Linux 2.6.25
[linux-2.6/s3c2410-cpufreq.git] / drivers / ide / ide-iops.c
blobe77cee0e5d65884f92f4ced39027afc9dcf0e79d
1 /*
2 * Copyright (C) 2000-2002 Andre Hedrick <andre@linux-ide.org>
3 * Copyright (C) 2003 Red Hat <alan@redhat.com>
5 */
7 #include <linux/module.h>
8 #include <linux/types.h>
9 #include <linux/string.h>
10 #include <linux/kernel.h>
11 #include <linux/timer.h>
12 #include <linux/mm.h>
13 #include <linux/interrupt.h>
14 #include <linux/major.h>
15 #include <linux/errno.h>
16 #include <linux/genhd.h>
17 #include <linux/blkpg.h>
18 #include <linux/slab.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hdreg.h>
22 #include <linux/ide.h>
23 #include <linux/bitops.h>
24 #include <linux/nmi.h>
26 #include <asm/byteorder.h>
27 #include <asm/irq.h>
28 #include <asm/uaccess.h>
29 #include <asm/io.h>
32 * Conventional PIO operations for ATA devices
35 static u8 ide_inb (unsigned long port)
37 return (u8) inb(port);
40 static u16 ide_inw (unsigned long port)
42 return (u16) inw(port);
45 static void ide_insw (unsigned long port, void *addr, u32 count)
47 insw(port, addr, count);
50 static void ide_insl (unsigned long port, void *addr, u32 count)
52 insl(port, addr, count);
55 static void ide_outb (u8 val, unsigned long port)
57 outb(val, port);
60 static void ide_outbsync (ide_drive_t *drive, u8 addr, unsigned long port)
62 outb(addr, port);
65 static void ide_outw (u16 val, unsigned long port)
67 outw(val, port);
70 static void ide_outsw (unsigned long port, void *addr, u32 count)
72 outsw(port, addr, count);
75 static void ide_outsl (unsigned long port, void *addr, u32 count)
77 outsl(port, addr, count);
80 void default_hwif_iops (ide_hwif_t *hwif)
82 hwif->OUTB = ide_outb;
83 hwif->OUTBSYNC = ide_outbsync;
84 hwif->OUTW = ide_outw;
85 hwif->OUTSW = ide_outsw;
86 hwif->OUTSL = ide_outsl;
87 hwif->INB = ide_inb;
88 hwif->INW = ide_inw;
89 hwif->INSW = ide_insw;
90 hwif->INSL = ide_insl;
94 * MMIO operations, typically used for SATA controllers
97 static u8 ide_mm_inb (unsigned long port)
99 return (u8) readb((void __iomem *) port);
102 static u16 ide_mm_inw (unsigned long port)
104 return (u16) readw((void __iomem *) port);
107 static void ide_mm_insw (unsigned long port, void *addr, u32 count)
109 __ide_mm_insw((void __iomem *) port, addr, count);
112 static void ide_mm_insl (unsigned long port, void *addr, u32 count)
114 __ide_mm_insl((void __iomem *) port, addr, count);
117 static void ide_mm_outb (u8 value, unsigned long port)
119 writeb(value, (void __iomem *) port);
122 static void ide_mm_outbsync (ide_drive_t *drive, u8 value, unsigned long port)
124 writeb(value, (void __iomem *) port);
127 static void ide_mm_outw (u16 value, unsigned long port)
129 writew(value, (void __iomem *) port);
132 static void ide_mm_outsw (unsigned long port, void *addr, u32 count)
134 __ide_mm_outsw((void __iomem *) port, addr, count);
137 static void ide_mm_outsl (unsigned long port, void *addr, u32 count)
139 __ide_mm_outsl((void __iomem *) port, addr, count);
142 void default_hwif_mmiops (ide_hwif_t *hwif)
144 hwif->OUTB = ide_mm_outb;
145 /* Most systems will need to override OUTBSYNC, alas however
146 this one is controller specific! */
147 hwif->OUTBSYNC = ide_mm_outbsync;
148 hwif->OUTW = ide_mm_outw;
149 hwif->OUTSW = ide_mm_outsw;
150 hwif->OUTSL = ide_mm_outsl;
151 hwif->INB = ide_mm_inb;
152 hwif->INW = ide_mm_inw;
153 hwif->INSW = ide_mm_insw;
154 hwif->INSL = ide_mm_insl;
157 EXPORT_SYMBOL(default_hwif_mmiops);
159 void SELECT_DRIVE (ide_drive_t *drive)
161 if (HWIF(drive)->selectproc)
162 HWIF(drive)->selectproc(drive);
163 HWIF(drive)->OUTB(drive->select.all, IDE_SELECT_REG);
166 void SELECT_MASK (ide_drive_t *drive, int mask)
168 if (HWIF(drive)->maskproc)
169 HWIF(drive)->maskproc(drive, mask);
173 * Some localbus EIDE interfaces require a special access sequence
174 * when using 32-bit I/O instructions to transfer data. We call this
175 * the "vlb_sync" sequence, which consists of three successive reads
176 * of the sector count register location, with interrupts disabled
177 * to ensure that the reads all happen together.
