USB: usb-storage: don't access beyond the end of the sg buffer
[linux-2.6/s3c2410-cpufreq.git] / kernel / auditsc.c
blob2087d6de67ea4b6ce90b347d0f43a56dbdbad9d3
1 /* auditsc.c -- System-call auditing support
2 * Handles all system-call specific auditing features.
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
6 * Copyright (C) 2005, 2006 IBM Corporation
7 * All Rights Reserved.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33 * 2006.
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
45 #include <linux/init.h>
46 #include <asm/types.h>
47 #include <asm/atomic.h>
48 #include <linux/fs.h>
49 #include <linux/namei.h>
50 #include <linux/mm.h>
51 #include <linux/module.h>
52 #include <linux/mount.h>
53 #include <linux/socket.h>
54 #include <linux/mqueue.h>
55 #include <linux/audit.h>
56 #include <linux/personality.h>
57 #include <linux/time.h>
58 #include <linux/netlink.h>
59 #include <linux/compiler.h>
60 #include <asm/unistd.h>
61 #include <linux/security.h>
62 #include <linux/list.h>
63 #include <linux/tty.h>
64 #include <linux/selinux.h>
65 #include <linux/binfmts.h>
66 #include <linux/highmem.h>
67 #include <linux/syscalls.h>
68 #include <linux/inotify.h>
70 #include "audit.h"
72 extern struct list_head audit_filter_list[];
73 extern int audit_ever_enabled;
75 /* AUDIT_NAMES is the number of slots we reserve in the audit_context
76 * for saving names from getname(). */
77 #define AUDIT_NAMES 20
79 /* Indicates that audit should log the full pathname. */
80 #define AUDIT_NAME_FULL -1
82 /* no execve audit message should be longer than this (userspace limits) */
83 #define MAX_EXECVE_AUDIT_LEN 7500
85 /* number of audit rules */
86 int audit_n_rules;
88 /* determines whether we collect data for signals sent */
89 int audit_signals;
91 /* When fs/namei.c:getname() is called, we store the pointer in name and
92 * we don't let putname() free it (instead we free all of the saved
93 * pointers at syscall exit time).
95 * Further, in fs/namei.c:path_lookup() we store the inode and device. */
96 struct audit_names {
97 const char *name;
98 int name_len; /* number of name's characters to log */
99 unsigned name_put; /* call __putname() for this name */
100 unsigned long ino;
101 dev_t dev;
102 umode_t mode;
103 uid_t uid;
104 gid_t gid;
105 dev_t rdev;
106 u32 osid;
109 struct audit_aux_data {
110 struct audit_aux_data *next;
111 int type;
114 #define AUDIT_AUX_IPCPERM 0
116 /* Number of target pids per aux struct. */
117 #define AUDIT_AUX_PIDS 16
119 struct audit_aux_data_mq_open {
120 struct audit_aux_data d;
121 int oflag;
122 mode_t mode;
123 struct mq_attr attr;
126 struct audit_aux_data_mq_sendrecv {
127 struct audit_aux_data d;
128 mqd_t mqdes;
129 size_t msg_len;
130 unsigned int msg_prio;
131 struct timespec abs_timeout;
134 struct audit_aux_data_mq_notify {
135 struct audit_aux_data d;
136 mqd_t mqdes;
137 struct sigevent notification;
140 struct audit_aux_data_mq_getsetattr {
141 struct audit_aux_data d;
142 mqd_t mqdes;
143 struct mq_attr mqstat;
146 struct audit_aux_data_ipcctl {
147 struct audit_aux_data d;
148 struct ipc_perm p;
149 unsigned long qbytes;
150 uid_t uid;
151 gid_t gid;
152 mode_t mode;
153 u32 osid;
156 struct audit_aux_data_execve {
157 struct audit_aux_data d;
158 int argc;
159 int envc;
160 struct mm_struct *mm;
163 struct audit_aux_data_socketcall {
164 struct audit_aux_data d;
165 int nargs;
166 unsigned long args[0];
169 struct audit_aux_data_sockaddr {
170 struct audit_aux_data d;
171 int len;
172 char a[0];
175 struct audit_aux_data_fd_pair {
176 struct audit_aux_data d;
177 int fd[2];
180 struct audit_aux_data_pids {
181 struct audit_aux_data d;
182 pid_t target_pid[AUDIT_AUX_PIDS];
183 uid_t target_auid[AUDIT_AUX_PIDS];
184 uid_t target_uid[AUDIT_AUX_PIDS];
185 unsigned int target_sessionid[AUDIT_AUX_PIDS];
186 u32 target_sid[AUDIT_AUX_PIDS];
187 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
188 int pid_count;
191 struct audit_tree_refs {
192 struct audit_tree_refs *next;
193 struct audit_chunk *c[31];
196 /* The per-task audit context. */
197 struct audit_context {
198 int dummy; /* must be the first element */
199 int in_syscall; /* 1 if task is in a syscall */
200 enum audit_state state;
201 unsigned int serial; /* serial number for record */
202 struct timespec ctime; /* time of syscall entry */
203 int major; /* syscall number */
204 unsigned long argv[4]; /* syscall arguments */
205 int return_valid; /* return code is valid */
206 long return_code;/* syscall return code */
207 int auditable; /* 1 if record should be written */
208 int name_count;
209 struct audit_names names[AUDIT_NAMES];
210 char * filterkey; /* key for rule that triggered record */
211 struct path pwd;
212 struct audit_context *previous; /* For nested syscalls */
213 struct audit_aux_data *aux;
214 struct audit_aux_data *aux_pids;
216 /* Save things to print about task_struct */
