2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/bootmem.h>
23 #include <linux/compiler.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/suspend.h>
27 #include <linux/pagevec.h>
28 #include <linux/blkdev.h>
29 #include <linux/slab.h>
30 #include <linux/oom.h>
31 #include <linux/notifier.h>
32 #include <linux/topology.h>
33 #include <linux/sysctl.h>
34 #include <linux/cpu.h>
35 #include <linux/cpuset.h>
36 #include <linux/memory_hotplug.h>
37 #include <linux/nodemask.h>
38 #include <linux/vmalloc.h>
39 #include <linux/mempolicy.h>
40 #include <linux/stop_machine.h>
41 #include <linux/sort.h>
42 #include <linux/pfn.h>
43 #include <linux/backing-dev.h>
44 #include <linux/fault-inject.h>
45 #include <linux/page-isolation.h>
47 #include <asm/tlbflush.h>
48 #include <asm/div64.h>
52 * Array of node states.
54 nodemask_t node_states
[NR_NODE_STATES
] __read_mostly
= {
55 [N_POSSIBLE
] = NODE_MASK_ALL
,
56 [N_ONLINE
] = { { [0] = 1UL } },
58 [N_NORMAL_MEMORY
] = { { [0] = 1UL } },
60 [N_HIGH_MEMORY
] = { { [0] = 1UL } },
62 [N_CPU
] = { { [0] = 1UL } },
65 EXPORT_SYMBOL(node_states
);
67 unsigned long totalram_pages __read_mostly
;
68 unsigned long totalreserve_pages __read_mostly
;
70 int percpu_pagelist_fraction
;
72 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
73 int pageblock_order __read_mostly
;
76 static void __free_pages_ok(struct page
*page
, unsigned int order
);
79 * results with 256, 32 in the lowmem_reserve sysctl:
80 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
81 * 1G machine -> (16M dma, 784M normal, 224M high)
82 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
83 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
86 * TBD: should special case ZONE_DMA32 machines here - in those we normally
87 * don't need any ZONE_NORMAL reservation
89 int sysctl_lowmem_reserve_ratio
[MAX_NR_ZONES
-1] = {
90 #ifdef CONFIG_ZONE_DMA
93 #ifdef CONFIG_ZONE_DMA32
102 EXPORT_SYMBOL(totalram_pages
);
104 static char * const zone_names
[MAX_NR_ZONES
] = {
105 #ifdef CONFIG_ZONE_DMA
108 #ifdef CONFIG_ZONE_DMA32
112 #ifdef CONFIG_HIGHMEM
118 int min_free_kbytes
= 1024;
120 unsigned long __meminitdata nr_kernel_pages
;
121 unsigned long __meminitdata nr_all_pages
;
122 static unsigned long __meminitdata dma_reserve
;
124 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
126 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
127 * ranges of memory (RAM) that may be registered with add_active_range().
128 * Ranges passed to add_active_range() will be merged if possible
129 * so the number of times add_active_range() can be called is
130 * related to the number of nodes and the number of holes
132 #ifdef CONFIG_MAX_ACTIVE_REGIONS
133 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
134 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
136 #if MAX_NUMNODES >= 32
137 /* If there can be many nodes, allow up to 50 holes per node */
138 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
140 /* By default, allow up to 256 distinct regions */
141 #define MAX_ACTIVE_REGIONS 256
145 static struct node_active_region __meminitdata early_node_map
[MAX_ACTIVE_REGIONS
];
146 static int __meminitdata nr_nodemap_entries
;
147 static unsigned long __meminitdata arch_zone_lowest_possible_pfn
[MAX_NR_ZONES
];
148 static unsigned long __meminitdata arch_zone_highest_possible_pfn
[MAX_NR_ZONES
];
149 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
150 static unsigned long __meminitdata node_boundary_start_pfn
[MAX_NUMNODES
];
151 static unsigned long __meminitdata node_boundary_end_pfn
[MAX_NUMNODES
];
152 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
153 unsigned long __initdata required_kernelcore
;
154 static unsigned long __initdata required_movablecore
;
155 unsigned long __meminitdata zone_movable_pfn
[MAX_NUMNODES
];
157 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
159 EXPORT_SYMBOL(movable_zone
);
160 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
163 int nr_node_ids __read_mostly
= MAX_NUMNODES
;
164 EXPORT_SYMBOL(nr_node_ids
);
167 int page_group_by_mobility_disabled __read_mostly
;
169 static void set_pageblock_migratetype(struct page
*page
, int migratetype
)
171 set_pageblock_flags_group(page
, (unsigned long)migratetype
,
172 PB_migrate
, PB_migrate_end
);
175 #ifdef CONFIG_DEBUG_VM
176 static int page_outside_zone_boundaries(struct zone
*zone
, struct page
*page
)
180 unsigned long pfn
= page_to_pfn(page
);
183 seq
= zone_span_seqbegin(zone
);
184 if (pfn
>= zone
->zone_start_pfn
+ zone
->spanned_pages
)
186 else if (pfn
< zone
->zone_start_pfn
)
188 } while (zone_span_seqretry(zone
, seq
));
193 static int page_is_consistent(struct zone
*zone
, struct page
*page
)
195 if (!pfn_valid_within(page_to_pfn(page
)))
197 if (zone
!= page_zone(page
))
203 * Temporary debugging check for pages not lying within a given zone.
205 static int bad_range(struct zone
*zone
, struct page
*page
)
207 if (page_outside_zone_boundaries(zone
, page
))
209 if (!page_is_consistent(zone
, page
))
215 static inline int bad_range(struct zone
*zone
, struct page
*page
)
221 static void bad_page(struct page
*page
)
223 printk(KERN_EMERG
"Bad page state in process '%s'\n"
224 KERN_EMERG
"page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
225 KERN_EMERG
"Trying to fix it up, but a reboot is needed\n"
226 KERN_EMERG
"Backtrace:\n",
227 current
->comm
, page
, (int)(2*sizeof(unsigned long)),
228 (unsigned long)page
->flags
, page
->mapping
,
229 page_mapcount(page
), page_count(page
));
231 page
->flags
&= ~(1 << PG_lru
|
241 set_page_count(page
, 0);
242 reset_page_mapcount(page
);
243 page
->mapping
= NULL
;
244 add_taint(TAINT_BAD_PAGE
);
248 * Higher-order pages are called "compound pages". They are structured thusly:
250 * The first PAGE_SIZE page is called the "head page".
252 * The remaining PAGE_SIZE pages are called "tail pages".
254 * All pages have PG_compound set. All pages have their ->private pointing at
255 * the head page (even the head page has this).
257 * The first tail page's ->lru.next holds the address of the compound page's
258 * put_page() function. Its ->lru.prev holds the order of allocation.
259 * This usage means that zero-order pages may not be compound.
262 static void free_compound_page(struct page
*page
)
264 __free_pages_ok(page
, compound_order(page
));
267 static void prep_compound_page(struct page
*page
, unsigned long order
)
270 int nr_pages
= 1 << order
;
272 set_compound_page_dtor(page
, free_compound_page
);
273 set_compound_order(page
, order
);
275 for (i
= 1; i
< nr_pages
; i
++) {
276 struct page
*p
= page
+ i
;
279 p
->first_page
= page
;
283 static void destroy_compound_page(struct page
*page
, unsigned long order
)
286 int nr_pages
= 1 << order
;
288 if (unlikely(compound_order(page
) != order
))
291 if (unlikely(!PageHead(page
)))
293 __ClearPageHead(page
);
294 for (i
= 1; i
< nr_pages
; i
++) {
295 struct page
*p
= page
+ i
;
297 if (unlikely(!PageTail(p
) |
298 (p
->first_page
!= page
)))
304 static inline void prep_zero_page(struct page
*page
, int order
, gfp_t gfp_flags
)
308 VM_BUG_ON((gfp_flags
& (__GFP_WAIT
| __GFP_HIGHMEM
)) == __GFP_HIGHMEM
);
310 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
311 * and __GFP_HIGHMEM from hard or soft interrupt context.
313 VM_BUG_ON((gfp_flags
& __GFP_HIGHMEM
) && in_interrupt());
314 for (i
= 0; i
< (1 << order
); i
++)
315 clear_highpage(page
+ i
);
318 static inline void set_page_order(struct page
*page
, int order
)
320 set_page_private(page
, order
);
321 __SetPageBuddy(page
);
324 static inline void rmv_page_order(struct page
*page
)
326 __ClearPageBuddy(page
);
327 set_page_private(page
, 0);
331 * Locate the struct page for both the matching buddy in our
332 * pair (buddy1) and the combined O(n+1) page they form (page).
334 * 1) Any buddy B1 will have an order O twin B2 which satisfies
335 * the following equation:
337 * For example, if the starting buddy (buddy2) is #8 its order
339 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
341 * 2) Any buddy B will have an order O+1 parent P which
342 * satisfies the following equation:
345 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
347 static inline struct page
*
348 __page_find_buddy(struct page
*page
, unsigned long page_idx
, unsigned int order
)
350 unsigned long buddy_idx
= page_idx
^ (1 << order
);
352 return page
+ (buddy_idx
- page_idx
);
355 static inline unsigned long
356 __find_combined_index(unsigned long page_idx
, unsigned int order
)
358 return (page_idx
& ~(1 << order
));
362 * This function checks whether a page is free && is the buddy
363 * we can do coalesce a page and its buddy if
364 * (a) the buddy is not in a hole &&
365 * (b) the buddy is in the buddy system &&
366 * (c) a page and its buddy have the same order &&
367 * (d) a page and its buddy are in the same zone.
369 * For recording whether a page is in the buddy system, we use PG_buddy.
370 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
372 * For recording page's order, we use page_private(page).
374 static inline int page_is_buddy(struct page
*page
, struct page
*buddy
,
377 if (!pfn_valid_within(page_to_pfn(buddy
)))
380 if (page_zone_id(page
) != page_zone_id(buddy
))
383 if (PageBuddy(buddy
) && page_order(buddy
) == order
) {
384 BUG_ON(page_count(buddy
) != 0);
391 * Freeing function for a buddy system allocator.
393 * The concept of a buddy system is to maintain direct-mapped table
394 * (containing bit values) for memory blocks of various "orders".
395 * The bottom level table contains the map for the smallest allocatable
396 * units of memory (here, pages), and each level above it describes
397 * pairs of units from the levels below, hence, "buddies".
398 * At a high level, all that happens here is marking the table entry
399 * at the bottom level available, and propagating the changes upward
400 * as necessary, plus some accounting needed to play nicely with other
401 * parts of the VM system.
402 * At each level, we keep a list of pages, which are heads of continuous
403 * free pages of length of (1 << order) and marked with PG_buddy. Page's
404 * order is recorded in page_private(page) field.
405 * So when we are allocating or freeing one, we can derive the state of the
406 * other. That is, if we allocate a small block, and both were
407 * free, the remainder of the region must be split into blocks.
408 * If a block is freed, and its buddy is also free, then this
409 * triggers coalescing into a block of larger size.
414 static inline void __free_one_page(struct page
*page
,
415 struct zone
*zone
, unsigned int order
)
417 unsigned long page_idx
;
418 int order_size
= 1 << order
;
419 int migratetype
= get_pageblock_migratetype(page
);
421 if (unlikely(PageCompound(page
)))
422 destroy_compound_page(page
, order
);
424 page_idx
= page_to_pfn(page
) & ((1 << MAX_ORDER
) - 1);
426 VM_BUG_ON(page_idx
& (order_size
- 1));
427 VM_BUG_ON(bad_range(zone
, page
));
429 __mod_zone_page_state(zone
, NR_FREE_PAGES
, order_size
);
430 while (order
< MAX_ORDER
-1) {
431 unsigned long combined_idx
;
434 buddy
= __page_find_buddy(page
, page_idx
, order
);
435 if (!page_is_buddy(page
, buddy
, order
))
436 break; /* Move the buddy up one level. */
438 list_del(&buddy
->lru
);
439 zone
->free_area
[order
].nr_free
--;
440 rmv_page_order(buddy
);
441 combined_idx
= __find_combined_index(page_idx
, order
);
442 page
= page
+ (combined_idx
- page_idx
);
443 page_idx
= combined_idx
;
446 set_page_order(page
, order
);
448 &zone
->free_area
[order
].free_list
[migratetype
]);
449 zone
->free_area
[order
].nr_free
++;
452 static inline int free_pages_check(struct page
*page
)
454 if (unlikely(page_mapcount(page
) |
455 (page
->mapping
!= NULL
) |
456 (page_count(page
) != 0) |
469 __ClearPageDirty(page
);
471 * For now, we report if PG_reserved was found set, but do not
472 * clear it, and do not free the page. But we shall soon need
473 * to do more, for when the ZERO_PAGE count wraps negative.
475 return PageReserved(page
);
479 * Frees a list of pages.
480 * Assumes all pages on list are in same zone, and of same order.
481 * count is the number of pages to free.
483 * If the zone was previously in an "all pages pinned" state then look to
484 * see if this freeing clears that state.
486 * And clear the zone's pages_scanned counter, to hold off the "all pages are
487 * pinned" detection logic.
489 static void free_pages_bulk(struct zone
*zone
, int count
,
490 struct list_head
*list
, int order
)
492 spin_lock(&zone
->lock
);
493 zone_clear_flag(zone
, ZONE_ALL_UNRECLAIMABLE
);
494 zone
->pages_scanned
= 0;
498 VM_BUG_ON(list_empty(list
));
499 page
= list_entry(list
->prev
, struct page
, lru
);
500 /* have to delete it as __free_one_page list manipulates */
501 list_del(&page
->lru
);
502 __free_one_page(page
, zone
, order
);
504 spin_unlock(&zone
->lock
);
507 static void free_one_page(struct zone
*zone
, struct page
*page
, int order
)
509 spin_lock(&zone
->lock
);
510 zone_clear_flag(zone
, ZONE_ALL_UNRECLAIMABLE
);
511 zone
->pages_scanned
= 0;
512 __free_one_page(page
, zone
, order
);
513 spin_unlock(&zone
->lock
);
516 static void __free_pages_ok(struct page
*page
, unsigned int order
)
522 for (i
= 0 ; i
< (1 << order
) ; ++i
)
523 reserved
+= free_pages_check(page
+ i
);
527 if (!PageHighMem(page
))
528 debug_check_no_locks_freed(page_address(page
),PAGE_SIZE
<<order
);
529 arch_free_page(page
, order
);
530 kernel_map_pages(page
, 1 << order
, 0);
532 local_irq_save(flags
);
533 __count_vm_events(PGFREE
, 1 << order
);
534 free_one_page(page_zone(page
), page
, order
);
535 local_irq_restore(flags
);
539 * permit the bootmem allocator to evade page validation on high-order frees
541 void fastcall __init
__free_pages_bootmem(struct page
*page
, unsigned int order
)
544 __ClearPageReserved(page
);
545 set_page_count(page
, 0);
546 set_page_refcounted(page
);
552 for (loop
= 0; loop
< BITS_PER_LONG
; loop
++) {
553 struct page
*p
= &page
[loop
];
555 if (loop
+ 1 < BITS_PER_LONG
)
557 __ClearPageReserved(p
);
558 set_page_count(p
, 0);
561 set_page_refcounted(page
);
562 __free_pages(page
, order
);
568 * The order of subdivision here is critical for the IO subsystem.
569 * Please do not alter this order without good reasons and regression
570 * testing. Specifically, as large blocks of memory are subdivided,
571 * the order in which smaller blocks are delivered depends on the order
572 * they're subdivided in this function. This is the primary factor
573 * influencing the order in which pages are delivered to the IO
574 * subsystem according to empirical testing, and this is also justified
575 * by considering the behavior of a buddy system containing a single
576 * large block of memory acted on by a series of small allocations.
577 * This behavior is a critical factor in sglist merging's success.
581 static inline void expand(struct zone
*zone
, struct page
*page
,
582 int low
, int high
, struct free_area
*area
,
585 unsigned long size
= 1 << high
;
591 VM_BUG_ON(bad_range(zone
, &page
[size
]));
592 list_add(&page
[size
].lru
, &area
->free_list
[migratetype
]);
594 set_page_order(&page
[size
], high
);
599 * This page is about to be returned from the page allocator
601 static int prep_new_page(struct page
*page
, int order
, gfp_t gfp_flags
)
603 if (unlikely(page_mapcount(page
) |
604 (page
->mapping
!= NULL
) |
605 (page_count(page
) != 0) |
620 * For now, we report if PG_reserved was found set, but do not
621 * clear it, and do not allocate the page: as a safety net.