179 static void ata_vlb_sync(ide_drive_t *drive, unsigned long port)
181 (void) HWIF(drive)->INB(port);
182 (void) HWIF(drive)->INB(port);
183 (void) HWIF(drive)->INB(port);
187 * This is used for most PIO data transfers *from* the IDE interface
189 static void ata_input_data(ide_drive_t *drive, void *buffer, u32 wcount)
191 ide_hwif_t *hwif = HWIF(drive);
192 u8 io_32bit = drive->io_32bit;
194 if (io_32bit) {
195 if (io_32bit & 2) {
196 unsigned long flags;
197 local_irq_save(flags);
198 ata_vlb_sync(drive, IDE_NSECTOR_REG);
199 hwif->INSL(IDE_DATA_REG, buffer, wcount);
200 local_irq_restore(flags);
201 } else
202 hwif->INSL(IDE_DATA_REG, buffer, wcount);
203 } else {
204 hwif->INSW(IDE_DATA_REG, buffer, wcount<<1);
209 * This is used for most PIO data transfers *to* the IDE interface
211 static void ata_output_data(ide_drive_t *drive, void *buffer, u32 wcount)
213 ide_hwif_t *hwif = HWIF(drive);
214 u8 io_32bit = drive->io_32bit;
216 if (io_32bit) {
217 if (io_32bit & 2) {
218 unsigned long flags;
219 local_irq_save(flags);
220 ata_vlb_sync(drive, IDE_NSECTOR_REG);
221 hwif->OUTSL(IDE_DATA_REG, buffer, wcount);
222 local_irq_restore(flags);
223 } else
224 hwif->OUTSL(IDE_DATA_REG, buffer, wcount);
225 } else {
226 hwif->OUTSW(IDE_DATA_REG, buffer, wcount<<1);
231 * The following routines are mainly used by the ATAPI drivers.
233 * These routines will round up any request for an odd number of bytes,
234 * so if an odd bytecount is specified, be sure that there's at least one
235 * extra byte allocated for the buffer.
238 static void atapi_input_bytes(ide_drive_t *drive, void *buffer, u32 bytecount)
240 ide_hwif_t *hwif = HWIF(drive);
242 ++bytecount;
243 #if defined(CONFIG_ATARI) || defined(CONFIG_Q40)
244 if (MACH_IS_ATARI || MACH_IS_Q40) {
245 /* Atari has a byte-swapped IDE interface */
246 insw_swapw(IDE_DATA_REG, buffer, bytecount / 2);
247 return;
249 #endif /* CONFIG_ATARI || CONFIG_Q40 */
250 hwif->ata_input_data(drive, buffer, bytecount / 4);
251 if ((bytecount & 0x03) >= 2)
252 hwif->INSW(IDE_DATA_REG, ((u8 *)buffer)+(bytecount & ~0x03), 1);
255 static void atapi_output_bytes(ide_drive_t *drive, void *buffer, u32 bytecount)
257 ide_hwif_t *hwif = HWIF(drive);
259 ++bytecount;
260 #if defined(CONFIG_ATARI) || defined(CONFIG_Q40)
261 if (MACH_IS_ATARI || MACH_IS_Q40) {
262 /* Atari has a byte-swapped IDE interface */
263 outsw_swapw(IDE_DATA_REG, buffer, bytecount / 2);
264 return;
266 #endif /* CONFIG_ATARI || CONFIG_Q40 */
267 hwif->ata_output_data(drive, buffer, bytecount / 4);
268 if ((bytecount & 0x03) >= 2)
269 hwif->OUTSW(IDE_DATA_REG, ((u8*)buffer)+(bytecount & ~0x03), 1);
272 void default_hwif_transport(ide_hwif_t *hwif)
274 hwif->ata_input_data = ata_input_data;
275 hwif->ata_output_data = ata_output_data;
276 hwif->atapi_input_bytes = atapi_input_bytes;
277 hwif->atapi_output_bytes = atapi_output_bytes;
280 void ide_fix_driveid (struct hd_driveid *id)
282 #ifndef __LITTLE_ENDIAN
283 # ifdef __BIG_ENDIAN
284 int i;
285 u16 *stringcast;
287 id->config = __le16_to_cpu(id->config);
288 id->cyls = __le16_to_cpu(id->cyls);
289 id->reserved2 = __le16_to_cpu(id->reserved2);
290 id->heads = __le16_to_cpu(id->heads);
291 id->track_bytes = __le16_to_cpu(id->track_bytes);
292 id->sector_bytes = __le16_to_cpu(id->sector_bytes);
293 id->sectors = __le16_to_cpu(id->sectors);
294 id->vendor0 = __le16_to_cpu(id->vendor0);
295 id->vendor1 = __le16_to_cpu(id->vendor1);
296 id->vendor2 = __le16_to_cpu(id->vendor2);
297 stringcast = (u16 *)&id->serial_no[0];
298 for (i = 0; i < (20/2); i++)
299 stringcast[i] = __le16_to_cpu(stringcast[i]);
