(struct kvm_vcpu *vcpu,
2165 unsigned index, u64 *data))
2167 int i;
2169 vcpu_load(vcpu);
2171 for (i = 0; i < msrs->nmsrs; ++i)
2172 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2173 break;
2175 vcpu_put(vcpu);
2177 return i;
2181 * Read or write a bunch of msrs. Parameters are user addresses.
2183 * @return number of msrs set successfully.
2185 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2186 int (*do_msr)(struct kvm_vcpu *vcpu,
2187 unsigned index, u64 *data),
2188 int writeback)
2190 struct kvm_msrs msrs;
2191 struct kvm_msr_entry *entries;
2192 int r, n;
2193 unsigned size;
2195 r = -EFAULT;
2196 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2197 goto out;
2199 r = -E2BIG;
2200 if (msrs.nmsrs >= MAX_IO_MSRS)
2201 goto out;
2203 r = -ENOMEM;
2204 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2205 entries = vmalloc(size);
2206 if (!entries)
2207 goto out;
2209 r = -EFAULT;
2210 if (copy_from_user(entries, user_msrs->entries, size))
2211 goto out_free;
2213 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2214 if (r < 0)
2215 goto out_free;
2217 r = -EFAULT;
2218 if (writeback && copy_to_user(user_msrs->entries, entries, size))
2219 goto out_free;
2221 r = n;
2223 out_free:
2224 vfree(entries);
2225 out:
2226 return r;
2230 * Translate a guest virtual address to a guest physical address.
2232 static int kvm_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
2233 struct kvm_translation *tr)
2235 unsigned long vaddr = tr->linear_address;
2236 gpa_t gpa;
2238 vcpu_load(vcpu);
2239 spin_lock(&vcpu->kvm->lock);
2240 gpa = vcpu->mmu.gva_to_gpa(vcpu, vaddr);
2241 tr->physical_address = gpa;
2242 tr->valid = gpa != UNMAPPED_GVA;
2243 tr->writeable = 1;
2244 tr->usermode = 0;
2245 spin_unlock(&vcpu->kvm->lock);
2246 vcpu_put(vcpu);
2248 return 0;
2251 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2252 struct kvm_interrupt *irq)
2254 if (irq->irq < 0 || irq->irq >= 256)
2255 return -EINVAL;
2256 vcpu_load(vcpu);
2258 set_bit(irq->irq, vcpu->irq_pending);
2259 set_bit(irq->irq / BITS_PER_LONG, &vcpu->irq_summary);
2261 vcpu_put(vcpu);
2263 return 0;
2266 static int kvm_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
2267 struct kvm_debug_guest *dbg)
2269 int r;
2271 vcpu_load(vcpu);
2273 r = kvm_arch_ops->set_guest_debug(vcpu, dbg);
2275 vcpu_put(vcpu);
2277 return r;
2280 static struct page *kvm_vcpu_nopage(struct vm_area_struct *vma,
2281 unsigned long address,
2282 int *type)
2284 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
2285 unsigned long pgoff;
2286 struct page *page;
2288 *type = VM_FAULT_MINOR;
2289 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2290 if (pgoff == 0)
2291 page = virt_to_page(vcpu->run);
2292 else if (pgoff == KVM_PIO_PAGE_OFFSET)
2293 page = virt_to_page(vcpu->pio_data);
2294 else
2295 return NOPAGE_SIGBUS;
2296 get_page(page);
2297 return page;
2300 static struct vm_operations_struct kvm_vcpu_vm_ops = {
2301 .nopage = kvm_vcpu_nopage,
2304 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2306 vma->vm_ops = &kvm_vcpu_vm_ops;
2307 return 0;
2310 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2312 struct kvm_vcpu *vcpu = filp->private_data;
2314 fput(vcpu->kvm->filp);
2315 return 0;
2318 static struct file_operations kvm_vcpu_fops = {
2319 .release = kvm_vcpu_release,
2320 .unlocked_ioctl = kvm_vcpu_ioctl,
2321 .compat_ioctl = kvm_vcpu_ioctl,
2322 .mmap = kvm_vcpu_mmap,
2326 * Allocates an inode for the vcpu.
