2 * Copyright (c) International Business Machines Corp., 2006
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
12 * the GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner
22 * UBI wear-leveling unit.
24 * This unit is responsible for wear-leveling. It works in terms of physical
25 * eraseblocks and erase counters and knows nothing about logical eraseblocks,
26 * volumes, etc. From this unit's perspective all physical eraseblocks are of
27 * two types - used and free. Used physical eraseblocks are those that were
28 * "get" by the 'ubi_wl_get_peb()' function, and free physical eraseblocks are
29 * those that were put by the 'ubi_wl_put_peb()' function.
31 * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter
32 * header. The rest of the physical eraseblock contains only 0xFF bytes.
34 * When physical eraseblocks are returned to the WL unit by means of the
35 * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is
36 * done asynchronously in context of the per-UBI device background thread,
37 * which is also managed by the WL unit.
39 * The wear-leveling is ensured by means of moving the contents of used
40 * physical eraseblocks with low erase counter to free physical eraseblocks
41 * with high erase counter.
43 * The 'ubi_wl_get_peb()' function accepts data type hints which help to pick
44 * an "optimal" physical eraseblock. For example, when it is known that the
45 * physical eraseblock will be "put" soon because it contains short-term data,
46 * the WL unit may pick a free physical eraseblock with low erase counter, and
49 * If the WL unit fails to erase a physical eraseblock, it marks it as bad.
51 * This unit is also responsible for scrubbing. If a bit-flip is detected in a
52 * physical eraseblock, it has to be moved. Technically this is the same as
53 * moving it for wear-leveling reasons.
55 * As it was said, for the UBI unit all physical eraseblocks are either "free"
56 * or "used". Free eraseblock are kept in the @wl->free RB-tree, while used
57 * eraseblocks are kept in a set of different RB-trees: @wl->used,
58 * @wl->prot.pnum, @wl->prot.aec, and @wl->scrub.
60 * Note, in this implementation, we keep a small in-RAM object for each physical
61 * eraseblock. This is surely not a scalable solution. But it appears to be good
62 * enough for moderately large flashes and it is simple. In future, one may
63 * re-work this unit and make it more scalable.
65 * At the moment this unit does not utilize the sequence number, which was
66 * introduced relatively recently. But it would be wise to do this because the
67 * sequence number of a logical eraseblock characterizes how old is it. For
68 * example, when we move a PEB with low erase counter, and we need to pick the
69 * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we
70 * pick target PEB with an average EC if our PEB is not very "old". This is a
71 * room for future re-works of the WL unit.
73 * FIXME: looks too complex, should be simplified (later).
76 #include <linux/slab.h>
77 #include <linux/crc32.h>
78 #include <linux/freezer.h>
79 #include <linux/kthread.h>
82 /* Number of physical eraseblocks reserved for wear-leveling purposes */
83 #define WL_RESERVED_PEBS 1
86 * How many erase cycles are short term, unknown, and long term physical
87 * eraseblocks protected.
89 #define ST_PROTECTION 16
90 #define U_PROTECTION 10
91 #define LT_PROTECTION 4
94 * Maximum difference between two erase counters. If this threshold is
95 * exceeded, the WL unit starts moving data from used physical eraseblocks with
96 * low erase counter to free physical eraseblocks with high erase counter.
98 #define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD
101 * When a physical eraseblock is moved, the WL unit has to pick the target
102 * physical eraseblock to move to. The simplest way would be just to pick the
103 * one with the highest erase counter. But in certain workloads this could lead
104 * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a
105 * situation when the picked physical eraseblock is constantly erased after the
106 * data is written to it. So, we have a constant which limits the highest erase
107 * counter of the free physical eraseblock to pick. Namely, the WL unit does
108 * not pick eraseblocks with erase counter greater then the lowest erase
109 * counter plus %WL_FREE_MAX_DIFF.
111 #define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD)
114 * Maximum number of consecutive background thread failures which is enough to
115 * switch to read-only mode.
117 #define WL_MAX_FAILURES 32
120 * struct ubi_wl_prot_entry - PEB protection entry.
121 * @rb_pnum: link in the @wl->prot.pnum RB-tree
122 * @rb_aec: link in the @wl->prot.aec RB-tree
123 * @abs_ec: the absolute erase counter value when the protection ends
124 * @e: the wear-leveling entry of the physical eraseblock under protection
126 * When the WL unit returns a physical eraseblock, the physical eraseblock is
127 * protected from being moved for some "time". For this reason, the physical
128 * eraseblock is not directly moved from the @wl->free tree to the @wl->used
129 * tree. There is one more tree in between where this physical eraseblock is
130 * temporarily stored (@wl->prot).
132 * All this protection stuff is needed because:
133 * o we don't want to move physical eraseblocks just after we have given them
134 * to the user; instead, we first want to let users fill them up with data;
136 * o there is a chance that the user will put the physical eraseblock very
137 * soon, so it makes sense not to move it for some time, but wait; this is
138 * especially important in case of "short term" physical eraseblocks.
140 * Physical eraseblocks stay protected only for limited time. But the "time" is
141 * measured in erase cycles in this case. This is implemented with help of the
142 * absolute erase counter (@wl->abs_ec). When it reaches certain value, the
143 * physical eraseblocks are moved from the protection trees (@wl->prot.*) to
144 * the @wl->used tree.
146 * Protected physical eraseblocks are searched by physical eraseblock number
147 * (when they are put) and by the absolute erase counter (to check if it is
148 * time to move them to the @wl->used tree). So there are actually 2 RB-trees
149 * storing the protected physical eraseblocks: @wl->prot.pnum and
150 * @wl->prot.aec. They are referred to as the "protection" trees. The
151 * first one is indexed by the physical eraseblock number. The second one is
152 * indexed by the absolute erase counter. Both trees store
153 * &struct ubi_wl_prot_entry objects.
155 * Each physical eraseblock has 2 main states: free and used. The former state
156 * corresponds to the @wl->free tree. The latter state is split up on several
158 * o the WL movement is allowed (@wl->used tree);
159 * o the WL movement is temporarily prohibited (@wl->prot.pnum and
160 * @wl->prot.aec trees);
161 * o scrubbing is needed (@wl->scrub tree).
163 * Depending on the sub-state, wear-leveling entries of the used physical
164 * eraseblocks may be kept in one of those trees.