623 if (PageReserved(page
))
626 page
->flags
&= ~(1 << PG_uptodate
| 1 << PG_error
| 1 << PG_readahead
|
627 1 << PG_referenced
| 1 << PG_arch_1
|
628 1 << PG_owner_priv_1
| 1 << PG_mappedtodisk
);
629 set_page_private(page
, 0);
630 set_page_refcounted(page
);
632 arch_alloc_page(page
, order
);
633 kernel_map_pages(page
, 1 << order
, 1);
635 if (gfp_flags
& __GFP_ZERO
)
636 prep_zero_page(page
, order
, gfp_flags
);
638 if (order
&& (gfp_flags
& __GFP_COMP
))
639 prep_compound_page(page
, order
);
645 * Go through the free lists for the given migratetype and remove
646 * the smallest available page from the freelists
648 static struct page
*__rmqueue_smallest(struct zone
*zone
, unsigned int order
,
651 unsigned int current_order
;
652 struct free_area
* area
;
655 /* Find a page of the appropriate size in the preferred list */
656 for (current_order
= order
; current_order
< MAX_ORDER
; ++current_order
) {
657 area
= &(zone
->free_area
[current_order
]);
658 if (list_empty(&area
->free_list
[migratetype
]))
661 page
= list_entry(area
->free_list
[migratetype
].next
,
663 list_del(&page
->lru
);
664 rmv_page_order(page
);
666 __mod_zone_page_state(zone
, NR_FREE_PAGES
, - (1UL << order
));
667 expand(zone
, page
, order
, current_order
, area
, migratetype
);
676 * This array describes the order lists are fallen back to when
677 * the free lists for the desirable migrate type are depleted
679 static int fallbacks
[MIGRATE_TYPES
][MIGRATE_TYPES
-1] = {
680 [MIGRATE_UNMOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_MOVABLE
, MIGRATE_RESERVE
},
681 [MIGRATE_RECLAIMABLE
] = { MIGRATE_UNMOVABLE
, MIGRATE_MOVABLE
, MIGRATE_RESERVE
},
682 [MIGRATE_MOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_UNMOVABLE
, MIGRATE_RESERVE
},
683 [MIGRATE_RESERVE
] = { MIGRATE_RESERVE
, MIGRATE_RESERVE
, MIGRATE_RESERVE
}, /* Never used */
687 * Move the free pages in a range to the free lists of the requested type.
688 * Note that start_page and end_pages are not aligned on a pageblock
689 * boundary. If alignment is required, use move_freepages_block()
691 int move_freepages(struct zone
*zone
,
692 struct page
*start_page
, struct page
*end_page
,
699 #ifndef CONFIG_HOLES_IN_ZONE
701 * page_zone is not safe to call in this context when
702 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
703 * anyway as we check zone boundaries in move_freepages_block().
704 * Remove at a later date when no bug reports exist related to
705 * grouping pages by mobility
707 BUG_ON(page_zone(start_page
) != page_zone(end_page
));
710 for (page
= start_page
; page
<= end_page
;) {
711 if (!pfn_valid_within(page_to_pfn(page
))) {
716 if (!PageBuddy(page
)) {
721 order
= page_order(page
);
722 list_del(&page
->lru
);
724 &zone
->free_area
[order
].free_list
[migratetype
]);
726 pages_moved
+= 1 << order
;
732 int move_freepages_block(struct zone
*zone
, struct page
*page
, int migratetype
)
734 unsigned long start_pfn
, end_pfn
;
735 struct page
*start_page
, *end_page
;
737 start_pfn
= page_to_pfn(page
);
738 start_pfn
= start_pfn
& ~(pageblock_nr_pages
-1);
739 start_page
= pfn_to_page(start_pfn
);
740 end_page
= start_page
+ pageblock_nr_pages
- 1;
741 end_pfn
= start_pfn
+ pageblock_nr_pages
- 1;
743 /* Do not cross zone boundaries */
744 if (start_pfn
< zone
->zone_start_pfn
)
746 if (end_pfn
>= zone
->zone_start_pfn
+ zone
->spanned_pages
)
749 return move_freepages(zone
, start_page
, end_page
, migratetype
);
752 /* Remove an element from the buddy allocator from the fallback list */
753 static struct page
*__rmqueue_fallback(struct zone
*zone
, int order
,
754 int start_migratetype
)
756 struct free_area
* area
;
761 /* Find the largest possible block of pages in the other list */
762 for (current_order
= MAX_ORDER
-1; current_order
>= order
;
764 for (i
= 0; i
< MIGRATE_TYPES
- 1; i
++) {
765 migratetype
= fallbacks
[start_migratetype
][i
];
767 /* MIGRATE_RESERVE handled later if necessary */
768 if (migratetype
== MIGRATE_RESERVE
)
771 area
= &(zone
->free_area
[current_order
]);
772 if (list_empty(&area
->free_list
[migratetype
]))
775 page
= list_entry(area
->free_list
[migratetype
].next
,
780 * If breaking a large block of pages, move all free
781 * pages to the preferred allocation list. If falling
782 * back for a reclaimable kernel allocation, be more
783 * agressive about taking ownership of free pages
785 if (unlikely(current_order
>= (pageblock_order
>> 1)) ||
786 start_migratetype
== MIGRATE_RECLAIMABLE
) {
788 pages
= move_freepages_block(zone
, page
,
791 /* Claim the whole block if over half of it is free */
792 if (pages
>= (1 << (pageblock_order
-1)))
793 set_pageblock_migratetype(page
,
796 migratetype
= start_migratetype
;
799 /* Remove the page from the freelists */
800 list_del(&page
->lru
);
801 rmv_page_order(page
);
802 __mod_zone_page_state(zone
, NR_FREE_PAGES
,
805 if (current_order
== pageblock_order
)
806 set_pageblock_migratetype(page
,
809 expand(zone
, page
, order
, current_order
, area
, migratetype
);
814 /* Use MIGRATE_RESERVE rather than fail an allocation */
815 return __rmqueue_smallest(zone
, order
, MIGRATE_RESERVE
);
819 * Do the hard work of removing an element from the buddy allocator.
820 * Call me with the zone->lock already held.
822 static struct page
*__rmqueue(struct zone
*zone
, unsigned int order
,
827 page
= __rmqueue_smallest(zone
, order
, migratetype
);
830 page
= __rmqueue_fallback(zone
, order
, migratetype
);
836 * Obtain a specified number of elements from the buddy allocator, all under
837 * a single hold of the lock, for efficiency. Add them to the supplied list.
838 * Returns the number of new pages which were placed at *list.
840 static int rmqueue_bulk(struct zone
*zone
, unsigned int order
,
841 unsigned long count
, struct list_head
*list
,
846 spin_lock(&zone
->lock
);
847 for (i
= 0; i
< count
; ++i
) {
848 struct page
*page
= __rmqueue(zone
, order
, migratetype
);
849 if (unlikely(page
== NULL
))
851 list_add(&page
->lru
, list
);
852 set_page_private(page
, migratetype
);
854 spin_unlock(&zone
->lock
);
860 * Called from the vmstat counter updater to drain pagesets of this
861 * currently executing processor on remote nodes after they have
864 * Note that this function must be called with the thread pinned to
865 * a single processor.
867 void drain_zone_pages(struct zone
*zone
, struct per_cpu_pages
*pcp
)
872 local_irq_save(flags
);
873 if (pcp
->count
>= pcp
->batch
)
874 to_drain
= pcp
->batch
;
876 to_drain
= pcp
->count
;
877 free_pages_bulk(zone
, to_drain
, &pcp
->list
, 0);
878 pcp
->count
-= to_drain
;
879 local_irq_restore(flags
);
883 static void __drain_pages(unsigned int cpu
)
889 for_each_zone(zone
) {
890 struct per_cpu_pageset
*pset
;
892 if (!populated_zone(zone
))
895 pset
= zone_pcp(zone
, cpu
);
896 for (i
= 0; i
< ARRAY_SIZE(pset
->pcp
); i
++) {
897 struct per_cpu_pages
*pcp
;
900 local_irq_save(flags
);
901 free_pages_bulk(zone
, pcp
->count
, &pcp
->list
, 0);
903 local_irq_restore(flags
);
908 #ifdef CONFIG_HIBERNATION
910 void mark_free_pages(struct zone
*zone
)
912 unsigned long pfn
, max_zone_pfn
;
915 struct list_head
*curr
;
917 if (!zone
->spanned_pages
)
920 spin_lock_irqsave(&zone
->lock
, flags
);
922 max_zone_pfn
= zone
->zone_start_pfn
+ zone
->spanned_pages
;
923 for (pfn
= zone
->zone_start_pfn
; pfn
< max_zone_pfn
; pfn
++)
924 if (pfn_valid(pfn
)) {
925 struct page
*page
= pfn_to_page(pfn
);
927 if (!swsusp_page_is_forbidden(page
))
928 swsusp_unset_page_free(page
);
931 for_each_migratetype_order(order
, t
) {
932 list_for_each(curr
, &zone
->free_area
[order
].free_list
[t
]) {
935 pfn
= page_to_pfn(list_entry(curr
, struct page
, lru
));
936 for (i
= 0; i
< (1UL << order
); i
++)
937 swsusp_set_page_free(pfn_to_page(pfn
+ i
));
940 spin_unlock_irqrestore(&zone
->lock
, flags
);
942 #endif /* CONFIG_PM */
945 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
947 void drain_local_pages(void)
951 local_irq_save(flags
);
952 __drain_pages(smp_processor_id());
953 local_irq_restore(flags
);
956 void smp_drain_local_pages(void *arg
)
962 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
964 void drain_all_local_pages(void)
968 local_irq_save(flags
);
969 __drain_pages(smp_processor_id());
970 local_irq_restore(flags
);
972 smp_call_function(smp_drain_local_pages
, NULL
, 0, 1);
976 * Free a 0-order page
978 static void fastcall
free_hot_cold_page(struct page
*page
, int cold
)
980 struct zone
*zone
= page_zone(page
);
981 struct per_cpu_pages
*pcp
;
985 page
->mapping
= NULL
;
986 if (free_pages_check(page
))
989 if (!PageHighMem(page
))
990 debug_check_no_locks_freed(page_address(page
), PAGE_SIZE
);
991 arch_free_page(page
, 0);
992 kernel_map_pages(page
, 1, 0);
994 pcp
= &zone_pcp(zone
, get_cpu())->pcp
[cold
];
995 local_irq_save(flags
);
996 __count_vm_event(PGFREE
);
997 list_add(&page
->lru
, &pcp
->list
);
998 set_page_private(page
, get_pageblock_migratetype(page
));
1000 if (pcp
->count
>= pcp
->high
) {
1001 free_pages_bulk(zone
, pcp
->batch
, &pcp
->list
, 0);
1002 pcp
->count
-= pcp
->batch
;
1004 local_irq_restore(flags
);
1008 void fastcall
free_hot_page(struct page
*page
)
1010 free_hot_cold_page(page
, 0);
1013 void fastcall
free_cold_page(struct page
*page
)
1015 free_hot_cold_page(page
, 1);
1019 * split_page takes a non-compound higher-order page, and splits it into
1020 * n (1<<order) sub-pages: page[0..n]
1021 * Each sub-page must be freed individually.
1023 * Note: this is probably too low level an operation for use in drivers.
1024 * Please consult with lkml before using this in your driver.
1026 void split_page(struct page
*page
, unsigned int order
)
1030 VM_BUG_ON(PageCompound(page
));
1031 VM_BUG_ON(!page_count(page
));
1032 for (i
= 1; i
< (1 << order
); i
++)
1033 set_page_refcounted(page
+ i
);
1037 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1038 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1041 static struct page
*buffered_rmqueue(struct zonelist
*zonelist
,
1042 struct zone
*zone
, int order
, gfp_t gfp_flags
)
1044 unsigned long flags
;
1046 int cold
= !!(gfp_flags
& __GFP_COLD
);
1048 int migratetype
= allocflags_to_migratetype(gfp_flags
);
1052 if (likely(order
== 0)) {
1053 struct per_cpu_pages
*pcp
;
1055 pcp
= &zone_pcp(zone
, cpu
)->pcp
[cold
];
1056 local_irq_save(flags
);
1058 pcp
->count
= rmqueue_bulk(zone
, 0,
1059 pcp
->batch
, &pcp
->list
, migratetype
);
1060 if (unlikely(!pcp
->count
))
1064 /* Find a page of the appropriate migrate type */
1065 list_for_each_entry(page
, &pcp
->list
, lru
)
1066 if (page_private(page
) == migratetype
)
1069 /* Allocate more to the pcp list if necessary */
1070 if (unlikely(&page
->lru
== &pcp
->list
)) {
1071 pcp
->count
+= rmqueue_bulk(zone
, 0,
1072 pcp
->batch
, &pcp
->list
, migratetype
);
1073 page
= list_entry(pcp
->list
.next
, struct page
, lru
);
1076 list_del(&page
->lru
);
1079 spin_lock_irqsave(&zone
->lock
, flags
);
1080 page
= __rmqueue(zone
, order
, migratetype
);
1081 spin_unlock(&zone
->lock
);
1086 __count_zone_vm_events(PGALLOC
, zone
, 1 << order
);
1087 zone_statistics(zonelist
, zone
);
1088 local_irq_restore(flags
);
1091 VM_BUG_ON(bad_range(zone
, page
));
1092 if (prep_new_page(page
, order
, gfp_flags
))
1097 local_irq_restore(flags
);
1102 #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
1103 #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
1104 #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
1105 #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
1106 #define ALLOC_HARDER 0x10 /* try to alloc harder */
1107 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1108 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1110 #ifdef CONFIG_FAIL_PAGE_ALLOC
1112 static struct fail_page_alloc_attr
{
1113 struct fault_attr attr
;
1115 u32 ignore_gfp_highmem
;
1116 u32 ignore_gfp_wait
;
1119 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1121 struct dentry
*ignore_gfp_highmem_file
;
1122 struct dentry
*ignore_gfp_wait_file
;
1123 struct dentry
*min_order_file
;
1125 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1127 } fail_page_alloc
= {
1128 .attr
= FAULT_ATTR_INITIALIZER
,
1129 .ignore_gfp_wait
= 1,
1130 .ignore_gfp_highmem
= 1,
1134 static int __init
setup_fail_page_alloc(char *str
)
1136 return setup_fault_attr(&fail_page_alloc
.attr
, str
);
1138 __setup("fail_page_alloc=", setup_fail_page_alloc
);
1140 static int should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
1142 if (order
< fail_page_alloc
.min_order
)
1144 if (gfp_mask
& __GFP_NOFAIL
)
1146 if (fail_page_alloc
.ignore_gfp_highmem
&& (gfp_mask
& __GFP_HIGHMEM
))
1148 if (fail_page_alloc
.ignore_gfp_wait
&& (gfp_mask
& __GFP_WAIT
))
1151 return should_fail(&fail_page_alloc
.attr
, 1 << order
);
1154 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1156 static int __init
fail_page_alloc_debugfs(void)
1158 mode_t mode
= S_IFREG
| S_IRUSR
| S_IWUSR
;
1162 err
= init_fault_attr_dentries(&fail_page_alloc
.attr
,
1166 dir
= fail_page_alloc
.attr
.dentries
.dir
;
1168 fail_page_alloc
.ignore_gfp_wait_file
=
1169 debugfs_create_bool("ignore-gfp-wait", mode
, dir
,
1170 &fail_page_alloc
.ignore_gfp_wait
);
1172 fail_page_alloc
.ignore_gfp_highmem_file
=
1173 debugfs_create_bool("ignore-gfp-highmem", mode
, dir
,
1174 &fail_page_alloc
.ignore_gfp_highmem
);
1175 fail_page_alloc
.min_order_file
=
1176 debugfs_create_u32("min-order", mode
, dir
,
1177 &fail_page_alloc
.min_order
);
1179 if (!fail_page_alloc
.ignore_gfp_wait_file
||
1180 !fail_page_alloc
.ignore_gfp_highmem_file
||
1181 !fail_page_alloc
.min_order_file
) {
1183 debugfs_remove(fail_page_alloc
.ignore_gfp_wait_file
);
1184 debugfs_remove(fail_page_alloc
.ignore_gfp_highmem_file
);
1185 debugfs_remove(fail_page_alloc
.min_order_file
);
1186 cleanup_fault_attr_dentries(&fail_page_alloc
.attr
);
1192 late_initcall(fail_page_alloc_debugfs
);
1194 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1196 #else /* CONFIG_FAIL_PAGE_ALLOC */
1198 static inline int should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
1203 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1206 * Return 1 if free pages are above 'mark'. This takes into account the order
1207 * of the allocation.
1209 int zone_watermark_ok(struct zone
*z
, int order
, unsigned long mark
,
1210 int classzone_idx
, int alloc_flags
)
1212 /* free_pages my go negative - that's OK */
1214 long free_pages
= zone_page_state(z
, NR_FREE_PAGES
) - (1 << order
) + 1;
1217 if (alloc_flags
& ALLOC_HIGH
)
1219 if (alloc_flags
& ALLOC_HARDER
)
1222 if (free_pages
<= min
+ z
->lowmem_reserve
[classzone_idx
])
1224 for (o
= 0; o
< order
; o
++) {
1225 /* At the next order, this order's pages become unavailable */
1226 free_pages
-= z
->free_area
[o
].nr_free
<< o
;
1228 /* Require fewer higher order pages to be free */
1231 if (free_pages
<= min
)
1239 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1240 * skip over zones that are not allowed by the cpuset, or that have
1241 * been recently (in last second) found to be nearly full. See further
1242 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1243 * that have to skip over a lot of full or unallowed zones.
