USB: support more Huawei data card product IDs
[linux-2.6/s3c2410-cpufreq.git] / net / xfrm / xfrm_algo.c
blob8aa6440d689f75bde521070c5d3f81ce5c81199b
1 /*
2 * xfrm algorithm interface
4 * Copyright (c) 2002 James Morris <jmorris@intercode.com.au>
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License as published by the Free
8 * Software Foundation; either version 2 of the License, or (at your option)
9 * any later version.
12 #include <linux/module.h>
13 #include <linux/kernel.h>
14 #include <linux/pfkeyv2.h>
15 #include <linux/crypto.h>
16 #include <linux/scatterlist.h>
17 #include <net/xfrm.h>
18 #if defined(CONFIG_INET_AH) || defined(CONFIG_INET_AH_MODULE) || defined(CONFIG_INET6_AH) || defined(CONFIG_INET6_AH_MODULE)
19 #include <net/ah.h>
20 #endif
21 #if defined(CONFIG_INET_ESP) || defined(CONFIG_INET_ESP_MODULE) || defined(CONFIG_INET6_ESP) || defined(CONFIG_INET6_ESP_MODULE)
22 #include <net/esp.h>
23 #endif
26 * Algorithms supported by IPsec. These entries contain properties which
27 * are used in key negotiation and xfrm processing, and are used to verify
28 * that instantiated crypto transforms have correct parameters for IPsec
29 * purposes.
31 static struct xfrm_algo_desc aead_list[] = {
33 .name = "rfc4106(gcm(aes))",
35 .uinfo = {
36 .aead = {
37 .icv_truncbits = 64,
41 .desc = {
42 .sadb_alg_id = SADB_X_EALG_AES_GCM_ICV8,
43 .sadb_alg_ivlen = 8,
44 .sadb_alg_minbits = 128,
45 .sadb_alg_maxbits = 256
49 .name = "rfc4106(gcm(aes))",
51 .uinfo = {
52 .aead = {
53 .icv_truncbits = 96,
57 .desc = {
58 .sadb_alg_id = SADB_X_EALG_AES_GCM_ICV12,
59 .sadb_alg_ivlen = 8,
60 .sadb_alg_minbits = 128,
61 .sadb_alg_maxbits = 256
65 .name = "rfc4106(gcm(aes))",
67 .uinfo = {
68 .aead = {
69 .icv_truncbits = 128,
73 .desc = {
74 .sadb_alg_id = SADB_X_EALG_AES_GCM_ICV16,
75 .sadb_alg_ivlen = 8,
76 .sadb_alg_minbits = 128,
77 .sadb_alg_maxbits = 256
81 .name = "rfc4309(ccm(aes))",
83 .uinfo = {
84 .aead = {
85 .icv_truncbits = 64,
89 .desc = {
90 .sadb_alg_id = SADB_X_EALG_AES_CCM_ICV8,
91 .sadb_alg_ivlen = 8,
92 .sadb_alg_minbits = 128,
93 .sadb_alg_maxbits = 256
97 .name = "rfc4309(ccm(aes))",
99 .uinfo = {
100 .aead = {
101 .icv_truncbits = 96,
105 .desc = {
106 .sadb_alg_id = SADB_X_EALG_AES_CCM_ICV12,
107 .sadb_alg_ivlen = 8,
108 .sadb_alg_minbits = 128,
109 .sadb_alg_maxbits = 256
113 .name = "rfc4309(ccm(aes))",
115 .uinfo = {
116 .aead = {
117 .icv_truncbits = 128,
121 .desc = {
122 .sadb_alg_id = SADB_X_EALG_AES_CCM_ICV16,
123 .sadb_alg_ivlen = 8,
124 .sadb_alg_minbits = 128,
125 .sadb_alg_maxbits = 256
130 static struct xfrm_algo_desc aalg_list[] = {
132 .name = "hmac(digest_null)",
133 .compat = "digest_null",
135 .uinfo = {
136 .auth = {
137 .icv_truncbits = 0,
138 .icv_fullbits = 0,
142 .desc = {
143 .sadb_alg_id = SADB_X_AALG_NULL,
144 .sadb_alg_ivlen = 0,
145 .sadb_alg_minbits = 0,
146 .sadb_alg_maxbits = 0
150 .name = "hmac(md5)",
151 .compat = "md5",
153 .uinfo = {
154 .auth = {