166 struct ubi_wl_prot_entry
{
167 struct rb_node rb_pnum
;
168 struct rb_node rb_aec
;
169 unsigned long long abs_ec
;
170 struct ubi_wl_entry
*e
;
174 * struct ubi_work - UBI work description data structure.
175 * @list: a link in the list of pending works
176 * @func: worker function
177 * @priv: private data of the worker function
179 * @e: physical eraseblock to erase
180 * @torture: if the physical eraseblock has to be tortured
182 * The @func pointer points to the worker function. If the @cancel argument is
183 * not zero, the worker has to free the resources and exit immediately. The
184 * worker has to return zero in case of success and a negative error code in
188 struct list_head list
;
189 int (*func
)(struct ubi_device
*ubi
, struct ubi_work
*wrk
, int cancel
);
190 /* The below fields are only relevant to erasure works */
191 struct ubi_wl_entry
*e
;
195 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
196 static int paranoid_check_ec(struct ubi_device
*ubi
, int pnum
, int ec
);
197 static int paranoid_check_in_wl_tree(struct ubi_wl_entry
*e
,
198 struct rb_root
*root
);
200 #define paranoid_check_ec(ubi, pnum, ec) 0
201 #define paranoid_check_in_wl_tree(e, root)
205 * wl_tree_add - add a wear-leveling entry to a WL RB-tree.
206 * @e: the wear-leveling entry to add
207 * @root: the root of the tree
209 * Note, we use (erase counter, physical eraseblock number) pairs as keys in
210 * the @ubi->used and @ubi->free RB-trees.
212 static void wl_tree_add(struct ubi_wl_entry
*e
, struct rb_root
*root
)
214 struct rb_node
**p
, *parent
= NULL
;
218 struct ubi_wl_entry
*e1
;
221 e1
= rb_entry(parent
, struct ubi_wl_entry
, rb
);
225 else if (e
->ec
> e1
->ec
)
228 ubi_assert(e
->pnum
!= e1
->pnum
);
229 if (e
->pnum
< e1
->pnum
)
236 rb_link_node(&e
->rb
, parent
, p
);
237 rb_insert_color(&e
->rb
, root
);
241 * do_work - do one pending work.
242 * @ubi: UBI device description object
244 * This function returns zero in case of success and a negative error code in
247 static int do_work(struct ubi_device
*ubi
)
250 struct ubi_work
*wrk
;
255 * @ubi->work_sem is used to synchronize with the workers. Workers take
256 * it in read mode, so many of them may be doing works at a time. But
257 * the queue flush code has to be sure the whole queue of works is
258 * done, and it takes the mutex in write mode.
260 down_read(&ubi
->work_sem
);
261 spin_lock(&ubi
->wl_lock
);
262 if (list_empty(&ubi
->works
)) {
263 spin_unlock(&ubi
->wl_lock
);
264 up_read(&ubi
->work_sem
);
268 wrk
= list_entry(ubi
->works
.next
, struct ubi_work
, list
);
269 list_del(&wrk
->list
);
270 ubi
->works_count
-= 1;
271 ubi_assert(ubi
->works_count
>= 0);
272 spin_unlock(&ubi
->wl_lock
);
275 * Call the worker function. Do not touch the work structure
276 * after this call as it will have been freed or reused by that
277 * time by the worker function.
279 err
= wrk
->func(ubi
, wrk
, 0);
281 ubi_err("work failed with error code %d", err
);
282 up_read(&ubi
->work_sem
);
288 * produce_free_peb - produce a free physical eraseblock.
289 * @ubi: UBI device description object
291 * This function tries to make a free PEB by means of synchronous execution of
292 * pending works. This may be needed if, for example the background thread is
293 * disabled. Returns zero in case of success and a negative error code in case
296 static int produce_free_peb(struct ubi_device
*ubi
)
300 spin_lock(&ubi
->wl_lock
);
301 while (!ubi
->free
.rb_node
) {
302 spin_unlock(&ubi
->wl_lock
);
304 dbg_wl("do one work synchronously");
309 spin_lock(&ubi
->wl_lock
);
311 spin_unlock(&ubi
->wl_lock
);
317 * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree.
318 * @e: the wear-leveling entry to check
319 * @root: the root of the tree
321 * This function returns non-zero if @e is in the @root RB-tree and zero if it
324 static int in_wl_tree(struct ubi_wl_entry
*e
, struct rb_root
*root
)
330 struct ubi_wl_entry
*e1
;
332 e1
= rb_entry(p
, struct ubi_wl_entry
, rb
);
334 if (e
->pnum
== e1
->pnum
) {
341 else if (e
->ec
> e1
->ec
)
344 ubi_assert(e
->pnum
!= e1
->pnum
);
345 if (e
->pnum
< e1
->pnum
)
356 * prot_tree_add - add physical eraseblock to protection trees.
357 * @ubi: UBI device description object
358 * @e: the physical eraseblock to add
359 * @pe: protection entry object to use
360 * @abs_ec: absolute erase counter value when this physical eraseblock has
361 * to be removed from the protection trees.
363 * @wl->lock has to be locked.
365 static void prot_tree_add(struct ubi_device
*ubi
, struct ubi_wl_entry
*e
,
366 struct ubi_wl_prot_entry
*pe
, int abs_ec
)
368 struct rb_node
**p
, *parent
= NULL
;
369 struct ubi_wl_prot_entry
*pe1
;
372 pe
->abs_ec
= ubi
->abs_ec
+ abs_ec
;
374 p
= &ubi
->prot
.pnum
.rb_node
;
377 pe1
= rb_entry(parent
, struct ubi_wl_prot_entry
, rb_pnum
);
379 if (e
->pnum
< pe1
->e
->pnum
)
384 rb_link_node(&pe
->rb_pnum
, parent
, p
);
385 rb_insert_color(&pe
->rb_pnum
, &ubi
->prot
.pnum
);
387 p
= &ubi
->prot
.aec
.rb_node
;
391 pe1
= rb_entry(parent
, struct ubi_wl_prot_entry
, rb_aec
);
393 if (pe
->abs_ec
< pe1
->abs_ec
)
398 rb_link_node(&pe
->rb_aec
, parent
, p
);
399 rb_insert_color(&pe
->rb_aec
, &ubi
->prot
.aec
);
403 * find_wl_entry - find wear-leveling entry closest to certain erase counter.