2328 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2330 int fd, r;
2331 struct inode *inode;
2332 struct file *file;
2334 r = anon_inode_getfd(&fd, &inode, &file,
2335 "kvm-vcpu", &kvm_vcpu_fops, vcpu);
2336 if (r)
2337 return r;
2338 atomic_inc(&vcpu->kvm->filp->f_count);
2339 return fd;
2343 * Creates some virtual cpus. Good luck creating more than one.
2345 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
2347 int r;
2348 struct kvm_vcpu *vcpu;
2349 struct page *page;
2351 r = -EINVAL;
2352 if (!valid_vcpu(n))
2353 goto out;
2355 vcpu = &kvm->vcpus[n];
2357 mutex_lock(&vcpu->mutex);
2359 if (vcpu->vmcs) {
2360 mutex_unlock(&vcpu->mutex);
2361 return -EEXIST;
2364 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2365 r = -ENOMEM;
2366 if (!page)
2367 goto out_unlock;
2368 vcpu->run = page_address(page);
2370 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2371 r = -ENOMEM;
2372 if (!page)
2373 goto out_free_run;
2374 vcpu->pio_data = page_address(page);
2376 vcpu->host_fx_image = (char*)ALIGN((hva_t)vcpu->fx_buf,
2377 FX_IMAGE_ALIGN);
2378 vcpu->guest_fx_image = vcpu->host_fx_image + FX_IMAGE_SIZE;
2379 vcpu->cr0 = 0x10;
2381 r = kvm_arch_ops->vcpu_create(vcpu);
2382 if (r < 0)
2383 goto out_free_vcpus;
2385 r = kvm_mmu_create(vcpu);
2386 if (r < 0)
2387 goto out_free_vcpus;
2389 kvm_arch_ops->vcpu_load(vcpu);
2390 r = kvm_mmu_setup(vcpu);
2391 if (r >= 0)
2392 r = kvm_arch_ops->vcpu_setup(vcpu);
2393 vcpu_put(vcpu);
2395 if (r < 0)
2396 goto out_free_vcpus;
2398 r = create_vcpu_fd(vcpu);
2399 if (r < 0)
2400 goto out_free_vcpus;
2402 spin_lock(&kvm_lock);
2403 if (n >= kvm->nvcpus)
2404 kvm->nvcpus = n + 1;
2405 spin_unlock(&kvm_lock);
2407 return r;
2409 out_free_vcpus:
2410 kvm_free_vcpu(vcpu);
2411 out_free_run:
2412 free_page((unsigned long)vcpu->run);
2413 vcpu->run = NULL;
2414 out_unlock:
2415 mutex_unlock(&vcpu->mutex);
2416 out:
2417 return r;
2420 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
2422 u64 efer;
2423 int i;
2424 struct kvm_cpuid_entry *e, *entry;
2426 rdmsrl(MSR_EFER, efer);
2427 entry = NULL;
2428 for (i = 0; i < vcpu->cpuid_nent; ++i) {
2429 e = &vcpu->cpuid_entries[i];
2430 if (e->function == 0x80000001) {
2431 entry = e;
2432 break;
2435 if (entry && (entry->edx & (1 << 20)) && !(efer & EFER_NX)) {
2436 entry->edx &= ~(1 << 20);
2437 printk(KERN_INFO "kvm: guest NX capability removed\n");
2441 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
2442 struct kvm_cpuid *cpuid,
2443 struct kvm_cpuid_entry __user *entries)
2445 int r;
2447 r = -E2BIG;
2448 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2449 goto out;
2450 r = -EFAULT;
2451 if (copy_from_user(&vcpu->cpuid_entries, entries,
2452 cpuid->nent * sizeof(struct kvm_cpuid_entry)))
2453 goto out;
2454 vcpu->cpuid_nent = cpuid->nent;
2455 cpuid_fix_nx_cap(vcpu);
2456 return 0;
2458 out:
2459 return r;
2462 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2464 if (sigset) {
2465 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2466 vcpu->sigset_active = 1;
2467 vcpu->sigset = *sigset;
2468 } else
2469 vcpu->sigset_active = 0;
2470 return 0;
2474 * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
2475 * we have asm/x86/processor.h
2477 struct fxsave {
2478 u16 cwd;
2479 u16 swd;
2480 u16 twd;
2481 u16 fop;
2482 u64 rip;
2483 u64 rdp;
2484 u32 mxcsr;
2485 u32 mxcsr_mask;