155 .icv_truncbits = 96,
156 .icv_fullbits = 128,
160 .desc = {
161 .sadb_alg_id = SADB_AALG_MD5HMAC,
162 .sadb_alg_ivlen = 0,
163 .sadb_alg_minbits = 128,
164 .sadb_alg_maxbits = 128
168 .name = "hmac(sha1)",
169 .compat = "sha1",
171 .uinfo = {
172 .auth = {
173 .icv_truncbits = 96,
174 .icv_fullbits = 160,
178 .desc = {
179 .sadb_alg_id = SADB_AALG_SHA1HMAC,
180 .sadb_alg_ivlen = 0,
181 .sadb_alg_minbits = 160,
182 .sadb_alg_maxbits = 160
186 .name = "hmac(sha256)",
187 .compat = "sha256",
189 .uinfo = {
190 .auth = {
191 .icv_truncbits = 96,
192 .icv_fullbits = 256,
196 .desc = {
197 .sadb_alg_id = SADB_X_AALG_SHA2_256HMAC,
198 .sadb_alg_ivlen = 0,
199 .sadb_alg_minbits = 256,
200 .sadb_alg_maxbits = 256
204 .name = "hmac(ripemd160)",
205 .compat = "ripemd160",
207 .uinfo = {
208 .auth = {
209 .icv_truncbits = 96,
210 .icv_fullbits = 160,
214 .desc = {
215 .sadb_alg_id = SADB_X_AALG_RIPEMD160HMAC,
216 .sadb_alg_ivlen = 0,
217 .sadb_alg_minbits = 160,
218 .sadb_alg_maxbits = 160
222 .name = "xcbc(aes)",
224 .uinfo = {
225 .auth = {
226 .icv_truncbits = 96,
227 .icv_fullbits = 128,
231 .desc = {
232 .sadb_alg_id = SADB_X_AALG_AES_XCBC_MAC,
233 .sadb_alg_ivlen = 0,
234 .sadb_alg_minbits = 128,
235 .sadb_alg_maxbits = 128
240 static struct xfrm_algo_desc ealg_list[] = {
242 .name = "ecb(cipher_null)",
243 .compat = "cipher_null",
245 .uinfo = {
246 .encr = {
247 .blockbits = 8,
248 .defkeybits = 0,
252 .desc = {
253 .sadb_alg_id = SADB_EALG_NULL,
254 .sadb_alg_ivlen = 0,
255 .sadb_alg_minbits = 0,
256 .sadb_alg_maxbits = 0
260 .name = "cbc(des)",
261 .compat = "des",
263 .uinfo = {
264 .encr = {
265 .blockbits = 64,
266 .defkeybits = 64,
270 .desc = {
271 .sadb_alg_id = SADB_EALG_DESCBC,
272 .sadb_alg_ivlen = 8,
273 .sadb_alg_minbits = 64,
274 .sadb_alg_maxbits = 64
278 .name = "cbc(des3_ede)",
279 .compat = "des3_ede",
281 .uinfo = {
282 .encr = {
283 .blockbits = 64,
284 .defkeybits = 192,
288 .desc = {
289 .sadb_alg_id = SADB_EALG_3DESCBC,
290 .sadb_alg_ivlen = 8,
291 .sadb_alg_minbits = 192,
292 .sadb_alg_maxbits = 192
296 .name = "cbc(cast128)",
297 .compat = "cast128",
299 .uinfo = {
300 .encr = {
301 .blockbits = 64,
302 .defkeybits = 128,
306 .desc = {
307 .sadb_alg_id = SADB_X_EALG_CASTCBC,
308 .sadb_alg_ivlen = 8,
309 .sadb_alg_minbits = 40,
310 .sadb_alg_maxbits = 128
314 .name = "cbc(blowfish)",
315 .compat = "blowfish",
317 .uinfo = {
318 .encr = {
319 .blockbits = 64,
320 .defkeybits = 128,
324 .desc = {
325 .sadb_alg_id = SADB_X_EALG_BLOWFISHCBC,
326 .sadb_alg_ivlen = 8,
327 .sadb_alg_minbits = 40,
328 .sadb_alg_maxbits = 448
332 .name = "cbc(aes)",
333 .compat = "aes",
335 .uinfo = {
336 .encr = {
337 .blockbits = 128,
338 .defkeybits = 128,
342 .desc = {
343 .sadb_alg_id = SADB_X_EALG_AESCBC,
344 .sadb_alg_ivlen = 8,
345 .sadb_alg_minbits = 128,
346 .sadb_alg_maxbits = 256
350 .name = "cbc(serpent)",
351 .compat = "serpent",
353 .uinfo = {
354 .encr = {
355 .blockbits = 128,
356 .defkeybits = 128,