300 id->buf_type = __le16_to_cpu(id->buf_type);
301 id->buf_size = __le16_to_cpu(id->buf_size);
302 id->ecc_bytes = __le16_to_cpu(id->ecc_bytes);
303 stringcast = (u16 *)&id->fw_rev[0];
304 for (i = 0; i < (8/2); i++)
305 stringcast[i] = __le16_to_cpu(stringcast[i]);
306 stringcast = (u16 *)&id->model[0];
307 for (i = 0; i < (40/2); i++)
308 stringcast[i] = __le16_to_cpu(stringcast[i]);
309 id->dword_io = __le16_to_cpu(id->dword_io);
310 id->reserved50 = __le16_to_cpu(id->reserved50);
311 id->field_valid = __le16_to_cpu(id->field_valid);
312 id->cur_cyls = __le16_to_cpu(id->cur_cyls);
313 id->cur_heads = __le16_to_cpu(id->cur_heads);
314 id->cur_sectors = __le16_to_cpu(id->cur_sectors);
315 id->cur_capacity0 = __le16_to_cpu(id->cur_capacity0);
316 id->cur_capacity1 = __le16_to_cpu(id->cur_capacity1);
317 id->lba_capacity = __le32_to_cpu(id->lba_capacity);
318 id->dma_1word = __le16_to_cpu(id->dma_1word);
319 id->dma_mword = __le16_to_cpu(id->dma_mword);
320 id->eide_pio_modes = __le16_to_cpu(id->eide_pio_modes);
321 id->eide_dma_min = __le16_to_cpu(id->eide_dma_min);
322 id->eide_dma_time = __le16_to_cpu(id->eide_dma_time);
323 id->eide_pio = __le16_to_cpu(id->eide_pio);
324 id->eide_pio_iordy = __le16_to_cpu(id->eide_pio_iordy);
325 for (i = 0; i < 2; ++i)
326 id->words69_70[i] = __le16_to_cpu(id->words69_70[i]);
327 for (i = 0; i < 4; ++i)
328 id->words71_74[i] = __le16_to_cpu(id->words71_74[i]);
329 id->queue_depth = __le16_to_cpu(id->queue_depth);
330 for (i = 0; i < 4; ++i)
331 id->words76_79[i] = __le16_to_cpu(id->words76_79[i]);
332 id->major_rev_num = __le16_to_cpu(id->major_rev_num);
333 id->minor_rev_num = __le16_to_cpu(id->minor_rev_num);
334 id->command_set_1 = __le16_to_cpu(id->command_set_1);
335 id->command_set_2 = __le16_to_cpu(id->command_set_2);
336 id->cfsse = __le16_to_cpu(id->cfsse);
337 id->cfs_enable_1 = __le16_to_cpu(id->cfs_enable_1);
338 id->cfs_enable_2 = __le16_to_cpu(id->cfs_enable_2);
339 id->csf_default = __le16_to_cpu(id->csf_default);
340 id->dma_ultra = __le16_to_cpu(id->dma_ultra);
341 id->trseuc = __le16_to_cpu(id->trseuc);
342 id->trsEuc = __le16_to_cpu(id->trsEuc);
343 id->CurAPMvalues = __le16_to_cpu(id->CurAPMvalues);
344 id->mprc = __le16_to_cpu(id->mprc);
345 id->hw_config = __le16_to_cpu(id->hw_config);
346 id->acoustic = __le16_to_cpu(id->acoustic);
347 id->msrqs = __le16_to_cpu(id->msrqs);
348 id->sxfert = __le16_to_cpu(id->sxfert);
349 id->sal = __le16_to_cpu(id->sal);
350 id->spg = __le32_to_cpu(id->spg);
351 id->lba_capacity_2 = __le64_to_cpu(id->lba_capacity_2);
352 for (i = 0; i < 22; i++)
353 id->words104_125[i] = __le16_to_cpu(id->words104_125[i]);
354 id->last_lun = __le16_to_cpu(id->last_lun);
355 id->word127 = __le16_to_cpu(id->word127);
356 id->dlf = __le16_to_cpu(id->dlf);
357 id->csfo = __le16_to_cpu(id->csfo);
358 for (i = 0; i < 26; i++)
359 id->words130_155[i] = __le16_to_cpu(id->words130_155[i]);
360 id->word156 = __le16_to_cpu(id->word156);
361 for (i = 0; i < 3; i++)
362 id->words157_159[i] = __le16_to_cpu(id->words157_159[i]);
363 id->cfa_power = __le16_to_cpu(id->cfa_power);
364 for (i = 0; i < 14; i++)
365 id->words161_175[i] = __le16_to_cpu(id->words161_175[i]);
366 for (i = 0; i < 31; i++)
367 id->words176_205[i] = __le16_to_cpu(id->words176_205[i]);
368 for (i = 0; i < 48; i++)
369 id->words206_254[i] = __le16_to_cpu(id->words206_254[i]);
370 id->integrity_word = __le16_to_cpu(id->integrity_word);
371 # else
372 # error "Please fix <asm/byteorder.h>"
373 # endif
374 #endif
378 * ide_fixstring() cleans up and (optionally) byte-swaps a text string,
379 * removing leading/trailing blanks and compressing internal blanks.