2486 u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
2487 #ifdef CONFIG_X86_64
2488 u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
2489 #else
2490 u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
2491 #endif
2494 static int kvm_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
2496 struct fxsave *fxsave = (struct fxsave *)vcpu->guest_fx_image;
2498 vcpu_load(vcpu);
2500 memcpy(fpu->fpr, fxsave->st_space, 128);
2501 fpu->fcw = fxsave->cwd;
2502 fpu->fsw = fxsave->swd;
2503 fpu->ftwx = fxsave->twd;
2504 fpu->last_opcode = fxsave->fop;
2505 fpu->last_ip = fxsave->rip;
2506 fpu->last_dp = fxsave->rdp;
2507 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
2509 vcpu_put(vcpu);
2511 return 0;
2514 static int kvm_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
2516 struct fxsave *fxsave = (struct fxsave *)vcpu->guest_fx_image;
2518 vcpu_load(vcpu);
2520 memcpy(fxsave->st_space, fpu->fpr, 128);
2521 fxsave->cwd = fpu->fcw;
2522 fxsave->swd = fpu->fsw;
2523 fxsave->twd = fpu->ftwx;
2524 fxsave->fop = fpu->last_opcode;
2525 fxsave->rip = fpu->last_ip;
2526 fxsave->rdp = fpu->last_dp;
2527 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
2529 vcpu_put(vcpu);
2531 return 0;
2534 static long kvm_vcpu_ioctl(struct file *filp,
2535 unsigned int ioctl, unsigned long arg)
2537 struct kvm_vcpu *vcpu = filp->private_data;
2538 void __user *argp = (void __user *)arg;
2539 int r = -EINVAL;
2541 switch (ioctl) {
2542 case KVM_RUN:
2543 r = -EINVAL;
2544 if (arg)
2545 goto out;
2546 r = kvm_vcpu_ioctl_run(vcpu, vcpu->run);
2547 break;
2548 case KVM_GET_REGS: {
2549 struct kvm_regs kvm_regs;
2551 memset(&kvm_regs, 0, sizeof kvm_regs);
2552 r = kvm_vcpu_ioctl_get_regs(vcpu, &kvm_regs);
2553 if (r)
2554 goto out;
2555 r = -EFAULT;
2556 if (copy_to_user(argp, &kvm_regs, sizeof kvm_regs))
2557 goto out;
2558 r = 0;
2559 break;
2561 case KVM_SET_REGS: {
2562 struct kvm_regs kvm_regs;
2564 r = -EFAULT;
2565 if (copy_from_user(&kvm_regs, argp, sizeof kvm_regs))
2566 goto out;
2567 r = kvm_vcpu_ioctl_set_regs(vcpu, &kvm_regs);
2568 if (r)
2569 goto out;
2570 r = 0;
2571 break;
2573 case KVM_GET_SREGS: {
2574 struct kvm_sregs kvm_sregs;
2576 memset(&kvm_sregs, 0, sizeof kvm_sregs);
2577 r = kvm_vcpu_ioctl_get_sregs(vcpu, &kvm_sregs);
2578 if (r)
2579 goto out;
2580 r = -EFAULT;
2581 if (copy_to_user(argp, &kvm_sregs, sizeof kvm_sregs))
2582 goto out;
2583 r = 0;
2584 break;
2586 case KVM_SET_SREGS: {
2587 struct kvm_sregs kvm_sregs;
2589 r = -EFAULT;
2590 if (copy_from_user(&kvm_sregs, argp, sizeof kvm_sregs))
2591 goto out;
2592 r = kvm_vcpu_ioctl_set_sregs(vcpu, &kvm_sregs);
2593 if (r)
2594 goto out;
2595 r = 0;
2596 break;
2598 case KVM_TRANSLATE: {
2599 struct kvm_translation tr;
2601 r = -EFAULT;
2602 if (copy_from_user(&tr, argp, sizeof tr))
2603 goto out;
2604 r = kvm_vcpu_ioctl_translate(vcpu, &tr);
2605 if (r)
2606 goto out;
2607 r = -EFAULT;
2608 if (copy_to_user(argp, &tr, sizeof tr))
2609 goto out;
2610 r = 0;
2611 break;
2613 case KVM_INTERRUPT: {
2614 struct kvm_interrupt irq;
2616 r = -EFAULT;
2617 if (copy_from_user(&irq, argp, sizeof irq))
2618 goto out;
2619 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2620 if (r)
2621 goto out;
2622 r = 0;
2623 break;
2625 case KVM_DEBUG_GUEST: {
2626 struct kvm_debug_guest dbg;
2628 r = -EFAULT;