360 .desc = {
361 .sadb_alg_id = SADB_X_EALG_SERPENTCBC,
362 .sadb_alg_ivlen = 8,
363 .sadb_alg_minbits = 128,
364 .sadb_alg_maxbits = 256,
368 .name = "cbc(camellia)",
370 .uinfo = {
371 .encr = {
372 .blockbits = 128,
373 .defkeybits = 128,
377 .desc = {
378 .sadb_alg_id = SADB_X_EALG_CAMELLIACBC,
379 .sadb_alg_ivlen = 8,
380 .sadb_alg_minbits = 128,
381 .sadb_alg_maxbits = 256
385 .name = "cbc(twofish)",
386 .compat = "twofish",
388 .uinfo = {
389 .encr = {
390 .blockbits = 128,
391 .defkeybits = 128,
395 .desc = {
396 .sadb_alg_id = SADB_X_EALG_TWOFISHCBC,
397 .sadb_alg_ivlen = 8,
398 .sadb_alg_minbits = 128,
399 .sadb_alg_maxbits = 256
403 .name = "rfc3686(ctr(aes))",
405 .uinfo = {
406 .encr = {
407 .blockbits = 128,
408 .defkeybits = 160, /* 128-bit key + 32-bit nonce */
412 .desc = {
413 .sadb_alg_id = SADB_X_EALG_AESCTR,
414 .sadb_alg_ivlen = 8,
415 .sadb_alg_minbits = 128,
416 .sadb_alg_maxbits = 256
421 static struct xfrm_algo_desc calg_list[] = {
423 .name = "deflate",
424 .uinfo = {
425 .comp = {
426 .threshold = 90,
429 .desc = { .sadb_alg_id = SADB_X_CALG_DEFLATE }
432 .name = "lzs",
433 .uinfo = {
434 .comp = {
435 .threshold = 90,
438 .desc = { .sadb_alg_id = SADB_X_CALG_LZS }
441 .name = "lzjh",
442 .uinfo = {
443 .comp = {
444 .threshold = 50,
447 .desc = { .sadb_alg_id = SADB_X_CALG_LZJH }
451 static inline int aead_entries(void)
453 return ARRAY_SIZE(aead_list);
456 static inline int aalg_entries(void)
458 return ARRAY_SIZE(aalg_list);
461 static inline int ealg_entries(void)
463 return ARRAY_SIZE(ealg_list);
466 static inline int calg_entries(void)
468 return ARRAY_SIZE(calg_list);
471 struct xfrm_algo_list {
472 struct xfrm_algo_desc *algs;
473 int entries;
474 u32 type;
475 u32 mask;
478 static const struct xfrm_algo_list xfrm_aead_list = {
479 .algs = aead_list,
480 .entries = ARRAY_SIZE(aead_list),
481 .type = CRYPTO_ALG_TYPE_AEAD,
482 .mask = CRYPTO_ALG_TYPE_MASK,
485 static const struct xfrm_algo_list xfrm_aalg_list = {
486 .algs = aalg_list,
487 .entries = ARRAY_SIZE(aalg_list),
488 .type = CRYPTO_ALG_TYPE_HASH,
489 .mask = CRYPTO_ALG_TYPE_HASH_MASK,
492 static const struct xfrm_algo_list xfrm_ealg_list = {
493 .algs = ealg_list,
494 .entries = ARRAY_SIZE(ealg_list),
495 .type = CRYPTO_ALG_TYPE_BLKCIPHER,
496 .mask = CRYPTO_ALG_TYPE_BLKCIPHER_MASK,
499 static const struct xfrm_algo_list xfrm_calg_list = {
500 .algs = calg_list,
501 .entries = ARRAY_SIZE(calg_list),
502 .type = CRYPTO_ALG_TYPE_COMPRESS,
503 .mask = CRYPTO_ALG_TYPE_MASK,
506 static struct xfrm_algo_desc *xfrm_find_algo(
507 const struct xfrm_algo_list *algo_list,
508 int match(const struct xfrm_algo_desc *entry, const void *data),
509 const void *data, int probe)
511 struct xfrm_algo_desc *list = algo_list->algs;
512 int i, status;
514 for (i = 0; i < algo_list->entries; i++) {
515 if (!match(list + i, data))
516 continue;
518 if (list[i].available)
519 return &list[i];
521 if (!probe)
522 break;