1245 * If the zonelist cache is present in the passed in zonelist, then
1246 * returns a pointer to the allowed node mask (either the current
1247 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1249 * If the zonelist cache is not available for this zonelist, does
1250 * nothing and returns NULL.
1252 * If the fullzones BITMAP in the zonelist cache is stale (more than
1253 * a second since last zap'd) then we zap it out (clear its bits.)
1255 * We hold off even calling zlc_setup, until after we've checked the
1256 * first zone in the zonelist, on the theory that most allocations will
1257 * be satisfied from that first zone, so best to examine that zone as
1258 * quickly as we can.
1260 static nodemask_t
*zlc_setup(struct zonelist
*zonelist
, int alloc_flags
)
1262 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1263 nodemask_t
*allowednodes
; /* zonelist_cache approximation */
1265 zlc
= zonelist
->zlcache_ptr
;
1269 if (jiffies
- zlc
->last_full_zap
> 1 * HZ
) {
1270 bitmap_zero(zlc
->fullzones
, MAX_ZONES_PER_ZONELIST
);
1271 zlc
->last_full_zap
= jiffies
;
1274 allowednodes
= !in_interrupt() && (alloc_flags
& ALLOC_CPUSET
) ?
1275 &cpuset_current_mems_allowed
:
1276 &node_states
[N_HIGH_MEMORY
];
1277 return allowednodes
;
1281 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1282 * if it is worth looking at further for free memory:
1283 * 1) Check that the zone isn't thought to be full (doesn't have its
1284 * bit set in the zonelist_cache fullzones BITMAP).
1285 * 2) Check that the zones node (obtained from the zonelist_cache
1286 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1287 * Return true (non-zero) if zone is worth looking at further, or
1288 * else return false (zero) if it is not.
1290 * This check -ignores- the distinction between various watermarks,
1291 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1292 * found to be full for any variation of these watermarks, it will
1293 * be considered full for up to one second by all requests, unless
1294 * we are so low on memory on all allowed nodes that we are forced
1295 * into the second scan of the zonelist.
1297 * In the second scan we ignore this zonelist cache and exactly
1298 * apply the watermarks to all zones, even it is slower to do so.
1299 * We are low on memory in the second scan, and should leave no stone
1300 * unturned looking for a free page.
1302 static int zlc_zone_worth_trying(struct zonelist
*zonelist
, struct zone
**z
,
1303 nodemask_t
*allowednodes
)
1305 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1306 int i
; /* index of *z in zonelist zones */
1307 int n
; /* node that zone *z is on */
1309 zlc
= zonelist
->zlcache_ptr
;
1313 i
= z
- zonelist
->zones
;
1316 /* This zone is worth trying if it is allowed but not full */
1317 return node_isset(n
, *allowednodes
) && !test_bit(i
, zlc
->fullzones
);
1321 * Given 'z' scanning a zonelist, set the corresponding bit in
1322 * zlc->fullzones, so that subsequent attempts to allocate a page
1323 * from that zone don't waste time re-examining it.
1325 static void zlc_mark_zone_full(struct zonelist
*zonelist
, struct zone
**z
)
1327 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1328 int i
; /* index of *z in zonelist zones */
1330 zlc
= zonelist
->zlcache_ptr
;
1334 i
= z
- zonelist
->zones
;
1336 set_bit(i
, zlc
->fullzones
);
1339 #else /* CONFIG_NUMA */
1341 static nodemask_t
*zlc_setup(struct zonelist
*zonelist
, int alloc_flags
)
1346 static int zlc_zone_worth_trying(struct zonelist
*zonelist
, struct zone
**z
,
1347 nodemask_t
*allowednodes
)
1352 static void zlc_mark_zone_full(struct zonelist
*zonelist
, struct zone
**z
)
1355 #endif /* CONFIG_NUMA */
1358 * get_page_from_freelist goes through the zonelist trying to allocate
1361 static struct page
*
1362 get_page_from_freelist(gfp_t gfp_mask
, unsigned int order
,
1363 struct zonelist
*zonelist
, int alloc_flags
)
1366 struct page
*page
= NULL
;
1367 int classzone_idx
= zone_idx(zonelist
->zones
[0]);
1369 nodemask_t
*allowednodes
= NULL
;/* zonelist_cache approximation */
1370 int zlc_active
= 0; /* set if using zonelist_cache */
1371 int did_zlc_setup
= 0; /* just call zlc_setup() one time */
1372 enum zone_type highest_zoneidx
= -1; /* Gets set for policy zonelists */
1376 * Scan zonelist, looking for a zone with enough free.
1377 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1379 z
= zonelist
->zones
;
1383 * In NUMA, this could be a policy zonelist which contains
1384 * zones that may not be allowed by the current gfp_mask.
1385 * Check the zone is allowed by the current flags
1387 if (unlikely(alloc_should_filter_zonelist(zonelist
))) {
1388 if (highest_zoneidx
== -1)
1389 highest_zoneidx
= gfp_zone(gfp_mask
);
1390 if (zone_idx(*z
) > highest_zoneidx
)
1394 if (NUMA_BUILD
&& zlc_active
&&
1395 !zlc_zone_worth_trying(zonelist
, z
, allowednodes
))
1398 if ((alloc_flags
& ALLOC_CPUSET
) &&
1399 !cpuset_zone_allowed_softwall(zone
, gfp_mask
))
1402 if (!(alloc_flags
& ALLOC_NO_WATERMARKS
)) {
1404 if (alloc_flags
& ALLOC_WMARK_MIN
)
1405 mark
= zone
->pages_min
;
1406 else if (alloc_flags
& ALLOC_WMARK_LOW
)
1407 mark
= zone
->pages_low
;
1409 mark
= zone
->pages_high
;
1410 if (!zone_watermark_ok(zone
, order
, mark
,
1411 classzone_idx
, alloc_flags
)) {
1412 if (!zone_reclaim_mode
||
1413 !zone_reclaim(zone
, gfp_mask
, order
))
1414 goto this_zone_full
;
1418 page
= buffered_rmqueue(zonelist
, zone
, order
, gfp_mask
);
1423 zlc_mark_zone_full(zonelist
, z
);
1425 if (NUMA_BUILD
&& !did_zlc_setup
) {
1426 /* we do zlc_setup after the first zone is tried */
1427 allowednodes
= zlc_setup(zonelist
, alloc_flags
);
1431 } while (*(++z
) != NULL
);
1433 if (unlikely(NUMA_BUILD
&& page
== NULL
&& zlc_active
)) {
1434 /* Disable zlc cache for second zonelist scan */
1442 * This is the 'heart' of the zoned buddy allocator.
1444 struct page
* fastcall
1445 __alloc_pages(gfp_t gfp_mask
, unsigned int order
,
1446 struct zonelist
*zonelist
)
1448 const gfp_t wait
= gfp_mask
& __GFP_WAIT
;
1451 struct reclaim_state reclaim_state
;
1452 struct task_struct
*p
= current
;
1455 int did_some_progress
;
1457 might_sleep_if(wait
);
1459 if (should_fail_alloc_page(gfp_mask
, order
))
1463 z
= zonelist
->zones
; /* the list of zones suitable for gfp_mask */
1465 if (unlikely(*z
== NULL
)) {
1467 * Happens if we have an empty zonelist as a result of
1468 * GFP_THISNODE being used on a memoryless node
1473 page
= get_page_from_freelist(gfp_mask
|__GFP_HARDWALL
, order
,
1474 zonelist
, ALLOC_WMARK_LOW
|ALLOC_CPUSET
);
1479 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1480 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1481 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1482 * using a larger set of nodes after it has established that the
1483 * allowed per node queues are empty and that nodes are
1486 if (NUMA_BUILD
&& (gfp_mask
& GFP_THISNODE
) == GFP_THISNODE
)
1489 for (z
= zonelist
->zones
; *z
; z
++)
1490 wakeup_kswapd(*z
, order
);
1493 * OK, we're below the kswapd watermark and have kicked background
1494 * reclaim. Now things get more complex, so set up alloc_flags according
1495 * to how we want to proceed.
1497 * The caller may dip into page reserves a bit more if the caller
1498 * cannot run direct reclaim, or if the caller has realtime scheduling
1499 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1500 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1502 alloc_flags
= ALLOC_WMARK_MIN
;
1503 if ((unlikely(rt_task(p
)) && !in_interrupt()) || !wait
)
1504 alloc_flags
|= ALLOC_HARDER
;
1505 if (gfp_mask
& __GFP_HIGH
)
1506 alloc_flags
|= ALLOC_HIGH
;
1508 alloc_flags
|= ALLOC_CPUSET
;
1511 * Go through the zonelist again. Let __GFP_HIGH and allocations
1512 * coming from realtime tasks go deeper into reserves.
1514 * This is the last chance, in general, before the goto nopage.
1515 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1516 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1518 page
= get_page_from_freelist(gfp_mask
, order
, zonelist
, alloc_flags
);
1522 /* This allocation should allow future memory freeing. */
1525 if (((p
->flags
& PF_MEMALLOC
) || unlikely(test_thread_flag(TIF_MEMDIE
)))
1526 && !in_interrupt()) {
1527 if (!(gfp_mask
& __GFP_NOMEMALLOC
)) {
1529 /* go through the zonelist yet again, ignoring mins */
1530 page
= get_page_from_freelist(gfp_mask
, order
,
1531 zonelist
, ALLOC_NO_WATERMARKS
);
1534 if (gfp_mask
& __GFP_NOFAIL
) {
1535 congestion_wait(WRITE
, HZ
/50);
1542 /* Atomic allocations - we can't balance anything */
1548 /* We now go into synchronous reclaim */
1549 cpuset_memory_pressure_bump();
1550 p
->flags
|= PF_MEMALLOC
;
1551 reclaim_state
.reclaimed_slab
= 0;
1552 p
->reclaim_state
= &reclaim_state
;
1554 did_some_progress
= try_to_free_pages(zonelist
->zones
, order
, gfp_mask
);
1556 p
->reclaim_state
= NULL
;
1557 p
->flags
&= ~PF_MEMALLOC
;
1562 drain_all_local_pages();
1564 if (likely(did_some_progress
)) {
1565 page
= get_page_from_freelist(gfp_mask
, order
,
1566 zonelist
, alloc_flags
);
1569 } else if ((gfp_mask
& __GFP_FS
) && !(gfp_mask
& __GFP_NORETRY
)) {
1570 if (!try_set_zone_oom(zonelist
)) {
1571 schedule_timeout_uninterruptible(1);
1576 * Go through the zonelist yet one more time, keep
1577 * very high watermark here, this is only to catch
1578 * a parallel oom killing, we must fail if we're still
1579 * under heavy pressure.
1581 page
= get_page_from_freelist(gfp_mask
|__GFP_HARDWALL
, order
,
1582 zonelist
, ALLOC_WMARK_HIGH
|ALLOC_CPUSET
);
1584 clear_zonelist_oom(zonelist
);
1588 /* The OOM killer will not help higher order allocs so fail */
1589 if (order
> PAGE_ALLOC_COSTLY_ORDER
) {
1590 clear_zonelist_oom(zonelist
);
1594 out_of_memory(zonelist
, gfp_mask
, order
);
1595 clear_zonelist_oom(zonelist
);
1600 * Don't let big-order allocations loop unless the caller explicitly
1601 * requests that. Wait for some write requests to complete then retry.
1603 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
1604 * <= 3, but that may not be true in other implementations.
1607 if (!(gfp_mask
& __GFP_NORETRY
)) {
1608 if ((order
<= PAGE_ALLOC_COSTLY_ORDER
) ||
1609 (gfp_mask
& __GFP_REPEAT
))
1611 if (gfp_mask
& __GFP_NOFAIL
)
1615 congestion_wait(WRITE
, HZ
/50);
1620 if (!(gfp_mask
& __GFP_NOWARN
) && printk_ratelimit()) {
1621 printk(KERN_WARNING
"%s: page allocation failure."
1622 " order:%d, mode:0x%x\n",
1623 p
->comm
, order
, gfp_mask
);
1631 EXPORT_SYMBOL(__alloc_pages
);
1634 * Common helper functions.
1636 fastcall
unsigned long __get_free_pages(gfp_t gfp_mask
, unsigned int order
)
1639 page
= alloc_pages(gfp_mask
, order
);
1642 return (unsigned long) page_address(page
);
1645 EXPORT_SYMBOL(__get_free_pages
);
1647 fastcall
unsigned long get_zeroed_page(gfp_t gfp_mask
)
1652 * get_zeroed_page() returns a 32-bit address, which cannot represent
1655 VM_BUG_ON((gfp_mask
& __GFP_HIGHMEM
) != 0);
1657 page
= alloc_pages(gfp_mask
| __GFP_ZERO
, 0);
1659 return (unsigned long) page_address(page
);
1663 EXPORT_SYMBOL(get_zeroed_page
);
1665 void __pagevec_free(struct pagevec
*pvec
)
1667 int i
= pagevec_count(pvec
);
1670 free_hot_cold_page(pvec
->pages
[i
], pvec
->cold
);
1673 fastcall
void __free_pages(struct page
*page
, unsigned int order
)
1675 if (put_page_testzero(page
)) {
1677 free_hot_page(page
);
1679 __free_pages_ok(page
, order
);
1683 EXPORT_SYMBOL(__free_pages
);
1685 fastcall
void free_pages(unsigned long addr
, unsigned int order
)
1688 VM_BUG_ON(!virt_addr_valid((void *)addr
));
1689 __free_pages(virt_to_page((void *)addr
), order
);
1693 EXPORT_SYMBOL(free_pages
);
1695 static unsigned int nr_free_zone_pages(int offset
)
1697 /* Just pick one node, since fallback list is circular */
1698 pg_data_t
*pgdat
= NODE_DATA(numa_node_id());
1699 unsigned int sum
= 0;
1701 struct zonelist
*zonelist
= pgdat
->node_zonelists
+ offset
;
1702 struct zone
**zonep
= zonelist
->zones
;
1705 for (zone
= *zonep
++; zone
; zone
= *zonep
++) {
1706 unsigned long size
= zone
->present_pages
;
1707 unsigned long high
= zone
->pages_high
;
1716 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1718 unsigned int nr_free_buffer_pages(void)
1720 return nr_free_zone_pages(gfp_zone(GFP_USER
));
1722 EXPORT_SYMBOL_GPL(nr_free_buffer_pages
);
1725 * Amount of free RAM allocatable within all zones
1727 unsigned int nr_free_pagecache_pages(void)
1729 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE
));
1732 static inline void show_node(struct zone
*zone
)
1735 printk("Node %d ", zone_to_nid(zone
));
1738 void si_meminfo(struct sysinfo
*val
)
1740 val
->totalram
= totalram_pages
;
1742 val
->freeram
= global_page_state(NR_FREE_PAGES
);
1743 val
->bufferram
= nr_blockdev_pages();
1744 val
->totalhigh
= totalhigh_pages
;
1745 val
->freehigh
= nr_free_highpages();
1746 val
->mem_unit
= PAGE_SIZE
;
1749 EXPORT_SYMBOL(si_meminfo
);
1752 void si_meminfo_node(struct sysinfo
*val
, int nid
)
1754 pg_data_t
*pgdat
= NODE_DATA(nid
);
1756 val
->totalram
= pgdat
->node_present_pages
;
1757 val
->freeram
= node_page_state(nid
, NR_FREE_PAGES
);
1758 #ifdef CONFIG_HIGHMEM
1759 val
->totalhigh
= pgdat
->node_zones
[ZONE_HIGHMEM
].present_pages
;
1760 val
->freehigh
= zone_page_state(&pgdat
->node_zones
[ZONE_HIGHMEM
],
1766 val
->mem_unit
= PAGE_SIZE
;
1770 #define K(x) ((x) << (PAGE_SHIFT-10))
1773 * Show free area list (used inside shift_scroll-lock stuff)
1774 * We also calculate the percentage fragmentation. We do this by counting the
1775 * memory on each free list with the exception of the first item on the list.