2629 if (copy_from_user(&dbg, argp, sizeof dbg))
2630 goto out;
2631 r = kvm_vcpu_ioctl_debug_guest(vcpu, &dbg);
2632 if (r)
2633 goto out;
2634 r = 0;
2635 break;
2637 case KVM_GET_MSRS:
2638 r = msr_io(vcpu, argp, kvm_get_msr, 1);
2639 break;
2640 case KVM_SET_MSRS:
2641 r = msr_io(vcpu, argp, do_set_msr, 0);
2642 break;
2643 case KVM_SET_CPUID: {
2644 struct kvm_cpuid __user *cpuid_arg = argp;
2645 struct kvm_cpuid cpuid;
2647 r = -EFAULT;
2648 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2649 goto out;
2650 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
2651 if (r)
2652 goto out;
2653 break;
2655 case KVM_SET_SIGNAL_MASK: {
2656 struct kvm_signal_mask __user *sigmask_arg = argp;
2657 struct kvm_signal_mask kvm_sigmask;
2658 sigset_t sigset, *p;
2660 p = NULL;
2661 if (argp) {
2662 r = -EFAULT;
2663 if (copy_from_user(&kvm_sigmask, argp,
2664 sizeof kvm_sigmask))
2665 goto out;
2666 r = -EINVAL;
2667 if (kvm_sigmask.len != sizeof sigset)
2668 goto out;
2669 r = -EFAULT;
2670 if (copy_from_user(&sigset, sigmask_arg->sigset,
2671 sizeof sigset))
2672 goto out;
2673 p = &sigset;
2675 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2676 break;
2678 case KVM_GET_FPU: {
2679 struct kvm_fpu fpu;
2681 memset(&fpu, 0, sizeof fpu);
2682 r = kvm_vcpu_ioctl_get_fpu(vcpu, &fpu);
2683 if (r)
2684 goto out;
2685 r = -EFAULT;
2686 if (copy_to_user(argp, &fpu, sizeof fpu))
2687 goto out;
2688 r = 0;
2689 break;
2691 case KVM_SET_FPU: {
2692 struct kvm_fpu fpu;
2694 r = -EFAULT;
2695 if (copy_from_user(&fpu, argp, sizeof fpu))
2696 goto out;
2697 r = kvm_vcpu_ioctl_set_fpu(vcpu, &fpu);
2698 if (r)
2699 goto out;
2700 r = 0;
2701 break;
2703 default:
2706 out:
2707 return r;
2710 static long kvm_vm_ioctl(struct file *filp,
2711 unsigned int ioctl, unsigned long arg)
2713 struct kvm *kvm = filp->private_data;
2714 void __user *argp = (void __user *)arg;
2715 int r = -EINVAL;
2717 switch (ioctl) {
2718 case KVM_CREATE_VCPU:
2719 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2720 if (r < 0)
2721 goto out;
2722 break;
2723 case KVM_SET_MEMORY_REGION: {
2724 struct kvm_memory_region kvm_mem;
2726 r = -EFAULT;
2727 if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
2728 goto out;
2729 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_mem);
2730 if (r)
2731 goto out;
2732 break;
2734 case KVM_GET_DIRTY_LOG: {
2735 struct kvm_dirty_log log;
2737 r = -EFAULT;
2738 if (copy_from_user(&log, argp, sizeof log))
2739 goto out;
2740 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2741 if (r)
2742 goto out;
2743 break;
2745 case KVM_SET_MEMORY_ALIAS: {
2746 struct kvm_memory_alias alias;
2748 r = -EFAULT;
2749 if (copy_from_user(&alias, argp, sizeof alias))
2750 goto out;
2751 r = kvm_vm_ioctl_set_memory_alias(kvm, &alias);
2752 if (r)
2753 goto out;
2754 break;
2756 default:
2759 out:
2760 return r;
2763 static struct page *kvm_vm_nopage(struct vm_area_struct *vma,
2764 unsigned long address,
2765 int *type)
2767 struct kvm *kvm = vma->vm_file->private_data;
2768 unsigned long pgoff;
2769 struct page *page;
2771 *type = VM_FAULT_MINOR;
2772 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2773 page = gfn_to_page(kvm, pgoff);
2774 if (!page)
2775 return NOPAGE_SIGBUS;
2776 get_page(page);
2777 return page;
2780 static struct vm_operations_struct kvm_vm_vm_ops = {
2781 .nopage = kvm_vm_nopage,