524 status = crypto_has_alg(list[i].name, algo_list->type,
525 algo_list->mask);
526 if (!status)
527 break;
529 list[i].available = status;
530 return &list[i];
532 return NULL;
535 static int xfrm_alg_id_match(const struct xfrm_algo_desc *entry,
536 const void *data)
538 return entry->desc.sadb_alg_id == (unsigned long)data;
541 struct xfrm_algo_desc *xfrm_aalg_get_byid(int alg_id)
543 return xfrm_find_algo(&xfrm_aalg_list, xfrm_alg_id_match,
544 (void *)(unsigned long)alg_id, 1);
546 EXPORT_SYMBOL_GPL(xfrm_aalg_get_byid);
548 struct xfrm_algo_desc *xfrm_ealg_get_byid(int alg_id)
550 return xfrm_find_algo(&xfrm_ealg_list, xfrm_alg_id_match,
551 (void *)(unsigned long)alg_id, 1);
553 EXPORT_SYMBOL_GPL(xfrm_ealg_get_byid);
555 struct xfrm_algo_desc *xfrm_calg_get_byid(int alg_id)
557 return xfrm_find_algo(&xfrm_calg_list, xfrm_alg_id_match,
558 (void *)(unsigned long)alg_id, 1);
560 EXPORT_SYMBOL_GPL(xfrm_calg_get_byid);
562 static int xfrm_alg_name_match(const struct xfrm_algo_desc *entry,
563 const void *data)
565 const char *name = data;
567 return name && (!strcmp(name, entry->name) ||
568 (entry->compat && !strcmp(name, entry->compat)));
571 struct xfrm_algo_desc *xfrm_aalg_get_byname(char *name, int probe)
573 return xfrm_find_algo(&xfrm_aalg_list, xfrm_alg_name_match, name,
574 probe);
576 EXPORT_SYMBOL_GPL(xfrm_aalg_get_byname);
578 struct xfrm_algo_desc *xfrm_ealg_get_byname(char *name, int probe)
580 return xfrm_find_algo(&xfrm_ealg_list, xfrm_alg_name_match, name,
581 probe);
583 EXPORT_SYMBOL_GPL(xfrm_ealg_get_byname);
585 struct xfrm_algo_desc *xfrm_calg_get_byname(char *name, int probe)
587 return xfrm_find_algo(&xfrm_calg_list, xfrm_alg_name_match, name,
588 probe);
590 EXPORT_SYMBOL_GPL(xfrm_calg_get_byname);
592 struct xfrm_aead_name {
593 const char *name;
594 int icvbits;
597 static int xfrm_aead_name_match(const struct xfrm_algo_desc *entry,
598 const void *data)
600 const struct xfrm_aead_name *aead = data;
601 const char *name = aead->name;
603 return aead->icvbits == entry->uinfo.aead.icv_truncbits && name &&
604 !strcmp(name, entry->name);
607 struct xfrm_algo_desc *xfrm_aead_get_byname(char *name, int icv_len, int probe)
609 struct xfrm_aead_name data = {
610 .name = name,
611 .icvbits = icv_len,
614 return xfrm_find_algo(&xfrm_aead_list, xfrm_aead_name_match, &data,
615 probe);
617 EXPORT_SYMBOL_GPL(xfrm_aead_get_byname);
619 struct xfrm_algo_desc *xfrm_aalg_get_byidx(unsigned int idx)
621 if (idx >= aalg_entries())
622 return NULL;
624 return &aalg_list[idx];
626 EXPORT_SYMBOL_GPL(xfrm_aalg_get_byidx);
628 struct xfrm_algo_desc *xfrm_ealg_get_byidx(unsigned int idx)
630 if (idx >= ealg_entries())
631 return NULL;
633 return &ealg_list[idx];
635 EXPORT_SYMBOL_GPL(xfrm_ealg_get_byidx);
638 * Probe for the availability of crypto algorithms, and set the available
639 * flag for any algorithms found on the system. This is typically called by
640 * pfkey during userspace SA add, update or register.
