USB: Obscure Maxon BP3-USB Device Support 16d8:6280 for option driver
[linux-2.6/s3c2410-cpufreq.git] / kernel / signal.c
blob6af1210092c39a45db3552ecc9199728f8938410
1 /*
2 * linux/kernel/signal.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
8 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
9 * Changes to use preallocated sigqueue structures
10 * to allow signals to be sent reliably.
13 #include <linux/slab.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/tty.h>
19 #include <linux/binfmts.h>
20 #include <linux/security.h>
21 #include <linux/syscalls.h>
22 #include <linux/ptrace.h>
23 #include <linux/signal.h>
24 #include <linux/signalfd.h>
25 #include <linux/capability.h>
26 #include <linux/freezer.h>
27 #include <linux/pid_namespace.h>
28 #include <linux/nsproxy.h>
30 #include <asm/param.h>
31 #include <asm/uaccess.h>
32 #include <asm/unistd.h>
33 #include <asm/siginfo.h>
34 #include "audit.h" /* audit_signal_info() */
37 * SLAB caches for signal bits.
40 static struct kmem_cache *sigqueue_cachep;
43 static int sig_ignored(struct task_struct *t, int sig)
45 void __user * handler;
48 * Tracers always want to know about signals..
50 if (t->ptrace & PT_PTRACED)
51 return 0;
54 * Blocked signals are never ignored, since the
55 * signal handler may change by the time it is
56 * unblocked.
58 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
59 return 0;
61 /* Is it explicitly or implicitly ignored? */
62 handler = t->sighand->action[sig-1].sa.sa_handler;
63 return handler == SIG_IGN ||
64 (handler == SIG_DFL && sig_kernel_ignore(sig));
68 * Re-calculate pending state from the set of locally pending
69 * signals, globally pending signals, and blocked signals.
71 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
73 unsigned long ready;
74 long i;
76 switch (_NSIG_WORDS) {
77 default:
78 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
79 ready |= signal->sig[i] &~ blocked->sig[i];
80 break;
82 case 4: ready = signal->sig[3] &~ blocked->sig[3];
83 ready |= signal->sig[2] &~ blocked->sig[2];
84 ready |= signal->sig[1] &~ blocked->sig[1];
85 ready |= signal->sig[0] &~ blocked->sig[0];
86 break;
88 case 2: ready = signal->sig[1] &~ blocked->sig[1];
89 ready |= signal->sig[0] &~ blocked->sig[0];
90 break;
92 case 1: ready = signal->sig[0] &~ blocked->sig[0];
94 return ready != 0;
97 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
99 static int recalc_sigpending_tsk(struct task_struct *t)
101 if (t->signal->group_stop_count > 0 ||
102 PENDING(&t->pending, &t->blocked) ||
103 PENDING(&t->signal->shared_pending, &t->blocked)) {
104 set_tsk_thread_flag(t, TIF_SIGPENDING);
105 return 1;
108 * We must never clear the flag in another thread, or in current
109 * when it's possible the current syscall is returning -ERESTART*.
110 * So we don't clear it here, and only callers who know they should do.
112 return 0;
116 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
117 * This is superfluous when called on current, the wakeup is a harmless no-op.
119 void recalc_sigpending_and_wake(struct task_struct *t)
121 if (recalc_sigpending_tsk(t))
122 signal_wake_up(t, 0);
125 void recalc_sigpending(void)
127 if (!recalc_sigpending_tsk(current) && !freezing(current))
128 clear_thread_flag(TIF_SIGPENDING);
132 /* Given the mask, find the first available signal that should be serviced. */
134 int next_signal(struct sigpending *pending, sigset_t *mask)
136 unsigned long i, *s, *m, x;
137 int sig = 0;
139 s = pending->signal.sig;
140 m = mask->sig;
141 switch (_NSIG_WORDS) {
142 default:
143 for (i = 0; i < _NSIG_WORDS; ++i, ++s, ++m)
144 if ((x = *s &~ *m) != 0) {
145 sig = ffz(~x) + i*_NSIG_BPW + 1;
146 break;
148 break;
150 case 2: if ((x = s[0] &~ m[0]) != 0)
151 sig = 1;
152 else if ((x = s[1] &~ m[1]) != 0)
153 sig = _NSIG_BPW + 1;
154 else
155 break;
156 sig += ffz(~x);
157 break;
159 case 1: if ((x = *s &~ *m) != 0)
160 sig = ffz(~x) + 1;
161 break;
164 return sig;
167 static struct sigqueue *__sigqueue_alloc(struct task_struct *t, gfp_t flags,
168 int override_rlimit)
170 struct sigqueue *q = NULL;
171 struct user_struct *user;
174 * In order to avoid problems with "switch_user()", we want to make
175 * sure that the compiler doesn't re-load "t->user"
177 user = t->user;
178 barrier();
179 atomic_inc(&user->sigpending);
180 if (override_rlimit ||
181 atomic_read(&user->sigpending) <=
182 t->signal->rlim[RLIMIT_SIGPENDING].rlim_cur)
183 q = kmem_cache_alloc(sigqueue_cachep, flags);
184 if (unlikely(q == NULL)) {
185 atomic_dec(&user->sigpending);
186 } else {
187 INIT_LIST_HEAD(&q->list);
188 q->flags = 0;
189 q->user = get_uid(user);
191 return(q);
194 static void __sigqueue_free(struct sigqueue *q)
196 if (q->flags & SIGQUEUE_PREALLOC)
197 return;
198 atomic_dec(&q->user->sigpending);
199 free_uid(q->user);
200 kmem_cache_free(sigqueue_cachep, q);
203 void flush_sigqueue(struct sigpending *queue)
205 struct sigqueue *q;
207 sigemptyset(&queue->signal);
208 while (!list_empty(&queue->list)) {
209 q = list_entry(queue->list.next, struct sigqueue , list);
210 list_del_init(&q->list);
211 __sigqueue_free(q);
216 * Flush all pending signals for a task.
218 void flush_signals(struct task_struct *t)
220 unsigned long flags;
222 spin_lock_irqsave(&t->sighand->siglock, flags);
223 clear_tsk_thread_flag(t,TIF_SIGPENDING);
224 flush_sigqueue(&t->pending);
225 flush_sigqueue(&t->signal->shared_pending);
226 spin_unlock_irqrestore(&t->sighand->siglock, flags);
229 void ignore_signals(struct task_struct *t)
231 int i;
233 for (i = 0; i < _NSIG; ++i)
234 t->sighand->action[i].sa.sa_handler = SIG_IGN;
236 flush_signals(t);
240 * Flush all handlers for a task.
243 void
244 flush_signal_handlers(struct task_struct *t, int force_default)
246 int i;
247 struct k_sigaction *ka = &t->sighand->action[0];
248 for (i = _NSIG ; i != 0 ; i--) {
249 if (force_default || ka->sa.sa_handler != SIG_IGN)
250 ka->sa.sa_handler = SIG_DFL;
251 ka->sa.sa_flags = 0;
252 sigemptyset(&ka->sa.sa_mask);
253 ka++;
257 int unhandled_signal(struct task_struct *tsk, int sig)
259 if (is_global_init(tsk))
260 return 1;
261 if (tsk->ptrace & PT_PTRACED)
262 return 0;
263 return (tsk->sighand->action[sig-1].sa.sa_handler == SIG_IGN) ||
264 (tsk->sighand->action[sig-1].sa.sa_handler == SIG_DFL);
268 /* Notify the system that a driver wants to block all signals for this
269 * process, and wants to be notified if any signals at all were to be
270 * sent/acted upon. If the notifier routine returns non-zero, then the
271 * signal will be acted upon after all. If the notifier routine returns 0,
272 * then then signal will be blocked. Only one block per process is
273 * allowed. priv is a pointer to private data that the notifier routine
274 * can use to determine if the signal should be blocked or not. */
276 void
277 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
279 unsigned long flags;
281 spin_lock_irqsave(&current->sighand->siglock, flags);
282 current->notifier_mask = mask;
283 current->notifier_data = priv;
284 current->notifier = notifier;
285 spin_unlock_irqrestore(&current->sighand->siglock, flags);
288 /* Notify the system that blocking has ended. */
290 void
291 unblock_all_signals(void)
293 unsigned long flags;
295 spin_lock_irqsave(&current->sighand->siglock, flags);
296 current->notifier = NULL;
297 current->notifier_data = NULL;
298 recalc_sigpending();
299 spin_unlock_irqrestore(&current->sighand->siglock, flags);
302 static int collect_signal(int sig, struct sigpending *list, siginfo_t *info)
304 struct sigqueue *q, *first = NULL;
305 int still_pending = 0;
307 if (unlikely(!sigismember(&list->signal, sig)))
308 return 0;
311 * Collect the siginfo appropriate to this signal. Check if
312 * there is another siginfo for the same signal.
314 list_for_each_entry(q, &list->list, list) {
315 if (q->info.si_signo == sig) {
316 if (first) {
317 still_pending = 1;
318 break;
320 first = q;
323 if (first) {
324 list_del_init(&first->list);
325 copy_siginfo(info, &first->info);
326 __sigqueue_free(first);
327 if (!still_pending)
328 sigdelset(&list->signal, sig);
329 } else {
331 /* Ok, it wasn't in the queue. This must be
332 a fast-pathed signal or we must have been
333 out of queue space. So zero out the info.