217 pid_t pid, ppid;
218 uid_t uid, euid, suid, fsuid;
219 gid_t gid, egid, sgid, fsgid;
220 unsigned long personality;
221 int arch;
223 pid_t target_pid;
224 uid_t target_auid;
225 uid_t target_uid;
226 unsigned int target_sessionid;
227 u32 target_sid;
228 char target_comm[TASK_COMM_LEN];
230 struct audit_tree_refs *trees, *first_trees;
231 int tree_count;
233 #if AUDIT_DEBUG
234 int put_count;
235 int ino_count;
236 #endif
239 #define ACC_MODE(x) ("\004\002\006\006"[(x)&O_ACCMODE])
240 static inline int open_arg(int flags, int mask)
242 int n = ACC_MODE(flags);
243 if (flags & (O_TRUNC | O_CREAT))
244 n |= AUDIT_PERM_WRITE;
245 return n & mask;
248 static int audit_match_perm(struct audit_context *ctx, int mask)
250 unsigned n = ctx->major;
251 switch (audit_classify_syscall(ctx->arch, n)) {
252 case 0: /* native */
253 if ((mask & AUDIT_PERM_WRITE) &&
254 audit_match_class(AUDIT_CLASS_WRITE, n))
255 return 1;
256 if ((mask & AUDIT_PERM_READ) &&
257 audit_match_class(AUDIT_CLASS_READ, n))
258 return 1;
259 if ((mask & AUDIT_PERM_ATTR) &&
260 audit_match_class(AUDIT_CLASS_CHATTR, n))
261 return 1;
262 return 0;
263 case 1: /* 32bit on biarch */
264 if ((mask & AUDIT_PERM_WRITE) &&
265 audit_match_class(AUDIT_CLASS_WRITE_32, n))
266 return 1;
267 if ((mask & AUDIT_PERM_READ) &&
268 audit_match_class(AUDIT_CLASS_READ_32, n))
269 return 1;
270 if ((mask & AUDIT_PERM_ATTR) &&
271 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
272 return 1;
273 return 0;
274 case 2: /* open */
275 return mask & ACC_MODE(ctx->argv[1]);
276 case 3: /* openat */
277 return mask & ACC_MODE(ctx->argv[2]);
278 case 4: /* socketcall */
279 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
280 case 5: /* execve */
281 return mask & AUDIT_PERM_EXEC;
282 default:
283 return 0;
288 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
289 * ->first_trees points to its beginning, ->trees - to the current end of data.
290 * ->tree_count is the number of free entries in array pointed to by ->trees.
291 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
292 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
293 * it's going to remain 1-element for almost any setup) until we free context itself.
294 * References in it _are_ dropped - at the same time we free/drop aux stuff.
297 #ifdef CONFIG_AUDIT_TREE
298 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
300 struct audit_tree_refs *p = ctx->trees;
301 int left = ctx->tree_count;
302 if (likely(left)) {
303 p->c[--left] = chunk;
304 ctx->tree_count = left;
305 return 1;
307 if (!p)
308 return 0;
309 p = p->next;
310 if (p) {
311 p->c[30] = chunk;
312 ctx->trees = p;
313 ctx->tree_count = 30;
314 return 1;
316 return 0;
319 static int grow_tree_refs(struct audit_context *ctx)
321 struct audit_tree_refs *p = ctx->trees;
322 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
323 if (!ctx->trees) {
324 ctx->trees = p;
325 return 0;
327 if (p)
328 p->next = ctx->trees;
329 else
330 ctx->first_trees = ctx->trees;
331 ctx->tree_count = 31;
332 return 1;
334 #endif
336 static void unroll_tree_refs(struct audit_context *ctx,
337 struct audit_tree_refs *p, int count)
339 #ifdef CONFIG_AUDIT_TREE
340 struct audit_tree_refs *q;
341 int n;
342 if (!p) {
343 /* we started with empty chain */
344 p = ctx->first_trees;
345 count = 31;
346 /* if the very first allocation has failed, nothing to do */
347 if (!p)
348 return;
350 n = count;
351 for (q = p; q != ctx->trees; q = q->next, n = 31) {
352 while (n--) {
353 audit_put_chunk(q->c[n]);
354 q->c[n] = NULL;
357 while (n-- > ctx->tree_count) {
358 audit_put_chunk(q->c[n]);
359 q->c[n] = NULL;
361 ctx->trees = p;
362 ctx->tree_count = count;
363 #endif
366 static void free_tree_refs(struct audit_context *ctx)
368 struct audit_tree_refs *p, *q;
369 for (p = ctx->first_trees; p; p = q) {
370 q = p->next;
371 kfree(p);
375 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
377 #ifdef CONFIG_AUDIT_TREE
378 struct audit_tree_refs *p;
379 int n;
380 if (!tree)
381 return 0;
382 /* full ones */
383 for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
384 for (n = 0; n < 31; n++)
385 if (audit_tree_match(p->c[n], tree))
386 return 1;
388 /* partial */
389 if (p) {
390 for (n = ctx->tree_count; n < 31; n++)
391 if (audit_tree_match(p->c[n], tree))
392 return 1;
394 #endif
395 return 0;
398 /* Determine if any context name data matches a rule's watch data */
399 /* Compare a task_struct with an audit_rule. Return 1 on match, 0
400 * otherwise. */
401 static int audit_filter_rules(struct task_struct *tsk,
402 struct audit_krule *rule,
403 struct audit_context *ctx,
404 struct audit_names *name,
405 enum audit_state *state)
407 int i, j, need_sid = 1;
408 u32 sid;
410 for (i = 0; i < rule->field_count; i++) {
411 struct audit_field *f = &rule->fields[i];
412 int result = 0;
414 switch (f->type) {
415 case AUDIT_PID:
416 result = audit_comparator(tsk->pid, f->op, f->val);