380 * It is primarily used to tidy up the model name/number fields as
381 * returned by the WIN_[P]IDENTIFY commands.
384 void ide_fixstring (u8 *s, const int bytecount, const int byteswap)
386 u8 *p = s, *end = &s[bytecount & ~1]; /* bytecount must be even */
388 if (byteswap) {
389 /* convert from big-endian to host byte order */
390 for (p = end ; p != s;) {
391 unsigned short *pp = (unsigned short *) (p -= 2);
392 *pp = ntohs(*pp);
395 /* strip leading blanks */
396 while (s != end && *s == ' ')
397 ++s;
398 /* compress internal blanks and strip trailing blanks */
399 while (s != end && *s) {
400 if (*s++ != ' ' || (s != end && *s && *s != ' '))
401 *p++ = *(s-1);
403 /* wipe out trailing garbage */
404 while (p != end)
405 *p++ = '\0';
408 EXPORT_SYMBOL(ide_fixstring);
411 * Needed for PCI irq sharing
413 int drive_is_ready (ide_drive_t *drive)
415 ide_hwif_t *hwif = HWIF(drive);
416 u8 stat = 0;
418 if (drive->waiting_for_dma)
419 return hwif->ide_dma_test_irq(drive);
421 #if 0
422 /* need to guarantee 400ns since last command was issued */
423 udelay(1);
424 #endif
427 * We do a passive status test under shared PCI interrupts on
428 * cards that truly share the ATA side interrupt, but may also share
429 * an interrupt with another pci card/device. We make no assumptions
430 * about possible isa-pnp and pci-pnp issues yet.
432 if (IDE_CONTROL_REG)
433 stat = ide_read_altstatus(drive);
434 else
435 /* Note: this may clear a pending IRQ!! */
436 stat = ide_read_status(drive);
438 if (stat & BUSY_STAT)
439 /* drive busy: definitely not interrupting */
440 return 0;
442 /* drive ready: *might* be interrupting */
443 return 1;
446 EXPORT_SYMBOL(drive_is_ready);
449 * This routine busy-waits for the drive status to be not "busy".
450 * It then checks the status for all of the "good" bits and none
451 * of the "bad" bits, and if all is okay it returns 0. All other
452 * cases return error -- caller may then invoke ide_error().
454 * This routine should get fixed to not hog the cpu during extra long waits..
455 * That could be done by busy-waiting for the first jiffy or two, and then
456 * setting a timer to wake up at half second intervals thereafter,
457 * until timeout is achieved, before timing out.
459 static int __ide_wait_stat(ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout, u8 *rstat)
461 unsigned long flags;
462 int i;
463 u8 stat;
465 udelay(1); /* spec allows drive 400ns to assert "BUSY" */
466 stat = ide_read_status(drive);
468 if (stat & BUSY_STAT) {
469 local_irq_set(flags);
470 timeout += jiffies;
471 while ((stat = ide_read_status(drive)) & BUSY_STAT) {
472 if (time_after(jiffies, timeout)) {
474 * One last read after the timeout in case
475 * heavy interrupt load made us not make any
476 * progress during the timeout..
478 stat = ide_read_status(drive);
479 if (!(stat & BUSY_STAT))
480 break;
482 local_irq_restore(flags);
483 *rstat = stat;
484 return -EBUSY;
487 local_irq_restore(flags);
490 * Allow status to settle, then read it again.
491 * A few rare drives vastly violate the 400ns spec here,
492 * so we'll wait up to 10usec for a "good" status
493 * rather than expensively fail things immediately.
494 * This fix courtesy of Matthew Faupel & Niccolo Rigacci.
496 for (i = 0; i < 10; i++) {
497 udelay(1);
498 stat = ide_read_status(drive);
500 if (OK_STAT(stat, good, bad)) {
501 *rstat = stat;
502 return 0;
505 *rstat = stat;
506 return -EFAULT;
510 * In case of error returns error value after doing "*startstop = ide_error()".
511 * The caller should return the updated value of "startstop" in this case,
512 * "startstop" is unchanged when the function returns 0.
514 int ide_wait_stat(ide_startstop_t *startstop, ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout)
516 int err;
517 u8 stat;
519 /* bail early if we've exceeded max_failures */
520 if (drive->max_failures && (drive->failures > drive->max_failures)) {
521 *startstop = ide_stopped;
522 return 1;
525 err = __ide_wait_stat(drive, good, bad, timeout, &stat);
527 if (err) {
528 char *s = (err == -EBUSY) ? "status timeout" : "status error";
529 *startstop = ide_error(drive, s, stat);
532 return err;
535 EXPORT_SYMBOL(ide_wait_stat);
538 * ide_in_drive_list - look for drive in black/white list
539 * @id: drive identifier
540 * @drive_table: list to inspect
542 * Look for a drive in the blacklist and the whitelist tables
543 * Returns 1 if the drive is found in the table.