1777 void show_free_areas(void)
1782 for_each_zone(zone
) {
1783 if (!populated_zone(zone
))
1787 printk("%s per-cpu:\n", zone
->name
);
1789 for_each_online_cpu(cpu
) {
1790 struct per_cpu_pageset
*pageset
;
1792 pageset
= zone_pcp(zone
, cpu
);
1794 printk("CPU %4d: Hot: hi:%5d, btch:%4d usd:%4d "
1795 "Cold: hi:%5d, btch:%4d usd:%4d\n",
1796 cpu
, pageset
->pcp
[0].high
,
1797 pageset
->pcp
[0].batch
, pageset
->pcp
[0].count
,
1798 pageset
->pcp
[1].high
, pageset
->pcp
[1].batch
,
1799 pageset
->pcp
[1].count
);
1803 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu unstable:%lu\n"
1804 " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
1805 global_page_state(NR_ACTIVE
),
1806 global_page_state(NR_INACTIVE
),
1807 global_page_state(NR_FILE_DIRTY
),
1808 global_page_state(NR_WRITEBACK
),
1809 global_page_state(NR_UNSTABLE_NFS
),
1810 global_page_state(NR_FREE_PAGES
),
1811 global_page_state(NR_SLAB_RECLAIMABLE
) +
1812 global_page_state(NR_SLAB_UNRECLAIMABLE
),
1813 global_page_state(NR_FILE_MAPPED
),
1814 global_page_state(NR_PAGETABLE
),
1815 global_page_state(NR_BOUNCE
));
1817 for_each_zone(zone
) {
1820 if (!populated_zone(zone
))
1832 " pages_scanned:%lu"
1833 " all_unreclaimable? %s"
1836 K(zone_page_state(zone
, NR_FREE_PAGES
)),
1839 K(zone
->pages_high
),
1840 K(zone_page_state(zone
, NR_ACTIVE
)),
1841 K(zone_page_state(zone
, NR_INACTIVE
)),
1842 K(zone
->present_pages
),
1843 zone
->pages_scanned
,
1844 (zone_is_all_unreclaimable(zone
) ? "yes" : "no")
1846 printk("lowmem_reserve[]:");
1847 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
1848 printk(" %lu", zone
->lowmem_reserve
[i
]);
1852 for_each_zone(zone
) {
1853 unsigned long nr
[MAX_ORDER
], flags
, order
, total
= 0;
1855 if (!populated_zone(zone
))
1859 printk("%s: ", zone
->name
);
1861 spin_lock_irqsave(&zone
->lock
, flags
);
1862 for (order
= 0; order
< MAX_ORDER
; order
++) {
1863 nr
[order
] = zone
->free_area
[order
].nr_free
;
1864 total
+= nr
[order
] << order
;
1866 spin_unlock_irqrestore(&zone
->lock
, flags
);
1867 for (order
= 0; order
< MAX_ORDER
; order
++)
1868 printk("%lu*%lukB ", nr
[order
], K(1UL) << order
);
1869 printk("= %lukB\n", K(total
));
1872 show_swap_cache_info();
1876 * Builds allocation fallback zone lists.
1878 * Add all populated zones of a node to the zonelist.
1880 static int build_zonelists_node(pg_data_t
*pgdat
, struct zonelist
*zonelist
,
1881 int nr_zones
, enum zone_type zone_type
)
1885 BUG_ON(zone_type
>= MAX_NR_ZONES
);
1890 zone
= pgdat
->node_zones
+ zone_type
;
1891 if (populated_zone(zone
)) {
1892 zonelist
->zones
[nr_zones
++] = zone
;
1893 check_highest_zone(zone_type
);
1896 } while (zone_type
);
1903 * 0 = automatic detection of better ordering.
1904 * 1 = order by ([node] distance, -zonetype)
1905 * 2 = order by (-zonetype, [node] distance)
1907 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
1908 * the same zonelist. So only NUMA can configure this param.
1910 #define ZONELIST_ORDER_DEFAULT 0
1911 #define ZONELIST_ORDER_NODE 1
1912 #define ZONELIST_ORDER_ZONE 2
1914 /* zonelist order in the kernel.
1915 * set_zonelist_order() will set this to NODE or ZONE.
1917 static int current_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
1918 static char zonelist_order_name
[3][8] = {"Default", "Node", "Zone"};
1922 /* The value user specified ....changed by config */
1923 static int user_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
1924 /* string for sysctl */
1925 #define NUMA_ZONELIST_ORDER_LEN 16
1926 char numa_zonelist_order
[16] = "default";
1929 * interface for configure zonelist ordering.
1930 * command line option "numa_zonelist_order"
1931 * = "[dD]efault - default, automatic configuration.
1932 * = "[nN]ode - order by node locality, then by zone within node
1933 * = "[zZ]one - order by zone, then by locality within zone
1936 static int __parse_numa_zonelist_order(char *s
)
1938 if (*s
== 'd' || *s
== 'D') {
1939 user_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
1940 } else if (*s
== 'n' || *s
== 'N') {
1941 user_zonelist_order
= ZONELIST_ORDER_NODE
;
1942 } else if (*s
== 'z' || *s
== 'Z') {
1943 user_zonelist_order
= ZONELIST_ORDER_ZONE
;
1946 "Ignoring invalid numa_zonelist_order value: "
1953 static __init
int setup_numa_zonelist_order(char *s
)
1956 return __parse_numa_zonelist_order(s
);
1959 early_param("numa_zonelist_order", setup_numa_zonelist_order
);
1962 * sysctl handler for numa_zonelist_order
1964 int numa_zonelist_order_handler(ctl_table
*table
, int write
,
1965 struct file
*file
, void __user
*buffer
, size_t *length
,
1968 char saved_string
[NUMA_ZONELIST_ORDER_LEN
];
1972 strncpy(saved_string
, (char*)table
->data
,
1973 NUMA_ZONELIST_ORDER_LEN
);
1974 ret
= proc_dostring(table
, write
, file
, buffer
, length
, ppos
);
1978 int oldval
= user_zonelist_order
;
1979 if (__parse_numa_zonelist_order((char*)table
->data
)) {
1981 * bogus value. restore saved string
1983 strncpy((char*)table
->data
, saved_string
,
1984 NUMA_ZONELIST_ORDER_LEN
);
1985 user_zonelist_order
= oldval
;
1986 } else if (oldval
!= user_zonelist_order
)
1987 build_all_zonelists();
1993 #define MAX_NODE_LOAD (num_online_nodes())
1994 static int node_load
[MAX_NUMNODES
];
1997 * find_next_best_node - find the next node that should appear in a given node's fallback list
1998 * @node: node whose fallback list we're appending
1999 * @used_node_mask: nodemask_t of already used nodes
2001 * We use a number of factors to determine which is the next node that should
2002 * appear on a given node's fallback list. The node should not have appeared
2003 * already in @node's fallback list, and it should be the next closest node
2004 * according to the distance array (which contains arbitrary distance values
2005 * from each node to each node in the system), and should also prefer nodes
2006 * with no CPUs, since presumably they'll have very little allocation pressure
2007 * on them otherwise.
2008 * It returns -1 if no node is found.
2010 static int find_next_best_node(int node
, nodemask_t
*used_node_mask
)
2013 int min_val
= INT_MAX
;
2016 /* Use the local node if we haven't already */
2017 if (!node_isset(node
, *used_node_mask
)) {
2018 node_set(node
, *used_node_mask
);
2022 for_each_node_state(n
, N_HIGH_MEMORY
) {
2025 /* Don't want a node to appear more than once */
2026 if (node_isset(n
, *used_node_mask
))
2029 /* Use the distance array to find the distance */
2030 val
= node_distance(node
, n
);
2032 /* Penalize nodes under us ("prefer the next node") */
2035 /* Give preference to headless and unused nodes */
2036 tmp
= node_to_cpumask(n
);
2037 if (!cpus_empty(tmp
))
2038 val
+= PENALTY_FOR_NODE_WITH_CPUS
;
2040 /* Slight preference for less loaded node */
2041 val
*= (MAX_NODE_LOAD
*MAX_NUMNODES
);
2042 val
+= node_load
[n
];
2044 if (val
< min_val
) {
2051 node_set(best_node
, *used_node_mask
);
2058 * Build zonelists ordered by node and zones within node.
2059 * This results in maximum locality--normal zone overflows into local
2060 * DMA zone, if any--but risks exhausting DMA zone.
2062 static void build_zonelists_in_node_order(pg_data_t
*pgdat
, int node
)
2066 struct zonelist
*zonelist
;
2068 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
2069 zonelist
= pgdat
->node_zonelists
+ i
;
2070 for (j
= 0; zonelist
->zones
[j
] != NULL
; j
++)
2072 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
, i
);
2073 zonelist
->zones
[j
] = NULL
;
2078 * Build gfp_thisnode zonelists
2080 static void build_thisnode_zonelists(pg_data_t
*pgdat
)
2084 struct zonelist
*zonelist
;
2086 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
2087 zonelist
= pgdat
->node_zonelists
+ MAX_NR_ZONES
+ i
;
2088 j
= build_zonelists_node(pgdat
, zonelist
, 0, i
);
2089 zonelist
->zones
[j
] = NULL
;
2094 * Build zonelists ordered by zone and nodes within zones.
2095 * This results in conserving DMA zone[s] until all Normal memory is
2096 * exhausted, but results in overflowing to remote node while memory
2097 * may still exist in local DMA zone.
2099 static int node_order
[MAX_NUMNODES
];
2101 static void build_zonelists_in_zone_order(pg_data_t
*pgdat
, int nr_nodes
)
2105 int zone_type
; /* needs to be signed */
2107 struct zonelist
*zonelist
;
2109 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
2110 zonelist
= pgdat
->node_zonelists
+ i
;
2112 for (zone_type
= i
; zone_type
>= 0; zone_type
--) {
2113 for (j
= 0; j
< nr_nodes
; j
++) {
2114 node
= node_order
[j
];
2115 z
= &NODE_DATA(node
)->node_zones
[zone_type
];
2116 if (populated_zone(z
)) {
2117 zonelist
->zones
[pos
++] = z
;
2118 check_highest_zone(zone_type
);
2122 zonelist
->zones
[pos
] = NULL
;
2126 static int default_zonelist_order(void)
2129 unsigned long low_kmem_size
,total_size
;
2133 * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2134 * If they are really small and used heavily, the system can fall
2135 * into OOM very easily.
2136 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2138 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2141 for_each_online_node(nid
) {
2142 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++) {
2143 z
= &NODE_DATA(nid
)->node_zones
[zone_type
];
2144 if (populated_zone(z
)) {
2145 if (zone_type
< ZONE_NORMAL
)
2146 low_kmem_size
+= z
->present_pages
;
2147 total_size
+= z
->present_pages
;
2151 if (!low_kmem_size
|| /* there are no DMA area. */
2152 low_kmem_size
> total_size
/2) /* DMA/DMA32 is big. */
2153 return ZONELIST_ORDER_NODE
;
2155 * look into each node's config.
2156 * If there is a node whose DMA/DMA32 memory is very big area on
2157 * local memory, NODE_ORDER may be suitable.
2159 average_size
= total_size
/
2160 (nodes_weight(node_states
[N_HIGH_MEMORY
]) + 1);
2161 for_each_online_node(nid
) {
2164 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++) {
2165 z
= &NODE_DATA(nid
)->node_zones
[zone_type
];
2166 if (populated_zone(z
)) {
2167 if (zone_type
< ZONE_NORMAL
)
2168 low_kmem_size
+= z
->present_pages
;
2169 total_size
+= z
->present_pages
;
2172 if (low_kmem_size
&&
2173 total_size
> average_size
&& /* ignore small node */
2174 low_kmem_size
> total_size
* 70/100)
2175 return ZONELIST_ORDER_NODE
;
2177 return ZONELIST_ORDER_ZONE
;
2180 static void set_zonelist_order(void)
2182 if (user_zonelist_order
== ZONELIST_ORDER_DEFAULT
)
2183 current_zonelist_order
= default_zonelist_order();
2185 current_zonelist_order
= user_zonelist_order
;
2188 static void build_zonelists(pg_data_t
*pgdat
)
2192 nodemask_t used_mask
;
2193 int local_node
, prev_node
;
2194 struct zonelist
*zonelist
;
2195 int order
= current_zonelist_order
;
2197 /* initialize zonelists */
2198 for (i
= 0; i
< MAX_ZONELISTS
; i
++) {
2199 zonelist
= pgdat
->node_zonelists
+ i
;
2200 zonelist
->zones
[0] = NULL
;
2203 /* NUMA-aware ordering of nodes */
2204 local_node
= pgdat
->node_id
;
2205 load
= num_online_nodes();
2206 prev_node
= local_node
;
2207 nodes_clear(used_mask
);
2209 memset(node_load
, 0, sizeof(node_load
));
2210 memset(node_order
, 0, sizeof(node_order
));
2213 while ((node
= find_next_best_node(local_node
, &used_mask
)) >= 0) {
2214 int distance
= node_distance(local_node
, node
);
2217 * If another node is sufficiently far away then it is better
2218 * to reclaim pages in a zone before going off node.
2220 if (distance
> RECLAIM_DISTANCE
)
2221 zone_reclaim_mode
= 1;
2224 * We don't want to pressure a particular node.
2225 * So adding penalty to the first node in same
2226 * distance group to make it round-robin.
2228 if (distance
!= node_distance(local_node
, prev_node
))
2229 node_load
[node
] = load
;
2233 if (order
== ZONELIST_ORDER_NODE
)
2234 build_zonelists_in_node_order(pgdat
, node
);
2236 node_order
[j
++] = node
; /* remember order */
2239 if (order
== ZONELIST_ORDER_ZONE
) {
2240 /* calculate node order -- i.e., DMA last! */
2241 build_zonelists_in_zone_order(pgdat
, j
);
2244 build_thisnode_zonelists(pgdat
);
2247 /* Construct the zonelist performance cache - see further mmzone.h */
2248 static void build_zonelist_cache(pg_data_t
*pgdat
)
2252 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
2253 struct zonelist
*zonelist
;
2254 struct zonelist_cache
*zlc
;
2257 zonelist
= pgdat
->node_zonelists
+ i
;
2258 zonelist
->zlcache_ptr
= zlc
= &zonelist
->zlcache
;
2259 bitmap_zero(zlc
->fullzones
, MAX_ZONES_PER_ZONELIST
);
2260 for (z
= zonelist
->zones
; *z
; z
++)
2261 zlc
->z_to_n
[z
- zonelist
->zones
] = zone_to_nid(*z
);
2266 #else /* CONFIG_NUMA */
2268 static void set_zonelist_order(void)
2270 current_zonelist_order
= ZONELIST_ORDER_ZONE
;
2273 static void build_zonelists(pg_data_t
*pgdat
)
2275 int node
, local_node
;
2278 local_node
= pgdat
->node_id
;
2279 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
2280 struct zonelist
*zonelist
;
2282 zonelist
= pgdat
->node_zonelists
+ i
;
2284 j
= build_zonelists_node(pgdat
, zonelist
, 0, i
);
2286 * Now we build the zonelist so that it contains the zones
2287 * of all the other nodes.
2288 * We don't want to pressure a particular node, so when
2289 * building the zones for node N, we make sure that the
2290 * zones coming right after the local ones are those from
2291 * node N+1 (modulo N)
2293 for (node
= local_node
+ 1; node
< MAX_NUMNODES
; node
++) {
2294 if (!node_online(node
))
2296 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
, i
);
2298 for (node
= 0; node
< local_node
; node
++) {
2299 if (!node_online(node
))
2301 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
, i
);
2304 zonelist
->zones
[j
] = NULL
;
2308 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2309 static void build_zonelist_cache(pg_data_t
*pgdat
)
2313 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
2314 pgdat
->node_zonelists
[i
].zlcache_ptr
= NULL
;
2317 #endif /* CONFIG_NUMA */
2319 /* return values int ....just for stop_machine_run() */
2320 static int __build_all_zonelists(void *dummy
)
2324 for_each_online_node(nid
) {
2325 pg_data_t
*pgdat
= NODE_DATA(nid
);
2327 build_zonelists(pgdat
);
2328 build_zonelist_cache(pgdat
);
2333 void build_all_zonelists(void)
2335 set_zonelist_order();
2337 if (system_state
== SYSTEM_BOOTING
) {
2338 __build_all_zonelists(NULL
);
2339 cpuset_init_current_mems_allowed();
2341 /* we have to stop all cpus to guarantee there is no user
2343 stop_machine_run(__build_all_zonelists
, NULL
, NR_CPUS
);
2344 /* cpuset refresh routine should be here */
2346 vm_total_pages
= nr_free_pagecache_pages();
2348 * Disable grouping by mobility if the number of pages in the
2349 * system is too low to allow the mechanism to work. It would be
2350 * more accurate, but expensive to check per-zone. This check is
2351 * made on memory-hotadd so a system can start with mobility
2352 * disabled and enable it later
2354 if (vm_total_pages
< (pageblock_nr_pages
* MIGRATE_TYPES
))
2355 page_group_by_mobility_disabled
= 1;
2357 page_group_by_mobility_disabled
= 0;
2359 printk("Built %i zonelists in %s order, mobility grouping %s. "
2360 "Total pages: %ld\n",
2362 zonelist_order_name
[current_zonelist_order
],
2363 page_group_by_mobility_disabled
? "off" : "on",
2366 printk("Policy zone: %s\n", zone_names
[policy_zone
]);
2371 * Helper functions to size the waitqueue hash table.
2372 * Essentially these want to choose hash table sizes sufficiently
2373 * large so that collisions trying to wait on pages are rare.