417 break;
418 case AUDIT_PPID:
419 if (ctx) {
420 if (!ctx->ppid)
421 ctx->ppid = sys_getppid();
422 result = audit_comparator(ctx->ppid, f->op, f->val);
424 break;
425 case AUDIT_UID:
426 result = audit_comparator(tsk->uid, f->op, f->val);
427 break;
428 case AUDIT_EUID:
429 result = audit_comparator(tsk->euid, f->op, f->val);
430 break;
431 case AUDIT_SUID:
432 result = audit_comparator(tsk->suid, f->op, f->val);
433 break;
434 case AUDIT_FSUID:
435 result = audit_comparator(tsk->fsuid, f->op, f->val);
436 break;
437 case AUDIT_GID:
438 result = audit_comparator(tsk->gid, f->op, f->val);
439 break;
440 case AUDIT_EGID:
441 result = audit_comparator(tsk->egid, f->op, f->val);
442 break;
443 case AUDIT_SGID:
444 result = audit_comparator(tsk->sgid, f->op, f->val);
445 break;
446 case AUDIT_FSGID:
447 result = audit_comparator(tsk->fsgid, f->op, f->val);
448 break;
449 case AUDIT_PERS:
450 result = audit_comparator(tsk->personality, f->op, f->val);
451 break;
452 case AUDIT_ARCH:
453 if (ctx)
454 result = audit_comparator(ctx->arch, f->op, f->val);
455 break;
457 case AUDIT_EXIT:
458 if (ctx && ctx->return_valid)
459 result = audit_comparator(ctx->return_code, f->op, f->val);
460 break;
461 case AUDIT_SUCCESS:
462 if (ctx && ctx->return_valid) {
463 if (f->val)
464 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
465 else
466 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
468 break;
469 case AUDIT_DEVMAJOR:
470 if (name)
471 result = audit_comparator(MAJOR(name->dev),
472 f->op, f->val);
473 else if (ctx) {
474 for (j = 0; j < ctx->name_count; j++) {
475 if (audit_comparator(MAJOR(ctx->names[j].dev), f->op, f->val)) {
476 ++result;
477 break;
481 break;
482 case AUDIT_DEVMINOR:
483 if (name)
484 result = audit_comparator(MINOR(name->dev),
485 f->op, f->val);
486 else if (ctx) {
487 for (j = 0; j < ctx->name_count; j++) {
488 if (audit_comparator(MINOR(ctx->names[j].dev), f->op, f->val)) {
489 ++result;
490 break;
494 break;
495 case AUDIT_INODE:
496 if (name)
497 result = (name->ino == f->val);
498 else if (ctx) {
499 for (j = 0; j < ctx->name_count; j++) {
500 if (audit_comparator(ctx->names[j].ino, f->op, f->val)) {
501 ++result;
502 break;
506 break;
507 case AUDIT_WATCH:
508 if (name && rule->watch->ino != (unsigned long)-1)
509 result = (name->dev == rule->watch->dev &&
510 name->ino == rule->watch->ino);
511 break;
512 case AUDIT_DIR:
513 if (ctx)
514 result = match_tree_refs(ctx, rule->tree);
515 break;
516 case AUDIT_LOGINUID:
517 result = 0;
518 if (ctx)
519 result = audit_comparator(tsk->loginuid, f->op, f->val);
520 break;
521 case AUDIT_SUBJ_USER:
522 case AUDIT_SUBJ_ROLE:
523 case AUDIT_SUBJ_TYPE:
524 case AUDIT_SUBJ_SEN:
525 case AUDIT_SUBJ_CLR:
526 /* NOTE: this may return negative values indicating
527 a temporary error. We simply treat this as a
528 match for now to avoid losing information that
529 may be wanted. An error message will also be
530 logged upon error */
531 if (f->se_rule) {
532 if (need_sid) {
533 selinux_get_task_sid(tsk, &sid);
534 need_sid = 0;
536 result = selinux_audit_rule_match(sid, f->type,
537 f->op,
538 f->se_rule,
539 ctx);
541 break;
542 case AUDIT_OBJ_USER:
543 case AUDIT_OBJ_ROLE:
544 case AUDIT_OBJ_TYPE:
545 case AUDIT_OBJ_LEV_LOW:
546 case AUDIT_OBJ_LEV_HIGH:
547 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
548 also applies here */
549 if (f->se_rule) {
550 /* Find files that match */
551 if (name) {
552 result = selinux_audit_rule_match(
553 name->osid, f->type, f->op,
554 f->se_rule, ctx);
555 } else if (ctx) {
556 for (j = 0; j < ctx->name_count; j++) {
557 if (selinux_audit_rule_match(
558 ctx->names[j].osid,
559 f->type, f->op,
560 f->se_rule, ctx)) {
561 ++result;
562 break;
566 /* Find ipc objects that match */
567 if (ctx) {
568 struct audit_aux_data *aux;
569 for (aux = ctx->aux; aux;
570 aux = aux->next) {
571 if (aux->type == AUDIT_IPC) {
572 struct audit_aux_data_ipcctl *axi = (void *)aux;
573 if (selinux_audit_rule_match(axi->osid, f->type, f->op, f->se_rule, ctx)) {
574 ++result;
575 break;
581 break;
582 case AUDIT_ARG0:
583 case AUDIT_ARG1:
584 case AUDIT_ARG2:
585 case AUDIT_ARG3:
586 if (ctx)
587 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
588 break;
589 case AUDIT_FILTERKEY:
590 /* ignore this field for filtering */
591 result = 1;
592 break;
593 case AUDIT_PERM:
594 result = audit_match_perm(ctx, f->val);
595 break;
598 if (!result)
599 return 0;
601 if (rule->filterkey)
602 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
603 switch (rule->action) {
604 case AUDIT_NEVER: *state = AUDIT_DISABLED; break;
605 case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break;
607 return 1;
610 /* At process creation time, we can determine if system-call auditing is
611 * completely disabled for this task. Since we only have the task
612 * structure at this point, we can only check uid and gid.