546 int ide_in_drive_list(struct hd_driveid *id, const struct drive_list_entry *drive_table)
548 for ( ; drive_table->id_model; drive_table++)
549 if ((!strcmp(drive_table->id_model, id->model)) &&
550 (!drive_table->id_firmware ||
551 strstr(id->fw_rev, drive_table->id_firmware)))
552 return 1;
553 return 0;
556 EXPORT_SYMBOL_GPL(ide_in_drive_list);
559 * Early UDMA66 devices don't set bit14 to 1, only bit13 is valid.
560 * We list them here and depend on the device side cable detection for them.
562 * Some optical devices with the buggy firmwares have the same problem.
564 static const struct drive_list_entry ivb_list[] = {
565 { "QUANTUM FIREBALLlct10 05" , "A03.0900" },
566 { "TSSTcorp CDDVDW SH-S202J" , "SB00" },
567 { "TSSTcorp CDDVDW SH-S202J" , "SB01" },
568 { "TSSTcorp CDDVDW SH-S202N" , "SB00" },
569 { "TSSTcorp CDDVDW SH-S202N" , "SB01" },
570 { NULL , NULL }
574 * All hosts that use the 80c ribbon must use!
575 * The name is derived from upper byte of word 93 and the 80c ribbon.
577 u8 eighty_ninty_three (ide_drive_t *drive)
579 ide_hwif_t *hwif = drive->hwif;
580 struct hd_driveid *id = drive->id;
581 int ivb = ide_in_drive_list(id, ivb_list);
583 if (hwif->cbl == ATA_CBL_PATA40_SHORT)
584 return 1;
586 if (ivb)
587 printk(KERN_DEBUG "%s: skipping word 93 validity check\n",
588 drive->name);
590 if (ide_dev_is_sata(id) && !ivb)
591 return 1;
593 if (hwif->cbl != ATA_CBL_PATA80 && !ivb)
594 goto no_80w;
597 * FIXME:
598 * - change master/slave IDENTIFY order
599 * - force bit13 (80c cable present) check also for !ivb devices
600 * (unless the slave device is pre-ATA3)
602 if ((id->hw_config & 0x4000) || (ivb && (id->hw_config & 0x2000)))
603 return 1;
605 no_80w:
606 if (drive->udma33_warned == 1)
607 return 0;
609 printk(KERN_WARNING "%s: %s side 80-wire cable detection failed, "
610 "limiting max speed to UDMA33\n",
611 drive->name,
612 hwif->cbl == ATA_CBL_PATA80 ? "drive" : "host");
614 drive->udma33_warned = 1;
616 return 0;
619 int ide_driveid_update(ide_drive_t *drive)
621 ide_hwif_t *hwif = drive->hwif;
622 struct hd_driveid *id;
623 unsigned long timeout, flags;
624 u8 stat;
627 * Re-read drive->id for possible DMA mode
628 * change (copied from ide-probe.c)
631 SELECT_MASK(drive, 1);
632 ide_set_irq(drive, 1);
633 msleep(50);
634 hwif->OUTB(WIN_IDENTIFY, IDE_COMMAND_REG);
635 timeout = jiffies + WAIT_WORSTCASE;
636 do {
637 if (time_after(jiffies, timeout)) {
638 SELECT_MASK(drive, 0);
639 return 0; /* drive timed-out */
642 msleep(50); /* give drive a breather */
643 stat = ide_read_altstatus(drive);
644 } while (stat & BUSY_STAT);
646 msleep(50); /* wait for IRQ and DRQ_STAT */
647 stat = ide_read_status(drive);
649 if (!OK_STAT(stat, DRQ_STAT, BAD_R_STAT)) {
650 SELECT_MASK(drive, 0);
651 printk("%s: CHECK for good STATUS\n", drive->name);
652 return 0;
654 local_irq_save(flags);
655 SELECT_MASK(drive, 0);
656 id = kmalloc(SECTOR_WORDS*4, GFP_ATOMIC);
657 if (!id) {
658 local_irq_restore(flags);
659 return 0;
661 hwif->ata_input_data(drive, id, SECTOR_WORDS);
662 (void)ide_read_status(drive); /* clear drive IRQ */
663 local_irq_enable();
664 local_irq_restore(flags);
665 ide_fix_driveid(id);
666 if (id) {
667 drive->id->dma_ultra = id->dma_ultra;
668 drive->id->dma_mword = id->dma_mword;
669 drive->id->dma_1word = id->dma_1word;
670 /* anything more ? */
671 kfree(id);
673 if (drive->using_dma && ide_id_dma_bug(drive))
674 ide_dma_off(drive);
677 return 1;
680 int ide_config_drive_speed(ide_drive_t *drive, u8 speed)
682 ide_hwif_t *hwif = drive->hwif;
683 int error = 0;
684 u8 stat;
686 // while (HWGROUP(drive)->busy)
687 // msleep(50);
689 #ifdef CONFIG_BLK_DEV_IDEDMA
690 if (hwif->dma_host_set) /* check if host supports DMA */
691 hwif->dma_host_set(drive, 0);
692 #endif
694 /* Skip setting PIO flow-control modes on pre-EIDE drives */
695 if ((speed & 0xf8) == XFER_PIO_0 && !(drive->id->capability & 0x08))
696 goto skip;
699 * Don't use ide_wait_cmd here - it will
700 * attempt to set_geometry and recalibrate,
701 * but for some reason these don't work at
702 * this point (lost interrupt).