404 * @root: the RB-tree where to look for
405 * @max: highest possible erase counter
407 * This function looks for a wear leveling entry with erase counter closest to
408 * @max and less then @max.
410 static struct ubi_wl_entry
*find_wl_entry(struct rb_root
*root
, int max
)
413 struct ubi_wl_entry
*e
;
415 e
= rb_entry(rb_first(root
), struct ubi_wl_entry
, rb
);
420 struct ubi_wl_entry
*e1
;
422 e1
= rb_entry(p
, struct ubi_wl_entry
, rb
);
435 * ubi_wl_get_peb - get a physical eraseblock.
436 * @ubi: UBI device description object
437 * @dtype: type of data which will be stored in this physical eraseblock
439 * This function returns a physical eraseblock in case of success and a
440 * negative error code in case of failure. Might sleep.
442 int ubi_wl_get_peb(struct ubi_device
*ubi
, int dtype
)
444 int err
, protect
, medium_ec
;
445 struct ubi_wl_entry
*e
, *first
, *last
;
446 struct ubi_wl_prot_entry
*pe
;
448 ubi_assert(dtype
== UBI_LONGTERM
|| dtype
== UBI_SHORTTERM
||
449 dtype
== UBI_UNKNOWN
);
451 pe
= kmalloc(sizeof(struct ubi_wl_prot_entry
), GFP_NOFS
);
456 spin_lock(&ubi
->wl_lock
);
457 if (!ubi
->free
.rb_node
) {
458 if (ubi
->works_count
== 0) {
459 ubi_assert(list_empty(&ubi
->works
));
460 ubi_err("no free eraseblocks");
461 spin_unlock(&ubi
->wl_lock
);
465 spin_unlock(&ubi
->wl_lock
);
467 err
= produce_free_peb(ubi
);
478 * For long term data we pick a physical eraseblock
479 * with high erase counter. But the highest erase
480 * counter we can pick is bounded by the the lowest
481 * erase counter plus %WL_FREE_MAX_DIFF.
483 e
= find_wl_entry(&ubi
->free
, WL_FREE_MAX_DIFF
);
484 protect
= LT_PROTECTION
;
488 * For unknown data we pick a physical eraseblock with
489 * medium erase counter. But we by no means can pick a
490 * physical eraseblock with erase counter greater or
491 * equivalent than the lowest erase counter plus
494 first
= rb_entry(rb_first(&ubi
->free
),
495 struct ubi_wl_entry
, rb
);
496 last
= rb_entry(rb_last(&ubi
->free
),
497 struct ubi_wl_entry
, rb
);
499 if (last
->ec
- first
->ec
< WL_FREE_MAX_DIFF
)
500 e
= rb_entry(ubi
->free
.rb_node
,
501 struct ubi_wl_entry
, rb
);
503 medium_ec
= (first
->ec
+ WL_FREE_MAX_DIFF
)/2;
504 e
= find_wl_entry(&ubi
->free
, medium_ec
);
506 protect
= U_PROTECTION
;
510 * For short term data we pick a physical eraseblock
511 * with the lowest erase counter as we expect it will
514 e
= rb_entry(rb_first(&ubi
->free
),
515 struct ubi_wl_entry
, rb
);
516 protect
= ST_PROTECTION
;
525 * Move the physical eraseblock to the protection trees where it will
526 * be protected from being moved for some time.
528 paranoid_check_in_wl_tree(e
, &ubi
->free
);
529 rb_erase(&e
->rb
, &ubi
->free
);
530 prot_tree_add(ubi
, e
, pe
, protect
);
532 dbg_wl("PEB %d EC %d, protection %d", e
->pnum
, e
->ec
, protect
);
533 spin_unlock(&ubi
->wl_lock
);
539 * prot_tree_del - remove a physical eraseblock from the protection trees
540 * @ubi: UBI device description object
541 * @pnum: the physical eraseblock to remove
543 * This function returns PEB @pnum from the protection trees and returns zero
544 * in case of success and %-ENODEV if the PEB was not found in the protection
547 static int prot_tree_del(struct ubi_device
*ubi
, int pnum
)
550 struct ubi_wl_prot_entry
*pe
= NULL
;
552 p
= ubi
->prot
.pnum
.rb_node
;
555 pe
= rb_entry(p
, struct ubi_wl_prot_entry
, rb_pnum
);
557 if (pnum
== pe
->e
->pnum
)
560 if (pnum
< pe
->e
->pnum
)
569 ubi_assert(pe
->e
->pnum
== pnum
);
570 rb_erase(&pe
->rb_aec
, &ubi
->prot
.aec
);
571 rb_erase(&pe
->rb_pnum
, &ubi
->prot
.pnum
);
577 * sync_erase - synchronously erase a physical eraseblock.
578 * @ubi: UBI device description object
579 * @e: the the physical eraseblock to erase
580 * @torture: if the physical eraseblock has to be tortured
582 * This function returns zero in case of success and a negative error code in
585 static int sync_erase(struct ubi_device
*ubi
, struct ubi_wl_entry
*e
, int torture
)
588 struct ubi_ec_hdr
*ec_hdr
;
589 unsigned long long ec
= e
->ec
;
591 dbg_wl("erase PEB %d, old EC %llu", e
->pnum
, ec
);
593 err
= paranoid_check_ec(ubi
, e
->pnum
, e
->ec
);
597 ec_hdr
= kzalloc(ubi
->ec_hdr_alsize
, GFP_NOFS
);
601 err
= ubi_io_sync_erase(ubi
, e
->pnum
, torture
);
606 if (ec
> UBI_MAX_ERASECOUNTER
) {
608 * Erase counter overflow. Upgrade UBI and use 64-bit
609 * erase counters internally.
611 ubi_err("erase counter overflow at PEB %d, EC %llu",
617 dbg_wl("erased PEB %d, new EC %llu", e
->pnum
, ec
);
619 ec_hdr
->ec
= cpu_to_be64(ec
);
621 err
= ubi_io_write_ec_hdr(ubi
, e
->pnum
, ec_hdr
);
626 spin_lock(&ubi
->wl_lock
);
627 if (e
->ec
> ubi
->max_ec
)
629 spin_unlock(&ubi
->wl_lock
);
637 * check_protection_over - check if it is time to stop protecting some
638 * physical eraseblocks.
