USB: support more Huawei data card product IDs
[linux-2.6/s3c2410-cpufreq.git] / include / asm-powerpc / mmu-hash64.h
blob2864fa3989ea4d40efd456b1b18b4daec5f48af3
1 #ifndef _ASM_POWERPC_MMU_HASH64_H_
2 #define _ASM_POWERPC_MMU_HASH64_H_
3 /*
4 * PowerPC64 memory management structures
6 * Dave Engebretsen & Mike Corrigan <{engebret|mikejc}@us.ibm.com>
7 * PPC64 rework.
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * as published by the Free Software Foundation; either version
12 * 2 of the License, or (at your option) any later version.
15 #include <asm/asm-compat.h>
16 #include <asm/page.h>
19 * Segment table
22 #define STE_ESID_V 0x80
23 #define STE_ESID_KS 0x20
24 #define STE_ESID_KP 0x10
25 #define STE_ESID_N 0x08
27 #define STE_VSID_SHIFT 12
29 /* Location of cpu0's segment table */
30 #define STAB0_PAGE 0x6
31 #define STAB0_OFFSET (STAB0_PAGE << 12)
32 #define STAB0_PHYS_ADDR (STAB0_OFFSET + PHYSICAL_START)
34 #ifndef __ASSEMBLY__
35 extern char initial_stab[];
36 #endif /* ! __ASSEMBLY */
39 * SLB
42 #define SLB_NUM_BOLTED 3
43 #define SLB_CACHE_ENTRIES 8
45 /* Bits in the SLB ESID word */
46 #define SLB_ESID_V ASM_CONST(0x0000000008000000) /* valid */
48 /* Bits in the SLB VSID word */
49 #define SLB_VSID_SHIFT 12
50 #define SLB_VSID_SHIFT_1T 24
51 #define SLB_VSID_SSIZE_SHIFT 62
52 #define SLB_VSID_B ASM_CONST(0xc000000000000000)
53 #define SLB_VSID_B_256M ASM_CONST(0x0000000000000000)
54 #define SLB_VSID_B_1T ASM_CONST(0x4000000000000000)
55 #define SLB_VSID_KS ASM_CONST(0x0000000000000800)
56 #define SLB_VSID_KP ASM_CONST(0x0000000000000400)
57 #define SLB_VSID_N ASM_CONST(0x0000000000000200) /* no-execute */
58 #define SLB_VSID_L ASM_CONST(0x0000000000000100)
59 #define SLB_VSID_C ASM_CONST(0x0000000000000080) /* class */
60 #define SLB_VSID_LP ASM_CONST(0x0000000000000030)
61 #define SLB_VSID_LP_00 ASM_CONST(0x0000000000000000)
62 #define SLB_VSID_LP_01 ASM_CONST(0x0000000000000010)
63 #define SLB_VSID_LP_10 ASM_CONST(0x0000000000000020)
64 #define SLB_VSID_LP_11 ASM_CONST(0x0000000000000030)
65 #define SLB_VSID_LLP (SLB_VSID_L|SLB_VSID_LP)
67 #define SLB_VSID_KERNEL (SLB_VSID_KP)
68 #define SLB_VSID_USER (SLB_VSID_KP|SLB_VSID_KS|SLB_VSID_C)
70 #define SLBIE_C (0x08000000)
71 #define SLBIE_SSIZE_SHIFT 25
74 * Hash table
77 #define HPTES_PER_GROUP 8
79 #define HPTE_V_SSIZE_SHIFT 62
80 #define HPTE_V_AVPN_SHIFT 7
81 #define HPTE_V_AVPN ASM_CONST(0x3fffffffffffff80)
82 #define HPTE_V_AVPN_VAL(x) (((x) & HPTE_V_AVPN) >> HPTE_V_AVPN_SHIFT)
83 #define HPTE_V_COMPARE(x,y) (!(((x) ^ (y)) & 0xffffffffffffff80UL))
84 #define HPTE_V_BOLTED ASM_CONST(0x0000000000000010)
85 #define HPTE_V_LOCK ASM_CONST(0x0000000000000008)
86 #define HPTE_V_LARGE ASM_CONST(0x0000000000000004)
87 #define HPTE_V_SECONDARY ASM_CONST(0x0000000000000002)