705 * Select the drive, and issue the SETFEATURES command
707 disable_irq_nosync(hwif->irq);
710 * FIXME: we race against the running IRQ here if
711 * this is called from non IRQ context. If we use
712 * disable_irq() we hang on the error path. Work
713 * is needed.
716 udelay(1);
717 SELECT_DRIVE(drive);
718 SELECT_MASK(drive, 0);
719 udelay(1);
720 ide_set_irq(drive, 0);
721 hwif->OUTB(speed, IDE_NSECTOR_REG);
722 hwif->OUTB(SETFEATURES_XFER, IDE_FEATURE_REG);
723 hwif->OUTBSYNC(drive, WIN_SETFEATURES, IDE_COMMAND_REG);
724 if (drive->quirk_list == 2)
725 ide_set_irq(drive, 1);
727 error = __ide_wait_stat(drive, drive->ready_stat,
728 BUSY_STAT|DRQ_STAT|ERR_STAT,
729 WAIT_CMD, &stat);
731 SELECT_MASK(drive, 0);
733 enable_irq(hwif->irq);
735 if (error) {
736 (void) ide_dump_status(drive, "set_drive_speed_status", stat);
737 return error;
740 drive->id->dma_ultra &= ~0xFF00;
741 drive->id->dma_mword &= ~0x0F00;
742 drive->id->dma_1word &= ~0x0F00;
744 skip:
745 #ifdef CONFIG_BLK_DEV_IDEDMA
746 if ((speed >= XFER_SW_DMA_0 || (hwif->host_flags & IDE_HFLAG_VDMA)) &&
747 drive->using_dma)
748 hwif->dma_host_set(drive, 1);
749 else if (hwif->dma_host_set) /* check if host supports DMA */
750 ide_dma_off_quietly(drive);
751 #endif
753 switch(speed) {
754 case XFER_UDMA_7: drive->id->dma_ultra |= 0x8080; break;
755 case XFER_UDMA_6: drive->id->dma_ultra |= 0x4040; break;
756 case XFER_UDMA_5: drive->id->dma_ultra |= 0x2020; break;
757 case XFER_UDMA_4: drive->id->dma_ultra |= 0x1010; break;
758 case XFER_UDMA_3: drive->id->dma_ultra |= 0x0808; break;
759 case XFER_UDMA_2: drive->id->dma_ultra |= 0x0404; break;
760 case XFER_UDMA_1: drive->id->dma_ultra |= 0x0202; break;
761 case XFER_UDMA_0: drive->id->dma_ultra |= 0x0101; break;
762 case XFER_MW_DMA_2: drive->id->dma_mword |= 0x0404; break;
763 case XFER_MW_DMA_1: drive->id->dma_mword |= 0x0202; break;
764 case XFER_MW_DMA_0: drive->id->dma_mword |= 0x0101; break;
765 case XFER_SW_DMA_2: drive->id->dma_1word |= 0x0404; break;
766 case XFER_SW_DMA_1: drive->id->dma_1word |= 0x0202; break;
767 case XFER_SW_DMA_0: drive->id->dma_1word |= 0x0101; break;
768 default: break;
770 if (!drive->init_speed)
771 drive->init_speed = speed;
772 drive->current_speed = speed;
773 return error;
777 * This should get invoked any time we exit the driver to
778 * wait for an interrupt response from a drive. handler() points
779 * at the appropriate code to handle the next interrupt, and a
780 * timer is started to prevent us from waiting forever in case
781 * something goes wrong (see the ide_timer_expiry() handler later on).
783 * See also ide_execute_command
785 static void __ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
786 unsigned int timeout, ide_expiry_t *expiry)
788 ide_hwgroup_t *hwgroup = HWGROUP(drive);
790 BUG_ON(hwgroup->handler);
791 hwgroup->handler = handler;
792 hwgroup->expiry = expiry;
793 hwgroup->timer.expires = jiffies + timeout;
794 hwgroup->req_gen_timer = hwgroup->req_gen;
795 add_timer(&hwgroup->timer);
798 void ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
799 unsigned int timeout, ide_expiry_t *expiry)
801 unsigned long flags;
802 spin_lock_irqsave(&ide_lock, flags);
803 __ide_set_handler(drive, handler, timeout, expiry);
804 spin_unlock_irqrestore(&ide_lock, flags);
807 EXPORT_SYMBOL(ide_set_handler);
810 * ide_execute_command - execute an IDE command
811 * @drive: IDE drive to issue the command against
812 * @command: command byte to write
813 * @handler: handler for next phase
814 * @timeout: timeout for command
815 * @expiry: handler to run on timeout
817 * Helper function to issue an IDE command. This handles the
818 * atomicity requirements, command timing and ensures that the
819 * handler and IRQ setup do not race. All IDE command kick off
820 * should go via this function or do equivalent locking.