614 static enum audit_state audit_filter_task(struct task_struct *tsk)
616 struct audit_entry *e;
617 enum audit_state state;
619 rcu_read_lock();
620 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
621 if (audit_filter_rules(tsk, &e->rule, NULL, NULL, &state)) {
622 rcu_read_unlock();
623 return state;
626 rcu_read_unlock();
627 return AUDIT_BUILD_CONTEXT;
630 /* At syscall entry and exit time, this filter is called if the
631 * audit_state is not low enough that auditing cannot take place, but is
632 * also not high enough that we already know we have to write an audit
633 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
635 static enum audit_state audit_filter_syscall(struct task_struct *tsk,
636 struct audit_context *ctx,
637 struct list_head *list)
639 struct audit_entry *e;
640 enum audit_state state;
642 if (audit_pid && tsk->tgid == audit_pid)
643 return AUDIT_DISABLED;
645 rcu_read_lock();
646 if (!list_empty(list)) {
647 int word = AUDIT_WORD(ctx->major);
648 int bit = AUDIT_BIT(ctx->major);
650 list_for_each_entry_rcu(e, list, list) {
651 if ((e->rule.mask[word] & bit) == bit &&
652 audit_filter_rules(tsk, &e->rule, ctx, NULL,
653 &state)) {
654 rcu_read_unlock();
655 return state;
659 rcu_read_unlock();
660 return AUDIT_BUILD_CONTEXT;
663 /* At syscall exit time, this filter is called if any audit_names[] have been
664 * collected during syscall processing. We only check rules in sublists at hash
665 * buckets applicable to the inode numbers in audit_names[].
666 * Regarding audit_state, same rules apply as for audit_filter_syscall().
668 enum audit_state audit_filter_inodes(struct task_struct *tsk,
669 struct audit_context *ctx)
671 int i;
672 struct audit_entry *e;
673 enum audit_state state;
675 if (audit_pid && tsk->tgid == audit_pid)
676 return AUDIT_DISABLED;
678 rcu_read_lock();
679 for (i = 0; i < ctx->name_count; i++) {
680 int word = AUDIT_WORD(ctx->major);
681 int bit = AUDIT_BIT(ctx->major);
682 struct audit_names *n = &ctx->names[i];
683 int h = audit_hash_ino((u32)n->ino);
684 struct list_head *list = &audit_inode_hash[h];
686 if (list_empty(list))
687 continue;
689 list_for_each_entry_rcu(e, list, list) {
690 if ((e->rule.mask[word] & bit) == bit &&
691 audit_filter_rules(tsk, &e->rule, ctx, n, &state)) {
692 rcu_read_unlock();
693 return state;
697 rcu_read_unlock();
698 return AUDIT_BUILD_CONTEXT;
701 void audit_set_auditable(struct audit_context *ctx)
703 ctx->auditable = 1;
706 static inline struct audit_context *audit_get_context(struct task_struct *tsk,
707 int return_valid,
708 int return_code)
710 struct audit_context *context = tsk->audit_context;
712 if (likely(!context))
713 return NULL;
714 context->return_valid = return_valid;
717 * we need to fix up the return code in the audit logs if the actual
718 * return codes are later going to be fixed up by the arch specific
719 * signal handlers
721 * This is actually a test for:
722 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
723 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
725 * but is faster than a bunch of ||
727 if (unlikely(return_code <= -ERESTARTSYS) &&
728 (return_code >= -ERESTART_RESTARTBLOCK) &&
729 (return_code != -ENOIOCTLCMD))
730 context->return_code = -EINTR;
731 else
732 context->return_code = return_code;
734 if (context->in_syscall && !context->dummy && !context->auditable) {
735 enum audit_state state;
737 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
738 if (state == AUDIT_RECORD_CONTEXT) {
739 context->auditable = 1;
740 goto get_context;
743 state = audit_filter_inodes(tsk, context);
744 if (state == AUDIT_RECORD_CONTEXT)
745 context->auditable = 1;
749 get_context:
751 tsk->audit_context = NULL;
752 return context;
755 static inline void audit_free_names(struct audit_context *context)
757 int i;
759 #if AUDIT_DEBUG == 2
760 if (context->auditable
761 ||context->put_count + context->ino_count != context->name_count) {
762 printk(KERN_ERR "%s:%d(:%d): major=%d in_syscall=%d"
763 " name_count=%d put_count=%d"
764 " ino_count=%d [NOT freeing]\n",
765 __FILE__, __LINE__,
766 context->serial, context->major, context->in_syscall,
767 context->name_count, context->put_count,
768 context->ino_count);
769 for (i = 0; i < context->name_count; i++) {
770 printk(KERN_ERR "names[%d] = %p = %s\n", i,
771 context->names[i].name,
772 context->names[i].name ?: "(null)");
774 dump_stack();
775 return;
777 #endif
778 #if AUDIT_DEBUG
779 context->put_count = 0;
780 context->ino_count = 0;
781 #endif
783 for (i = 0; i < context->name_count; i++) {
784 if (context->names[i].name && context->names[i].name_put)
785 __putname(context->names[i].name);
787 context->name_count = 0;
788 path_put(&context->pwd);
789 context->pwd.dentry = NULL;
790 context->pwd.mnt = NULL;
793 static inline void audit_free_aux(struct audit_context *context)
795 struct audit_aux_data *aux;
797 while ((aux = context->aux)) {
798 context->aux = aux->next;
799 kfree(aux);
801 while ((aux = context->aux_pids)) {
802 context->aux_pids = aux->next;
803 kfree(aux);
807 static inline void audit_zero_context(struct audit_context *context,
808 enum audit_state state)
810 memset(context, 0, sizeof(*context));
811 context->state = state;
814 static inline struct audit_context *audit_alloc_context(enum audit_state state)
816 struct audit_context *context;
818 if (!(context = kmalloc(sizeof(*context), GFP_KERNEL)))
819 return NULL;
820 audit_zero_context(context, state);
821 return context;
825 * audit_alloc - allocate an audit context block for a task
826 * @tsk: task
828 * Filter on the task information and allocate a per-task audit context
829 * if necessary. Doing so turns on system call auditing for the
830 * specified task. This is called from copy_process, so no lock is
831 * needed.