639 * @ubi: UBI device description object
641 * This function is called after each erase operation, when the absolute erase
642 * counter is incremented, to check if some physical eraseblock have not to be
643 * protected any longer. These physical eraseblocks are moved from the
644 * protection trees to the used tree.
646 static void check_protection_over(struct ubi_device
*ubi
)
648 struct ubi_wl_prot_entry
*pe
;
651 * There may be several protected physical eraseblock to remove,
655 spin_lock(&ubi
->wl_lock
);
656 if (!ubi
->prot
.aec
.rb_node
) {
657 spin_unlock(&ubi
->wl_lock
);
661 pe
= rb_entry(rb_first(&ubi
->prot
.aec
),
662 struct ubi_wl_prot_entry
, rb_aec
);
664 if (pe
->abs_ec
> ubi
->abs_ec
) {
665 spin_unlock(&ubi
->wl_lock
);
669 dbg_wl("PEB %d protection over, abs_ec %llu, PEB abs_ec %llu",
670 pe
->e
->pnum
, ubi
->abs_ec
, pe
->abs_ec
);
671 rb_erase(&pe
->rb_aec
, &ubi
->prot
.aec
);
672 rb_erase(&pe
->rb_pnum
, &ubi
->prot
.pnum
);
673 wl_tree_add(pe
->e
, &ubi
->used
);
674 spin_unlock(&ubi
->wl_lock
);
682 * schedule_ubi_work - schedule a work.
683 * @ubi: UBI device description object
684 * @wrk: the work to schedule
686 * This function enqueues a work defined by @wrk to the tail of the pending
689 static void schedule_ubi_work(struct ubi_device
*ubi
, struct ubi_work
*wrk
)
691 spin_lock(&ubi
->wl_lock
);
692 list_add_tail(&wrk
->list
, &ubi
->works
);
693 ubi_assert(ubi
->works_count
>= 0);
694 ubi
->works_count
+= 1;
695 if (ubi
->thread_enabled
)
696 wake_up_process(ubi
->bgt_thread
);
697 spin_unlock(&ubi
->wl_lock
);
700 static int erase_worker(struct ubi_device
*ubi
, struct ubi_work
*wl_wrk
,
704 * schedule_erase - schedule an erase work.
705 * @ubi: UBI device description object
706 * @e: the WL entry of the physical eraseblock to erase
707 * @torture: if the physical eraseblock has to be tortured
709 * This function returns zero in case of success and a %-ENOMEM in case of
712 static int schedule_erase(struct ubi_device
*ubi
, struct ubi_wl_entry
*e
,
715 struct ubi_work
*wl_wrk
;
717 dbg_wl("schedule erasure of PEB %d, EC %d, torture %d",
718 e
->pnum
, e
->ec
, torture
);
720 wl_wrk
= kmalloc(sizeof(struct ubi_work
), GFP_NOFS
);
724 wl_wrk
->func
= &erase_worker
;
726 wl_wrk
->torture
= torture
;
728 schedule_ubi_work(ubi
, wl_wrk
);
733 * wear_leveling_worker - wear-leveling worker function.
734 * @ubi: UBI device description object
735 * @wrk: the work object
736 * @cancel: non-zero if the worker has to free memory and exit
738 * This function copies a more worn out physical eraseblock to a less worn out
739 * one. Returns zero in case of success and a negative error code in case of
742 static int wear_leveling_worker(struct ubi_device
*ubi
, struct ubi_work
*wrk
,
745 int err
, put
= 0, scrubbing
= 0, protect
= 0;
746 struct ubi_wl_prot_entry
*uninitialized_var(pe
);
747 struct ubi_wl_entry
*e1
, *e2
;
748 struct ubi_vid_hdr
*vid_hdr
;
755 vid_hdr
= ubi_zalloc_vid_hdr(ubi
, GFP_NOFS
);
759 mutex_lock(&ubi
->move_mutex
);
760 spin_lock(&ubi
->wl_lock
);
761 ubi_assert(!ubi
->move_from
&& !ubi
->move_to
);
762 ubi_assert(!ubi
->move_to_put
);
764 if (!ubi
->free
.rb_node
||
765 (!ubi
->used
.rb_node
&& !ubi
->scrub
.rb_node
)) {
767 * No free physical eraseblocks? Well, they must be waiting in
768 * the queue to be erased. Cancel movement - it will be
769 * triggered again when a free physical eraseblock appears.
771 * No used physical eraseblocks? They must be temporarily
772 * protected from being moved. They will be moved to the
773 * @ubi->used tree later and the wear-leveling will be
776 dbg_wl("cancel WL, a list is empty: free %d, used %d",
777 !ubi
->free
.rb_node
, !ubi
->used
.rb_node
);
781 if (!ubi
->scrub
.rb_node
) {
783 * Now pick the least worn-out used physical eraseblock and a
784 * highly worn-out free physical eraseblock. If the erase
785 * counters differ much enough, start wear-leveling.
787 e1
= rb_entry(rb_first(&ubi
->used
), struct ubi_wl_entry
, rb
);
788 e2
= find_wl_entry(&ubi
->free
, WL_FREE_MAX_DIFF
);
790 if (!(e2
->ec
- e1
->ec
>= UBI_WL_THRESHOLD
)) {
791 dbg_wl("no WL needed: min used EC %d, max free EC %d",
795 paranoid_check_in_wl_tree(e1
, &ubi
->used
);
796 rb_erase(&e1
->rb
, &ubi
->used
);
797 dbg_wl("move PEB %d EC %d to PEB %d EC %d",
798 e1
->pnum
, e1
->ec
, e2
->pnum
, e2
->ec
);
800 /* Perform scrubbing */
802 e1
= rb_entry(rb_first(&ubi
->scrub
), struct ubi_wl_entry
, rb
);
803 e2
= find_wl_entry(&ubi
->free
, WL_FREE_MAX_DIFF
);
804 paranoid_check_in_wl_tree(e1
, &ubi
->scrub
);
805 rb_erase(&e1
->rb
, &ubi
->scrub
);
806 dbg_wl("scrub PEB %d to PEB %d", e1
->pnum
, e2
->pnum
);
809 paranoid_check_in_wl_tree(e2
, &ubi
->free
);
810 rb_erase(&e2
->rb
, &ubi
->free
);
813 spin_unlock(&ubi
->wl_lock
);
816 * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum.