823 void ide_execute_command(ide_drive_t *drive, u8 cmd, ide_handler_t *handler,
824 unsigned timeout, ide_expiry_t *expiry)
826 unsigned long flags;
827 ide_hwif_t *hwif = HWIF(drive);
829 spin_lock_irqsave(&ide_lock, flags);
830 __ide_set_handler(drive, handler, timeout, expiry);
831 hwif->OUTBSYNC(drive, cmd, IDE_COMMAND_REG);
833 * Drive takes 400nS to respond, we must avoid the IRQ being
834 * serviced before that.
836 * FIXME: we could skip this delay with care on non shared devices
838 ndelay(400);
839 spin_unlock_irqrestore(&ide_lock, flags);
842 EXPORT_SYMBOL(ide_execute_command);
845 /* needed below */
846 static ide_startstop_t do_reset1 (ide_drive_t *, int);
849 * atapi_reset_pollfunc() gets invoked to poll the interface for completion every 50ms
850 * during an atapi drive reset operation. If the drive has not yet responded,
851 * and we have not yet hit our maximum waiting time, then the timer is restarted
852 * for another 50ms.
854 static ide_startstop_t atapi_reset_pollfunc (ide_drive_t *drive)
856 ide_hwgroup_t *hwgroup = HWGROUP(drive);
857 u8 stat;
859 SELECT_DRIVE(drive);
860 udelay (10);
861 stat = ide_read_status(drive);
863 if (OK_STAT(stat, 0, BUSY_STAT))
864 printk("%s: ATAPI reset complete\n", drive->name);
865 else {
866 if (time_before(jiffies, hwgroup->poll_timeout)) {
867 ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
868 /* continue polling */
869 return ide_started;
871 /* end of polling */
872 hwgroup->polling = 0;
873 printk("%s: ATAPI reset timed-out, status=0x%02x\n",
874 drive->name, stat);
875 /* do it the old fashioned way */
876 return do_reset1(drive, 1);
878 /* done polling */
879 hwgroup->polling = 0;
880 hwgroup->resetting = 0;
881 return ide_stopped;
885 * reset_pollfunc() gets invoked to poll the interface for completion every 50ms
886 * during an ide reset operation. If the drives have not yet responded,
887 * and we have not yet hit our maximum waiting time, then the timer is restarted
888 * for another 50ms.
890 static ide_startstop_t reset_pollfunc (ide_drive_t *drive)
892 ide_hwgroup_t *hwgroup = HWGROUP(drive);
893 ide_hwif_t *hwif = HWIF(drive);
894 u8 tmp;
896 if (hwif->reset_poll != NULL) {
897 if (hwif->reset_poll(drive)) {
898 printk(KERN_ERR "%s: host reset_poll failure for %s.\n",
899 hwif->name, drive->name);
900 return ide_stopped;
904 tmp = ide_read_status(drive);
906 if (!OK_STAT(tmp, 0, BUSY_STAT)) {
907 if (time_before(jiffies, hwgroup->poll_timeout)) {
908 ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
909 /* continue polling */
910 return ide_started;
912 printk("%s: reset timed-out, status=0x%02x\n", hwif->name, tmp);
913 drive->failures++;
914 } else {
915 printk("%s: reset: ", hwif->name);
916 tmp = ide_read_error(drive);
918 if (tmp == 1) {
919 printk("success\n");
920 drive->failures = 0;
921 } else {
922 drive->failures++;
923 printk("master: ");
924 switch (tmp & 0x7f) {
925 case 1: printk("passed");
926 break;
927 case 2: printk("formatter device error");
928 break;
929 case 3: printk("sector buffer error");
930 break;
931 case 4: printk("ECC circuitry error");
932 break;
933 case 5: printk("controlling MPU error");
934 break;
935 default:printk("error (0x%02x?)", tmp);
937 if (tmp & 0x80)
938 printk("; slave: failed");
939 printk("\n");
942 hwgroup->polling = 0; /* done polling */
943 hwgroup->resetting = 0; /* done reset attempt */
944 return ide_stopped;
947 static void ide_disk_pre_reset(ide_drive_t *drive)
949 int legacy = (drive->id->cfs_enable_2 & 0x0400) ? 0 : 1;
951 drive->special.all = 0;
952 drive->special.b.set_geometry = legacy;
953 drive->special.b.recalibrate = legacy;
954 drive->mult_count = 0;
955 if (!drive->keep_settings && !drive->using_dma)
956 drive->mult_req = 0;
957 if (drive->mult_req != drive->mult_count)
958 drive->special.b.set_multmode = 1;
961 static void pre_reset(ide_drive_t *drive)
963 if (drive->media == ide_disk)
964 ide_disk_pre_reset(drive);
965 else
966 drive->post_reset = 1;
968 if (drive->using_dma) {
969 if (drive->crc_count)
970 ide_check_dma_crc(drive);
971 else
972 ide_dma_off(drive);
975 if (!drive->keep_settings) {
976 if (!drive->using_dma) {
977 drive->unmask = 0;
978 drive->io_32bit = 0;
980 return;
983 if (HWIF(drive)->pre_reset != NULL)
984 HWIF(drive)->pre_reset(drive);
986 if (drive->current_speed != 0xff)
987 drive->desired_speed = drive->current_speed;
988 drive->current_speed = 0xff;
992 * do_reset1() attempts to recover a confused drive by resetting it.