2784 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
2786 vma->vm_ops = &kvm_vm_vm_ops;
2787 return 0;
2790 static struct file_operations kvm_vm_fops = {
2791 .release = kvm_vm_release,
2792 .unlocked_ioctl = kvm_vm_ioctl,
2793 .compat_ioctl = kvm_vm_ioctl,
2794 .mmap = kvm_vm_mmap,
2797 static int kvm_dev_ioctl_create_vm(void)
2799 int fd, r;
2800 struct inode *inode;
2801 struct file *file;
2802 struct kvm *kvm;
2804 kvm = kvm_create_vm();
2805 if (IS_ERR(kvm))
2806 return PTR_ERR(kvm);
2807 r = anon_inode_getfd(&fd, &inode, &file, "kvm-vm", &kvm_vm_fops, kvm);
2808 if (r) {
2809 kvm_destroy_vm(kvm);
2810 return r;
2813 kvm->filp = file;
2815 return fd;
2818 static long kvm_dev_ioctl(struct file *filp,
2819 unsigned int ioctl, unsigned long arg)
2821 void __user *argp = (void __user *)arg;
2822 long r = -EINVAL;
2824 switch (ioctl) {
2825 case KVM_GET_API_VERSION:
2826 r = -EINVAL;
2827 if (arg)
2828 goto out;
2829 r = KVM_API_VERSION;
2830 break;
2831 case KVM_CREATE_VM:
2832 r = -EINVAL;
2833 if (arg)
2834 goto out;
2835 r = kvm_dev_ioctl_create_vm();
2836 break;
2837 case KVM_GET_MSR_INDEX_LIST: {
2838 struct kvm_msr_list __user *user_msr_list = argp;
2839 struct kvm_msr_list msr_list;
2840 unsigned n;
2842 r = -EFAULT;
2843 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2844 goto out;
2845 n = msr_list.nmsrs;
2846 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
2847 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2848 goto out;
2849 r = -E2BIG;
2850 if (n < num_msrs_to_save)
2851 goto out;
2852 r = -EFAULT;
2853 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2854 num_msrs_to_save * sizeof(u32)))
2855 goto out;
2856 if (copy_to_user(user_msr_list->indices
2857 + num_msrs_to_save * sizeof(u32),
2858 &emulated_msrs,
2859 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
2860 goto out;
2861 r = 0;
2862 break;
2864 case KVM_CHECK_EXTENSION:
2866 * No extensions defined at present.
2868 r = 0;
2869 break;
2870 case KVM_GET_VCPU_MMAP_SIZE:
2871 r = -EINVAL;
2872 if (arg)
2873 goto out;
2874 r = 2 * PAGE_SIZE;
2875 break;
2876 default:
2879 out:
2880 return r;
2883 static struct file_operations kvm_chardev_ops = {
2884 .open = kvm_dev_open,
2885 .release = kvm_dev_release,
2886 .unlocked_ioctl = kvm_dev_ioctl,
2887 .compat_ioctl = kvm_dev_ioctl,
2890 static struct miscdevice kvm_dev = {
2891 KVM_MINOR,
2892 "kvm",
2893 &kvm_chardev_ops,
2896 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2897 void *v)
2899 if (val == SYS_RESTART) {
2901 * Some (well, at least mine) BIOSes hang on reboot if
2902 * in vmx root mode.
2904 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2905 on_each_cpu(hardware_disable, NULL, 0, 1);
2907 return NOTIFY_OK;
2910 static struct notifier_block kvm_reboot_notifier = {
2911 .notifier_call = kvm_reboot,
2912 .priority = 0,
2916 * Make sure that a cpu that is being hot-unplugged does not have any vcpus
2917 * cached on it.
2919 static void decache_vcpus_on_cpu(int cpu)
2921 struct kvm *vm;
2922 struct kvm_vcpu *vcpu;
2923 int i;
2925 spin_lock(&kvm_lock);
2926 list_for_each_entry(vm, &vm_list, vm_list)
2927 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
2928 vcpu = &vm->vcpus[i];
2930 * If the vcpu is locked, then it is running on some
2931 * other cpu and therefore it is not cached on the
2932 * cpu in question.