2374 * But in fact, the number of active page waitqueues on typical
2375 * systems is ridiculously low, less than 200. So this is even
2376 * conservative, even though it seems large.
2378 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2379 * waitqueues, i.e. the size of the waitq table given the number of pages.
2381 #define PAGES_PER_WAITQUEUE 256
2383 #ifndef CONFIG_MEMORY_HOTPLUG
2384 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages
)
2386 unsigned long size
= 1;
2388 pages
/= PAGES_PER_WAITQUEUE
;
2390 while (size
< pages
)
2394 * Once we have dozens or even hundreds of threads sleeping
2395 * on IO we've got bigger problems than wait queue collision.
2396 * Limit the size of the wait table to a reasonable size.
2398 size
= min(size
, 4096UL);
2400 return max(size
, 4UL);
2404 * A zone's size might be changed by hot-add, so it is not possible to determine
2405 * a suitable size for its wait_table. So we use the maximum size now.
2407 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
2409 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
2410 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2411 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
2413 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2414 * or more by the traditional way. (See above). It equals:
2416 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
2417 * ia64(16K page size) : = ( 8G + 4M)byte.
2418 * powerpc (64K page size) : = (32G +16M)byte.
2420 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages
)
2427 * This is an integer logarithm so that shifts can be used later
2428 * to extract the more random high bits from the multiplicative
2429 * hash function before the remainder is taken.
2431 static inline unsigned long wait_table_bits(unsigned long size
)
2436 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2439 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
2440 * of blocks reserved is based on zone->pages_min. The memory within the
2441 * reserve will tend to store contiguous free pages. Setting min_free_kbytes
2442 * higher will lead to a bigger reserve which will get freed as contiguous
2443 * blocks as reclaim kicks in
2445 static void setup_zone_migrate_reserve(struct zone
*zone
)
2447 unsigned long start_pfn
, pfn
, end_pfn
;
2449 unsigned long reserve
, block_migratetype
;
2451 /* Get the start pfn, end pfn and the number of blocks to reserve */
2452 start_pfn
= zone
->zone_start_pfn
;
2453 end_pfn
= start_pfn
+ zone
->spanned_pages
;
2454 reserve
= roundup(zone
->pages_min
, pageblock_nr_pages
) >>
2457 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
+= pageblock_nr_pages
) {
2458 if (!pfn_valid(pfn
))
2460 page
= pfn_to_page(pfn
);
2462 /* Blocks with reserved pages will never free, skip them. */
2463 if (PageReserved(page
))
2466 block_migratetype
= get_pageblock_migratetype(page
);
2468 /* If this block is reserved, account for it */
2469 if (reserve
> 0 && block_migratetype
== MIGRATE_RESERVE
) {
2474 /* Suitable for reserving if this block is movable */
2475 if (reserve
> 0 && block_migratetype
== MIGRATE_MOVABLE
) {
2476 set_pageblock_migratetype(page
, MIGRATE_RESERVE
);
2477 move_freepages_block(zone
, page
, MIGRATE_RESERVE
);
2483 * If the reserve is met and this is a previous reserved block,
2486 if (block_migratetype
== MIGRATE_RESERVE
) {
2487 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
2488 move_freepages_block(zone
, page
, MIGRATE_MOVABLE
);
2494 * Initially all pages are reserved - free ones are freed
2495 * up by free_all_bootmem() once the early boot process is
2496 * done. Non-atomic initialization, single-pass.
2498 void __meminit
memmap_init_zone(unsigned long size
, int nid
, unsigned long zone
,
2499 unsigned long start_pfn
, enum memmap_context context
)
2502 unsigned long end_pfn
= start_pfn
+ size
;
2505 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++) {
2507 * There can be holes in boot-time mem_map[]s
2508 * handed to this function. They do not
2509 * exist on hotplugged memory.
2511 if (context
== MEMMAP_EARLY
) {
2512 if (!early_pfn_valid(pfn
))
2514 if (!early_pfn_in_nid(pfn
, nid
))
2517 page
= pfn_to_page(pfn
);
2518 set_page_links(page
, zone
, nid
, pfn
);
2519 init_page_count(page
);
2520 reset_page_mapcount(page
);
2521 SetPageReserved(page
);
2524 * Mark the block movable so that blocks are reserved for
2525 * movable at startup. This will force kernel allocations
2526 * to reserve their blocks rather than leaking throughout
2527 * the address space during boot when many long-lived
2528 * kernel allocations are made. Later some blocks near
2529 * the start are marked MIGRATE_RESERVE by
2530 * setup_zone_migrate_reserve()
2532 if ((pfn
& (pageblock_nr_pages
-1)))
2533 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
2535 INIT_LIST_HEAD(&page
->lru
);
2536 #ifdef WANT_PAGE_VIRTUAL
2537 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
2538 if (!is_highmem_idx(zone
))
2539 set_page_address(page
, __va(pfn
<< PAGE_SHIFT
));
2544 static void __meminit
zone_init_free_lists(struct pglist_data
*pgdat
,
2545 struct zone
*zone
, unsigned long size
)
2548 for_each_migratetype_order(order
, t
) {
2549 INIT_LIST_HEAD(&zone
->free_area
[order
].free_list
[t
]);
2550 zone
->free_area
[order
].nr_free
= 0;
2554 #ifndef __HAVE_ARCH_MEMMAP_INIT
2555 #define memmap_init(size, nid, zone, start_pfn) \
2556 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
2559 static int __devinit
zone_batchsize(struct zone
*zone
)
2564 * The per-cpu-pages pools are set to around 1000th of the
2565 * size of the zone. But no more than 1/2 of a meg.
2567 * OK, so we don't know how big the cache is. So guess.
2569 batch
= zone
->present_pages
/ 1024;
2570 if (batch
* PAGE_SIZE
> 512 * 1024)
2571 batch
= (512 * 1024) / PAGE_SIZE
;
2572 batch
/= 4; /* We effectively *= 4 below */
2577 * Clamp the batch to a 2^n - 1 value. Having a power
2578 * of 2 value was found to be more likely to have
2579 * suboptimal cache aliasing properties in some cases.
2581 * For example if 2 tasks are alternately allocating
2582 * batches of pages, one task can end up with a lot
2583 * of pages of one half of the possible page colors
2584 * and the other with pages of the other colors.
2586 batch
= (1 << (fls(batch
+ batch
/2)-1)) - 1;
2591 inline void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
)
2593 struct per_cpu_pages
*pcp
;
2595 memset(p
, 0, sizeof(*p
));
2597 pcp
= &p
->pcp
[0]; /* hot */
2599 pcp
->high
= 6 * batch
;
2600 pcp
->batch
= max(1UL, 1 * batch
);
2601 INIT_LIST_HEAD(&pcp
->list
);
2603 pcp
= &p
->pcp
[1]; /* cold*/
2605 pcp
->high
= 2 * batch
;
2606 pcp
->batch
= max(1UL, batch
/2);
2607 INIT_LIST_HEAD(&pcp
->list
);
2611 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2612 * to the value high for the pageset p.
2615 static void setup_pagelist_highmark(struct per_cpu_pageset
*p
,
2618 struct per_cpu_pages
*pcp
;
2620 pcp
= &p
->pcp
[0]; /* hot list */
2622 pcp
->batch
= max(1UL, high
/4);
2623 if ((high
/4) > (PAGE_SHIFT
* 8))
2624 pcp
->batch
= PAGE_SHIFT
* 8;
2630 * Boot pageset table. One per cpu which is going to be used for all
2631 * zones and all nodes. The parameters will be set in such a way
2632 * that an item put on a list will immediately be handed over to
2633 * the buddy list. This is safe since pageset manipulation is done
2634 * with interrupts disabled.
2636 * Some NUMA counter updates may also be caught by the boot pagesets.
2638 * The boot_pagesets must be kept even after bootup is complete for
2639 * unused processors and/or zones. They do play a role for bootstrapping
2640 * hotplugged processors.
2642 * zoneinfo_show() and maybe other functions do
2643 * not check if the processor is online before following the pageset pointer.
2644 * Other parts of the kernel may not check if the zone is available.
2646 static struct per_cpu_pageset boot_pageset
[NR_CPUS
];
2649 * Dynamically allocate memory for the
2650 * per cpu pageset array in struct zone.
2652 static int __cpuinit
process_zones(int cpu
)
2654 struct zone
*zone
, *dzone
;
2655 int node
= cpu_to_node(cpu
);
2657 node_set_state(node
, N_CPU
); /* this node has a cpu */
2659 for_each_zone(zone
) {
2661 if (!populated_zone(zone
))
2664 zone_pcp(zone
, cpu
) = kmalloc_node(sizeof(struct per_cpu_pageset
),
2666 if (!zone_pcp(zone
, cpu
))
2669 setup_pageset(zone_pcp(zone
, cpu
), zone_batchsize(zone
));
2671 if (percpu_pagelist_fraction
)
2672 setup_pagelist_highmark(zone_pcp(zone
, cpu
),
2673 (zone
->present_pages
/ percpu_pagelist_fraction
));
2678 for_each_zone(dzone
) {
2679 if (!populated_zone(dzone
))
2683 kfree(zone_pcp(dzone
, cpu
));
2684 zone_pcp(dzone
, cpu
) = NULL
;
2689 static inline void free_zone_pagesets(int cpu
)
2693 for_each_zone(zone
) {
2694 struct per_cpu_pageset
*pset
= zone_pcp(zone
, cpu
);
2696 /* Free per_cpu_pageset if it is slab allocated */
2697 if (pset
!= &boot_pageset
[cpu
])
2699 zone_pcp(zone
, cpu
) = NULL
;
2703 static int __cpuinit
pageset_cpuup_callback(struct notifier_block
*nfb
,
2704 unsigned long action
,
2707 int cpu
= (long)hcpu
;
2708 int ret
= NOTIFY_OK
;
2711 case CPU_UP_PREPARE
:
2712 case CPU_UP_PREPARE_FROZEN
:
2713 if (process_zones(cpu
))
2716 case CPU_UP_CANCELED
:
2717 case CPU_UP_CANCELED_FROZEN
:
2719 case CPU_DEAD_FROZEN
:
2720 free_zone_pagesets(cpu
);
2728 static struct notifier_block __cpuinitdata pageset_notifier
=
2729 { &pageset_cpuup_callback
, NULL
, 0 };
2731 void __init
setup_per_cpu_pageset(void)
2735 /* Initialize per_cpu_pageset for cpu 0.
2736 * A cpuup callback will do this for every cpu
2737 * as it comes online
2739 err
= process_zones(smp_processor_id());
2741 register_cpu_notifier(&pageset_notifier
);
2746 static noinline __init_refok
2747 int zone_wait_table_init(struct zone
*zone
, unsigned long zone_size_pages
)
2750 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
2754 * The per-page waitqueue mechanism uses hashed waitqueues
2757 zone
->wait_table_hash_nr_entries
=
2758 wait_table_hash_nr_entries(zone_size_pages
);
2759 zone
->wait_table_bits
=
2760 wait_table_bits(zone
->wait_table_hash_nr_entries
);
2761 alloc_size
= zone
->wait_table_hash_nr_entries
2762 * sizeof(wait_queue_head_t
);
2764 if (system_state
== SYSTEM_BOOTING
) {
2765 zone
->wait_table
= (wait_queue_head_t
*)
2766 alloc_bootmem_node(pgdat
, alloc_size
);
2769 * This case means that a zone whose size was 0 gets new memory
2770 * via memory hot-add.
2771 * But it may be the case that a new node was hot-added. In
2772 * this case vmalloc() will not be able to use this new node's
2773 * memory - this wait_table must be initialized to use this new
2774 * node itself as well.
2775 * To use this new node's memory, further consideration will be
2778 zone
->wait_table
= vmalloc(alloc_size
);
2780 if (!zone
->wait_table
)
2783 for(i
= 0; i
< zone
->wait_table_hash_nr_entries
; ++i
)
2784 init_waitqueue_head(zone
->wait_table
+ i
);
2789 static __meminit
void zone_pcp_init(struct zone
*zone
)
2792 unsigned long batch
= zone_batchsize(zone
);
2794 for (cpu
= 0; cpu
< NR_CPUS
; cpu
++) {
2796 /* Early boot. Slab allocator not functional yet */
2797 zone_pcp(zone
, cpu
) = &boot_pageset
[cpu
];
2798 setup_pageset(&boot_pageset
[cpu
],0);
2800 setup_pageset(zone_pcp(zone
,cpu
), batch
);
2803 if (zone
->present_pages
)
2804 printk(KERN_DEBUG
" %s zone: %lu pages, LIFO batch:%lu\n",
2805 zone
->name
, zone
->present_pages
, batch
);
2808 __meminit
int init_currently_empty_zone(struct zone
*zone
,
2809 unsigned long zone_start_pfn
,
2811 enum memmap_context context
)
2813 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
2815 ret
= zone_wait_table_init(zone
, size
);
2818 pgdat
->nr_zones
= zone_idx(zone
) + 1;
2820 zone
->zone_start_pfn
= zone_start_pfn
;
2822 memmap_init(size
, pgdat
->node_id
, zone_idx(zone
), zone_start_pfn
);
2824 zone_init_free_lists(pgdat
, zone
, zone
->spanned_pages
);
2829 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2831 * Basic iterator support. Return the first range of PFNs for a node
2832 * Note: nid == MAX_NUMNODES returns first region regardless of node
2834 static int __meminit
first_active_region_index_in_nid(int nid
)
2838 for (i
= 0; i
< nr_nodemap_entries
; i
++)
2839 if (nid
== MAX_NUMNODES
|| early_node_map
[i
].nid
== nid
)
2846 * Basic iterator support. Return the next active range of PFNs for a node
2847 * Note: nid == MAX_NUMNODES returns next region regardless of node
2849 static int __meminit
next_active_region_index_in_nid(int index
, int nid
)
2851 for (index
= index
+ 1; index
< nr_nodemap_entries
; index
++)
2852 if (nid
== MAX_NUMNODES
|| early_node_map
[index
].nid
== nid
)
2858 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
2860 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
2861 * Architectures may implement their own version but if add_active_range()
2862 * was used and there are no special requirements, this is a convenient
2865 int __meminit
early_pfn_to_nid(unsigned long pfn
)
2869 for (i
= 0; i
< nr_nodemap_entries
; i
++) {
2870 unsigned long start_pfn
= early_node_map
[i
].start_pfn
;
2871 unsigned long end_pfn
= early_node_map
[i
].end_pfn
;
2873 if (start_pfn
<= pfn
&& pfn
< end_pfn
)
2874 return early_node_map
[i
].nid
;
2879 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
2881 /* Basic iterator support to walk early_node_map[] */
2882 #define for_each_active_range_index_in_nid(i, nid) \
2883 for (i = first_active_region_index_in_nid(nid); i != -1; \
2884 i = next_active_region_index_in_nid(i, nid))
2887 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
2888 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
2889 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
2891 * If an architecture guarantees that all ranges registered with
2892 * add_active_ranges() contain no holes and may be freed, this
2893 * this function may be used instead of calling free_bootmem() manually.
2895 void __init
free_bootmem_with_active_regions(int nid
,
2896 unsigned long max_low_pfn
)
2900 for_each_active_range_index_in_nid(i
, nid
) {
2901 unsigned long size_pages
= 0;
2902 unsigned long end_pfn
= early_node_map
[i
].end_pfn
;
2904 if (early_node_map
[i
].start_pfn
>= max_low_pfn
)
2907 if (end_pfn
> max_low_pfn
)
2908 end_pfn
= max_low_pfn
;
2910 size_pages
= end_pfn
- early_node_map
[i
].start_pfn
;
2911 free_bootmem_node(NODE_DATA(early_node_map
[i
].nid
),
2912 PFN_PHYS(early_node_map
[i
].start_pfn
),
2913 size_pages
<< PAGE_SHIFT
);
2918 * sparse_memory_present_with_active_regions - Call memory_present for each active range
2919 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
2921 * If an architecture guarantees that all ranges registered with
2922 * add_active_ranges() contain no holes and may be freed, this
2923 * function may be used instead of calling memory_present() manually.