993 * Unfortunately, resetting a disk drive actually resets all devices on
994 * the same interface, so it can really be thought of as resetting the
995 * interface rather than resetting the drive.
997 * ATAPI devices have their own reset mechanism which allows them to be
998 * individually reset without clobbering other devices on the same interface.
1000 * Unfortunately, the IDE interface does not generate an interrupt to let
1001 * us know when the reset operation has finished, so we must poll for this.
1002 * Equally poor, though, is the fact that this may a very long time to complete,
1003 * (up to 30 seconds worstcase). So, instead of busy-waiting here for it,
1004 * we set a timer to poll at 50ms intervals.
1006 static ide_startstop_t do_reset1 (ide_drive_t *drive, int do_not_try_atapi)
1008 unsigned int unit;
1009 unsigned long flags;
1010 ide_hwif_t *hwif;
1011 ide_hwgroup_t *hwgroup;
1013 spin_lock_irqsave(&ide_lock, flags);
1014 hwif = HWIF(drive);
1015 hwgroup = HWGROUP(drive);
1017 /* We must not reset with running handlers */
1018 BUG_ON(hwgroup->handler != NULL);
1020 /* For an ATAPI device, first try an ATAPI SRST. */
1021 if (drive->media != ide_disk && !do_not_try_atapi) {
1022 hwgroup->resetting = 1;
1023 pre_reset(drive);
1024 SELECT_DRIVE(drive);
1025 udelay (20);
1026 hwif->OUTBSYNC(drive, WIN_SRST, IDE_COMMAND_REG);
1027 ndelay(400);
1028 hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
1029 hwgroup->polling = 1;
1030 __ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
1031 spin_unlock_irqrestore(&ide_lock, flags);
1032 return ide_started;
1036 * First, reset any device state data we were maintaining
1037 * for any of the drives on this interface.
1039 for (unit = 0; unit < MAX_DRIVES; ++unit)
1040 pre_reset(&hwif->drives[unit]);
1042 if (!IDE_CONTROL_REG) {
1043 spin_unlock_irqrestore(&ide_lock, flags);
1044 return ide_stopped;
1047 hwgroup->resetting = 1;
1049 * Note that we also set nIEN while resetting the device,
1050 * to mask unwanted interrupts from the interface during the reset.
1051 * However, due to the design of PC hardware, this will cause an
1052 * immediate interrupt due to the edge transition it produces.
1053 * This single interrupt gives us a "fast poll" for drives that
1054 * recover from reset very quickly, saving us the first 50ms wait time.
1056 /* set SRST and nIEN */
1057 hwif->OUTBSYNC(drive, drive->ctl|6,IDE_CONTROL_REG);
1058 /* more than enough time */
1059 udelay(10);
1060 if (drive->quirk_list == 2) {
1061 /* clear SRST and nIEN */
1062 hwif->OUTBSYNC(drive, drive->ctl, IDE_CONTROL_REG);
1063 } else {
1064 /* clear SRST, leave nIEN */
1065 hwif->OUTBSYNC(drive, drive->ctl|2, IDE_CONTROL_REG);
1067 /* more than enough time */
1068 udelay(10);
1069 hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
1070 hwgroup->polling = 1;
1071 __ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
1074 * Some weird controller like resetting themselves to a strange
1075 * state when the disks are reset this way. At least, the Winbond
1076 * 553 documentation says that
1078 if (hwif->resetproc)
1079 hwif->resetproc(drive);
1081 spin_unlock_irqrestore(&ide_lock, flags);
1082 return ide_started;
1086 * ide_do_reset() is the entry point to the drive/interface reset code.
1089 ide_startstop_t ide_do_reset (ide_drive_t *drive)
1091 return do_reset1(drive, 0);
1094 EXPORT_SYMBOL(ide_do_reset);
1097 * ide_wait_not_busy() waits for the currently selected device on the hwif
1098 * to report a non-busy status, see comments in ide_probe_port().
1100 int ide_wait_not_busy(ide_hwif_t *hwif, unsigned long timeout)
1102 u8 stat = 0;
1104 while(timeout--) {
1106 * Turn this into a schedule() sleep once I'm sure
1107 * about locking issues (2.5 work ?).
1109 mdelay(1);
1110 stat = hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1111 if ((stat & BUSY_STAT) == 0)
1112 return 0;
1114 * Assume a value of 0xff means nothing is connected to
1115 * the interface and it doesn't implement the pull-down
1116 * resistor on D7.
1118 if (stat == 0xff)
1119 return -ENODEV;
1120 touch_softlockup_watchdog();
1121 touch_nmi_watchdog();
1123 return -EBUSY;
1126 EXPORT_SYMBOL_GPL(ide_wait_not_busy);