2934 * If it's not locked, check the last cpu it executed
2935 * on.
2937 if (mutex_trylock(&vcpu->mutex)) {
2938 if (vcpu->cpu == cpu) {
2939 kvm_arch_ops->vcpu_decache(vcpu);
2940 vcpu->cpu = -1;
2942 mutex_unlock(&vcpu->mutex);
2945 spin_unlock(&kvm_lock);
2948 static void hardware_enable(void *junk)
2950 int cpu = raw_smp_processor_id();
2952 if (cpu_isset(cpu, cpus_hardware_enabled))
2953 return;
2954 cpu_set(cpu, cpus_hardware_enabled);
2955 kvm_arch_ops->hardware_enable(NULL);
2958 static void hardware_disable(void *junk)
2960 int cpu = raw_smp_processor_id();
2962 if (!cpu_isset(cpu, cpus_hardware_enabled))
2963 return;
2964 cpu_clear(cpu, cpus_hardware_enabled);
2965 decache_vcpus_on_cpu(cpu);
2966 kvm_arch_ops->hardware_disable(NULL);
2969 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2970 void *v)
2972 int cpu = (long)v;
2974 switch (val) {
2975 case CPU_DYING:
2976 case CPU_DYING_FROZEN:
2977 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2978 cpu);
2979 hardware_disable(NULL);
2980 break;
2981 case CPU_UP_CANCELED:
2982 case CPU_UP_CANCELED_FROZEN:
2983 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2984 cpu);
2985 smp_call_function_single(cpu, hardware_disable, NULL, 0, 1);
2986 break;
2987 case CPU_ONLINE:
2988 case CPU_ONLINE_FROZEN:
2989 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2990 cpu);
2991 smp_call_function_single(cpu, hardware_enable, NULL, 0, 1);
2992 break;
2994 return NOTIFY_OK;
2997 void kvm_io_bus_init(struct kvm_io_bus *bus)
2999 memset(bus, 0, sizeof(*bus));
3002 void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3004 int i;
3006 for (i = 0; i < bus->dev_count; i++) {
3007 struct kvm_io_device *pos = bus->devs[i];
3009 kvm_iodevice_destructor(pos);
3013 struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus, gpa_t addr)
3015 int i;
3017 for (i = 0; i < bus->dev_count; i++) {
3018 struct kvm_io_device *pos = bus->devs[i];
3020 if (pos->in_range(pos, addr))
3021 return pos;
3024 return NULL;
3027 void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
3029 BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
3031 bus->devs[bus->dev_count++] = dev;
3034 static struct notifier_block kvm_cpu_notifier = {
3035 .notifier_call = kvm_cpu_hotplug,
3036 .priority = 20, /* must be > scheduler priority */
3039 static u64 stat_get(void *_offset)
3041 unsigned offset = (long)_offset;
3042 u64 total = 0;
3043 struct kvm *kvm;
3044 struct kvm_vcpu *vcpu;
3045 int i;
3047 spin_lock(&kvm_lock);
3048 list_for_each_entry(kvm, &vm_list, vm_list)
3049 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
3050 vcpu = &kvm->vcpus[i];
3051 total += *(u32 *)((void *)vcpu + offset);
3053 spin_unlock(&kvm_lock);
3054 return total;
3057 static void stat_set(void *offset, u64 val)
3061 DEFINE_SIMPLE_ATTRIBUTE(stat_fops, stat_get, stat_set, "%llu\n");
3063 static __init void kvm_init_debug(void)
3065 struct kvm_stats_debugfs_item *p;
3067 debugfs_dir = debugfs_create_dir("kvm", NULL);
3068 for (p = debugfs_entries; p->name; ++p)
3069 p->dentry = debugfs_create_file(p->name, 0444, debugfs_dir,
3070 (void *)(long)p->offset,
3071 &stat_fops);
3074 static void kvm_exit_debug(void)