833 int audit_alloc(struct task_struct *tsk)
835 struct audit_context *context;
836 enum audit_state state;
838 if (likely(!audit_ever_enabled))
839 return 0; /* Return if not auditing. */
841 state = audit_filter_task(tsk);
842 if (likely(state == AUDIT_DISABLED))
843 return 0;
845 if (!(context = audit_alloc_context(state))) {
846 audit_log_lost("out of memory in audit_alloc");
847 return -ENOMEM;
850 tsk->audit_context = context;
851 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
852 return 0;
855 static inline void audit_free_context(struct audit_context *context)
857 struct audit_context *previous;
858 int count = 0;
860 do {
861 previous = context->previous;
862 if (previous || (count && count < 10)) {
863 ++count;
864 printk(KERN_ERR "audit(:%d): major=%d name_count=%d:"
865 " freeing multiple contexts (%d)\n",
866 context->serial, context->major,
867 context->name_count, count);
869 audit_free_names(context);
870 unroll_tree_refs(context, NULL, 0);
871 free_tree_refs(context);
872 audit_free_aux(context);
873 kfree(context->filterkey);
874 kfree(context);
875 context = previous;
876 } while (context);
877 if (count >= 10)
878 printk(KERN_ERR "audit: freed %d contexts\n", count);
881 void audit_log_task_context(struct audit_buffer *ab)
883 char *ctx = NULL;
884 unsigned len;
885 int error;
886 u32 sid;
888 selinux_get_task_sid(current, &sid);
889 if (!sid)
890 return;
892 error = selinux_sid_to_string(sid, &ctx, &len);
893 if (error) {
894 if (error != -EINVAL)
895 goto error_path;
896 return;
899 audit_log_format(ab, " subj=%s", ctx);
900 kfree(ctx);
901 return;
903 error_path:
904 audit_panic("error in audit_log_task_context");
905 return;
908 EXPORT_SYMBOL(audit_log_task_context);
910 static void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
912 char name[sizeof(tsk->comm)];
913 struct mm_struct *mm = tsk->mm;
914 struct vm_area_struct *vma;
916 /* tsk == current */
918 get_task_comm(name, tsk);
919 audit_log_format(ab, " comm=");
920 audit_log_untrustedstring(ab, name);
922 if (mm) {
923 down_read(&mm->mmap_sem);
924 vma = mm->mmap;
925 while (vma) {
926 if ((vma->vm_flags & VM_EXECUTABLE) &&
927 vma->vm_file) {
928 audit_log_d_path(ab, "exe=",
929 &vma->vm_file->f_path);
930 break;
932 vma = vma->vm_next;
934 up_read(&mm->mmap_sem);
936 audit_log_task_context(ab);
939 static int audit_log_pid_context(struct audit_context *context, pid_t pid,
940 uid_t auid, uid_t uid, unsigned int sessionid,
941 u32 sid, char *comm)
943 struct audit_buffer *ab;
944 char *s = NULL;
945 u32 len;
946 int rc = 0;
948 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
949 if (!ab)
950 return rc;
952 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid, auid,
953 uid, sessionid);
954 if (selinux_sid_to_string(sid, &s, &len)) {
955 audit_log_format(ab, " obj=(none)");
956 rc = 1;
957 } else
958 audit_log_format(ab, " obj=%s", s);
959 audit_log_format(ab, " ocomm=");
960 audit_log_untrustedstring(ab, comm);
961 audit_log_end(ab);
962 kfree(s);
964 return rc;
968 * to_send and len_sent accounting are very loose estimates. We aren't
969 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
970 * within about 500 bytes (next page boundry)
972 * why snprintf? an int is up to 12 digits long. if we just assumed when
973 * logging that a[%d]= was going to be 16 characters long we would be wasting
974 * space in every audit message. In one 7500 byte message we can log up to
975 * about 1000 min size arguments. That comes down to about 50% waste of space
976 * if we didn't do the snprintf to find out how long arg_num_len was.