817 * We so far do not know which logical eraseblock our physical
818 * eraseblock (@e1) belongs to. We have to read the volume identifier
821 * Note, we are protected from this PEB being unmapped and erased. The
822 * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB
823 * which is being moved was unmapped.
826 err
= ubi_io_read_vid_hdr(ubi
, e1
->pnum
, vid_hdr
, 0);
827 if (err
&& err
!= UBI_IO_BITFLIPS
) {
828 if (err
== UBI_IO_PEB_FREE
) {
830 * We are trying to move PEB without a VID header. UBI
831 * always write VID headers shortly after the PEB was
832 * given, so we have a situation when it did not have
833 * chance to write it down because it was preempted.
834 * Just re-schedule the work, so that next time it will
835 * likely have the VID header in place.
837 dbg_wl("PEB %d has no VID header", e1
->pnum
);
841 ubi_err("error %d while reading VID header from PEB %d",
848 err
= ubi_eba_copy_leb(ubi
, e1
->pnum
, e2
->pnum
, vid_hdr
);
857 * For some reason the LEB was not moved - it might be because
858 * the volume is being deleted. We should prevent this PEB from
859 * being selected for wear-levelling movement for some "time",
860 * so put it to the protection tree.
863 dbg_wl("cancelled moving PEB %d", e1
->pnum
);
864 pe
= kmalloc(sizeof(struct ubi_wl_prot_entry
), GFP_NOFS
);
873 ubi_free_vid_hdr(ubi
, vid_hdr
);
874 spin_lock(&ubi
->wl_lock
);
876 prot_tree_add(ubi
, e1
, pe
, protect
);
877 if (!ubi
->move_to_put
)
878 wl_tree_add(e2
, &ubi
->used
);
881 ubi
->move_from
= ubi
->move_to
= NULL
;
882 ubi
->move_to_put
= ubi
->wl_scheduled
= 0;
883 spin_unlock(&ubi
->wl_lock
);
887 * Well, the target PEB was put meanwhile, schedule it for
890 dbg_wl("PEB %d was put meanwhile, erase", e2
->pnum
);
891 err
= schedule_erase(ubi
, e2
, 0);
897 err
= schedule_erase(ubi
, e1
, 0);
904 mutex_unlock(&ubi
->move_mutex
);
908 * For some reasons the LEB was not moved, might be an error, might be
909 * something else. @e1 was not changed, so return it back. @e2 might
910 * be changed, schedule it for erasure.
913 ubi_free_vid_hdr(ubi
, vid_hdr
);
914 spin_lock(&ubi
->wl_lock
);
916 wl_tree_add(e1
, &ubi
->scrub
);
918 wl_tree_add(e1
, &ubi
->used
);
919 ubi
->move_from
= ubi
->move_to
= NULL
;
920 ubi
->move_to_put
= ubi
->wl_scheduled
= 0;
921 spin_unlock(&ubi
->wl_lock
);
923 err
= schedule_erase(ubi
, e2
, 0);
927 mutex_unlock(&ubi
->move_mutex
);
931 ubi_err("error %d while moving PEB %d to PEB %d",
932 err
, e1
->pnum
, e2
->pnum
);
934 ubi_free_vid_hdr(ubi
, vid_hdr
);
935 spin_lock(&ubi
->wl_lock
);
936 ubi
->move_from
= ubi
->move_to
= NULL
;
937 ubi
->move_to_put
= ubi
->wl_scheduled
= 0;
938 spin_unlock(&ubi
->wl_lock
);
940 kmem_cache_free(ubi_wl_entry_slab
, e1
);
941 kmem_cache_free(ubi_wl_entry_slab
, e2
);
944 mutex_unlock(&ubi
->move_mutex
);
948 ubi
->wl_scheduled
= 0;
949 spin_unlock(&ubi
->wl_lock
);
950 mutex_unlock(&ubi
->move_mutex
);
951 ubi_free_vid_hdr(ubi
, vid_hdr
);
956 * ensure_wear_leveling - schedule wear-leveling if it is needed.
957 * @ubi: UBI device description object
959 * This function checks if it is time to start wear-leveling and schedules it
960 * if yes. This function returns zero in case of success and a negative error
961 * code in case of failure.
963 static int ensure_wear_leveling(struct ubi_device
*ubi
)
966 struct ubi_wl_entry
*e1
;
967 struct ubi_wl_entry
*e2
;
968 struct ubi_work
*wrk
;
970 spin_lock(&ubi
->wl_lock
);
971 if (ubi
->wl_scheduled
)
972 /* Wear-leveling is already in the work queue */
976 * If the ubi->scrub tree is not empty, scrubbing is needed, and the
977 * the WL worker has to be scheduled anyway.
979 if (!ubi
->scrub
.rb_node
) {
980 if (!ubi
->used
.rb_node
|| !ubi
->free
.rb_node
)
981 /* No physical eraseblocks - no deal */
985 * We schedule wear-leveling only if the difference between the
986 * lowest erase counter of used physical eraseblocks and a high
987 * erase counter of free physical eraseblocks is greater then
990 e1
= rb_entry(rb_first(&ubi
->used
), struct ubi_wl_entry
, rb
);
991 e2
= find_wl_entry(&ubi
->free
, WL_FREE_MAX_DIFF
);
993 if (!(e2
->ec
- e1
->ec
>= UBI_WL_THRESHOLD
))
995 dbg_wl("schedule wear-leveling");
997 dbg_wl("schedule scrubbing");
999 ubi
->wl_scheduled
= 1;
1000 spin_unlock(&ubi
->wl_lock
);
1002 wrk
= kmalloc(sizeof(struct ubi_work
), GFP_NOFS
);
1008 wrk
->func
= &wear_leveling_worker
;
1009 schedule_ubi_work(ubi
, wrk
);
1013 spin_lock(&ubi
->wl_lock
);
1014 ubi
->wl_scheduled
= 0;
1016 spin_unlock(&ubi
->wl_lock
);
1021 * erase_worker - physical eraseblock erase worker function.