642 void xfrm_probe_algs(void)
644 int i, status;
646 BUG_ON(in_softirq());
648 for (i = 0; i < aalg_entries(); i++) {
649 status = crypto_has_hash(aalg_list[i].name, 0,
650 CRYPTO_ALG_ASYNC);
651 if (aalg_list[i].available != status)
652 aalg_list[i].available = status;
655 for (i = 0; i < ealg_entries(); i++) {
656 status = crypto_has_blkcipher(ealg_list[i].name, 0,
657 CRYPTO_ALG_ASYNC);
658 if (ealg_list[i].available != status)
659 ealg_list[i].available = status;
662 for (i = 0; i < calg_entries(); i++) {
663 status = crypto_has_comp(calg_list[i].name, 0,
664 CRYPTO_ALG_ASYNC);
665 if (calg_list[i].available != status)
666 calg_list[i].available = status;
669 EXPORT_SYMBOL_GPL(xfrm_probe_algs);
671 int xfrm_count_auth_supported(void)
673 int i, n;
675 for (i = 0, n = 0; i < aalg_entries(); i++)
676 if (aalg_list[i].available)
677 n++;
678 return n;
680 EXPORT_SYMBOL_GPL(xfrm_count_auth_supported);
682 int xfrm_count_enc_supported(void)
684 int i, n;
686 for (i = 0, n = 0; i < ealg_entries(); i++)
687 if (ealg_list[i].available)
688 n++;
689 return n;
691 EXPORT_SYMBOL_GPL(xfrm_count_enc_supported);
693 /* Move to common area: it is shared with AH. */
695 int skb_icv_walk(const struct sk_buff *skb, struct hash_desc *desc,
696 int offset, int len, icv_update_fn_t icv_update)
698 int start = skb_headlen(skb);
699 int i, copy = start - offset;
700 int err;
701 struct scatterlist sg;
703 /* Checksum header. */
704 if (copy > 0) {
705 if (copy > len)
706 copy = len;
708 sg_init_one(&sg, skb->data + offset, copy);
710 err = icv_update(desc, &sg, copy);
711 if (unlikely(err))
712 return err;
714 if ((len -= copy) == 0)
715 return 0;
716 offset += copy;
719 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
720 int end;
722 BUG_TRAP(start <= offset + len);
724 end = start + skb_shinfo(skb)->frags[i].size;
725 if ((copy = end - offset) > 0) {
726 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
728 if (copy > len)
729 copy = len;
731 sg_init_table(&sg, 1);
732 sg_set_page(&sg, frag->page, copy,
733 frag->page_offset + offset-start);
735 err = icv_update(desc, &sg, copy);
736 if (unlikely(err))
737 return err;
739 if (!(len -= copy))
740 return 0;
741 offset += copy;
743 start = end;
746 if (skb_shinfo(skb)->frag_list) {
747 struct sk_buff *list = skb_shinfo(skb)->frag_list;
749 for (; list; list = list->next) {
750 int end;
752 BUG_TRAP(start <= offset + len);
754 end = start + list->len;
755 if ((copy = end - offset) > 0) {
756 if (copy > len)
757 copy = len;
758 err = skb_icv_walk(list, desc, offset-start,
759 copy, icv_update);
760 if (unlikely(err))
761 return err;
762 if ((len -= copy) == 0)
763 return 0;
764 offset += copy;
766 start = end;
769 BUG_ON(len);
770 return 0;
772 EXPORT_SYMBOL_GPL(skb_icv_walk);
774 #if defined(CONFIG_INET_ESP) || defined(CONFIG_INET_ESP_MODULE) || defined(CONFIG_INET6_ESP) || defined(CONFIG_INET6_ESP_MODULE)
776 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
778 if (tail != skb) {
779 skb->data_len += len;
780 skb->len += len;
782 return skb_put(tail, len);
784 EXPORT_SYMBOL_GPL(pskb_put);
785 #endif