88 #define HPTE_V_VALID ASM_CONST(0x0000000000000001)
90 #define HPTE_R_PP0 ASM_CONST(0x8000000000000000)
91 #define HPTE_R_TS ASM_CONST(0x4000000000000000)
92 #define HPTE_R_RPN_SHIFT 12
93 #define HPTE_R_RPN ASM_CONST(0x3ffffffffffff000)
94 #define HPTE_R_FLAGS ASM_CONST(0x00000000000003ff)
95 #define HPTE_R_PP ASM_CONST(0x0000000000000003)
96 #define HPTE_R_N ASM_CONST(0x0000000000000004)
97 #define HPTE_R_C ASM_CONST(0x0000000000000080)
98 #define HPTE_R_R ASM_CONST(0x0000000000000100)
100 #define HPTE_V_1TB_SEG ASM_CONST(0x4000000000000000)
101 #define HPTE_V_VRMA_MASK ASM_CONST(0x4001ffffff000000)
103 /* Values for PP (assumes Ks=0, Kp=1) */
104 /* pp0 will always be 0 for linux */
105 #define PP_RWXX 0 /* Supervisor read/write, User none */
106 #define PP_RWRX 1 /* Supervisor read/write, User read */
107 #define PP_RWRW 2 /* Supervisor read/write, User read/write */
108 #define PP_RXRX 3 /* Supervisor read, User read */
110 #ifndef __ASSEMBLY__
112 struct hash_pte {
113 unsigned long v;
114 unsigned long r;
117 extern struct hash_pte *htab_address;
118 extern unsigned long htab_size_bytes;
119 extern unsigned long htab_hash_mask;
122 * Page size definition
124 * shift : is the "PAGE_SHIFT" value for that page size
125 * sllp : is a bit mask with the value of SLB L || LP to be or'ed
126 * directly to a slbmte "vsid" value
127 * penc : is the HPTE encoding mask for the "LP" field:
130 struct mmu_psize_def
132 unsigned int shift; /* number of bits */
133 unsigned int penc; /* HPTE encoding */
134 unsigned int tlbiel; /* tlbiel supported for that page size */
135 unsigned long avpnm; /* bits to mask out in AVPN in the HPTE */
136 unsigned long sllp; /* SLB L||LP (exact mask to use in slbmte) */
139 #endif /* __ASSEMBLY__ */
142 * The kernel use the constants below to index in the page sizes array.
143 * The use of fixed constants for this purpose is better for performances
144 * of the low level hash refill handlers.
146 * A non supported page size has a "shift" field set to 0
148 * Any new page size being implemented can get a new entry in here. Whether
149 * the kernel will use it or not is a different matter though. The actual page
150 * size used by hugetlbfs is not defined here and may be made variable
153 #define MMU_PAGE_4K 0 /* 4K */
154 #define MMU_PAGE_64K 1 /* 64K */
155 #define MMU_PAGE_64K_AP 2 /* 64K Admixed (in a 4K segment) */
156 #define MMU_PAGE_1M 3 /* 1M */
157 #define MMU_PAGE_16M 4 /* 16M */
158 #define MMU_PAGE_16G 5 /* 16G */
159 #define MMU_PAGE_COUNT 6
162 * Segment sizes.
163 * These are the values used by hardware in the B field of
164 * SLB entries and the first dword of MMU hashtable entries.
165 * The B field is 2 bits; the values 2 and 3 are unused and reserved.