1022 * @ubi: UBI device description object
1023 * @wl_wrk: the work object
1024 * @cancel: non-zero if the worker has to free memory and exit
1026 * This function erases a physical eraseblock and perform torture testing if
1027 * needed. It also takes care about marking the physical eraseblock bad if
1028 * needed. Returns zero in case of success and a negative error code in case of
1031 static int erase_worker(struct ubi_device
*ubi
, struct ubi_work
*wl_wrk
,
1034 struct ubi_wl_entry
*e
= wl_wrk
->e
;
1035 int pnum
= e
->pnum
, err
, need
;
1038 dbg_wl("cancel erasure of PEB %d EC %d", pnum
, e
->ec
);
1040 kmem_cache_free(ubi_wl_entry_slab
, e
);
1044 dbg_wl("erase PEB %d EC %d", pnum
, e
->ec
);
1046 err
= sync_erase(ubi
, e
, wl_wrk
->torture
);
1048 /* Fine, we've erased it successfully */
1051 spin_lock(&ubi
->wl_lock
);
1053 wl_tree_add(e
, &ubi
->free
);
1054 spin_unlock(&ubi
->wl_lock
);
1057 * One more erase operation has happened, take care about protected
1058 * physical eraseblocks.
1060 check_protection_over(ubi
);
1062 /* And take care about wear-leveling */
1063 err
= ensure_wear_leveling(ubi
);
1067 ubi_err("failed to erase PEB %d, error %d", pnum
, err
);
1069 kmem_cache_free(ubi_wl_entry_slab
, e
);
1071 if (err
== -EINTR
|| err
== -ENOMEM
|| err
== -EAGAIN
||
1075 /* Re-schedule the LEB for erasure */
1076 err1
= schedule_erase(ubi
, e
, 0);
1082 } else if (err
!= -EIO
) {
1084 * If this is not %-EIO, we have no idea what to do. Scheduling
1085 * this physical eraseblock for erasure again would cause
1086 * errors again and again. Well, lets switch to RO mode.
1091 /* It is %-EIO, the PEB went bad */
1093 if (!ubi
->bad_allowed
) {
1094 ubi_err("bad physical eraseblock %d detected", pnum
);
1098 spin_lock(&ubi
->volumes_lock
);
1099 need
= ubi
->beb_rsvd_level
- ubi
->beb_rsvd_pebs
+ 1;
1101 need
= ubi
->avail_pebs
>= need
? need
: ubi
->avail_pebs
;
1102 ubi
->avail_pebs
-= need
;
1103 ubi
->rsvd_pebs
+= need
;
1104 ubi
->beb_rsvd_pebs
+= need
;
1106 ubi_msg("reserve more %d PEBs", need
);
1109 if (ubi
->beb_rsvd_pebs
== 0) {
1110 spin_unlock(&ubi
->volumes_lock
);
1111 ubi_err("no reserved physical eraseblocks");
1115 spin_unlock(&ubi
->volumes_lock
);
1116 ubi_msg("mark PEB %d as bad", pnum
);
1118 err
= ubi_io_mark_bad(ubi
, pnum
);
1122 spin_lock(&ubi
->volumes_lock
);
1123 ubi
->beb_rsvd_pebs
-= 1;
1124 ubi
->bad_peb_count
+= 1;
1125 ubi
->good_peb_count
-= 1;
1126 ubi_calculate_reserved(ubi
);
1127 if (ubi
->beb_rsvd_pebs
== 0)
1128 ubi_warn("last PEB from the reserved pool was used");
1129 spin_unlock(&ubi
->volumes_lock
);
1139 * ubi_wl_put_peb - return a physical eraseblock to the wear-leveling unit.
1140 * @ubi: UBI device description object
1141 * @pnum: physical eraseblock to return
1142 * @torture: if this physical eraseblock has to be tortured
1144 * This function is called to return physical eraseblock @pnum to the pool of
1145 * free physical eraseblocks. The @torture flag has to be set if an I/O error
1146 * occurred to this @pnum and it has to be tested. This function returns zero
1147 * in case of success, and a negative error code in case of failure.
1149 int ubi_wl_put_peb(struct ubi_device
*ubi
, int pnum
, int torture
)
1152 struct ubi_wl_entry
*e
;
1154 dbg_wl("PEB %d", pnum
);
1155 ubi_assert(pnum
>= 0);
1156 ubi_assert(pnum
< ubi
->peb_count
);
1159 spin_lock(&ubi
->wl_lock
);
1160 e
= ubi
->lookuptbl
[pnum
];
1161 if (e
== ubi
->move_from
) {
1163 * User is putting the physical eraseblock which was selected to
1164 * be moved. It will be scheduled for erasure in the
1165 * wear-leveling worker.
1167 dbg_wl("PEB %d is being moved, wait", pnum
);
1168 spin_unlock(&ubi
->wl_lock
);
1170 /* Wait for the WL worker by taking the @ubi->move_mutex */
1171 mutex_lock(&ubi
->move_mutex
);
1172 mutex_unlock(&ubi
->move_mutex
);
1174 } else if (e
== ubi
->move_to
) {
1176 * User is putting the physical eraseblock which was selected
1177 * as the target the data is moved to. It may happen if the EBA
1178 * unit already re-mapped the LEB in 'ubi_eba_copy_leb()' but
1179 * the WL unit has not put the PEB to the "used" tree yet, but
1180 * it is about to do this. So we just set a flag which will
1181 * tell the WL worker that the PEB is not needed anymore and
1182 * should be scheduled for erasure.
1184 dbg_wl("PEB %d is the target of data moving", pnum
);
1185 ubi_assert(!ubi
->move_to_put
);
1186 ubi
->move_to_put
= 1;
1187 spin_unlock(&ubi
->wl_lock
);
1190 if (in_wl_tree(e
, &ubi
->used
)) {
1191 paranoid_check_in_wl_tree(e
, &ubi
->used
);
1192 rb_erase(&e
->rb
, &ubi
->used
);
1193 } else if (in_wl_tree(e
, &ubi
->scrub
)) {
1194 paranoid_check_in_wl_tree(e
, &ubi
->scrub
);
1195 rb_erase(&e
->rb
, &ubi
->scrub
);
1197 err
= prot_tree_del(ubi
, e
->pnum
);
1199 ubi_err("PEB %d not found", pnum
);
1201 spin_unlock(&ubi
->wl_lock
);
1206 spin_unlock(&ubi
->wl_lock
);
1208 err
= schedule_erase(ubi
, e
, torture
);
1210 spin_lock(&ubi
->wl_lock
);
1211 wl_tree_add(e
, &ubi
->used
);
1212 spin_unlock(&ubi
->wl_lock
);
1219 * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing.