978 static int audit_log_single_execve_arg(struct audit_context *context,
979 struct audit_buffer **ab,
980 int arg_num,
981 size_t *len_sent,
982 const char __user *p,
983 char *buf)
985 char arg_num_len_buf[12];
986 const char __user *tmp_p = p;
987 /* how many digits are in arg_num? 3 is the length of a=\n */
988 size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 3;
989 size_t len, len_left, to_send;
990 size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN;
991 unsigned int i, has_cntl = 0, too_long = 0;
992 int ret;
994 /* strnlen_user includes the null we don't want to send */
995 len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1;
998 * We just created this mm, if we can't find the strings
999 * we just copied into it something is _very_ wrong. Similar
1000 * for strings that are too long, we should not have created
1001 * any.
1003 if (unlikely((len == -1) || len > MAX_ARG_STRLEN - 1)) {
1004 WARN_ON(1);
1005 send_sig(SIGKILL, current, 0);
1006 return -1;
1009 /* walk the whole argument looking for non-ascii chars */
1010 do {
1011 if (len_left > MAX_EXECVE_AUDIT_LEN)
1012 to_send = MAX_EXECVE_AUDIT_LEN;
1013 else
1014 to_send = len_left;
1015 ret = copy_from_user(buf, tmp_p, to_send);
1017 * There is no reason for this copy to be short. We just
1018 * copied them here, and the mm hasn't been exposed to user-
1019 * space yet.
1021 if (ret) {
1022 WARN_ON(1);
1023 send_sig(SIGKILL, current, 0);
1024 return -1;
1026 buf[to_send] = '\0';
1027 has_cntl = audit_string_contains_control(buf, to_send);
1028 if (has_cntl) {
1030 * hex messages get logged as 2 bytes, so we can only
1031 * send half as much in each message
1033 max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2;
1034 break;
1036 len_left -= to_send;
1037 tmp_p += to_send;
1038 } while (len_left > 0);
1040 len_left = len;
1042 if (len > max_execve_audit_len)
1043 too_long = 1;
1045 /* rewalk the argument actually logging the message */
1046 for (i = 0; len_left > 0; i++) {
1047 int room_left;
1049 if (len_left > max_execve_audit_len)
1050 to_send = max_execve_audit_len;
1051 else
1052 to_send = len_left;
1054 /* do we have space left to send this argument in this ab? */
1055 room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent;
1056 if (has_cntl)
1057 room_left -= (to_send * 2);
1058 else
1059 room_left -= to_send;
1060 if (room_left < 0) {
1061 *len_sent = 0;
1062 audit_log_end(*ab);
1063 *ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE);
1064 if (!*ab)
1065 return 0;
1069 * first record needs to say how long the original string was
1070 * so we can be sure nothing was lost.
1072 if ((i == 0) && (too_long))
1073 audit_log_format(*ab, "a%d_len=%ld ", arg_num,
1074 has_cntl ? 2*len : len);
1077 * normally arguments are small enough to fit and we already
1078 * filled buf above when we checked for control characters
1079 * so don't bother with another copy_from_user
1081 if (len >= max_execve_audit_len)
1082 ret = copy_from_user(buf, p, to_send);
1083 else
1084 ret = 0;
1085 if (ret) {
1086 WARN_ON(1);
1087 send_sig(SIGKILL, current, 0);
1088 return -1;
1090 buf[to_send] = '\0';
1092 /* actually log it */
1093 audit_log_format(*ab, "a%d", arg_num);
1094 if (too_long)
1095 audit_log_format(*ab, "[%d]", i);
1096 audit_log_format(*ab, "=");
1097 if (has_cntl)
1098 audit_log_hex(*ab, buf, to_send);
1099 else
1100 audit_log_format(*ab, "\"%s\"", buf);
1101 audit_log_format(*ab, "\n");
1103 p += to_send;
1104 len_left -= to_send;
1105 *len_sent += arg_num_len;
1106 if (has_cntl)
1107 *len_sent += to_send * 2;
1108 else
1109 *len_sent += to_send;
1111 /* include the null we didn't log */
1112 return len + 1;
1115 static void audit_log_execve_info(struct audit_context *context,
1116 struct audit_buffer **ab,
1117 struct audit_aux_data_execve *axi)
1119 int i;
1120 size_t len, len_sent = 0;
1121 const char __user *p;
1122 char *buf;
1124 if (axi->mm != current->mm)
1125 return; /* execve failed, no additional info */
1127 p = (const char __user *)axi->mm->arg_start;
1129 audit_log_format(*ab, "argc=%d ", axi->argc);
1132 * we need some kernel buffer to hold the userspace args. Just
1133 * allocate one big one rather than allocating one of the right size
1134 * for every single argument inside audit_log_single_execve_arg()
1135 * should be <8k allocation so should be pretty safe.