167 #define MMU_SEGSIZE_256M 0
168 #define MMU_SEGSIZE_1T 1
171 #ifndef __ASSEMBLY__
174 * The current system page and segment sizes
176 extern struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT];
177 extern int mmu_linear_psize;
178 extern int mmu_virtual_psize;
179 extern int mmu_vmalloc_psize;
180 extern int mmu_io_psize;
181 extern int mmu_kernel_ssize;
182 extern int mmu_highuser_ssize;
183 extern u16 mmu_slb_size;
186 * If the processor supports 64k normal pages but not 64k cache
187 * inhibited pages, we have to be prepared to switch processes
188 * to use 4k pages when they create cache-inhibited mappings.
189 * If this is the case, mmu_ci_restrictions will be set to 1.
191 extern int mmu_ci_restrictions;
193 #ifdef CONFIG_HUGETLB_PAGE
195 * The page size index of the huge pages for use by hugetlbfs
197 extern int mmu_huge_psize;
199 #endif /* CONFIG_HUGETLB_PAGE */
202 * This function sets the AVPN and L fields of the HPTE appropriately
203 * for the page size
205 static inline unsigned long hpte_encode_v(unsigned long va, int psize,
206 int ssize)
208 unsigned long v;
209 v = (va >> 23) & ~(mmu_psize_defs[psize].avpnm);
210 v <<= HPTE_V_AVPN_SHIFT;
211 if (psize != MMU_PAGE_4K)
212 v |= HPTE_V_LARGE;
213 v |= ((unsigned long) ssize) << HPTE_V_SSIZE_SHIFT;
214 return v;
218 * This function sets the ARPN, and LP fields of the HPTE appropriately
219 * for the page size. We assume the pa is already "clean" that is properly
220 * aligned for the requested page size
222 static inline unsigned long hpte_encode_r(unsigned long pa, int psize)
224 unsigned long r;
226 /* A 4K page needs no special encoding */
227 if (psize == MMU_PAGE_4K)
228 return pa & HPTE_R_RPN;
229 else {
230 unsigned int penc = mmu_psize_defs[psize].penc;
231 unsigned int shift = mmu_psize_defs[psize].shift;
232 return (pa & ~((1ul << shift) - 1)) | (penc << 12);
234 return r;
238 * Build a VA given VSID, EA and segment size
240 static inline unsigned long hpt_va(unsigned long ea, unsigned long vsid,
241 int ssize)
243 if (ssize == MMU_SEGSIZE_256M)
244 return (vsid << 28) | (ea & 0xfffffffUL);
245 return (vsid << 40) | (ea & 0xffffffffffUL);
249 * This hashes a virtual address
252 static inline unsigned long hpt_hash(unsigned long va, unsigned int shift,
253 int ssize)
255 unsigned long hash, vsid;
257 if (ssize == MMU_SEGSIZE_256M) {
258 hash = (va >> 28) ^ ((va & 0x0fffffffUL) >> shift);
259 } else {
260 vsid = va >> 40;
261 hash = vsid ^ (vsid << 25) ^ ((va & 0xffffffffffUL) >> shift);
263 return hash & 0x7fffffffffUL;
266 extern int __hash_page_4K(unsigned long ea, unsigned long access,
267 unsigned long vsid, pte_t *ptep, unsigned long trap,
268 unsigned int local, int ssize, int subpage_prot);
269 extern int __hash_page_64K(unsigned long ea, unsigned long access,
270 unsigned long vsid, pte_t *ptep, unsigned long trap,
271 unsigned int local, int ssize);
272 struct mm_struct;
273 extern int hash_page(unsigned long ea, unsigned long access, unsigned long trap);
274 extern int hash_huge_page(struct mm_struct *mm, unsigned long access,
275 unsigned long ea, unsigned long vsid, int local,
276 unsigned long trap);
278 extern int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
279 unsigned long pstart, unsigned long mode,
280 int psize, int ssize);
281 extern void set_huge_psize(int psize);
282 extern void demote_segment_4k(struct mm_struct *mm, unsigned long addr);
284 extern void htab_initialize(void);
285 extern void htab_initialize_secondary(void);
286 extern void hpte_init_native(void);
287 extern void hpte_init_lpar(void);
288 extern void hpte_init_iSeries(void);
289 extern void hpte_init_beat(void);
290 extern void hpte_init_beat_v3(void);
292 extern void stabs_alloc(void);
293 extern void slb_initialize(void);
294 extern void slb_flush_and_rebolt(void);
295 extern void stab_initialize(unsigned long stab);
297 extern void slb_vmalloc_update(void);
298 #endif /* __ASSEMBLY__ */
301 * VSID allocation
303 * We first generate a 36-bit "proto-VSID". For kernel addresses this
304 * is equal to the ESID, for user addresses it is:
305 * (context << 15) | (esid & 0x7fff)
307 * The two forms are distinguishable because the top bit is 0 for user
308 * addresses, whereas the top two bits are 1 for kernel addresses.