335 sigdelset(&list->signal, sig);
336 info->si_signo = sig;
337 info->si_errno = 0;
338 info->si_code = 0;
339 info->si_pid = 0;
340 info->si_uid = 0;
342 return 1;
345 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
346 siginfo_t *info)
348 int sig = next_signal(pending, mask);
350 if (sig) {
351 if (current->notifier) {
352 if (sigismember(current->notifier_mask, sig)) {
353 if (!(current->notifier)(current->notifier_data)) {
354 clear_thread_flag(TIF_SIGPENDING);
355 return 0;
360 if (!collect_signal(sig, pending, info))
361 sig = 0;
364 return sig;
368 * Dequeue a signal and return the element to the caller, which is
369 * expected to free it.
371 * All callers have to hold the siglock.
373 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
375 int signr = 0;
377 /* We only dequeue private signals from ourselves, we don't let
378 * signalfd steal them
380 signr = __dequeue_signal(&tsk->pending, mask, info);
381 if (!signr) {
382 signr = __dequeue_signal(&tsk->signal->shared_pending,
383 mask, info);
385 * itimer signal ?
387 * itimers are process shared and we restart periodic
388 * itimers in the signal delivery path to prevent DoS
389 * attacks in the high resolution timer case. This is
390 * compliant with the old way of self restarting
391 * itimers, as the SIGALRM is a legacy signal and only
392 * queued once. Changing the restart behaviour to
393 * restart the timer in the signal dequeue path is
394 * reducing the timer noise on heavy loaded !highres
395 * systems too.
397 if (unlikely(signr == SIGALRM)) {
398 struct hrtimer *tmr = &tsk->signal->real_timer;
400 if (!hrtimer_is_queued(tmr) &&
401 tsk->signal->it_real_incr.tv64 != 0) {
402 hrtimer_forward(tmr, tmr->base->get_time(),
403 tsk->signal->it_real_incr);
404 hrtimer_restart(tmr);
408 recalc_sigpending();
409 if (signr && unlikely(sig_kernel_stop(signr))) {
411 * Set a marker that we have dequeued a stop signal. Our
412 * caller might release the siglock and then the pending
413 * stop signal it is about to process is no longer in the
414 * pending bitmasks, but must still be cleared by a SIGCONT
415 * (and overruled by a SIGKILL). So those cases clear this
416 * shared flag after we've set it. Note that this flag may
417 * remain set after the signal we return is ignored or
418 * handled. That doesn't matter because its only purpose
419 * is to alert stop-signal processing code when another
420 * processor has come along and cleared the flag.
422 if (!(tsk->signal->flags & SIGNAL_GROUP_EXIT))
423 tsk->signal->flags |= SIGNAL_STOP_DEQUEUED;
425 if (signr &&
426 ((info->si_code & __SI_MASK) == __SI_TIMER) &&
427 info->si_sys_private){
429 * Release the siglock to ensure proper locking order
430 * of timer locks outside of siglocks. Note, we leave
431 * irqs disabled here, since the posix-timers code is
432 * about to disable them again anyway.
434 spin_unlock(&tsk->sighand->siglock);
435 do_schedule_next_timer(info);
436 spin_lock(&tsk->sighand->siglock);
438 return signr;
442 * Tell a process that it has a new active signal..
444 * NOTE! we rely on the previous spin_lock to
445 * lock interrupts for us! We can only be called with
446 * "siglock" held, and the local interrupt must
447 * have been disabled when that got acquired!
449 * No need to set need_resched since signal event passing
450 * goes through ->blocked
452 void signal_wake_up(struct task_struct *t, int resume)
454 unsigned int mask;
456 set_tsk_thread_flag(t, TIF_SIGPENDING);
459 * For SIGKILL, we want to wake it up in the stopped/traced/killable
460 * case. We don't check t->state here because there is a race with it
461 * executing another processor and just now entering stopped state.
462 * By using wake_up_state, we ensure the process will wake up and
463 * handle its death signal.
465 mask = TASK_INTERRUPTIBLE;
466 if (resume)
467 mask |= TASK_WAKEKILL;
468 if (!wake_up_state(t, mask))
469 kick_process(t);
473 * Remove signals in mask from the pending set and queue.
474 * Returns 1 if any signals were found.
476 * All callers must be holding the siglock.
478 * This version takes a sigset mask and looks at all signals,
479 * not just those in the first mask word.
481 static int rm_from_queue_full(sigset_t *mask, struct sigpending *s)
483 struct sigqueue *q, *n;
484 sigset_t m;
486 sigandsets(&m, mask, &s->signal);
487 if (sigisemptyset(&m))
488 return 0;
490 signandsets(&s->signal, &s->signal, mask);
491 list_for_each_entry_safe(q, n, &s->list, list) {
492 if (sigismember(mask, q->info.si_signo)) {
493 list_del_init(&q->list);
494 __sigqueue_free(q);
497 return 1;
500 * Remove signals in mask from the pending set and queue.
501 * Returns 1 if any signals were found.
503 * All callers must be holding the siglock.
505 static int rm_from_queue(unsigned long mask, struct sigpending *s)
507 struct sigqueue *q, *n;
509 if (!sigtestsetmask(&s->signal, mask))
510 return 0;
512 sigdelsetmask(&s->signal, mask);
513 list_for_each_entry_safe(q, n, &s->list, list) {
514 if (q->info.si_signo < SIGRTMIN &&
515 (mask & sigmask(q->info.si_signo))) {
516 list_del_init(&q->list);
517 __sigqueue_free(q);
520 return 1;
524 * Bad permissions for sending the signal
526 static int check_kill_permission(int sig, struct siginfo *info,
527 struct task_struct *t)
529 int error = -EINVAL;
530 if (!valid_signal(sig))
531 return error;
533 if (info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info))) {
534 error = audit_signal_info(sig, t); /* Let audit system see the signal */
535 if (error)
536 return error;
537 error = -EPERM;
538 if (((sig != SIGCONT) ||
539 (task_session_nr(current) != task_session_nr(t)))
540 && (current->euid ^ t->suid) && (current->euid ^ t->uid)
541 && (current->uid ^ t->suid) && (current->uid ^ t->uid)
542 && !capable(CAP_KILL))
543 return error;
546 return security_task_kill(t, info, sig, 0);
549 /* forward decl */
550 static void do_notify_parent_cldstop(struct task_struct *tsk, int why);
553 * Handle magic process-wide effects of stop/continue signals.
554 * Unlike the signal actions, these happen immediately at signal-generation
555 * time regardless of blocking, ignoring, or handling. This does the
556 * actual continuing for SIGCONT, but not the actual stopping for stop
557 * signals. The process stop is done as a signal action for SIG_DFL.
559 static void handle_stop_signal(int sig, struct task_struct *p)
561 struct task_struct *t;
563 if (p->signal->flags & SIGNAL_GROUP_EXIT)
565 * The process is in the middle of dying already.
567 return;
569 if (sig_kernel_stop(sig)) {
571 * This is a stop signal. Remove SIGCONT from all queues.
573 rm_from_queue(sigmask(SIGCONT), &p->signal->shared_pending);
574 t = p;
575 do {
576 rm_from_queue(sigmask(SIGCONT), &t->pending);
577 t = next_thread(t);
578 } while (t != p);
579 } else if (sig == SIGCONT) {
581 * Remove all stop signals from all queues,
582 * and wake all threads.
584 if (unlikely(p->signal->group_stop_count > 0)) {
586 * There was a group stop in progress. We'll
587 * pretend it finished before we got here. We are
588 * obliged to report it to the parent: if the
589 * SIGSTOP happened "after" this SIGCONT, then it
590 * would have cleared this pending SIGCONT. If it
591 * happened "before" this SIGCONT, then the parent
592 * got the SIGCHLD about the stop finishing before
593 * the continue happened. We do the notification
594 * now, and it's as if the stop had finished and
595 * the SIGCHLD was pending on entry to this kill.
597 p->signal->group_stop_count = 0;
598 p->signal->flags = SIGNAL_STOP_CONTINUED;
599 spin_unlock(&p->sighand->siglock);
600 do_notify_parent_cldstop(p, CLD_STOPPED);
601 spin_lock(&p->sighand->siglock);
603 rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending);
604 t = p;
605 do {
606 unsigned int state;
607 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
610 * If there is a handler for SIGCONT, we must make
611 * sure that no thread returns to user mode before
612 * we post the signal, in case it was the only
613 * thread eligible to run the signal handler--then
614 * it must not do anything between resuming and
615 * running the handler. With the TIF_SIGPENDING
616 * flag set, the thread will pause and acquire the
617 * siglock that we hold now and until we've queued
618 * the pending signal.
620 * Wake up the stopped thread _after_ setting
621 * TIF_SIGPENDING
623 state = __TASK_STOPPED;
624 if (sig_user_defined(t, SIGCONT) && !sigismember(&t->blocked, SIGCONT)) {
625 set_tsk_thread_flag(t, TIF_SIGPENDING);
626 state |= TASK_INTERRUPTIBLE;
628 wake_up_state(t, state);
630 t = next_thread(t);
631 } while (t != p);
633 if (p->signal->flags & SIGNAL_STOP_STOPPED) {
635 * We were in fact stopped, and are now continued.
636 * Notify the parent with CLD_CONTINUED.
638 p->signal->flags = SIGNAL_STOP_CONTINUED;
639 p->signal->group_exit_code = 0;
640 spin_unlock(&p->sighand->siglock);
641 do_notify_parent_cldstop(p, CLD_CONTINUED);
642 spin_lock(&p->sighand->siglock);
643 } else {
645 * We are not stopped, but there could be a stop
646 * signal in the middle of being processed after
647 * being removed from the queue. Clear that too.
649 p->signal->flags = 0;
651 } else if (sig == SIGKILL) {
653 * Make sure that any pending stop signal already dequeued
654 * is undone by the wakeup for SIGKILL.