1137 buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1138 if (!buf) {
1139 audit_panic("out of memory for argv string\n");
1140 return;
1143 for (i = 0; i < axi->argc; i++) {
1144 len = audit_log_single_execve_arg(context, ab, i,
1145 &len_sent, p, buf);
1146 if (len <= 0)
1147 break;
1148 p += len;
1150 kfree(buf);
1153 static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1155 int i, call_panic = 0;
1156 struct audit_buffer *ab;
1157 struct audit_aux_data *aux;
1158 const char *tty;
1160 /* tsk == current */
1161 context->pid = tsk->pid;
1162 if (!context->ppid)
1163 context->ppid = sys_getppid();
1164 context->uid = tsk->uid;
1165 context->gid = tsk->gid;
1166 context->euid = tsk->euid;
1167 context->suid = tsk->suid;
1168 context->fsuid = tsk->fsuid;
1169 context->egid = tsk->egid;
1170 context->sgid = tsk->sgid;
1171 context->fsgid = tsk->fsgid;
1172 context->personality = tsk->personality;
1174 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1175 if (!ab)
1176 return; /* audit_panic has been called */
1177 audit_log_format(ab, "arch=%x syscall=%d",
1178 context->arch, context->major);
1179 if (context->personality != PER_LINUX)
1180 audit_log_format(ab, " per=%lx", context->personality);
1181 if (context->return_valid)
1182 audit_log_format(ab, " success=%s exit=%ld",
1183 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1184 context->return_code);
1186 mutex_lock(&tty_mutex);
1187 read_lock(&tasklist_lock);
1188 if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
1189 tty = tsk->signal->tty->name;
1190 else
1191 tty = "(none)";
1192 read_unlock(&tasklist_lock);
1193 audit_log_format(ab,
1194 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d"
1195 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
1196 " euid=%u suid=%u fsuid=%u"
1197 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
1198 context->argv[0],
1199 context->argv[1],
1200 context->argv[2],
1201 context->argv[3],
1202 context->name_count,
1203 context->ppid,
1204 context->pid,
1205 tsk->loginuid,
1206 context->uid,
1207 context->gid,
1208 context->euid, context->suid, context->fsuid,
1209 context->egid, context->sgid, context->fsgid, tty,
1210 tsk->sessionid);
1212 mutex_unlock(&tty_mutex);
1214 audit_log_task_info(ab, tsk);
1215 if (context->filterkey) {
1216 audit_log_format(ab, " key=");
1217 audit_log_untrustedstring(ab, context->filterkey);
1218 } else
1219 audit_log_format(ab, " key=(null)");
1220 audit_log_end(ab);
1222 for (aux = context->aux; aux; aux = aux->next) {
1224 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1225 if (!ab)
1226 continue; /* audit_panic has been called */
1228 switch (aux->type) {
1229 case AUDIT_MQ_OPEN: {
1230 struct audit_aux_data_mq_open *axi = (void *)aux;
1231 audit_log_format(ab,
1232 "oflag=0x%x mode=%#o mq_flags=0x%lx mq_maxmsg=%ld "
1233 "mq_msgsize=%ld mq_curmsgs=%ld",
1234 axi->oflag, axi->mode, axi->attr.mq_flags,
1235 axi->attr.mq_maxmsg, axi->attr.mq_msgsize,
1236 axi->attr.mq_curmsgs);
1237 break; }
1239 case AUDIT_MQ_SENDRECV: {
1240 struct audit_aux_data_mq_sendrecv *axi = (void *)aux;
1241 audit_log_format(ab,
1242 "mqdes=%d msg_len=%zd msg_prio=%u "
1243 "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1244 axi->mqdes, axi->msg_len, axi->msg_prio,
1245 axi->abs_timeout.tv_sec, axi->abs_timeout.tv_nsec);
1246 break; }
1248 case AUDIT_MQ_NOTIFY: {
1249 struct audit_aux_data_mq_notify *axi = (void *)aux;
1250 audit_log_format(ab,
1251 "mqdes=%d sigev_signo=%d",
1252 axi->mqdes,
1253 axi->notification.sigev_signo);
1254 break; }
1256 case AUDIT_MQ_GETSETATTR: {
1257 struct audit_aux_data_mq_getsetattr *axi = (void *)aux;
1258 audit_log_format(ab,
1259 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1260 "mq_curmsgs=%ld ",
1261 axi->mqdes,
1262 axi->mqstat.mq_flags, axi->mqstat.mq_maxmsg,
1263 axi->mqstat.mq_msgsize, axi->mqstat.mq_curmsgs);
1264 break; }
1266 case AUDIT_IPC: {
1267 struct audit_aux_data_ipcctl *axi = (void *)aux;
1268 audit_log_format(ab,
1269 "ouid=%u ogid=%u mode=%#o",
1270 axi->uid, axi->gid, axi->mode);
1271 if (axi->osid != 0) {
1272 char *ctx = NULL;
1273 u32 len;
1274 if (selinux_sid_to_string(
1275 axi->osid, &ctx, &len)) {
1276 audit_log_format(ab, " osid=%u",
1277 axi->osid);
1278 call_panic = 1;
1279 } else
1280 audit_log_format(ab, " obj=%s", ctx);
1281 kfree(ctx);
1283 break; }
1285 case AUDIT_IPC_SET_PERM: {
1286 struct audit_aux_data_ipcctl *axi = (void *)aux;
1287 audit_log_format(ab,
1288 "qbytes=%lx ouid=%u ogid=%u mode=%#o",
1289 axi->qbytes, axi->uid, axi->gid, axi->mode);
1290 break; }
1292 case AUDIT_EXECVE: {
1293 struct audit_aux_data_execve *axi = (void *)aux;
1294 audit_log_execve_info(context, &ab, axi);
1295 break; }
1297 case AUDIT_SOCKETCALL: {
1298 int i;
1299 struct audit_aux_data_socketcall *axs = (void *)aux;
1300 audit_log_format(ab, "nargs=%d", axs->nargs);
1301 for (i=0; i<axs->nargs; i++)
1302 audit_log_format(ab, " a%d=%lx", i, axs->args[i]);
1303 break; }
1305 case AUDIT_SOCKADDR: {
1306 struct audit_aux_data_sockaddr *axs = (void *)aux;
1308 audit_log_format(ab, "saddr=");