309 * Proto-VSIDs with the top two bits equal to 0b10 are reserved for
310 * now.
312 * The proto-VSIDs are then scrambled into real VSIDs with the
313 * multiplicative hash:
315 * VSID = (proto-VSID * VSID_MULTIPLIER) % VSID_MODULUS
316 * where VSID_MULTIPLIER = 268435399 = 0xFFFFFC7
317 * VSID_MODULUS = 2^36-1 = 0xFFFFFFFFF
319 * This scramble is only well defined for proto-VSIDs below
320 * 0xFFFFFFFFF, so both proto-VSID and actual VSID 0xFFFFFFFFF are
321 * reserved. VSID_MULTIPLIER is prime, so in particular it is
322 * co-prime to VSID_MODULUS, making this a 1:1 scrambling function.
323 * Because the modulus is 2^n-1 we can compute it efficiently without
324 * a divide or extra multiply (see below).
326 * This scheme has several advantages over older methods:
328 * - We have VSIDs allocated for every kernel address
329 * (i.e. everything above 0xC000000000000000), except the very top
330 * segment, which simplifies several things.
332 * - We allow for 15 significant bits of ESID and 20 bits of
333 * context for user addresses. i.e. 8T (43 bits) of address space for
334 * up to 1M contexts (although the page table structure and context
335 * allocation will need changes to take advantage of this).
337 * - The scramble function gives robust scattering in the hash
338 * table (at least based on some initial results). The previous
339 * method was more susceptible to pathological cases giving excessive
340 * hash collisions.
343 * WARNING - If you change these you must make sure the asm
344 * implementations in slb_allocate (slb_low.S), do_stab_bolted
345 * (head.S) and ASM_VSID_SCRAMBLE (below) are changed accordingly.
347 * You'll also need to change the precomputed VSID values in head.S
348 * which are used by the iSeries firmware.
351 #define VSID_MULTIPLIER_256M ASM_CONST(200730139) /* 28-bit prime */
352 #define VSID_BITS_256M 36
353 #define VSID_MODULUS_256M ((1UL<<VSID_BITS_256M)-1)
355 #define VSID_MULTIPLIER_1T ASM_CONST(12538073) /* 24-bit prime */
356 #define VSID_BITS_1T 24
357 #define VSID_MODULUS_1T ((1UL<<VSID_BITS_1T)-1)
359 #define CONTEXT_BITS 19
360 #define USER_ESID_BITS 16
361 #define USER_ESID_BITS_1T 4
363 #define USER_VSID_RANGE (1UL << (USER_ESID_BITS + SID_SHIFT))
366 * This macro generates asm code to compute the VSID scramble
367 * function. Used in slb_allocate() and do_stab_bolted. The function
368 * computed is: (protovsid*VSID_MULTIPLIER) % VSID_MODULUS
370 * rt = register continaing the proto-VSID and into which the
371 * VSID will be stored
372 * rx = scratch register (clobbered)
374 * - rt and rx must be different registers
375 * - The answer will end up in the low VSID_BITS bits of rt. The higher
376 * bits may contain other garbage, so you may need to mask the
377 * result.