2925 void __init
sparse_memory_present_with_active_regions(int nid
)
2929 for_each_active_range_index_in_nid(i
, nid
)
2930 memory_present(early_node_map
[i
].nid
,
2931 early_node_map
[i
].start_pfn
,
2932 early_node_map
[i
].end_pfn
);
2936 * push_node_boundaries - Push node boundaries to at least the requested boundary
2937 * @nid: The nid of the node to push the boundary for
2938 * @start_pfn: The start pfn of the node
2939 * @end_pfn: The end pfn of the node
2941 * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
2942 * time. Specifically, on x86_64, SRAT will report ranges that can potentially
2943 * be hotplugged even though no physical memory exists. This function allows
2944 * an arch to push out the node boundaries so mem_map is allocated that can
2947 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
2948 void __init
push_node_boundaries(unsigned int nid
,
2949 unsigned long start_pfn
, unsigned long end_pfn
)
2951 printk(KERN_DEBUG
"Entering push_node_boundaries(%u, %lu, %lu)\n",
2952 nid
, start_pfn
, end_pfn
);
2954 /* Initialise the boundary for this node if necessary */
2955 if (node_boundary_end_pfn
[nid
] == 0)
2956 node_boundary_start_pfn
[nid
] = -1UL;
2958 /* Update the boundaries */
2959 if (node_boundary_start_pfn
[nid
] > start_pfn
)
2960 node_boundary_start_pfn
[nid
] = start_pfn
;
2961 if (node_boundary_end_pfn
[nid
] < end_pfn
)
2962 node_boundary_end_pfn
[nid
] = end_pfn
;
2965 /* If necessary, push the node boundary out for reserve hotadd */
2966 static void __meminit
account_node_boundary(unsigned int nid
,
2967 unsigned long *start_pfn
, unsigned long *end_pfn
)
2969 printk(KERN_DEBUG
"Entering account_node_boundary(%u, %lu, %lu)\n",
2970 nid
, *start_pfn
, *end_pfn
);
2972 /* Return if boundary information has not been provided */
2973 if (node_boundary_end_pfn
[nid
] == 0)
2976 /* Check the boundaries and update if necessary */
2977 if (node_boundary_start_pfn
[nid
] < *start_pfn
)
2978 *start_pfn
= node_boundary_start_pfn
[nid
];
2979 if (node_boundary_end_pfn
[nid
] > *end_pfn
)
2980 *end_pfn
= node_boundary_end_pfn
[nid
];
2983 void __init
push_node_boundaries(unsigned int nid
,
2984 unsigned long start_pfn
, unsigned long end_pfn
) {}
2986 static void __meminit
account_node_boundary(unsigned int nid
,
2987 unsigned long *start_pfn
, unsigned long *end_pfn
) {}
2992 * get_pfn_range_for_nid - Return the start and end page frames for a node
2993 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
2994 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
2995 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
2997 * It returns the start and end page frame of a node based on information
2998 * provided by an arch calling add_active_range(). If called for a node
2999 * with no available memory, a warning is printed and the start and end
3002 void __meminit
get_pfn_range_for_nid(unsigned int nid
,
3003 unsigned long *start_pfn
, unsigned long *end_pfn
)
3009 for_each_active_range_index_in_nid(i
, nid
) {
3010 *start_pfn
= min(*start_pfn
, early_node_map
[i
].start_pfn
);
3011 *end_pfn
= max(*end_pfn
, early_node_map
[i
].end_pfn
);
3014 if (*start_pfn
== -1UL)
3017 /* Push the node boundaries out if requested */
3018 account_node_boundary(nid
, start_pfn
, end_pfn
);
3022 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3023 * assumption is made that zones within a node are ordered in monotonic
3024 * increasing memory addresses so that the "highest" populated zone is used
3026 void __init
find_usable_zone_for_movable(void)
3029 for (zone_index
= MAX_NR_ZONES
- 1; zone_index
>= 0; zone_index
--) {
3030 if (zone_index
== ZONE_MOVABLE
)
3033 if (arch_zone_highest_possible_pfn
[zone_index
] >
3034 arch_zone_lowest_possible_pfn
[zone_index
])
3038 VM_BUG_ON(zone_index
== -1);
3039 movable_zone
= zone_index
;
3043 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3044 * because it is sized independant of architecture. Unlike the other zones,
3045 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3046 * in each node depending on the size of each node and how evenly kernelcore
3047 * is distributed. This helper function adjusts the zone ranges
3048 * provided by the architecture for a given node by using the end of the
3049 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3050 * zones within a node are in order of monotonic increases memory addresses
3052 void __meminit
adjust_zone_range_for_zone_movable(int nid
,
3053 unsigned long zone_type
,
3054 unsigned long node_start_pfn
,
3055 unsigned long node_end_pfn
,
3056 unsigned long *zone_start_pfn
,
3057 unsigned long *zone_end_pfn
)
3059 /* Only adjust if ZONE_MOVABLE is on this node */
3060 if (zone_movable_pfn
[nid
]) {
3061 /* Size ZONE_MOVABLE */
3062 if (zone_type
== ZONE_MOVABLE
) {
3063 *zone_start_pfn
= zone_movable_pfn
[nid
];
3064 *zone_end_pfn
= min(node_end_pfn
,
3065 arch_zone_highest_possible_pfn
[movable_zone
]);
3067 /* Adjust for ZONE_MOVABLE starting within this range */
3068 } else if (*zone_start_pfn
< zone_movable_pfn
[nid
] &&
3069 *zone_end_pfn
> zone_movable_pfn
[nid
]) {
3070 *zone_end_pfn
= zone_movable_pfn
[nid
];
3072 /* Check if this whole range is within ZONE_MOVABLE */
3073 } else if (*zone_start_pfn
>= zone_movable_pfn
[nid
])
3074 *zone_start_pfn
= *zone_end_pfn
;
3079 * Return the number of pages a zone spans in a node, including holes
3080 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3082 static unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
3083 unsigned long zone_type
,
3084 unsigned long *ignored
)
3086 unsigned long node_start_pfn
, node_end_pfn
;
3087 unsigned long zone_start_pfn
, zone_end_pfn
;
3089 /* Get the start and end of the node and zone */
3090 get_pfn_range_for_nid(nid
, &node_start_pfn
, &node_end_pfn
);
3091 zone_start_pfn
= arch_zone_lowest_possible_pfn
[zone_type
];
3092 zone_end_pfn
= arch_zone_highest_possible_pfn
[zone_type
];
3093 adjust_zone_range_for_zone_movable(nid
, zone_type
,
3094 node_start_pfn
, node_end_pfn
,
3095 &zone_start_pfn
, &zone_end_pfn
);
3097 /* Check that this node has pages within the zone's required range */
3098 if (zone_end_pfn
< node_start_pfn
|| zone_start_pfn
> node_end_pfn
)
3101 /* Move the zone boundaries inside the node if necessary */
3102 zone_end_pfn
= min(zone_end_pfn
, node_end_pfn
);
3103 zone_start_pfn
= max(zone_start_pfn
, node_start_pfn
);
3105 /* Return the spanned pages */
3106 return zone_end_pfn
- zone_start_pfn
;
3110 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3111 * then all holes in the requested range will be accounted for.
3113 unsigned long __meminit
__absent_pages_in_range(int nid
,
3114 unsigned long range_start_pfn
,
3115 unsigned long range_end_pfn
)
3118 unsigned long prev_end_pfn
= 0, hole_pages
= 0;
3119 unsigned long start_pfn
;
3121 /* Find the end_pfn of the first active range of pfns in the node */
3122 i
= first_active_region_index_in_nid(nid
);
3126 prev_end_pfn
= min(early_node_map
[i
].start_pfn
, range_end_pfn
);
3128 /* Account for ranges before physical memory on this node */
3129 if (early_node_map
[i
].start_pfn
> range_start_pfn
)
3130 hole_pages
= prev_end_pfn
- range_start_pfn
;
3132 /* Find all holes for the zone within the node */
3133 for (; i
!= -1; i
= next_active_region_index_in_nid(i
, nid
)) {
3135 /* No need to continue if prev_end_pfn is outside the zone */
3136 if (prev_end_pfn
>= range_end_pfn
)
3139 /* Make sure the end of the zone is not within the hole */
3140 start_pfn
= min(early_node_map
[i
].start_pfn
, range_end_pfn
);
3141 prev_end_pfn
= max(prev_end_pfn
, range_start_pfn
);
3143 /* Update the hole size cound and move on */
3144 if (start_pfn
> range_start_pfn
) {
3145 BUG_ON(prev_end_pfn
> start_pfn
);
3146 hole_pages
+= start_pfn
- prev_end_pfn
;
3148 prev_end_pfn
= early_node_map
[i
].end_pfn
;
3151 /* Account for ranges past physical memory on this node */
3152 if (range_end_pfn
> prev_end_pfn
)
3153 hole_pages
+= range_end_pfn
-
3154 max(range_start_pfn
, prev_end_pfn
);
3160 * absent_pages_in_range - Return number of page frames in holes within a range
3161 * @start_pfn: The start PFN to start searching for holes
3162 * @end_pfn: The end PFN to stop searching for holes
3164 * It returns the number of pages frames in memory holes within a range.
3166 unsigned long __init
absent_pages_in_range(unsigned long start_pfn
,
3167 unsigned long end_pfn
)
3169 return __absent_pages_in_range(MAX_NUMNODES
, start_pfn
, end_pfn
);
3172 /* Return the number of page frames in holes in a zone on a node */
3173 static unsigned long __meminit
zone_absent_pages_in_node(int nid
,
3174 unsigned long zone_type
,
3175 unsigned long *ignored
)
3177 unsigned long node_start_pfn
, node_end_pfn
;
3178 unsigned long zone_start_pfn
, zone_end_pfn
;
3180 get_pfn_range_for_nid(nid
, &node_start_pfn
, &node_end_pfn
);
3181 zone_start_pfn
= max(arch_zone_lowest_possible_pfn
[zone_type
],
3183 zone_end_pfn
= min(arch_zone_highest_possible_pfn
[zone_type
],
3186 adjust_zone_range_for_zone_movable(nid
, zone_type
,
3187 node_start_pfn
, node_end_pfn
,
3188 &zone_start_pfn
, &zone_end_pfn
);
3189 return __absent_pages_in_range(nid
, zone_start_pfn
, zone_end_pfn
);
3193 static inline unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
3194 unsigned long zone_type
,
3195 unsigned long *zones_size
)
3197 return zones_size
[zone_type
];
3200 static inline unsigned long __meminit
zone_absent_pages_in_node(int nid
,
3201 unsigned long zone_type
,
3202 unsigned long *zholes_size
)
3207 return zholes_size
[zone_type
];
3212 static void __meminit
calculate_node_totalpages(struct pglist_data
*pgdat
,
3213 unsigned long *zones_size
, unsigned long *zholes_size
)
3215 unsigned long realtotalpages
, totalpages
= 0;
3218 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
3219 totalpages
+= zone_spanned_pages_in_node(pgdat
->node_id
, i
,
3221 pgdat
->node_spanned_pages
= totalpages
;
3223 realtotalpages
= totalpages
;
3224 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
3226 zone_absent_pages_in_node(pgdat
->node_id
, i
,
3228 pgdat
->node_present_pages
= realtotalpages
;
3229 printk(KERN_DEBUG
"On node %d totalpages: %lu\n", pgdat
->node_id
,
3233 #ifndef CONFIG_SPARSEMEM
3235 * Calculate the size of the zone->blockflags rounded to an unsigned long
3236 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3237 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
3238 * round what is now in bits to nearest long in bits, then return it in
3241 static unsigned long __init
usemap_size(unsigned long zonesize
)
3243 unsigned long usemapsize
;
3245 usemapsize
= roundup(zonesize
, pageblock_nr_pages
);
3246 usemapsize
= usemapsize
>> pageblock_order
;
3247 usemapsize
*= NR_PAGEBLOCK_BITS
;
3248 usemapsize
= roundup(usemapsize
, 8 * sizeof(unsigned long));
3250 return usemapsize
/ 8;
3253 static void __init
setup_usemap(struct pglist_data
*pgdat
,
3254 struct zone
*zone
, unsigned long zonesize
)
3256 unsigned long usemapsize
= usemap_size(zonesize
);
3257 zone
->pageblock_flags
= NULL
;
3259 zone
->pageblock_flags
= alloc_bootmem_node(pgdat
, usemapsize
);
3260 memset(zone
->pageblock_flags
, 0, usemapsize
);
3264 static void inline setup_usemap(struct pglist_data
*pgdat
,
3265 struct zone
*zone
, unsigned long zonesize
) {}
3266 #endif /* CONFIG_SPARSEMEM */
3268 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
3269 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3270 static inline void __init
set_pageblock_order(unsigned int order
)
3272 /* Check that pageblock_nr_pages has not already been setup */
3273 if (pageblock_order
)
3277 * Assume the largest contiguous order of interest is a huge page.
3278 * This value may be variable depending on boot parameters on IA64
3280 pageblock_order
= order
;
3282 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3284 /* Defined this way to avoid accidently referencing HUGETLB_PAGE_ORDER */
3285 #define set_pageblock_order(x) do {} while (0)
3287 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3290 * Set up the zone data structures:
3291 * - mark all pages reserved
3292 * - mark all memory queues empty
3293 * - clear the memory bitmaps
3295 static void __meminit
free_area_init_core(struct pglist_data
*pgdat
,
3296 unsigned long *zones_size
, unsigned long *zholes_size
)
3299 int nid
= pgdat
->node_id
;
3300 unsigned long zone_start_pfn
= pgdat
->node_start_pfn
;
3303 pgdat_resize_init(pgdat
);
3304 pgdat
->nr_zones
= 0;
3305 init_waitqueue_head(&pgdat
->kswapd_wait
);
3306 pgdat
->kswapd_max_order
= 0;
3308 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
3309 struct zone
*zone
= pgdat
->node_zones
+ j
;
3310 unsigned long size
, realsize
, memmap_pages
;
3312 size
= zone_spanned_pages_in_node(nid
, j
, zones_size
);
3313 realsize
= size
- zone_absent_pages_in_node(nid
, j
,
3317 * Adjust realsize so that it accounts for how much memory
3318 * is used by this zone for memmap. This affects the watermark
3319 * and per-cpu initialisations
3321 memmap_pages
= (size
* sizeof(struct page
)) >> PAGE_SHIFT
;
3322 if (realsize
>= memmap_pages
) {
3323 realsize
-= memmap_pages
;
3325 " %s zone: %lu pages used for memmap\n",
3326 zone_names
[j
], memmap_pages
);
3329 " %s zone: %lu pages exceeds realsize %lu\n",
3330 zone_names
[j
], memmap_pages
, realsize
);
3332 /* Account for reserved pages */
3333 if (j
== 0 && realsize
> dma_reserve
) {
3334 realsize
-= dma_reserve
;
3335 printk(KERN_DEBUG
" %s zone: %lu pages reserved\n",
3336 zone_names
[0], dma_reserve
);
3339 if (!is_highmem_idx(j
))
3340 nr_kernel_pages
+= realsize
;
3341 nr_all_pages
+= realsize
;
3343 zone
->spanned_pages
= size
;
3344 zone
->present_pages
= realsize
;
3347 zone
->min_unmapped_pages
= (realsize
*sysctl_min_unmapped_ratio
)
3349 zone
->min_slab_pages
= (realsize
* sysctl_min_slab_ratio
) / 100;
3351 zone
->name
= zone_names
[j
];
3352 spin_lock_init(&zone
->lock
);
3353 spin_lock_init(&zone
->lru_lock
);
3354 zone_seqlock_init(zone
);
3355 zone
->zone_pgdat
= pgdat
;
3357 zone
->prev_priority
= DEF_PRIORITY
;
3359 zone_pcp_init(zone
);
3360 INIT_LIST_HEAD(&zone
->active_list
);
3361 INIT_LIST_HEAD(&zone
->inactive_list
);
3362 zone
->nr_scan_active
= 0;
3363 zone
->nr_scan_inactive
= 0;
3364 zap_zone_vm_stats(zone
);
3369 set_pageblock_order(HUGETLB_PAGE_ORDER
);
3370 setup_usemap(pgdat
, zone
, size
);
3371 ret
= init_currently_empty_zone(zone
, zone_start_pfn
,
3372 size
, MEMMAP_EARLY
);
3374 zone_start_pfn
+= size
;
3378 static void __init_refok
alloc_node_mem_map(struct pglist_data
*pgdat
)
3380 /* Skip empty nodes */
3381 if (!pgdat
->node_spanned_pages
)
3384 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3385 /* ia64 gets its own node_mem_map, before this, without bootmem */
3386 if (!pgdat
->node_mem_map
) {
3387 unsigned long size
, start
, end
;
3391 * The zone's endpoints aren't required to be MAX_ORDER
3392 * aligned but the node_mem_map endpoints must be in order
3393 * for the buddy allocator to function correctly.
3395 start
= pgdat
->node_start_pfn
& ~(MAX_ORDER_NR_PAGES
- 1);
3396 end
= pgdat
->node_start_pfn
+ pgdat
->node_spanned_pages
;
3397 end
= ALIGN(end
, MAX_ORDER_NR_PAGES
);
3398 size
= (end
- start
) * sizeof(struct page
);
3399 map
= alloc_remap(pgdat
->node_id
, size
);
3401 map
= alloc_bootmem_node(pgdat
, size
);
3402 pgdat
->node_mem_map
= map
+ (pgdat
->node_start_pfn
- start
);
3404 #ifndef CONFIG_NEED_MULTIPLE_NODES
3406 * With no DISCONTIG, the global mem_map is just set as node 0's
3408 if (pgdat
== NODE_DATA(0)) {
3409 mem_map
= NODE_DATA(0)->node_mem_map
;
3410 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3411 if (page_to_pfn(mem_map
) != pgdat
->node_start_pfn
)
3412 mem_map
-= pgdat
->node_start_pfn
;
3413 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3416 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
3419 void __meminit
free_area_init_node(int nid
, struct pglist_data
*pgdat
,
3420 unsigned long *zones_size
, unsigned long node_start_pfn
,
3421 unsigned long *zholes_size
)
3423 pgdat
->node_id
= nid
;
3424 pgdat
->node_start_pfn
= node_start_pfn
;
3425 calculate_node_totalpages(pgdat
, zones_size
, zholes_size
);
3427 alloc_node_mem_map(pgdat
);
3429 free_area_init_core(pgdat
, zones_size
, zholes_size
);
3432 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3434 #if MAX_NUMNODES > 1
3436 * Figure out the number of possible node ids.