656 p->signal->flags = 0;
660 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
661 struct sigpending *signals)
663 struct sigqueue * q = NULL;
664 int ret = 0;
667 * Deliver the signal to listening signalfds. This must be called
668 * with the sighand lock held.
670 signalfd_notify(t, sig);
673 * fast-pathed signals for kernel-internal things like SIGSTOP
674 * or SIGKILL.
676 if (info == SEND_SIG_FORCED)
677 goto out_set;
679 /* Real-time signals must be queued if sent by sigqueue, or
680 some other real-time mechanism. It is implementation
681 defined whether kill() does so. We attempt to do so, on
682 the principle of least surprise, but since kill is not
683 allowed to fail with EAGAIN when low on memory we just
684 make sure at least one signal gets delivered and don't
685 pass on the info struct. */
687 q = __sigqueue_alloc(t, GFP_ATOMIC, (sig < SIGRTMIN &&
688 (is_si_special(info) ||
689 info->si_code >= 0)));
690 if (q) {
691 list_add_tail(&q->list, &signals->list);
692 switch ((unsigned long) info) {
693 case (unsigned long) SEND_SIG_NOINFO:
694 q->info.si_signo = sig;
695 q->info.si_errno = 0;
696 q->info.si_code = SI_USER;
697 q->info.si_pid = task_pid_vnr(current);
698 q->info.si_uid = current->uid;
699 break;
700 case (unsigned long) SEND_SIG_PRIV:
701 q->info.si_signo = sig;
702 q->info.si_errno = 0;
703 q->info.si_code = SI_KERNEL;
704 q->info.si_pid = 0;
705 q->info.si_uid = 0;
706 break;
707 default:
708 copy_siginfo(&q->info, info);
709 break;
711 } else if (!is_si_special(info)) {
712 if (sig >= SIGRTMIN && info->si_code != SI_USER)
714 * Queue overflow, abort. We may abort if the signal was rt
715 * and sent by user using something other than kill().
717 return -EAGAIN;
720 out_set:
721 sigaddset(&signals->signal, sig);
722 return ret;
725 #define LEGACY_QUEUE(sigptr, sig) \
726 (((sig) < SIGRTMIN) && sigismember(&(sigptr)->signal, (sig)))
728 int print_fatal_signals;
730 static void print_fatal_signal(struct pt_regs *regs, int signr)
732 printk("%s/%d: potentially unexpected fatal signal %d.\n",
733 current->comm, task_pid_nr(current), signr);
735 #if defined(__i386__) && !defined(__arch_um__)
736 printk("code at %08lx: ", regs->ip);
738 int i;
739 for (i = 0; i < 16; i++) {
740 unsigned char insn;
742 __get_user(insn, (unsigned char *)(regs->ip + i));
743 printk("%02x ", insn);
746 #endif
747 printk("\n");
748 show_regs(regs);
751 static int __init setup_print_fatal_signals(char *str)
753 get_option (&str, &print_fatal_signals);
755 return 1;
758 __setup("print-fatal-signals=", setup_print_fatal_signals);
760 static int
761 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
763 int ret = 0;
765 BUG_ON(!irqs_disabled());
766 assert_spin_locked(&t->sighand->siglock);
768 /* Short-circuit ignored signals. */
769 if (sig_ignored(t, sig))
770 goto out;
772 /* Support queueing exactly one non-rt signal, so that we
773 can get more detailed information about the cause of
774 the signal. */
775 if (LEGACY_QUEUE(&t->pending, sig))
776 goto out;
778 ret = send_signal(sig, info, t, &t->pending);
779 if (!ret && !sigismember(&t->blocked, sig))
780 signal_wake_up(t, sig == SIGKILL);
781 out:
782 return ret;
786 * Force a signal that the process can't ignore: if necessary
787 * we unblock the signal and change any SIG_IGN to SIG_DFL.
789 * Note: If we unblock the signal, we always reset it to SIG_DFL,
790 * since we do not want to have a signal handler that was blocked
791 * be invoked when user space had explicitly blocked it.
793 * We don't want to have recursive SIGSEGV's etc, for example.
796 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
798 unsigned long int flags;
799 int ret, blocked, ignored;
800 struct k_sigaction *action;
802 spin_lock_irqsave(&t->sighand->siglock, flags);
803 action = &t->sighand->action[sig-1];
804 ignored = action->sa.sa_handler == SIG_IGN;
805 blocked = sigismember(&t->blocked, sig);
806 if (blocked || ignored) {
807 action->sa.sa_handler = SIG_DFL;
808 if (blocked) {
809 sigdelset(&t->blocked, sig);
810 recalc_sigpending_and_wake(t);
813 ret = specific_send_sig_info(sig, info, t);
814 spin_unlock_irqrestore(&t->sighand->siglock, flags);
816 return ret;
819 void
820 force_sig_specific(int sig, struct task_struct *t)
822 force_sig_info(sig, SEND_SIG_FORCED, t);
826 * Test if P wants to take SIG. After we've checked all threads with this,
827 * it's equivalent to finding no threads not blocking SIG. Any threads not
828 * blocking SIG were ruled out because they are not running and already
829 * have pending signals. Such threads will dequeue from the shared queue
830 * as soon as they're available, so putting the signal on the shared queue
831 * will be equivalent to sending it to one such thread.
833 static inline int wants_signal(int sig, struct task_struct *p)
835 if (sigismember(&p->blocked, sig))
836 return 0;
837 if (p->flags & PF_EXITING)
838 return 0;
839 if (sig == SIGKILL)
840 return 1;
841 if (task_is_stopped_or_traced(p))
842 return 0;
843 return task_curr(p) || !signal_pending(p);
846 static void
847 __group_complete_signal(int sig, struct task_struct *p)
849 struct task_struct *t;
852 * Now find a thread we can wake up to take the signal off the queue.
854 * If the main thread wants the signal, it gets first crack.
855 * Probably the least surprising to the average bear.
857 if (wants_signal(sig, p))
858 t = p;
859 else if (thread_group_empty(p))
861 * There is just one thread and it does not need to be woken.
862 * It will dequeue unblocked signals before it runs again.
864 return;
865 else {
867 * Otherwise try to find a suitable thread.
869 t = p->signal->curr_target;
870 if (t == NULL)
871 /* restart balancing at this thread */
872 t = p->signal->curr_target = p;
874 while (!wants_signal(sig, t)) {
875 t = next_thread(t);
876 if (t == p->signal->curr_target)
878 * No thread needs to be woken.
879 * Any eligible threads will see
880 * the signal in the queue soon.
882 return;
884 p->signal->curr_target = t;
888 * Found a killable thread. If the signal will be fatal,
889 * then start taking the whole group down immediately.
891 if (sig_fatal(p, sig) && !(p->signal->flags & SIGNAL_GROUP_EXIT) &&
892 !sigismember(&t->real_blocked, sig) &&
893 (sig == SIGKILL || !(t->ptrace & PT_PTRACED))) {
895 * This signal will be fatal to the whole group.
897 if (!sig_kernel_coredump(sig)) {
899 * Start a group exit and wake everybody up.
900 * This way we don't have other threads
901 * running and doing things after a slower
902 * thread has the fatal signal pending.
904 p->signal->flags = SIGNAL_GROUP_EXIT;
905 p->signal->group_exit_code = sig;
906 p->signal->group_stop_count = 0;
907 t = p;
908 do {
909 sigaddset(&t->pending.signal, SIGKILL);
910 signal_wake_up(t, 1);
911 } while_each_thread(p, t);
912 return;
917 * The signal is already in the shared-pending queue.
918 * Tell the chosen thread to wake up and dequeue it.
920 signal_wake_up(t, sig == SIGKILL);
921 return;
925 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
927 int ret = 0;
929 assert_spin_locked(&p->sighand->siglock);
930 handle_stop_signal(sig, p);
932 /* Short-circuit ignored signals. */
933 if (sig_ignored(p, sig))
934 return ret;
936 if (LEGACY_QUEUE(&p->signal->shared_pending, sig))
937 /* This is a non-RT signal and we already have one queued. */
938 return ret;
941 * Put this signal on the shared-pending queue, or fail with EAGAIN.
942 * We always use the shared queue for process-wide signals,
943 * to avoid several races.
945 ret = send_signal(sig, info, p, &p->signal->shared_pending);
946 if (unlikely(ret))
947 return ret;
949 __group_complete_signal(sig, p);
950 return 0;
954 * Nuke all other threads in the group.
956 void zap_other_threads(struct task_struct *p)
958 struct task_struct *t;
960 p->signal->group_stop_count = 0;
962 for (t = next_thread(p); t != p; t = next_thread(t)) {
964 * Don't bother with already dead threads
966 if (t->exit_state)
967 continue;
969 /* SIGKILL will be handled before any pending SIGSTOP */
970 sigaddset(&t->pending.signal, SIGKILL);
971 signal_wake_up(t, 1);
975 int __fatal_signal_pending(struct task_struct *tsk)
977 return sigismember(&tsk->pending.signal, SIGKILL);
979 EXPORT_SYMBOL(__fatal_signal_pending);
982 * Must be called under rcu_read_lock() or with tasklist_lock read-held.