379 #define ASM_VSID_SCRAMBLE(rt, rx, size) \
380 lis rx,VSID_MULTIPLIER_##size@h; \
381 ori rx,rx,VSID_MULTIPLIER_##size@l; \
382 mulld rt,rt,rx; /* rt = rt * MULTIPLIER */ \
384 srdi rx,rt,VSID_BITS_##size; \
385 clrldi rt,rt,(64-VSID_BITS_##size); \
386 add rt,rt,rx; /* add high and low bits */ \
387 /* Now, r3 == VSID (mod 2^36-1), and lies between 0 and \
388 * 2^36-1+2^28-1. That in particular means that if r3 >= \
389 * 2^36-1, then r3+1 has the 2^36 bit set. So, if r3+1 has \
390 * the bit clear, r3 already has the answer we want, if it \
391 * doesn't, the answer is the low 36 bits of r3+1. So in all \
392 * cases the answer is the low 36 bits of (r3 + ((r3+1) >> 36))*/\
393 addi rx,rt,1; \
394 srdi rx,rx,VSID_BITS_##size; /* extract 2^VSID_BITS bit */ \
395 add rt,rt,rx
398 #ifndef __ASSEMBLY__
400 typedef unsigned long mm_context_id_t;
402 typedef struct {
403 mm_context_id_t id;
404 u16 user_psize; /* page size index */
406 #ifdef CONFIG_PPC_MM_SLICES
407 u64 low_slices_psize; /* SLB page size encodings */
408 u64 high_slices_psize; /* 4 bits per slice for now */
409 #else
410 u16 sllp; /* SLB page size encoding */
411 #endif
412 unsigned long vdso_base;
413 } mm_context_t;
416 #if 0
418 * The code below is equivalent to this function for arguments
419 * < 2^VSID_BITS, which is all this should ever be called
420 * with. However gcc is not clever enough to compute the
421 * modulus (2^n-1) without a second multiply.
423 #define vsid_scrample(protovsid, size) \
424 ((((protovsid) * VSID_MULTIPLIER_##size) % VSID_MODULUS_##size))
426 #else /* 1 */
427 #define vsid_scramble(protovsid, size) \
428 ({ \
429 unsigned long x; \
430 x = (protovsid) * VSID_MULTIPLIER_##size; \
431 x = (x >> VSID_BITS_##size) + (x & VSID_MODULUS_##size); \
432 (x + ((x+1) >> VSID_BITS_##size)) & VSID_MODULUS_##size; \
434 #endif /* 1 */
436 /* This is only valid for addresses >= KERNELBASE */
437 static inline unsigned long get_kernel_vsid(unsigned long ea, int ssize)
439 if (ssize == MMU_SEGSIZE_256M)
440 return vsid_scramble(ea >> SID_SHIFT, 256M);
441 return vsid_scramble(ea >> SID_SHIFT_1T, 1T);
444 /* Returns the segment size indicator for a user address */
445 static inline int user_segment_size(unsigned long addr)
447 /* Use 1T segments if possible for addresses >= 1T */
448 if (addr >= (1UL << SID_SHIFT_1T))
449 return mmu_highuser_ssize;
450 return MMU_SEGSIZE_256M;
453 /* This is only valid for user addresses (which are below 2^44) */
454 static inline unsigned long get_vsid(unsigned long context, unsigned long ea,
455 int ssize)
457 if (ssize == MMU_SEGSIZE_256M)
458 return vsid_scramble((context << USER_ESID_BITS)
459 | (ea >> SID_SHIFT), 256M);
460 return vsid_scramble((context << USER_ESID_BITS_1T)
461 | (ea >> SID_SHIFT_1T), 1T);
465 * This is only used on legacy iSeries in lparmap.c,
466 * hence the 256MB segment assumption.
468 #define VSID_SCRAMBLE(pvsid) (((pvsid) * VSID_MULTIPLIER_256M) % \
469 VSID_MODULUS_256M)
470 #define KERNEL_VSID(ea) VSID_SCRAMBLE(GET_ESID(ea))
472 /* Physical address used by some IO functions */
473 typedef unsigned long phys_addr_t;
475 #endif /* __ASSEMBLY__ */
477 #endif /* _ASM_POWERPC_MMU_HASH64_H_ */