3438 static void __init
setup_nr_node_ids(void)
3441 unsigned int highest
= 0;
3443 for_each_node_mask(node
, node_possible_map
)
3445 nr_node_ids
= highest
+ 1;
3448 static inline void setup_nr_node_ids(void)
3454 * add_active_range - Register a range of PFNs backed by physical memory
3455 * @nid: The node ID the range resides on
3456 * @start_pfn: The start PFN of the available physical memory
3457 * @end_pfn: The end PFN of the available physical memory
3459 * These ranges are stored in an early_node_map[] and later used by
3460 * free_area_init_nodes() to calculate zone sizes and holes. If the
3461 * range spans a memory hole, it is up to the architecture to ensure
3462 * the memory is not freed by the bootmem allocator. If possible
3463 * the range being registered will be merged with existing ranges.
3465 void __init
add_active_range(unsigned int nid
, unsigned long start_pfn
,
3466 unsigned long end_pfn
)
3470 printk(KERN_DEBUG
"Entering add_active_range(%d, %lu, %lu) "
3471 "%d entries of %d used\n",
3472 nid
, start_pfn
, end_pfn
,
3473 nr_nodemap_entries
, MAX_ACTIVE_REGIONS
);
3475 /* Merge with existing active regions if possible */
3476 for (i
= 0; i
< nr_nodemap_entries
; i
++) {
3477 if (early_node_map
[i
].nid
!= nid
)
3480 /* Skip if an existing region covers this new one */
3481 if (start_pfn
>= early_node_map
[i
].start_pfn
&&
3482 end_pfn
<= early_node_map
[i
].end_pfn
)
3485 /* Merge forward if suitable */
3486 if (start_pfn
<= early_node_map
[i
].end_pfn
&&
3487 end_pfn
> early_node_map
[i
].end_pfn
) {
3488 early_node_map
[i
].end_pfn
= end_pfn
;
3492 /* Merge backward if suitable */
3493 if (start_pfn
< early_node_map
[i
].end_pfn
&&
3494 end_pfn
>= early_node_map
[i
].start_pfn
) {
3495 early_node_map
[i
].start_pfn
= start_pfn
;
3500 /* Check that early_node_map is large enough */
3501 if (i
>= MAX_ACTIVE_REGIONS
) {
3502 printk(KERN_CRIT
"More than %d memory regions, truncating\n",
3503 MAX_ACTIVE_REGIONS
);
3507 early_node_map
[i
].nid
= nid
;
3508 early_node_map
[i
].start_pfn
= start_pfn
;
3509 early_node_map
[i
].end_pfn
= end_pfn
;
3510 nr_nodemap_entries
= i
+ 1;
3514 * shrink_active_range - Shrink an existing registered range of PFNs
3515 * @nid: The node id the range is on that should be shrunk
3516 * @old_end_pfn: The old end PFN of the range
3517 * @new_end_pfn: The new PFN of the range
3519 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
3520 * The map is kept at the end physical page range that has already been
3521 * registered with add_active_range(). This function allows an arch to shrink
3522 * an existing registered range.
3524 void __init
shrink_active_range(unsigned int nid
, unsigned long old_end_pfn
,
3525 unsigned long new_end_pfn
)
3529 /* Find the old active region end and shrink */
3530 for_each_active_range_index_in_nid(i
, nid
)
3531 if (early_node_map
[i
].end_pfn
== old_end_pfn
) {
3532 early_node_map
[i
].end_pfn
= new_end_pfn
;
3538 * remove_all_active_ranges - Remove all currently registered regions
3540 * During discovery, it may be found that a table like SRAT is invalid
3541 * and an alternative discovery method must be used. This function removes
3542 * all currently registered regions.
3544 void __init
remove_all_active_ranges(void)
3546 memset(early_node_map
, 0, sizeof(early_node_map
));
3547 nr_nodemap_entries
= 0;
3548 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
3549 memset(node_boundary_start_pfn
, 0, sizeof(node_boundary_start_pfn
));
3550 memset(node_boundary_end_pfn
, 0, sizeof(node_boundary_end_pfn
));
3551 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
3554 /* Compare two active node_active_regions */
3555 static int __init
cmp_node_active_region(const void *a
, const void *b
)
3557 struct node_active_region
*arange
= (struct node_active_region
*)a
;
3558 struct node_active_region
*brange
= (struct node_active_region
*)b
;
3560 /* Done this way to avoid overflows */
3561 if (arange
->start_pfn
> brange
->start_pfn
)
3563 if (arange
->start_pfn
< brange
->start_pfn
)
3569 /* sort the node_map by start_pfn */
3570 static void __init
sort_node_map(void)
3572 sort(early_node_map
, (size_t)nr_nodemap_entries
,
3573 sizeof(struct node_active_region
),
3574 cmp_node_active_region
, NULL
);
3577 /* Find the lowest pfn for a node */
3578 unsigned long __init
find_min_pfn_for_node(unsigned long nid
)
3581 unsigned long min_pfn
= ULONG_MAX
;
3583 /* Assuming a sorted map, the first range found has the starting pfn */
3584 for_each_active_range_index_in_nid(i
, nid
)
3585 min_pfn
= min(min_pfn
, early_node_map
[i
].start_pfn
);
3587 if (min_pfn
== ULONG_MAX
) {
3589 "Could not find start_pfn for node %lu\n", nid
);
3597 * find_min_pfn_with_active_regions - Find the minimum PFN registered
3599 * It returns the minimum PFN based on information provided via
3600 * add_active_range().
3602 unsigned long __init
find_min_pfn_with_active_regions(void)
3604 return find_min_pfn_for_node(MAX_NUMNODES
);
3608 * find_max_pfn_with_active_regions - Find the maximum PFN registered
3610 * It returns the maximum PFN based on information provided via
3611 * add_active_range().
3613 unsigned long __init
find_max_pfn_with_active_regions(void)
3616 unsigned long max_pfn
= 0;
3618 for (i
= 0; i
< nr_nodemap_entries
; i
++)
3619 max_pfn
= max(max_pfn
, early_node_map
[i
].end_pfn
);
3625 * early_calculate_totalpages()
3626 * Sum pages in active regions for movable zone.
3627 * Populate N_HIGH_MEMORY for calculating usable_nodes.
3629 static unsigned long __init
early_calculate_totalpages(void)
3632 unsigned long totalpages
= 0;
3634 for (i
= 0; i
< nr_nodemap_entries
; i
++) {
3635 unsigned long pages
= early_node_map
[i
].end_pfn
-
3636 early_node_map
[i
].start_pfn
;
3637 totalpages
+= pages
;
3639 node_set_state(early_node_map
[i
].nid
, N_HIGH_MEMORY
);
3645 * Find the PFN the Movable zone begins in each node. Kernel memory
3646 * is spread evenly between nodes as long as the nodes have enough
3647 * memory. When they don't, some nodes will have more kernelcore than
3650 void __init
find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn
)
3653 unsigned long usable_startpfn
;
3654 unsigned long kernelcore_node
, kernelcore_remaining
;
3655 unsigned long totalpages
= early_calculate_totalpages();
3656 int usable_nodes
= nodes_weight(node_states
[N_HIGH_MEMORY
]);
3659 * If movablecore was specified, calculate what size of
3660 * kernelcore that corresponds so that memory usable for
3661 * any allocation type is evenly spread. If both kernelcore
3662 * and movablecore are specified, then the value of kernelcore
3663 * will be used for required_kernelcore if it's greater than
3664 * what movablecore would have allowed.
3666 if (required_movablecore
) {
3667 unsigned long corepages
;
3670 * Round-up so that ZONE_MOVABLE is at least as large as what
3671 * was requested by the user
3673 required_movablecore
=
3674 roundup(required_movablecore
, MAX_ORDER_NR_PAGES
);
3675 corepages
= totalpages
- required_movablecore
;
3677 required_kernelcore
= max(required_kernelcore
, corepages
);
3680 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
3681 if (!required_kernelcore
)
3684 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
3685 find_usable_zone_for_movable();
3686 usable_startpfn
= arch_zone_lowest_possible_pfn
[movable_zone
];
3689 /* Spread kernelcore memory as evenly as possible throughout nodes */
3690 kernelcore_node
= required_kernelcore
/ usable_nodes
;
3691 for_each_node_state(nid
, N_HIGH_MEMORY
) {
3693 * Recalculate kernelcore_node if the division per node
3694 * now exceeds what is necessary to satisfy the requested
3695 * amount of memory for the kernel
3697 if (required_kernelcore
< kernelcore_node
)
3698 kernelcore_node
= required_kernelcore
/ usable_nodes
;
3701 * As the map is walked, we track how much memory is usable
3702 * by the kernel using kernelcore_remaining. When it is
3703 * 0, the rest of the node is usable by ZONE_MOVABLE
3705 kernelcore_remaining
= kernelcore_node
;
3707 /* Go through each range of PFNs within this node */
3708 for_each_active_range_index_in_nid(i
, nid
) {
3709 unsigned long start_pfn
, end_pfn
;
3710 unsigned long size_pages
;
3712 start_pfn
= max(early_node_map
[i
].start_pfn
,
3713 zone_movable_pfn
[nid
]);
3714 end_pfn
= early_node_map
[i
].end_pfn
;
3715 if (start_pfn
>= end_pfn
)
3718 /* Account for what is only usable for kernelcore */
3719 if (start_pfn
< usable_startpfn
) {
3720 unsigned long kernel_pages
;
3721 kernel_pages
= min(end_pfn
, usable_startpfn
)
3724 kernelcore_remaining
-= min(kernel_pages
,
3725 kernelcore_remaining
);
3726 required_kernelcore
-= min(kernel_pages
,
3727 required_kernelcore
);
3729 /* Continue if range is now fully accounted */
3730 if (end_pfn
<= usable_startpfn
) {
3733 * Push zone_movable_pfn to the end so
3734 * that if we have to rebalance
3735 * kernelcore across nodes, we will
3736 * not double account here
3738 zone_movable_pfn
[nid
] = end_pfn
;
3741 start_pfn
= usable_startpfn
;
3745 * The usable PFN range for ZONE_MOVABLE is from
3746 * start_pfn->end_pfn. Calculate size_pages as the
3747 * number of pages used as kernelcore
3749 size_pages
= end_pfn
- start_pfn
;
3750 if (size_pages
> kernelcore_remaining
)
3751 size_pages
= kernelcore_remaining
;
3752 zone_movable_pfn
[nid
] = start_pfn
+ size_pages
;
3755 * Some kernelcore has been met, update counts and
3756 * break if the kernelcore for this node has been
3759 required_kernelcore
-= min(required_kernelcore
,
3761 kernelcore_remaining
-= size_pages
;
3762 if (!kernelcore_remaining
)
3768 * If there is still required_kernelcore, we do another pass with one
3769 * less node in the count. This will push zone_movable_pfn[nid] further
3770 * along on the nodes that still have memory until kernelcore is
3774 if (usable_nodes
&& required_kernelcore
> usable_nodes
)
3777 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
3778 for (nid
= 0; nid
< MAX_NUMNODES
; nid
++)
3779 zone_movable_pfn
[nid
] =
3780 roundup(zone_movable_pfn
[nid
], MAX_ORDER_NR_PAGES
);
3783 /* Any regular memory on that node ? */
3784 static void check_for_regular_memory(pg_data_t
*pgdat
)
3786 #ifdef CONFIG_HIGHMEM
3787 enum zone_type zone_type
;
3789 for (zone_type
= 0; zone_type
<= ZONE_NORMAL
; zone_type
++) {
3790 struct zone
*zone
= &pgdat
->node_zones
[zone_type
];
3791 if (zone
->present_pages
)
3792 node_set_state(zone_to_nid(zone
), N_NORMAL_MEMORY
);
3798 * free_area_init_nodes - Initialise all pg_data_t and zone data
3799 * @max_zone_pfn: an array of max PFNs for each zone
3801 * This will call free_area_init_node() for each active node in the system.
3802 * Using the page ranges provided by add_active_range(), the size of each
3803 * zone in each node and their holes is calculated. If the maximum PFN
3804 * between two adjacent zones match, it is assumed that the zone is empty.
3805 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
3806 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
3807 * starts where the previous one ended. For example, ZONE_DMA32 starts
3808 * at arch_max_dma_pfn.
3810 void __init
free_area_init_nodes(unsigned long *max_zone_pfn
)
3815 /* Sort early_node_map as initialisation assumes it is sorted */
3818 /* Record where the zone boundaries are */
3819 memset(arch_zone_lowest_possible_pfn
, 0,
3820 sizeof(arch_zone_lowest_possible_pfn
));
3821 memset(arch_zone_highest_possible_pfn
, 0,
3822 sizeof(arch_zone_highest_possible_pfn
));
3823 arch_zone_lowest_possible_pfn
[0] = find_min_pfn_with_active_regions();
3824 arch_zone_highest_possible_pfn
[0] = max_zone_pfn
[0];
3825 for (i
= 1; i
< MAX_NR_ZONES
; i
++) {
3826 if (i
== ZONE_MOVABLE
)
3828 arch_zone_lowest_possible_pfn
[i
] =
3829 arch_zone_highest_possible_pfn
[i
-1];
3830 arch_zone_highest_possible_pfn
[i
] =
3831 max(max_zone_pfn
[i
], arch_zone_lowest_possible_pfn
[i
]);
3833 arch_zone_lowest_possible_pfn
[ZONE_MOVABLE
] = 0;
3834 arch_zone_highest_possible_pfn
[ZONE_MOVABLE
] = 0;
3836 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
3837 memset(zone_movable_pfn
, 0, sizeof(zone_movable_pfn
));
3838 find_zone_movable_pfns_for_nodes(zone_movable_pfn
);
3840 /* Print out the zone ranges */
3841 printk("Zone PFN ranges:\n");
3842 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
3843 if (i
== ZONE_MOVABLE
)
3845 printk(" %-8s %8lu -> %8lu\n",
3847 arch_zone_lowest_possible_pfn
[i
],
3848 arch_zone_highest_possible_pfn
[i
]);
3851 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
3852 printk("Movable zone start PFN for each node\n");
3853 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
3854 if (zone_movable_pfn
[i
])
3855 printk(" Node %d: %lu\n", i
, zone_movable_pfn
[i
]);
3858 /* Print out the early_node_map[] */
3859 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries
);
3860 for (i
= 0; i
< nr_nodemap_entries
; i
++)
3861 printk(" %3d: %8lu -> %8lu\n", early_node_map
[i
].nid
,
3862 early_node_map
[i
].start_pfn
,
3863 early_node_map
[i
].end_pfn
);
3865 /* Initialise every node */
3866 setup_nr_node_ids();
3867 for_each_online_node(nid
) {
3868 pg_data_t
*pgdat
= NODE_DATA(nid
);
3869 free_area_init_node(nid
, pgdat
, NULL
,
3870 find_min_pfn_for_node(nid
), NULL
);
3872 /* Any memory on that node */
3873 if (pgdat
->node_present_pages
)
3874 node_set_state(nid
, N_HIGH_MEMORY
);
3875 check_for_regular_memory(pgdat
);
3879 static int __init
cmdline_parse_core(char *p
, unsigned long *core
)
3881 unsigned long long coremem
;
3885 coremem
= memparse(p
, &p
);
3886 *core
= coremem
>> PAGE_SHIFT
;
3888 /* Paranoid check that UL is enough for the coremem value */
3889 WARN_ON((coremem
>> PAGE_SHIFT
) > ULONG_MAX
);
3895 * kernelcore=size sets the amount of memory for use for allocations that
3896 * cannot be reclaimed or migrated.
3898 static int __init
cmdline_parse_kernelcore(char *p
)
3900 return cmdline_parse_core(p
, &required_kernelcore
);
3904 * movablecore=size sets the amount of memory for use for allocations that
3905 * can be reclaimed or migrated.
3907 static int __init
cmdline_parse_movablecore(char *p
)
3909 return cmdline_parse_core(p
, &required_movablecore
);
3912 early_param("kernelcore", cmdline_parse_kernelcore
);
3913 early_param("movablecore", cmdline_parse_movablecore
);
3915 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3918 * set_dma_reserve - set the specified number of pages reserved in the first zone
3919 * @new_dma_reserve: The number of pages to mark reserved
3921 * The per-cpu batchsize and zone watermarks are determined by present_pages.