984 struct sighand_struct *lock_task_sighand(struct task_struct *tsk, unsigned long *flags)
986 struct sighand_struct *sighand;
988 for (;;) {
989 sighand = rcu_dereference(tsk->sighand);
990 if (unlikely(sighand == NULL))
991 break;
993 spin_lock_irqsave(&sighand->siglock, *flags);
994 if (likely(sighand == tsk->sighand))
995 break;
996 spin_unlock_irqrestore(&sighand->siglock, *flags);
999 return sighand;
1002 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1004 unsigned long flags;
1005 int ret;
1007 ret = check_kill_permission(sig, info, p);
1009 if (!ret && sig) {
1010 ret = -ESRCH;
1011 if (lock_task_sighand(p, &flags)) {
1012 ret = __group_send_sig_info(sig, info, p);
1013 unlock_task_sighand(p, &flags);
1017 return ret;
1021 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1022 * control characters do (^C, ^Z etc)
1025 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1027 struct task_struct *p = NULL;
1028 int retval, success;
1030 success = 0;
1031 retval = -ESRCH;
1032 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1033 int err = group_send_sig_info(sig, info, p);
1034 success |= !err;
1035 retval = err;
1036 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1037 return success ? 0 : retval;
1040 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1042 int error = -ESRCH;
1043 struct task_struct *p;
1045 rcu_read_lock();
1046 if (unlikely(sig_needs_tasklist(sig)))
1047 read_lock(&tasklist_lock);
1049 retry:
1050 p = pid_task(pid, PIDTYPE_PID);
1051 if (p) {
1052 error = group_send_sig_info(sig, info, p);
1053 if (unlikely(error == -ESRCH))
1055 * The task was unhashed in between, try again.
1056 * If it is dead, pid_task() will return NULL,
1057 * if we race with de_thread() it will find the
1058 * new leader.
1060 goto retry;
1063 if (unlikely(sig_needs_tasklist(sig)))
1064 read_unlock(&tasklist_lock);
1065 rcu_read_unlock();
1066 return error;
1070 kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1072 int error;
1073 rcu_read_lock();
1074 error = kill_pid_info(sig, info, find_vpid(pid));
1075 rcu_read_unlock();
1076 return error;
1079 /* like kill_pid_info(), but doesn't use uid/euid of "current" */
1080 int kill_pid_info_as_uid(int sig, struct siginfo *info, struct pid *pid,
1081 uid_t uid, uid_t euid, u32 secid)
1083 int ret = -EINVAL;
1084 struct task_struct *p;
1086 if (!valid_signal(sig))
1087 return ret;
1089 read_lock(&tasklist_lock);
1090 p = pid_task(pid, PIDTYPE_PID);
1091 if (!p) {
1092 ret = -ESRCH;
1093 goto out_unlock;
1095 if ((info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info)))
1096 && (euid != p->suid) && (euid != p->uid)
1097 && (uid != p->suid) && (uid != p->uid)) {
1098 ret = -EPERM;
1099 goto out_unlock;
1101 ret = security_task_kill(p, info, sig, secid);
1102 if (ret)
1103 goto out_unlock;
1104 if (sig && p->sighand) {
1105 unsigned long flags;
1106 spin_lock_irqsave(&p->sighand->siglock, flags);
1107 ret = __group_send_sig_info(sig, info, p);
1108 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1110 out_unlock:
1111 read_unlock(&tasklist_lock);
1112 return ret;
1114 EXPORT_SYMBOL_GPL(kill_pid_info_as_uid);
1117 * kill_something_info() interprets pid in interesting ways just like kill(2).
1119 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1120 * is probably wrong. Should make it like BSD or SYSV.
1123 static int kill_something_info(int sig, struct siginfo *info, int pid)
1125 int ret;
1127 if (pid > 0) {
1128 rcu_read_lock();
1129 ret = kill_pid_info(sig, info, find_vpid(pid));
1130 rcu_read_unlock();
1131 return ret;
1134 read_lock(&tasklist_lock);
1135 if (pid != -1) {
1136 ret = __kill_pgrp_info(sig, info,
1137 pid ? find_vpid(-pid) : task_pgrp(current));
1138 } else {
1139 int retval = 0, count = 0;
1140 struct task_struct * p;
1142 for_each_process(p) {
1143 if (p->pid > 1 && !same_thread_group(p, current)) {
1144 int err = group_send_sig_info(sig, info, p);
1145 ++count;
1146 if (err != -EPERM)
1147 retval = err;
1150 ret = count ? retval : -ESRCH;
1152 read_unlock(&tasklist_lock);
1154 return ret;
1158 * These are for backward compatibility with the rest of the kernel source.
1162 * These two are the most common entry points. They send a signal
1163 * just to the specific thread.
1166 send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1168 int ret;
1169 unsigned long flags;
1172 * Make sure legacy kernel users don't send in bad values
1173 * (normal paths check this in check_kill_permission).
1175 if (!valid_signal(sig))
1176 return -EINVAL;
1179 * We need the tasklist lock even for the specific
1180 * thread case (when we don't need to follow the group
1181 * lists) in order to avoid races with "p->sighand"
1182 * going away or changing from under us.
1184 read_lock(&tasklist_lock);
1185 spin_lock_irqsave(&p->sighand->siglock, flags);
1186 ret = specific_send_sig_info(sig, info, p);
1187 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1188 read_unlock(&tasklist_lock);
1189 return ret;
1192 #define __si_special(priv) \
1193 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1196 send_sig(int sig, struct task_struct *p, int priv)
1198 return send_sig_info(sig, __si_special(priv), p);
1201 void
1202 force_sig(int sig, struct task_struct *p)
1204 force_sig_info(sig, SEND_SIG_PRIV, p);
1208 * When things go south during signal handling, we
1209 * will force a SIGSEGV. And if the signal that caused
1210 * the problem was already a SIGSEGV, we'll want to
1211 * make sure we don't even try to deliver the signal..
1214 force_sigsegv(int sig, struct task_struct *p)
1216 if (sig == SIGSEGV) {
1217 unsigned long flags;
1218 spin_lock_irqsave(&p->sighand->siglock, flags);
1219 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1220 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1222 force_sig(SIGSEGV, p);
1223 return 0;
1226 int kill_pgrp(struct pid *pid, int sig, int priv)
1228 int ret;
1230 read_lock(&tasklist_lock);
1231 ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1232 read_unlock(&tasklist_lock);
1234 return ret;
1236 EXPORT_SYMBOL(kill_pgrp);
1238 int kill_pid(struct pid *pid, int sig, int priv)
1240 return kill_pid_info(sig, __si_special(priv), pid);
1242 EXPORT_SYMBOL(kill_pid);
1245 kill_proc(pid_t pid, int sig, int priv)
1247 int ret;
1249 rcu_read_lock();
1250 ret = kill_pid_info(sig, __si_special(priv), find_pid(pid));
1251 rcu_read_unlock();
1252 return ret;
1256 * These functions support sending signals using preallocated sigqueue
1257 * structures. This is needed "because realtime applications cannot
1258 * afford to lose notifications of asynchronous events, like timer
1259 * expirations or I/O completions". In the case of Posix Timers
1260 * we allocate the sigqueue structure from the timer_create. If this
1261 * allocation fails we are able to report the failure to the application
1262 * with an EAGAIN error.
1265 struct sigqueue *sigqueue_alloc(void)
1267 struct sigqueue *q;
1269 if ((q = __sigqueue_alloc(current, GFP_KERNEL, 0)))
1270 q->flags |= SIGQUEUE_PREALLOC;
1271 return(q);
1274 void sigqueue_free(struct sigqueue *q)
1276 unsigned long flags;
1277 spinlock_t *lock = &current->sighand->siglock;
1279 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1281 * If the signal is still pending remove it from the
1282 * pending queue. We must hold ->siglock while testing
1283 * q->list to serialize with collect_signal().
1285 spin_lock_irqsave(lock, flags);
1286 if (!list_empty(&q->list))
1287 list_del_init(&q->list);
1288 spin_unlock_irqrestore(lock, flags);
1290 q->flags &= ~SIGQUEUE_PREALLOC;
1291 __sigqueue_free(q);
1294 int send_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1296 unsigned long flags;
1297 int ret = 0;
1299 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1302 * The rcu based delayed sighand destroy makes it possible to
1303 * run this without tasklist lock held. The task struct itself
1304 * cannot go away as create_timer did get_task_struct().
1306 * We return -1, when the task is marked exiting, so
1307 * posix_timer_event can redirect it to the group leader
1309 rcu_read_lock();
1311 if (!likely(lock_task_sighand(p, &flags))) {
1312 ret = -1;
1313 goto out_err;
1316 if (unlikely(!list_empty(&q->list))) {
1318 * If an SI_TIMER entry is already queue just increment
1319 * the overrun count.
1321 BUG_ON(q->info.si_code != SI_TIMER);
1322 q->info.si_overrun++;
1323 goto out;
1325 /* Short-circuit ignored signals. */
1326 if (sig_ignored(p, sig)) {
1327 ret = 1;
1328 goto out;
1331 * Deliver the signal to listening signalfds. This must be called
1332 * with the sighand lock held.
1334 signalfd_notify(p, sig);
1336 list_add_tail(&q->list, &p->pending.list);
1337 sigaddset(&p->pending.signal, sig);
1338 if (!sigismember(&p->blocked, sig))
1339 signal_wake_up(p, sig == SIGKILL);
1341 out:
1342 unlock_task_sighand(p, &flags);
1343 out_err:
1344 rcu_read_unlock();
1346 return ret;
1350 send_group_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1352 unsigned long flags;
1353 int ret = 0;
1355 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1357 read_lock(&tasklist_lock);
1358 /* Since it_lock is held, p->sighand cannot be NULL. */
1359 spin_lock_irqsave(&p->sighand->siglock, flags);
1360 handle_stop_signal(sig, p);
1362 /* Short-circuit ignored signals. */
1363 if (sig_ignored(p, sig)) {
1364 ret = 1;
1365 goto out;
1368 if (unlikely(!list_empty(&q->list))) {
1370 * If an SI_TIMER entry is already queue just increment
1371 * the overrun count. Other uses should not try to
1372 * send the signal multiple times.