3076 struct kvm_stats_debugfs_item *p;
3078 for (p = debugfs_entries; p->name; ++p)
3079 debugfs_remove(p->dentry);
3080 debugfs_remove(debugfs_dir);
3083 static int kvm_suspend(struct sys_device *dev, pm_message_t state)
3085 hardware_disable(NULL);
3086 return 0;
3089 static int kvm_resume(struct sys_device *dev)
3091 hardware_enable(NULL);
3092 return 0;
3095 static struct sysdev_class kvm_sysdev_class = {
3096 set_kset_name("kvm"),
3097 .suspend = kvm_suspend,
3098 .resume = kvm_resume,
3101 static struct sys_device kvm_sysdev = {
3102 .id = 0,
3103 .cls = &kvm_sysdev_class,
3106 hpa_t bad_page_address;
3108 int kvm_init_arch(struct kvm_arch_ops *ops, struct module *module)
3110 int r;
3112 if (kvm_arch_ops) {
3113 printk(KERN_ERR "kvm: already loaded the other module\n");
3114 return -EEXIST;
3117 if (!ops->cpu_has_kvm_support()) {
3118 printk(KERN_ERR "kvm: no hardware support\n");
3119 return -EOPNOTSUPP;
3121 if (ops->disabled_by_bios()) {
3122 printk(KERN_ERR "kvm: disabled by bios\n");
3123 return -EOPNOTSUPP;
3126 kvm_arch_ops = ops;
3128 r = kvm_arch_ops->hardware_setup();
3129 if (r < 0)
3130 goto out;
3132 on_each_cpu(hardware_enable, NULL, 0, 1);
3133 r = register_cpu_notifier(&kvm_cpu_notifier);
3134 if (r)
3135 goto out_free_1;
3136 register_reboot_notifier(&kvm_reboot_notifier);
3138 r = sysdev_class_register(&kvm_sysdev_class);
3139 if (r)
3140 goto out_free_2;
3142 r = sysdev_register(&kvm_sysdev);
3143 if (r)
3144 goto out_free_3;
3146 kvm_chardev_ops.owner = module;
3148 r = misc_register(&kvm_dev);
3149 if (r) {
3150 printk (KERN_ERR "kvm: misc device register failed\n");
3151 goto out_free;
3154 return r;
3156 out_free:
3157 sysdev_unregister(&kvm_sysdev);
3158 out_free_3:
3159 sysdev_class_unregister(&kvm_sysdev_class);
3160 out_free_2:
3161 unregister_reboot_notifier(&kvm_reboot_notifier);
3162 unregister_cpu_notifier(&kvm_cpu_notifier);
3163 out_free_1:
3164 on_each_cpu(hardware_disable, NULL, 0, 1);
3165 kvm_arch_ops->hardware_unsetup();
3166 out:
3167 kvm_arch_ops = NULL;
3168 return r;
3171 void kvm_exit_arch(void)
3173 misc_deregister(&kvm_dev);
3174 sysdev_unregister(&kvm_sysdev);
3175 sysdev_class_unregister(&kvm_sysdev_class);
3176 unregister_reboot_notifier(&kvm_reboot_notifier);
3177 unregister_cpu_notifier(&kvm_cpu_notifier);
3178 on_each_cpu(hardware_disable, NULL, 0, 1);
3179 kvm_arch_ops->hardware_unsetup();
3180 kvm_arch_ops = NULL;
3183 static __init int kvm_init(void)
3185 static struct page *bad_page;
3186 int r;
3188 r = kvm_mmu_module_init();
3189 if (r)
3190 goto out4;
3192 kvm_init_debug();
3194 kvm_init_msr_list();
3196 if ((bad_page = alloc_page(GFP_KERNEL)) == NULL) {
3197 r = -ENOMEM;
3198 goto out;
3201 bad_page_address = page_to_pfn(bad_page) << PAGE_SHIFT;
3202 memset(__va(bad_page_address), 0, PAGE_SIZE);
3204 return 0;
3206 out:
3207 kvm_exit_debug();
3208 kvm_mmu_module_exit();
3209 out4:
3210 return r;
3213 static __exit void kvm_exit(void)
3215 kvm_exit_debug();
3216 __free_page(pfn_to_page(bad_page_address >> PAGE_SHIFT));
3217 kvm_mmu_module_exit();
3220 module_init(kvm_init)
3221 module_exit(kvm_exit)
3223 EXPORT_SYMBOL_GPL(kvm_init_arch);
3224 EXPORT_SYMBOL_GPL(kvm_exit_arch);