1220 * @ubi: UBI device description object
1221 * @pnum: the physical eraseblock to schedule
1223 * If a bit-flip in a physical eraseblock is detected, this physical eraseblock
1224 * needs scrubbing. This function schedules a physical eraseblock for
1225 * scrubbing which is done in background. This function returns zero in case of
1226 * success and a negative error code in case of failure.
1228 int ubi_wl_scrub_peb(struct ubi_device
*ubi
, int pnum
)
1230 struct ubi_wl_entry
*e
;
1232 ubi_msg("schedule PEB %d for scrubbing", pnum
);
1235 spin_lock(&ubi
->wl_lock
);
1236 e
= ubi
->lookuptbl
[pnum
];
1237 if (e
== ubi
->move_from
|| in_wl_tree(e
, &ubi
->scrub
)) {
1238 spin_unlock(&ubi
->wl_lock
);
1242 if (e
== ubi
->move_to
) {
1244 * This physical eraseblock was used to move data to. The data
1245 * was moved but the PEB was not yet inserted to the proper
1246 * tree. We should just wait a little and let the WL worker
1249 spin_unlock(&ubi
->wl_lock
);
1250 dbg_wl("the PEB %d is not in proper tree, retry", pnum
);
1255 if (in_wl_tree(e
, &ubi
->used
)) {
1256 paranoid_check_in_wl_tree(e
, &ubi
->used
);
1257 rb_erase(&e
->rb
, &ubi
->used
);
1261 err
= prot_tree_del(ubi
, e
->pnum
);
1263 ubi_err("PEB %d not found", pnum
);
1265 spin_unlock(&ubi
->wl_lock
);
1270 wl_tree_add(e
, &ubi
->scrub
);
1271 spin_unlock(&ubi
->wl_lock
);
1274 * Technically scrubbing is the same as wear-leveling, so it is done
1277 return ensure_wear_leveling(ubi
);
1281 * ubi_wl_flush - flush all pending works.
1282 * @ubi: UBI device description object
1284 * This function returns zero in case of success and a negative error code in
1287 int ubi_wl_flush(struct ubi_device
*ubi
)
1292 * Erase while the pending works queue is not empty, but not more then
1293 * the number of currently pending works.
1295 dbg_wl("flush (%d pending works)", ubi
->works_count
);
1296 while (ubi
->works_count
) {
1303 * Make sure all the works which have been done in parallel are
1306 down_write(&ubi
->work_sem
);
1307 up_write(&ubi
->work_sem
);
1310 * And in case last was the WL worker and it cancelled the LEB
1311 * movement, flush again.
1313 while (ubi
->works_count
) {
1314 dbg_wl("flush more (%d pending works)", ubi
->works_count
);
1324 * tree_destroy - destroy an RB-tree.
1325 * @root: the root of the tree to destroy
1327 static void tree_destroy(struct rb_root
*root
)
1330 struct ubi_wl_entry
*e
;
1336 else if (rb
->rb_right
)
1339 e
= rb_entry(rb
, struct ubi_wl_entry
, rb
);
1343 if (rb
->rb_left
== &e
->rb
)
1346 rb
->rb_right
= NULL
;
1349 kmem_cache_free(ubi_wl_entry_slab
, e
);
1355 * ubi_thread - UBI background thread.
1356 * @u: the UBI device description object pointer
1358 int ubi_thread(void *u
)
1361 struct ubi_device
*ubi
= u
;
1363 ubi_msg("background thread \"%s\" started, PID %d",
1364 ubi
->bgt_name
, task_pid_nr(current
));
1370 if (kthread_should_stop())
1373 if (try_to_freeze())
1376 spin_lock(&ubi
->wl_lock
);
1377 if (list_empty(&ubi
->works
) || ubi
->ro_mode
||
1378 !ubi
->thread_enabled
) {
1379 set_current_state(TASK_INTERRUPTIBLE
);
1380 spin_unlock(&ubi
->wl_lock
);
1384 spin_unlock(&ubi
->wl_lock
);
1388 ubi_err("%s: work failed with error code %d",
1389 ubi
->bgt_name
, err
);
1390 if (failures
++ > WL_MAX_FAILURES
) {
1392 * Too many failures, disable the thread and
1393 * switch to read-only mode.
1395 ubi_msg("%s: %d consecutive failures",
1396 ubi
->bgt_name
, WL_MAX_FAILURES
);
1407 dbg_wl("background thread \"%s\" is killed", ubi
->bgt_name
);
1412 * cancel_pending - cancel all pending works.