1374 BUG_ON(q->info.si_code != SI_TIMER);
1375 q->info.si_overrun++;
1376 goto out;
1379 * Deliver the signal to listening signalfds. This must be called
1380 * with the sighand lock held.
1382 signalfd_notify(p, sig);
1385 * Put this signal on the shared-pending queue.
1386 * We always use the shared queue for process-wide signals,
1387 * to avoid several races.
1389 list_add_tail(&q->list, &p->signal->shared_pending.list);
1390 sigaddset(&p->signal->shared_pending.signal, sig);
1392 __group_complete_signal(sig, p);
1393 out:
1394 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1395 read_unlock(&tasklist_lock);
1396 return ret;
1400 * Wake up any threads in the parent blocked in wait* syscalls.
1402 static inline void __wake_up_parent(struct task_struct *p,
1403 struct task_struct *parent)
1405 wake_up_interruptible_sync(&parent->signal->wait_chldexit);
1409 * Let a parent know about the death of a child.
1410 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1413 void do_notify_parent(struct task_struct *tsk, int sig)
1415 struct siginfo info;
1416 unsigned long flags;
1417 struct sighand_struct *psig;
1419 BUG_ON(sig == -1);
1421 /* do_notify_parent_cldstop should have been called instead. */
1422 BUG_ON(task_is_stopped_or_traced(tsk));
1424 BUG_ON(!tsk->ptrace &&
1425 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1427 info.si_signo = sig;
1428 info.si_errno = 0;
1430 * we are under tasklist_lock here so our parent is tied to
1431 * us and cannot exit and release its namespace.
1433 * the only it can is to switch its nsproxy with sys_unshare,
1434 * bu uncharing pid namespaces is not allowed, so we'll always
1435 * see relevant namespace
1437 * write_lock() currently calls preempt_disable() which is the
1438 * same as rcu_read_lock(), but according to Oleg, this is not
1439 * correct to rely on this
1441 rcu_read_lock();
1442 info.si_pid = task_pid_nr_ns(tsk, tsk->parent->nsproxy->pid_ns);
1443 rcu_read_unlock();
1445 info.si_uid = tsk->uid;
1447 /* FIXME: find out whether or not this is supposed to be c*time. */
1448 info.si_utime = cputime_to_jiffies(cputime_add(tsk->utime,
1449 tsk->signal->utime));
1450 info.si_stime = cputime_to_jiffies(cputime_add(tsk->stime,
1451 tsk->signal->stime));
1453 info.si_status = tsk->exit_code & 0x7f;
1454 if (tsk->exit_code & 0x80)
1455 info.si_code = CLD_DUMPED;
1456 else if (tsk->exit_code & 0x7f)
1457 info.si_code = CLD_KILLED;
1458 else {
1459 info.si_code = CLD_EXITED;
1460 info.si_status = tsk->exit_code >> 8;
1463 psig = tsk->parent->sighand;
1464 spin_lock_irqsave(&psig->siglock, flags);
1465 if (!tsk->ptrace && sig == SIGCHLD &&
1466 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1467 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1469 * We are exiting and our parent doesn't care. POSIX.1
1470 * defines special semantics for setting SIGCHLD to SIG_IGN
1471 * or setting the SA_NOCLDWAIT flag: we should be reaped
1472 * automatically and not left for our parent's wait4 call.
1473 * Rather than having the parent do it as a magic kind of
1474 * signal handler, we just set this to tell do_exit that we
1475 * can be cleaned up without becoming a zombie. Note that
1476 * we still call __wake_up_parent in this case, because a
1477 * blocked sys_wait4 might now return -ECHILD.
1479 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1480 * is implementation-defined: we do (if you don't want
1481 * it, just use SIG_IGN instead).
1483 tsk->exit_signal = -1;
1484 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1485 sig = 0;
1487 if (valid_signal(sig) && sig > 0)
1488 __group_send_sig_info(sig, &info, tsk->parent);
1489 __wake_up_parent(tsk, tsk->parent);
1490 spin_unlock_irqrestore(&psig->siglock, flags);
1493 static void do_notify_parent_cldstop(struct task_struct *tsk, int why)
1495 struct siginfo info;
1496 unsigned long flags;
1497 struct task_struct *parent;
1498 struct sighand_struct *sighand;
1500 if (tsk->ptrace & PT_PTRACED)
1501 parent = tsk->parent;
1502 else {
1503 tsk = tsk->group_leader;
1504 parent = tsk->real_parent;
1507 info.si_signo = SIGCHLD;
1508 info.si_errno = 0;
1510 * see comment in do_notify_parent() abot the following 3 lines
1512 rcu_read_lock();
1513 info.si_pid = task_pid_nr_ns(tsk, tsk->parent->nsproxy->pid_ns);
1514 rcu_read_unlock();
1516 info.si_uid = tsk->uid;
1518 /* FIXME: find out whether or not this is supposed to be c*time. */
1519 info.si_utime = cputime_to_jiffies(tsk->utime);
1520 info.si_stime = cputime_to_jiffies(tsk->stime);
1522 info.si_code = why;
1523 switch (why) {
1524 case CLD_CONTINUED:
1525 info.si_status = SIGCONT;
1526 break;
1527 case CLD_STOPPED:
1528 info.si_status = tsk->signal->group_exit_code & 0x7f;
1529 break;
1530 case CLD_TRAPPED:
1531 info.si_status = tsk->exit_code & 0x7f;
1532 break;
1533 default:
1534 BUG();
1537 sighand = parent->sighand;
1538 spin_lock_irqsave(&sighand->siglock, flags);
1539 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1540 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1541 __group_send_sig_info(SIGCHLD, &info, parent);
1543 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1545 __wake_up_parent(tsk, parent);
1546 spin_unlock_irqrestore(&sighand->siglock, flags);
1549 static inline int may_ptrace_stop(void)
1551 if (!likely(current->ptrace & PT_PTRACED))
1552 return 0;
1554 * Are we in the middle of do_coredump?
1555 * If so and our tracer is also part of the coredump stopping
1556 * is a deadlock situation, and pointless because our tracer
1557 * is dead so don't allow us to stop.
1558 * If SIGKILL was already sent before the caller unlocked
1559 * ->siglock we must see ->core_waiters != 0. Otherwise it
1560 * is safe to enter schedule().
1562 if (unlikely(current->mm->core_waiters) &&
1563 unlikely(current->mm == current->parent->mm))
1564 return 0;
1566 return 1;
1570 * Return nonzero if there is a SIGKILL that should be waking us up.
1571 * Called with the siglock held.
1573 static int sigkill_pending(struct task_struct *tsk)
1575 return ((sigismember(&tsk->pending.signal, SIGKILL) ||
1576 sigismember(&tsk->signal->shared_pending.signal, SIGKILL)) &&
1577 !unlikely(sigismember(&tsk->blocked, SIGKILL)));
1581 * This must be called with current->sighand->siglock held.
1583 * This should be the path for all ptrace stops.
1584 * We always set current->last_siginfo while stopped here.
1585 * That makes it a way to test a stopped process for
1586 * being ptrace-stopped vs being job-control-stopped.
1588 * If we actually decide not to stop at all because the tracer
1589 * is gone, we keep current->exit_code unless clear_code.
1591 static void ptrace_stop(int exit_code, int clear_code, siginfo_t *info)
1593 int killed = 0;
1595 if (arch_ptrace_stop_needed(exit_code, info)) {
1597 * The arch code has something special to do before a
1598 * ptrace stop. This is allowed to block, e.g. for faults
1599 * on user stack pages. We can't keep the siglock while
1600 * calling arch_ptrace_stop, so we must release it now.
1601 * To preserve proper semantics, we must do this before
1602 * any signal bookkeeping like checking group_stop_count.
1603 * Meanwhile, a SIGKILL could come in before we retake the
1604 * siglock. That must prevent us from sleeping in TASK_TRACED.
1605 * So after regaining the lock, we must check for SIGKILL.
1607 spin_unlock_irq(&current->sighand->siglock);
1608 arch_ptrace_stop(exit_code, info);
1609 spin_lock_irq(&current->sighand->siglock);
1610 killed = sigkill_pending(current);
1614 * If there is a group stop in progress,
1615 * we must participate in the bookkeeping.
1617 if (current->signal->group_stop_count > 0)
1618 --current->signal->group_stop_count;
1620 current->last_siginfo = info;
1621 current->exit_code = exit_code;
1623 /* Let the debugger run. */
1624 __set_current_state(TASK_TRACED);
1625 spin_unlock_irq(&current->sighand->siglock);
1626 read_lock(&tasklist_lock);
1627 if (!unlikely(killed) && may_ptrace_stop()) {
1628 do_notify_parent_cldstop(current, CLD_TRAPPED);
1629 read_unlock(&tasklist_lock);
1630 schedule();
1631 } else {
1633 * By the time we got the lock, our tracer went away.
1634 * Don't drop the lock yet, another tracer may come.
1636 __set_current_state(TASK_RUNNING);
1637 if (clear_code)
1638 current->exit_code = 0;
1639 read_unlock(&tasklist_lock);
1643 * While in TASK_TRACED, we were considered "frozen enough".
1644 * Now that we woke up, it's crucial if we're supposed to be
1645 * frozen that we freeze now before running anything substantial.
1647 try_to_freeze();
1650 * We are back. Now reacquire the siglock before touching
1651 * last_siginfo, so that we are sure to have synchronized with
1652 * any signal-sending on another CPU that wants to examine it.