3922 * In the DMA zone, a significant percentage may be consumed by kernel image
3923 * and other unfreeable allocations which can skew the watermarks badly. This
3924 * function may optionally be used to account for unfreeable pages in the
3925 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
3926 * smaller per-cpu batchsize.
3928 void __init
set_dma_reserve(unsigned long new_dma_reserve
)
3930 dma_reserve
= new_dma_reserve
;
3933 #ifndef CONFIG_NEED_MULTIPLE_NODES
3934 static bootmem_data_t contig_bootmem_data
;
3935 struct pglist_data contig_page_data
= { .bdata
= &contig_bootmem_data
};
3937 EXPORT_SYMBOL(contig_page_data
);
3940 void __init
free_area_init(unsigned long *zones_size
)
3942 free_area_init_node(0, NODE_DATA(0), zones_size
,
3943 __pa(PAGE_OFFSET
) >> PAGE_SHIFT
, NULL
);
3946 static int page_alloc_cpu_notify(struct notifier_block
*self
,
3947 unsigned long action
, void *hcpu
)
3949 int cpu
= (unsigned long)hcpu
;
3951 if (action
== CPU_DEAD
|| action
== CPU_DEAD_FROZEN
) {
3952 local_irq_disable();
3954 vm_events_fold_cpu(cpu
);
3956 refresh_cpu_vm_stats(cpu
);
3961 void __init
page_alloc_init(void)
3963 hotcpu_notifier(page_alloc_cpu_notify
, 0);
3967 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
3968 * or min_free_kbytes changes.
3970 static void calculate_totalreserve_pages(void)
3972 struct pglist_data
*pgdat
;
3973 unsigned long reserve_pages
= 0;
3974 enum zone_type i
, j
;
3976 for_each_online_pgdat(pgdat
) {
3977 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
3978 struct zone
*zone
= pgdat
->node_zones
+ i
;
3979 unsigned long max
= 0;
3981 /* Find valid and maximum lowmem_reserve in the zone */
3982 for (j
= i
; j
< MAX_NR_ZONES
; j
++) {
3983 if (zone
->lowmem_reserve
[j
] > max
)
3984 max
= zone
->lowmem_reserve
[j
];
3987 /* we treat pages_high as reserved pages. */
3988 max
+= zone
->pages_high
;
3990 if (max
> zone
->present_pages
)
3991 max
= zone
->present_pages
;
3992 reserve_pages
+= max
;
3995 totalreserve_pages
= reserve_pages
;
3999 * setup_per_zone_lowmem_reserve - called whenever
4000 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4001 * has a correct pages reserved value, so an adequate number of
4002 * pages are left in the zone after a successful __alloc_pages().
4004 static void setup_per_zone_lowmem_reserve(void)
4006 struct pglist_data
*pgdat
;
4007 enum zone_type j
, idx
;
4009 for_each_online_pgdat(pgdat
) {
4010 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
4011 struct zone
*zone
= pgdat
->node_zones
+ j
;
4012 unsigned long present_pages
= zone
->present_pages
;
4014 zone
->lowmem_reserve
[j
] = 0;
4018 struct zone
*lower_zone
;
4022 if (sysctl_lowmem_reserve_ratio
[idx
] < 1)
4023 sysctl_lowmem_reserve_ratio
[idx
] = 1;
4025 lower_zone
= pgdat
->node_zones
+ idx
;
4026 lower_zone
->lowmem_reserve
[j
] = present_pages
/
4027 sysctl_lowmem_reserve_ratio
[idx
];
4028 present_pages
+= lower_zone
->present_pages
;
4033 /* update totalreserve_pages */
4034 calculate_totalreserve_pages();
4038 * setup_per_zone_pages_min - called when min_free_kbytes changes.
4040 * Ensures that the pages_{min,low,high} values for each zone are set correctly
4041 * with respect to min_free_kbytes.
4043 void setup_per_zone_pages_min(void)
4045 unsigned long pages_min
= min_free_kbytes
>> (PAGE_SHIFT
- 10);
4046 unsigned long lowmem_pages
= 0;
4048 unsigned long flags
;
4050 /* Calculate total number of !ZONE_HIGHMEM pages */
4051 for_each_zone(zone
) {
4052 if (!is_highmem(zone
))
4053 lowmem_pages
+= zone
->present_pages
;
4056 for_each_zone(zone
) {
4059 spin_lock_irqsave(&zone
->lru_lock
, flags
);
4060 tmp
= (u64
)pages_min
* zone
->present_pages
;
4061 do_div(tmp
, lowmem_pages
);
4062 if (is_highmem(zone
)) {
4064 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4065 * need highmem pages, so cap pages_min to a small
4068 * The (pages_high-pages_low) and (pages_low-pages_min)
4069 * deltas controls asynch page reclaim, and so should
4070 * not be capped for highmem.
4074 min_pages
= zone
->present_pages
/ 1024;
4075 if (min_pages
< SWAP_CLUSTER_MAX
)
4076 min_pages
= SWAP_CLUSTER_MAX
;
4077 if (min_pages
> 128)
4079 zone
->pages_min
= min_pages
;
4082 * If it's a lowmem zone, reserve a number of pages
4083 * proportionate to the zone's size.
4085 zone
->pages_min
= tmp
;
4088 zone
->pages_low
= zone
->pages_min
+ (tmp
>> 2);
4089 zone
->pages_high
= zone
->pages_min
+ (tmp
>> 1);
4090 setup_zone_migrate_reserve(zone
);
4091 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
4094 /* update totalreserve_pages */
4095 calculate_totalreserve_pages();
4099 * Initialise min_free_kbytes.
4101 * For small machines we want it small (128k min). For large machines
4102 * we want it large (64MB max). But it is not linear, because network
4103 * bandwidth does not increase linearly with machine size. We use
4105 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4106 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
4122 static int __init
init_per_zone_pages_min(void)
4124 unsigned long lowmem_kbytes
;
4126 lowmem_kbytes
= nr_free_buffer_pages() * (PAGE_SIZE
>> 10);
4128 min_free_kbytes
= int_sqrt(lowmem_kbytes
* 16);
4129 if (min_free_kbytes
< 128)
4130 min_free_kbytes
= 128;
4131 if (min_free_kbytes
> 65536)
4132 min_free_kbytes
= 65536;
4133 setup_per_zone_pages_min();
4134 setup_per_zone_lowmem_reserve();
4137 module_init(init_per_zone_pages_min
)
4140 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4141 * that we can call two helper functions whenever min_free_kbytes
4144 int min_free_kbytes_sysctl_handler(ctl_table
*table
, int write
,
4145 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
4147 proc_dointvec(table
, write
, file
, buffer
, length
, ppos
);
4149 setup_per_zone_pages_min();
4154 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table
*table
, int write
,
4155 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
4160 rc
= proc_dointvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
4165 zone
->min_unmapped_pages
= (zone
->present_pages
*
4166 sysctl_min_unmapped_ratio
) / 100;
4170 int sysctl_min_slab_ratio_sysctl_handler(ctl_table
*table
, int write
,
4171 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
4176 rc
= proc_dointvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
4181 zone
->min_slab_pages
= (zone
->present_pages
*
4182 sysctl_min_slab_ratio
) / 100;
4188 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4189 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4190 * whenever sysctl_lowmem_reserve_ratio changes.
4192 * The reserve ratio obviously has absolutely no relation with the
4193 * pages_min watermarks. The lowmem reserve ratio can only make sense
4194 * if in function of the boot time zone sizes.
4196 int lowmem_reserve_ratio_sysctl_handler(ctl_table
*table
, int write
,
4197 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
4199 proc_dointvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
4200 setup_per_zone_lowmem_reserve();
4205 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4206 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
4207 * can have before it gets flushed back to buddy allocator.
4210 int percpu_pagelist_fraction_sysctl_handler(ctl_table
*table
, int write
,
4211 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
4217 ret
= proc_dointvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
4218 if (!write
|| (ret
== -EINVAL
))
4220 for_each_zone(zone
) {
4221 for_each_online_cpu(cpu
) {
4223 high
= zone
->present_pages
/ percpu_pagelist_fraction
;
4224 setup_pagelist_highmark(zone_pcp(zone
, cpu
), high
);
4230 int hashdist
= HASHDIST_DEFAULT
;
4233 static int __init
set_hashdist(char *str
)
4237 hashdist
= simple_strtoul(str
, &str
, 0);
4240 __setup("hashdist=", set_hashdist
);
4244 * allocate a large system hash table from bootmem
4245 * - it is assumed that the hash table must contain an exact power-of-2
4246 * quantity of entries
4247 * - limit is the number of hash buckets, not the total allocation size
4249 void *__init
alloc_large_system_hash(const char *tablename
,
4250 unsigned long bucketsize
,
4251 unsigned long numentries
,
4254 unsigned int *_hash_shift
,
4255 unsigned int *_hash_mask
,
4256 unsigned long limit
)
4258 unsigned long long max
= limit
;
4259 unsigned long log2qty
, size
;
4262 /* allow the kernel cmdline to have a say */
4264 /* round applicable memory size up to nearest megabyte */
4265 numentries
= nr_kernel_pages
;
4266 numentries
+= (1UL << (20 - PAGE_SHIFT
)) - 1;
4267 numentries
>>= 20 - PAGE_SHIFT
;
4268 numentries
<<= 20 - PAGE_SHIFT
;
4270 /* limit to 1 bucket per 2^scale bytes of low memory */
4271 if (scale
> PAGE_SHIFT
)
4272 numentries
>>= (scale
- PAGE_SHIFT
);
4274 numentries
<<= (PAGE_SHIFT
- scale
);
4276 /* Make sure we've got at least a 0-order allocation.. */
4277 if (unlikely((numentries
* bucketsize
) < PAGE_SIZE
))
4278 numentries
= PAGE_SIZE
/ bucketsize
;
4280 numentries
= roundup_pow_of_two(numentries
);
4282 /* limit allocation size to 1/16 total memory by default */
4284 max
= ((unsigned long long)nr_all_pages
<< PAGE_SHIFT
) >> 4;
4285 do_div(max
, bucketsize
);
4288 if (numentries
> max
)
4291 log2qty
= ilog2(numentries
);
4294 size
= bucketsize
<< log2qty
;
4295 if (flags
& HASH_EARLY
)
4296 table
= alloc_bootmem(size
);
4298 table
= __vmalloc(size
, GFP_ATOMIC
, PAGE_KERNEL
);
4300 unsigned long order
;
4301 for (order
= 0; ((1UL << order
) << PAGE_SHIFT
) < size
; order
++)
4303 table
= (void*) __get_free_pages(GFP_ATOMIC
, order
);
4305 * If bucketsize is not a power-of-two, we may free
4306 * some pages at the end of hash table.
4309 unsigned long alloc_end
= (unsigned long)table
+
4310 (PAGE_SIZE
<< order
);
4311 unsigned long used
= (unsigned long)table
+
4313 split_page(virt_to_page(table
), order
);
4314 while (used
< alloc_end
) {
4320 } while (!table
&& size
> PAGE_SIZE
&& --log2qty
);
4323 panic("Failed to allocate %s hash table\n", tablename
);
4325 printk(KERN_INFO
"%s hash table entries: %d (order: %d, %lu bytes)\n",
4328 ilog2(size
) - PAGE_SHIFT
,
4332 *_hash_shift
= log2qty
;
4334 *_hash_mask
= (1 << log2qty
) - 1;
4339 #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
4340 struct page
*pfn_to_page(unsigned long pfn
)
4342 return __pfn_to_page(pfn
);
4344 unsigned long page_to_pfn(struct page
*page
)
4346 return __page_to_pfn(page
);
4348 EXPORT_SYMBOL(pfn_to_page
);
4349 EXPORT_SYMBOL(page_to_pfn
);
4350 #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */
4352 /* Return a pointer to the bitmap storing bits affecting a block of pages */
4353 static inline unsigned long *get_pageblock_bitmap(struct zone
*zone
,
4356 #ifdef CONFIG_SPARSEMEM
4357 return __pfn_to_section(pfn
)->pageblock_flags
;
4359 return zone
->pageblock_flags
;
4360 #endif /* CONFIG_SPARSEMEM */
4363 static inline int pfn_to_bitidx(struct zone
*zone
, unsigned long pfn
)
4365 #ifdef CONFIG_SPARSEMEM
4366 pfn
&= (PAGES_PER_SECTION
-1);
4367 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
4369 pfn
= pfn
- zone
->zone_start_pfn
;
4370 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
4371 #endif /* CONFIG_SPARSEMEM */
4375 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
4376 * @page: The page within the block of interest
4377 * @start_bitidx: The first bit of interest to retrieve
4378 * @end_bitidx: The last bit of interest
4379 * returns pageblock_bits flags
4381 unsigned long get_pageblock_flags_group(struct page
*page
,
4382 int start_bitidx
, int end_bitidx
)
4385 unsigned long *bitmap
;
4386 unsigned long pfn
, bitidx
;
4387 unsigned long flags
= 0;
4388 unsigned long value
= 1;
4390 zone
= page_zone(page
);
4391 pfn
= page_to_pfn(page
);
4392 bitmap
= get_pageblock_bitmap(zone
, pfn
);
4393 bitidx
= pfn_to_bitidx(zone
, pfn
);
4395 for (; start_bitidx
<= end_bitidx
; start_bitidx
++, value
<<= 1)
4396 if (test_bit(bitidx
+ start_bitidx
, bitmap
))
4403 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
4404 * @page: The page within the block of interest
4405 * @start_bitidx: The first bit of interest
4406 * @end_bitidx: The last bit of interest
4407 * @flags: The flags to set
4409 void set_pageblock_flags_group(struct page
*page
, unsigned long flags
,
4410 int start_bitidx
, int end_bitidx
)
4413 unsigned long *bitmap
;
4414 unsigned long pfn
, bitidx
;
4415 unsigned long value
= 1;
4417 zone
= page_zone(page
);
4418 pfn
= page_to_pfn(page
);
4419 bitmap
= get_pageblock_bitmap(zone
, pfn
);
4420 bitidx
= pfn_to_bitidx(zone
, pfn
);
4422 for (; start_bitidx
<= end_bitidx
; start_bitidx
++, value
<<= 1)
4424 __set_bit(bitidx
+ start_bitidx
, bitmap
);
4426 __clear_bit(bitidx
+ start_bitidx
, bitmap
);
4430 * This is designed as sub function...plz see page_isolation.c also.
4431 * set/clear page block's type to be ISOLATE.
4432 * page allocater never alloc memory from ISOLATE block.
4435 int set_migratetype_isolate(struct page
*page
)
4438 unsigned long flags
;
4441 zone
= page_zone(page
);
4442 spin_lock_irqsave(&zone
->lock
, flags
);
4444 * In future, more migrate types will be able to be isolation target.
4446 if (get_pageblock_migratetype(page
) != MIGRATE_MOVABLE
)
4448 set_pageblock_migratetype(page
, MIGRATE_ISOLATE
);
4449 move_freepages_block(zone
, page
, MIGRATE_ISOLATE
);
4452 spin_unlock_irqrestore(&zone
->lock
, flags
);
4454 drain_all_local_pages();
4458 void unset_migratetype_isolate(struct page
*page
)
4461 unsigned long flags
;
4462 zone
= page_zone(page
);
4463 spin_lock_irqsave(&zone
->lock
, flags
);
4464 if (get_pageblock_migratetype(page
) != MIGRATE_ISOLATE
)
4466 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
4467 move_freepages_block(zone
, page
, MIGRATE_MOVABLE
);
4469 spin_unlock_irqrestore(&zone
->lock
, flags
);
4472 #ifdef CONFIG_MEMORY_HOTREMOVE
4474 * All pages in the range must be isolated before calling this.
4477 __offline_isolated_pages(unsigned long start_pfn
, unsigned long end_pfn
)
4483 unsigned long flags
;
4484 /* find the first valid pfn */
4485 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++)
4490 zone
= page_zone(pfn_to_page(pfn
));
4491 spin_lock_irqsave(&zone
->lock
, flags
);
4493 while (pfn
< end_pfn
) {
4494 if (!pfn_valid(pfn
)) {
4498 page
= pfn_to_page(pfn
);
4499 BUG_ON(page_count(page
));
4500 BUG_ON(!PageBuddy(page
));
4501 order
= page_order(page
);
4502 #ifdef CONFIG_DEBUG_VM
4503 printk(KERN_INFO
"remove from free list %lx %d %lx\n",
4504 pfn
, 1 << order
, end_pfn
);
4506 list_del(&page
->lru
);
4507 rmv_page_order(page
);
4508 zone
->free_area
[order
].nr_free
--;
4509 __mod_zone_page_state(zone
, NR_FREE_PAGES
,
4511 for (i
= 0; i
< (1 << order
); i
++)
4512 SetPageReserved((page
+i
));
4513 pfn
+= (1 << order
);
4515 spin_unlock_irqrestore(&zone
->lock
, flags
);