1413 * @ubi: UBI device description object
1415 static void cancel_pending(struct ubi_device
*ubi
)
1417 while (!list_empty(&ubi
->works
)) {
1418 struct ubi_work
*wrk
;
1420 wrk
= list_entry(ubi
->works
.next
, struct ubi_work
, list
);
1421 list_del(&wrk
->list
);
1422 wrk
->func(ubi
, wrk
, 1);
1423 ubi
->works_count
-= 1;
1424 ubi_assert(ubi
->works_count
>= 0);
1429 * ubi_wl_init_scan - initialize the wear-leveling unit using scanning
1431 * @ubi: UBI device description object
1432 * @si: scanning information
1434 * This function returns zero in case of success, and a negative error code in
1437 int ubi_wl_init_scan(struct ubi_device
*ubi
, struct ubi_scan_info
*si
)
1440 struct rb_node
*rb1
, *rb2
;
1441 struct ubi_scan_volume
*sv
;
1442 struct ubi_scan_leb
*seb
, *tmp
;
1443 struct ubi_wl_entry
*e
;
1446 ubi
->used
= ubi
->free
= ubi
->scrub
= RB_ROOT
;
1447 ubi
->prot
.pnum
= ubi
->prot
.aec
= RB_ROOT
;
1448 spin_lock_init(&ubi
->wl_lock
);
1449 mutex_init(&ubi
->move_mutex
);
1450 init_rwsem(&ubi
->work_sem
);
1451 ubi
->max_ec
= si
->max_ec
;
1452 INIT_LIST_HEAD(&ubi
->works
);
1454 sprintf(ubi
->bgt_name
, UBI_BGT_NAME_PATTERN
, ubi
->ubi_num
);
1457 ubi
->lookuptbl
= kzalloc(ubi
->peb_count
* sizeof(void *), GFP_KERNEL
);
1458 if (!ubi
->lookuptbl
)
1461 list_for_each_entry_safe(seb
, tmp
, &si
->erase
, u
.list
) {
1464 e
= kmem_cache_alloc(ubi_wl_entry_slab
, GFP_KERNEL
);
1468 e
->pnum
= seb
->pnum
;
1470 ubi
->lookuptbl
[e
->pnum
] = e
;
1471 if (schedule_erase(ubi
, e
, 0)) {
1472 kmem_cache_free(ubi_wl_entry_slab
, e
);
1477 list_for_each_entry(seb
, &si
->free
, u
.list
) {
1480 e
= kmem_cache_alloc(ubi_wl_entry_slab
, GFP_KERNEL
);
1484 e
->pnum
= seb
->pnum
;
1486 ubi_assert(e
->ec
>= 0);
1487 wl_tree_add(e
, &ubi
->free
);
1488 ubi
->lookuptbl
[e
->pnum
] = e
;
1491 list_for_each_entry(seb
, &si
->corr
, u
.list
) {
1494 e
= kmem_cache_alloc(ubi_wl_entry_slab
, GFP_KERNEL
);
1498 e
->pnum
= seb
->pnum
;
1500 ubi
->lookuptbl
[e
->pnum
] = e
;
1501 if (schedule_erase(ubi
, e
, 0)) {
1502 kmem_cache_free(ubi_wl_entry_slab
, e
);
1507 ubi_rb_for_each_entry(rb1
, sv
, &si
->volumes
, rb
) {
1508 ubi_rb_for_each_entry(rb2
, seb
, &sv
->root
, u
.rb
) {
1511 e
= kmem_cache_alloc(ubi_wl_entry_slab
, GFP_KERNEL
);
1515 e
->pnum
= seb
->pnum
;
1517 ubi
->lookuptbl
[e
->pnum
] = e
;
1519 dbg_wl("add PEB %d EC %d to the used tree",
1521 wl_tree_add(e
, &ubi
->used
);
1523 dbg_wl("add PEB %d EC %d to the scrub tree",
1525 wl_tree_add(e
, &ubi
->scrub
);
1530 if (ubi
->avail_pebs
< WL_RESERVED_PEBS
) {
1531 ubi_err("no enough physical eraseblocks (%d, need %d)",
1532 ubi
->avail_pebs
, WL_RESERVED_PEBS
);
1535 ubi
->avail_pebs
-= WL_RESERVED_PEBS
;
1536 ubi
->rsvd_pebs
+= WL_RESERVED_PEBS
;
1538 /* Schedule wear-leveling if needed */
1539 err
= ensure_wear_leveling(ubi
);
1546 cancel_pending(ubi
);
1547 tree_destroy(&ubi
->used
);
1548 tree_destroy(&ubi
->free
);
1549 tree_destroy(&ubi
->scrub
);
1550 kfree(ubi
->lookuptbl
);
1555 * protection_trees_destroy - destroy the protection RB-trees.
1556 * @ubi: UBI device description object
1558 static void protection_trees_destroy(struct ubi_device
*ubi
)
1561 struct ubi_wl_prot_entry
*pe
;
1563 rb
= ubi
->prot
.aec
.rb_node
;
1567 else if (rb
->rb_right
)
1570 pe
= rb_entry(rb
, struct ubi_wl_prot_entry
, rb_aec
);
1574 if (rb
->rb_left
== &pe
->rb_aec
)
1577 rb
->rb_right
= NULL
;
1580 kmem_cache_free(ubi_wl_entry_slab
, pe
->e
);
1587 * ubi_wl_close - close the wear-leveling unit.
1588 * @ubi: UBI device description object
1590 void ubi_wl_close(struct ubi_device
*ubi
)
1592 dbg_wl("close the UBI wear-leveling unit");
1594 cancel_pending(ubi
);
1595 protection_trees_destroy(ubi
);
1596 tree_destroy(&ubi
->used
);
1597 tree_destroy(&ubi
->free
);
1598 tree_destroy(&ubi
->scrub
);
1599 kfree(ubi
->lookuptbl
);
1602 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
1605 * paranoid_check_ec - make sure that the erase counter of a physical eraseblock
1607 * @ubi: UBI device description object
1608 * @pnum: the physical eraseblock number to check
1609 * @ec: the erase counter to check
1611 * This function returns zero if the erase counter of physical eraseblock @pnum
1612 * is equivalent to @ec, %1 if not, and a negative error code if an error
1615 static int paranoid_check_ec(struct ubi_device
*ubi
, int pnum
, int ec
)
1619 struct ubi_ec_hdr
*ec_hdr
;
1621 ec_hdr
= kzalloc(ubi
->ec_hdr_alsize
, GFP_NOFS
);
1625 err
= ubi_io_read_ec_hdr(ubi
, pnum
, ec_hdr
, 0);
1626 if (err
&& err
!= UBI_IO_BITFLIPS
) {
1627 /* The header does not have to exist */
1632 read_ec
= be64_to_cpu(ec_hdr
->ec
);
1633 if (ec
!= read_ec
) {
1634 ubi_err("paranoid check failed for PEB %d", pnum
);
1635 ubi_err("read EC is %lld, should be %d", read_ec
, ec
);
1636 ubi_dbg_dump_stack();
1647 * paranoid_check_in_wl_tree - make sure that a wear-leveling entry is present
1649 * @e: the wear-leveling entry to check
1650 * @root: the root of the tree
1652 * This function returns zero if @e is in the @root RB-tree and %1 if it
1655 static int paranoid_check_in_wl_tree(struct ubi_wl_entry
*e
,
1656 struct rb_root
*root
)
1658 if (in_wl_tree(e
, root
))
1661 ubi_err("paranoid check failed for PEB %d, EC %d, RB-tree %p ",
1662 e
->pnum
, e
->ec
, root
);
1663 ubi_dbg_dump_stack();
1667 #endif /* CONFIG_MTD_UBI_DEBUG_PARANOID */