1654 spin_lock_irq(&current->sighand->siglock);
1655 current->last_siginfo = NULL;
1658 * Queued signals ignored us while we were stopped for tracing.
1659 * So check for any that we should take before resuming user mode.
1660 * This sets TIF_SIGPENDING, but never clears it.
1662 recalc_sigpending_tsk(current);
1665 void ptrace_notify(int exit_code)
1667 siginfo_t info;
1669 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1671 memset(&info, 0, sizeof info);
1672 info.si_signo = SIGTRAP;
1673 info.si_code = exit_code;
1674 info.si_pid = task_pid_vnr(current);
1675 info.si_uid = current->uid;
1677 /* Let the debugger run. */
1678 spin_lock_irq(&current->sighand->siglock);
1679 ptrace_stop(exit_code, 1, &info);
1680 spin_unlock_irq(&current->sighand->siglock);
1683 static void
1684 finish_stop(int stop_count)
1687 * If there are no other threads in the group, or if there is
1688 * a group stop in progress and we are the last to stop,
1689 * report to the parent. When ptraced, every thread reports itself.
1691 if (stop_count == 0 || (current->ptrace & PT_PTRACED)) {
1692 read_lock(&tasklist_lock);
1693 do_notify_parent_cldstop(current, CLD_STOPPED);
1694 read_unlock(&tasklist_lock);
1697 do {
1698 schedule();
1699 } while (try_to_freeze());
1701 * Now we don't run again until continued.
1703 current->exit_code = 0;
1707 * This performs the stopping for SIGSTOP and other stop signals.
1708 * We have to stop all threads in the thread group.
1709 * Returns nonzero if we've actually stopped and released the siglock.
1710 * Returns zero if we didn't stop and still hold the siglock.
1712 static int do_signal_stop(int signr)
1714 struct signal_struct *sig = current->signal;
1715 int stop_count;
1717 if (sig->group_stop_count > 0) {
1719 * There is a group stop in progress. We don't need to
1720 * start another one.
1722 stop_count = --sig->group_stop_count;
1723 } else {
1724 struct task_struct *t;
1726 if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED) ||
1727 unlikely(sig->group_exit_task))
1728 return 0;
1730 * There is no group stop already in progress.
1731 * We must initiate one now.
1733 sig->group_exit_code = signr;
1735 stop_count = 0;
1736 for (t = next_thread(current); t != current; t = next_thread(t))
1738 * Setting state to TASK_STOPPED for a group
1739 * stop is always done with the siglock held,
1740 * so this check has no races.
1742 if (!(t->flags & PF_EXITING) &&
1743 !task_is_stopped_or_traced(t)) {
1744 stop_count++;
1745 signal_wake_up(t, 0);
1747 sig->group_stop_count = stop_count;
1750 if (stop_count == 0)
1751 sig->flags = SIGNAL_STOP_STOPPED;
1752 current->exit_code = sig->group_exit_code;
1753 __set_current_state(TASK_STOPPED);
1755 spin_unlock_irq(&current->sighand->siglock);
1756 finish_stop(stop_count);
1757 return 1;
1760 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
1761 struct pt_regs *regs, void *cookie)
1763 sigset_t *mask = &current->blocked;
1764 int signr = 0;
1766 relock:
1768 * We'll jump back here after any time we were stopped in TASK_STOPPED.
1769 * While in TASK_STOPPED, we were considered "frozen enough".
1770 * Now that we woke up, it's crucial if we're supposed to be
1771 * frozen that we freeze now before running anything substantial.
1773 try_to_freeze();
1775 spin_lock_irq(&current->sighand->siglock);
1776 for (;;) {
1777 struct k_sigaction *ka;
1779 if (unlikely(current->signal->group_stop_count > 0) &&
1780 do_signal_stop(0))
1781 goto relock;
1783 signr = dequeue_signal(current, mask, info);
1785 if (!signr)
1786 break; /* will return 0 */
1788 if ((current->ptrace & PT_PTRACED) && signr != SIGKILL) {
1789 ptrace_signal_deliver(regs, cookie);
1791 /* Let the debugger run. */
1792 ptrace_stop(signr, 0, info);
1794 /* We're back. Did the debugger cancel the sig? */
1795 signr = current->exit_code;
1796 if (signr == 0)
1797 continue;
1799 current->exit_code = 0;
1801 /* Update the siginfo structure if the signal has
1802 changed. If the debugger wanted something
1803 specific in the siginfo structure then it should
1804 have updated *info via PTRACE_SETSIGINFO. */
1805 if (signr != info->si_signo) {
1806 info->si_signo = signr;
1807 info->si_errno = 0;
1808 info->si_code = SI_USER;
1809 info->si_pid = task_pid_vnr(current->parent);
1810 info->si_uid = current->parent->uid;
1813 /* If the (new) signal is now blocked, requeue it. */
1814 if (sigismember(&current->blocked, signr)) {
1815 specific_send_sig_info(signr, info, current);
1816 continue;
1820 ka = &current->sighand->action[signr-1];
1821 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
1822 continue;
1823 if (ka->sa.sa_handler != SIG_DFL) {
1824 /* Run the handler. */
1825 *return_ka = *ka;
1827 if (ka->sa.sa_flags & SA_ONESHOT)
1828 ka->sa.sa_handler = SIG_DFL;
1830 break; /* will return non-zero "signr" value */
1834 * Now we are doing the default action for this signal.
1836 if (sig_kernel_ignore(signr)) /* Default is nothing. */
1837 continue;
1840 * Global init gets no signals it doesn't want.
1842 if (is_global_init(current))
1843 continue;
1845 if (sig_kernel_stop(signr)) {
1847 * The default action is to stop all threads in
1848 * the thread group. The job control signals
1849 * do nothing in an orphaned pgrp, but SIGSTOP
1850 * always works. Note that siglock needs to be
1851 * dropped during the call to is_orphaned_pgrp()
1852 * because of lock ordering with tasklist_lock.
1853 * This allows an intervening SIGCONT to be posted.
1854 * We need to check for that and bail out if necessary.
1856 if (signr != SIGSTOP) {
1857 spin_unlock_irq(&current->sighand->siglock);
1859 /* signals can be posted during this window */
1861 if (is_current_pgrp_orphaned())
1862 goto relock;
1864 spin_lock_irq(&current->sighand->siglock);
1867 if (likely(do_signal_stop(signr))) {
1868 /* It released the siglock. */
1869 goto relock;
1873 * We didn't actually stop, due to a race
1874 * with SIGCONT or something like that.
1876 continue;
1879 spin_unlock_irq(&current->sighand->siglock);
1882 * Anything else is fatal, maybe with a core dump.
1884 current->flags |= PF_SIGNALED;
1885 if ((signr != SIGKILL) && print_fatal_signals)
1886 print_fatal_signal(regs, signr);
1887 if (sig_kernel_coredump(signr)) {
1889 * If it was able to dump core, this kills all
1890 * other threads in the group and synchronizes with
1891 * their demise. If we lost the race with another
1892 * thread getting here, it set group_exit_code
1893 * first and our do_group_exit call below will use
1894 * that value and ignore the one we pass it.
1896 do_coredump((long)signr, signr, regs);
1900 * Death signals, no core dump.
1902 do_group_exit(signr);
1903 /* NOTREACHED */
1905 spin_unlock_irq(&current->sighand->siglock);
1906 return signr;
1909 void exit_signals(struct task_struct *tsk)
1911 int group_stop = 0;
1912 struct task_struct *t;
1914 if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
1915 tsk->flags |= PF_EXITING;
1916 return;
1919 spin_lock_irq(&tsk->sighand->siglock);
1921 * From now this task is not visible for group-wide signals,
1922 * see wants_signal(), do_signal_stop().
1924 tsk->flags |= PF_EXITING;
1925 if (!signal_pending(tsk))
1926 goto out;
1928 /* It could be that __group_complete_signal() choose us to
1929 * notify about group-wide signal. Another thread should be
1930 * woken now to take the signal since we will not.
1932 for (t = tsk; (t = next_thread(t)) != tsk; )
1933 if (!signal_pending(t) && !(t->flags & PF_EXITING))
1934 recalc_sigpending_and_wake(t);
1936 if (unlikely(tsk->signal->group_stop_count) &&
1937 !--tsk->signal->group_stop_count) {
1938 tsk->signal->flags = SIGNAL_STOP_STOPPED;
1939 group_stop = 1;
1941 out:
1942 spin_unlock_irq(&tsk->sighand->siglock);
1944 if (unlikely(group_stop)) {
1945 read_lock(&tasklist_lock);
1946 do_notify_parent_cldstop(tsk, CLD_STOPPED);
1947 read_unlock(&tasklist_lock);
1951 EXPORT_SYMBOL(recalc_sigpending);
1952 EXPORT_SYMBOL_GPL(dequeue_signal);
1953 EXPORT_SYMBOL(flush_signals);
1954 EXPORT_SYMBOL(force_sig);
1955 EXPORT_SYMBOL(kill_proc);
1956 EXPORT_SYMBOL(ptrace_notify);
1957 EXPORT_SYMBOL(send_sig);
1958 EXPORT_SYMBOL(send_sig_info);
1959 EXPORT_SYMBOL(sigprocmask);
1960 EXPORT_SYMBOL(block_all_signals);
1961 EXPORT_SYMBOL(unblock_all_signals);
1965 * System call entry points.
1968 asmlinkage long sys_restart_syscall(void)
1970 struct restart_block *restart = &current_thread_info()->restart_block;
1971 return restart->fn(restart);
1974 long do_no_restart_syscall(struct restart_block *param)
1976 return -EINTR;
1980 * We don't need to get the kernel lock - this is all local to this
1981 * particular thread.. (and that's good, because this is _heavily_
1982 * used by various programs)
1986 * This is also useful for kernel threads that want to temporarily
1987 * (or permanently) block certain signals.
1989 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
1990 * interface happily blocks "unblockable" signals like SIGKILL
1991 * and friends.
1993 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
1995 int error;
1997 spin_lock_irq(&current->sighand->siglock);
1998 if (oldset)
1999 *oldset = current->blocked;
2001 error = 0;
2002 switch (how) {
2003 case SIG_BLOCK:
2004 sigorsets(&current->blocked, &current->blocked, set);
2005 break;
2006 case SIG_UNBLOCK:
2007 signandsets(&current->blocked, &current->blocked, set);
2008 break;
2009 case SIG_SETMASK:
2010 current->blocked = *set;
2011 break;
2012 default:
2013 error = -EINVAL;
2015 recalc_sigpending();
2016 spin_unlock_irq(&current->sighand->siglock);
2018 return error;
2021 asmlinkage long
2022 sys_rt_sigprocmask(int how, sigset_t __user *set, sigset_t __user *oset, size_t sigsetsize)
2024 int error = -EINVAL;
2025 sigset_t old_set, new_set;
2027 /* XXX: Don't preclude handling different sized sigset_t's. */
2028 if (sigsetsize != sizeof(sigset_t))
2029 goto out;
2031 if (set) {
2032 error = -EFAULT;
2033 if (copy_from_user(&new_set, set, sizeof(*set)))
2034 goto out;
2035 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2037 error = sigprocmask(how, &new_set, &old_set);
2038 if (error)
2039 goto out;
2040 if (oset)
2041 goto set_old;
2042 } else if (oset) {
2043 spin_lock_irq(&current->sighand->siglock);
2044 old_set = current->blocked;
2045 spin_unlock_irq(&current->sighand->siglock);
2047 set_old:
2048 error = -EFAULT;
2049 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2050 goto out;
2052 error = 0;
2053 out:
2054 return error;
2057 long do_sigpending(void __user *set, unsigned long sigsetsize)
2059 long error = -EINVAL;
2060 sigset_t pending;
2062 if (sigsetsize > sizeof(sigset_t))
2063 goto out;
2065 spin_lock_irq(&current->sighand->siglock);
2066 sigorsets(&pending, &current->pending.signal,
2067 &current->signal->shared_pending.signal);
2068 spin_unlock_irq(&current->sighand->siglock);
2070 /* Outside the lock because only this thread touches it. */
2071 sigandsets(&pending, &current->blocked, &pending);
2073 error = -EFAULT;
2074 if (!copy_to_user(set, &pending, sigsetsize))
2075 error = 0;
2077 out:
2078 return error;
2081 asmlinkage long
2082 sys_rt_sigpending(sigset_t __user *set, size_t sigsetsize)
2084 return do_sigpending(set, sigsetsize);
2087 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2089 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2091 int err;
2093 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2094 return -EFAULT;
2095 if (from->si_code < 0)
2096 return __copy_to_user(to, from, sizeof(siginfo_t))
2097 ? -EFAULT : 0;
2099 * If you change siginfo_t structure, please be sure
2100 * this code is fixed accordingly.
2101 * Please remember to update the signalfd_copyinfo() function
2102 * inside fs/signalfd.c too, in case siginfo_t changes.
2103 * It should never copy any pad contained in the structure
2104 * to avoid security leaks, but must copy the generic
2105 * 3 ints plus the relevant union member.
2107 err = __put_user(from->si_signo, &to->si_signo);
2108 err |= __put_user(from->si_errno, &to->si_errno);
2109 err |= __put_user((short)from->si_code, &to->si_code);
2110 switch (from->si_code & __SI_MASK) {
2111 case __SI_KILL:
2112 err |= __put_user(from->si_pid, &to->si_pid);
2113 err |= __put_user(from->si_uid, &to->si_uid);
2114 break;
2115 case __SI_TIMER:
2116 err |= __put_user(from->si_tid, &to->si_tid);
2117 err |= __put_user(from->si_overrun, &to->si_overrun);
2118 err |= __put_user(from->si_ptr, &to->si_ptr);
2119 break;
2120 case __SI_POLL:
2121 err |= __put_user(from->si_band, &to->si_band);
2122 err |= __put_user(from->si_fd, &to->si_fd);
2123 break;
2124 case __SI_FAULT:
2125 err |= __put_user(from->si_addr, &to->si_addr);
2126 #ifdef __ARCH_SI_TRAPNO
2127 err |= __put_user(from->si_trapno, &to->si_trapno);
2128 #endif
2129 break;
2130 case __SI_CHLD:
2131 err |= __put_user(from->si_pid, &to->si_pid);
2132 err |= __put_user(from->si_uid, &to->si_uid);
2133 err |= __put_user(from->si_status, &to->si_status);
2134 err |= __put_user(from->si_utime, &to->si_utime);
2135 err |= __put_user(from->si_stime, &to->si_stime);
2136 break;
2137 case __SI_RT: /* This is not generated by the kernel as of now. */
2138 case __SI_MESGQ: /* But this is */
2139 err |= __put_user(from->si_pid, &to->si_pid);
2140 err |= __put_user(from->si_uid, &to->si_uid);
2141 err |= __put_user(from->si_ptr, &to->si_ptr);
2142 break;
2143 default: /* this is just in case for now ... */
2144 err |= __put_user(from->si_pid, &to->si_pid);
2145 err |= __put_user(from->si_uid, &to->si_uid);
2146 break;
2148 return err;
2151 #endif
2153 asmlinkage long
2154 sys_rt_sigtimedwait(const sigset_t __user *uthese,
2155 siginfo_t __user *uinfo,
2156 const struct timespec __user *uts,
2157 size_t sigsetsize)
2159 int ret, sig;
2160 sigset_t these;
2161 struct timespec ts;
2162 siginfo_t info;
2163 long timeout = 0;
2165 /* XXX: Don't preclude handling different sized sigset_t's. */
2166 if (sigsetsize != sizeof(sigset_t))
2167 return -EINVAL;
2169 if (copy_from_user(&these, uthese, sizeof(these)))
2170 return -EFAULT;
2173 * Invert the set of allowed signals to get those we
2174 * want to block.
2176 sigdelsetmask(&these, sigmask(SIGKILL)|sigmask(SIGSTOP));
2177 signotset(&these);
2179 if (uts) {
2180 if (copy_from_user(&ts, uts, sizeof(ts)))
2181 return -EFAULT;
2182 if (ts.tv_nsec >= 1000000000L || ts.tv_nsec < 0
2183 || ts.tv_sec < 0)
2184 return -EINVAL;
2187 spin_lock_irq(&current->sighand->siglock);
2188 sig = dequeue_signal(current, &these, &info);
2189 if (!sig) {
2190 timeout = MAX_SCHEDULE_TIMEOUT;
2191 if (uts)
2192 timeout = (timespec_to_jiffies(&ts)
2193 + (ts.tv_sec || ts.tv_nsec));
2195 if (timeout) {
2196 /* None ready -- temporarily unblock those we're
2197 * interested while we are sleeping in so that we'll
2198 * be awakened when they arrive. */
2199 current->real_blocked = current->blocked;
2200 sigandsets(&current->blocked, &current->blocked, &these);
2201 recalc_sigpending();
2202 spin_unlock_irq(&current->sighand->siglock);
2204 timeout = schedule_timeout_interruptible(timeout);
2206 spin_lock_irq(&current->sighand->siglock);
2207 sig = dequeue_signal(current, &these, &info);
2208 current->blocked = current->real_blocked;
2209 siginitset(&current->real_blocked, 0);
2210 recalc_sigpending();
2213 spin_unlock_irq(&current->sighand->siglock);
2215 if (sig) {
2216 ret = sig;
2217 if (uinfo) {
2218 if (copy_siginfo_to_user(uinfo, &info))
2219 ret = -EFAULT;
2221 } else {
2222 ret = -EAGAIN;
2223 if (timeout)
2224 ret = -EINTR;
2227 return ret;
2230 asmlinkage long
2231 sys_kill(int pid, int sig)
2233 struct siginfo info;
2235 info.si_signo = sig;
2236 info.si_errno = 0;
2237 info.si_code = SI_USER;
2238 info.si_pid = task_tgid_vnr(current);
2239 info.si_uid = current->uid;
2241 return kill_something_info(sig, &info, pid);
2244 static int do_tkill(int tgid, int pid, int sig)
2246 int error;
2247 struct siginfo info;
2248 struct task_struct *p;
2250 error = -ESRCH;
2251 info.si_signo = sig;
2252 info.si_errno = 0;
2253 info.si_code = SI_TKILL;
2254 info.si_pid = task_tgid_vnr(current);
2255 info.si_uid = current->uid;
2257 read_lock(&tasklist_lock);
2258 p = find_task_by_vpid(pid);
2259 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
2260 error = check_kill_permission(sig, &info, p);
2262 * The null signal is a permissions and process existence
2263 * probe. No signal is actually delivered.
2265 if (!error && sig && p->sighand) {
2266 spin_lock_irq(&p->sighand->siglock);
2267 handle_stop_signal(sig, p);
2268 error = specific_send_sig_info(sig, &info, p);
2269 spin_unlock_irq(&p->sighand->siglock);
2272 read_unlock(&tasklist_lock);
2274 return error;
2278 * sys_tgkill - send signal to one specific thread
2279 * @tgid: the thread group ID of the thread
2280 * @pid: the PID of the thread
2281 * @sig: signal to be sent
2283 * This syscall also checks the @tgid and returns -ESRCH even if the PID
2284 * exists but it's not belonging to the target process anymore. This
2285 * method solves the problem of threads exiting and PIDs getting reused.
2287 asmlinkage long sys_tgkill(int tgid, int pid, int sig)
2289 /* This is only valid for single tasks */
2290 if (pid <= 0 || tgid <= 0)
2291 return -EINVAL;
2293 return do_tkill(tgid, pid, sig);
2297 * Send a signal to only one task, even if it's a CLONE_THREAD task.
2299 asmlinkage long
2300 sys_tkill(int pid, int sig)
2302 /* This is only valid for single tasks */
2303 if (pid <= 0)
2304 return -EINVAL;
2306 return do_tkill(0, pid, sig);
2309 asmlinkage long
2310 sys_rt_sigqueueinfo(int pid, int sig, siginfo_t __user *uinfo)
2312 siginfo_t info;
2314 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2315 return -EFAULT;
2317 /* Not even root can pretend to send signals from the kernel.
2318 Nor can they impersonate a kill(), which adds source info. */
2319 if (info.si_code >= 0)
2320 return -EPERM;
2321 info.si_signo = sig;
2323 /* POSIX.1b doesn't mention process groups. */
2324 return kill_proc_info(sig, &info, pid);
2327 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
2329 struct k_sigaction *k;
2330 sigset_t mask;
2332 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
2333 return -EINVAL;
2335 k = &current->sighand->action[sig-1];
2337 spin_lock_irq(&current->sighand->siglock);
2338 if (oact)
2339 *oact = *k;
2341 if (act) {
2342 sigdelsetmask(&act->sa.sa_mask,
2343 sigmask(SIGKILL) | sigmask(SIGSTOP));
2344 *k = *act;
2346 * POSIX 3.3.1.3:
2347 * "Setting a signal action to SIG_IGN for a signal that is
2348 * pending shall cause the pending signal to be discarded,
2349 * whether or not it is blocked."
2351 * "Setting a signal action to SIG_DFL for a signal that is
2352 * pending and whose default action is to ignore the signal
2353 * (for example, SIGCHLD), shall cause the pending signal to
2354 * be discarded, whether or not it is blocked"
2356 if (act->sa.sa_handler == SIG_IGN ||
2357 (act->sa.sa_handler == SIG_DFL && sig_kernel_ignore(sig))) {
2358 struct task_struct *t = current;
2359 sigemptyset(&mask);
2360 sigaddset(&mask, sig);
2361 rm_from_queue_full(&mask, &t->signal->shared_pending);
2362 do {
2363 rm_from_queue_full(&mask, &t->pending);
2364 t = next_thread(t);
2365 } while (t != current);
2369 spin_unlock_irq(&current->sighand->siglock);
2370 return 0;
2373 int
2374 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
2376 stack_t oss;
2377 int error;
2379 if (uoss) {
2380 oss.ss_sp = (void __user *) current->sas_ss_sp;
2381 oss.ss_size = current->sas_ss_size;
2382 oss.ss_flags = sas_ss_flags(sp);
2385 if (uss) {
2386 void __user *ss_sp;
2387 size_t ss_size;
2388 int ss_flags;
2390 error = -EFAULT;
2391 if (!access_ok(VERIFY_READ, uss, sizeof(*uss))
2392 || __get_user(ss_sp, &uss->ss_sp)
2393 || __get_user(ss_flags, &uss->ss_flags)
2394 || __get_user(ss_size, &uss->ss_size))
2395 goto out;
2397 error = -EPERM;
2398 if (on_sig_stack(sp))
2399 goto out;
2401 error = -EINVAL;
2404 * Note - this code used to test ss_flags incorrectly
2405 * old code may have been written using ss_flags==0
2406 * to mean ss_flags==SS_ONSTACK (as this was the only
2407 * way that worked) - this fix preserves that older
2408 * mechanism
2410 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
2411 goto out;
2413 if (ss_flags == SS_DISABLE) {
2414 ss_size = 0;
2415 ss_sp = NULL;
2416 } else {
2417 error = -ENOMEM;
2418 if (ss_size < MINSIGSTKSZ)
2419 goto out;
2422 current->sas_ss_sp = (unsigned long) ss_sp;
2423 current->sas_ss_size = ss_size;
2426 if (uoss) {
2427 error = -EFAULT;
2428 if (copy_to_user(uoss, &oss, sizeof(oss)))
2429 goto out;
2432 error = 0;
2433 out:
2434 return error;
2437 #ifdef __ARCH_WANT_SYS_SIGPENDING
2439 asmlinkage long
2440 sys_sigpending(old_sigset_t __user *set)
2442 return do_sigpending(set, sizeof(*set));
2445 #endif
2447 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
2448 /* Some platforms have their own version with special arguments others
2449 support only sys_rt_sigprocmask. */
2451 asmlinkage long
2452 sys_sigprocmask(int how, old_sigset_t __user *set, old_sigset_t __user *oset)
2454 int error;
2455 old_sigset_t old_set, new_set;
2457 if (set) {
2458 error = -EFAULT;
2459 if (copy_from_user(&new_set, set, sizeof(*set)))
2460 goto out;
2461 new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
2463 spin_lock_irq(&current->sighand->siglock);
2464 old_set = current->blocked.sig[0];
2466 error = 0;
2467 switch (how) {
2468 default:
2469 error = -EINVAL;
2470 break;
2471 case SIG_BLOCK:
2472 sigaddsetmask(&current->blocked, new_set);
2473 break;
2474 case SIG_UNBLOCK:
2475 sigdelsetmask(&current->blocked, new_set);
2476 break;
2477 case SIG_SETMASK:
2478 current->blocked.sig[0] = new_set;
2479 break;
2482 recalc_sigpending();
2483 spin_unlock_irq(&current->sighand->siglock);
2484 if (error)
2485 goto out;
2486 if (oset)
2487 goto set_old;
2488 } else if (oset) {
2489 old_set = current->blocked.sig[0];
2490 set_old:
2491 error = -EFAULT;
2492 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2493 goto out;
2495 error = 0;
2496 out:
2497 return error;
2499 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
2501 #ifdef __ARCH_WANT_SYS_RT_SIGACTION
2502 asmlinkage long
2503 sys_rt_sigaction(int sig,
2504 const struct sigaction __user *act,
2505 struct sigaction __user *oact,
2506 size_t sigsetsize)
2508 struct k_sigaction new_sa, old_sa;
2509 int ret = -EINVAL;
2511 /* XXX: Don't preclude handling different sized sigset_t's. */
2512 if (sigsetsize != sizeof(sigset_t))
2513 goto out;
2515 if (act) {
2516 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
2517 return -EFAULT;
2520 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
2522 if (!ret && oact) {
2523 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
2524 return -EFAULT;
2526 out:
2527 return ret;
2529 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */
2531 #ifdef __ARCH_WANT_SYS_SGETMASK
2534 * For backwards compatibility. Functionality superseded by sigprocmask.
2536 asmlinkage long
2537 sys_sgetmask(void)
2539 /* SMP safe */
2540 return current->blocked.sig[0];
2543 asmlinkage long
2544 sys_ssetmask(int newmask)
2546 int old;
2548 spin_lock_irq(&current->sighand->siglock);
2549 old = current->blocked.sig[0];
2551 siginitset(&current->blocked, newmask & ~(sigmask(SIGKILL)|
2552 sigmask(SIGSTOP)));
2553 recalc_sigpending();
2554 spin_unlock_irq(&current->sighand->siglock);
2556 return old;
2558 #endif /* __ARCH_WANT_SGETMASK */
2560 #ifdef __ARCH_WANT_SYS_SIGNAL
2562 * For backwards compatibility. Functionality superseded by sigaction.
2564 asmlinkage unsigned long
2565 sys_signal(int sig, __sighandler_t handler)
2567 struct k_sigaction new_sa, old_sa;
2568 int ret;
2570 new_sa.sa.sa_handler = handler;
2571 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
2572 sigemptyset(&new_sa.sa.sa_mask);
2574 ret = do_sigaction(sig, &new_sa, &old_sa);
2576 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
2578 #endif /* __ARCH_WANT_SYS_SIGNAL */
2580 #ifdef __ARCH_WANT_SYS_PAUSE
2582 asmlinkage long
2583 sys_pause(void)
2585 current->state = TASK_INTERRUPTIBLE;
2586 schedule();
2587 return -ERESTARTNOHAND;
2590 #endif
2592 #ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND
2593 asmlinkage long sys_rt_sigsuspend(sigset_t __user *unewset, size_t sigsetsize)
2595 sigset_t newset;
2597 /* XXX: Don't preclude handling different sized sigset_t's. */
2598 if (sigsetsize != sizeof(sigset_t))
2599 return -EINVAL;
2601 if (copy_from_user(&newset, unewset, sizeof(newset)))
2602 return -EFAULT;
2603 sigdelsetmask(&newset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2605 spin_lock_irq(&current->sighand->siglock);
2606 current->saved_sigmask = current->blocked;
2607 current->blocked = newset;
2608 recalc_sigpending();
2609 spin_unlock_irq(&current->sighand->siglock);
2611 current->state = TASK_INTERRUPTIBLE;
2612 schedule();
2613 set_thread_flag(TIF_RESTORE_SIGMASK);
2614 return -ERESTARTNOHAND;
2616 #endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */
2618 __attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma)
2620 return NULL;
2623 void __init signals_init(void)
2625 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);