1309 audit_log_hex(ab, axs->a, axs->len);
1310 break; }
1312 case AUDIT_FD_PAIR: {
1313 struct audit_aux_data_fd_pair *axs = (void *)aux;
1314 audit_log_format(ab, "fd0=%d fd1=%d", axs->fd[0], axs->fd[1]);
1315 break; }
1318 audit_log_end(ab);
1321 for (aux = context->aux_pids; aux; aux = aux->next) {
1322 struct audit_aux_data_pids *axs = (void *)aux;
1323 int i;
1325 for (i = 0; i < axs->pid_count; i++)
1326 if (audit_log_pid_context(context, axs->target_pid[i],
1327 axs->target_auid[i],
1328 axs->target_uid[i],
1329 axs->target_sessionid[i],
1330 axs->target_sid[i],
1331 axs->target_comm[i]))
1332 call_panic = 1;
1335 if (context->target_pid &&
1336 audit_log_pid_context(context, context->target_pid,
1337 context->target_auid, context->target_uid,
1338 context->target_sessionid,
1339 context->target_sid, context->target_comm))
1340 call_panic = 1;
1342 if (context->pwd.dentry && context->pwd.mnt) {
1343 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1344 if (ab) {
1345 audit_log_d_path(ab, "cwd=", &context->pwd);
1346 audit_log_end(ab);
1349 for (i = 0; i < context->name_count; i++) {
1350 struct audit_names *n = &context->names[i];
1352 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1353 if (!ab)
1354 continue; /* audit_panic has been called */
1356 audit_log_format(ab, "item=%d", i);
1358 if (n->name) {
1359 switch(n->name_len) {
1360 case AUDIT_NAME_FULL:
1361 /* log the full path */
1362 audit_log_format(ab, " name=");
1363 audit_log_untrustedstring(ab, n->name);
1364 break;
1365 case 0:
1366 /* name was specified as a relative path and the
1367 * directory component is the cwd */
1368 audit_log_d_path(ab, " name=", &context->pwd);
1369 break;
1370 default:
1371 /* log the name's directory component */
1372 audit_log_format(ab, " name=");
1373 audit_log_n_untrustedstring(ab, n->name_len,
1374 n->name);
1376 } else
1377 audit_log_format(ab, " name=(null)");
1379 if (n->ino != (unsigned long)-1) {
1380 audit_log_format(ab, " inode=%lu"
1381 " dev=%02x:%02x mode=%#o"
1382 " ouid=%u ogid=%u rdev=%02x:%02x",
1383 n->ino,
1384 MAJOR(n->dev),
1385 MINOR(n->dev),
1386 n->mode,
1387 n->uid,
1388 n->gid,
1389 MAJOR(n->rdev),
1390 MINOR(n->rdev));
1392 if (n->osid != 0) {
1393 char *ctx = NULL;
1394 u32 len;
1395 if (selinux_sid_to_string(
1396 n->osid, &ctx, &len)) {
1397 audit_log_format(ab, " osid=%u", n->osid);
1398 call_panic = 2;
1399 } else
1400 audit_log_format(ab, " obj=%s", ctx);
1401 kfree(ctx);
1404 audit_log_end(ab);
1407 /* Send end of event record to help user space know we are finished */
1408 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1409 if (ab)
1410 audit_log_end(ab);
1411 if (call_panic)
1412 audit_panic("error converting sid to string");
1416 * audit_free - free a per-task audit context
1417 * @tsk: task whose audit context block to free
1419 * Called from copy_process and do_exit
1421 void audit_free(struct task_struct *tsk)
1423 struct audit_context *context;
1425 context = audit_get_context(tsk, 0, 0);
1426 if (likely(!context))
1427 return;
1429 /* Check for system calls that do not go through the exit
1430 * function (e.g., exit_group), then free context block.
1431 * We use GFP_ATOMIC here because we might be doing this
1432 * in the context of the idle thread */
1433 /* that can happen only if we are called from do_exit() */
1434 if (context->in_syscall && context->auditable)
1435 audit_log_exit(context, tsk);
1437 audit_free_context(context);
1441 * audit_syscall_entry - fill in an audit record at syscall entry
1442 * @tsk: task being audited
1443 * @arch: architecture type
1444 * @major: major syscall type (function)
1445 * @a1: additional syscall register 1
1446 * @a2: additional syscall register 2
1447 * @a3: additional syscall register 3
1448 * @a4: additional syscall register 4
1450 * Fill in audit context at syscall entry. This only happens if the
1451 * audit context was created when the task was created and the state or
1452 * filters demand the audit context be built. If the state from the
1453 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1454 * then the record will be written at syscall exit time (otherwise, it
1455 * will only be written if another part of the kernel requests that it
1456 * be written).
1458 void audit_syscall_entry(int arch, int major,
1459 unsigned long a1, unsigned long a2,
1460 unsigned long a3, unsigned long a4)
1462 struct task_struct *tsk = current;
1463 struct audit_context *context = tsk->audit_context;
1464 enum audit_state state;
1466 BUG_ON(!context);
1469 * This happens only on certain architectures that make system
1470 * calls in kernel_thread via the entry.S interface, instead of
1471 * with direct calls. (If you are porting to a new
1472 * architecture, hitting this condition can indicate that you
1473 * got the _exit/_leave calls backward in entry.S.)
1475 * i386 no
1476 * x86_64 no
1477 * ppc64 yes (see arch/powerpc/platforms/iseries/misc.S)
1479 * This also happens with vm86 emulation in a non-nested manner
1480 * (entries without exits), so this case must be caught.
1482 if (context->in_syscall) {
1483 struct audit_context *newctx;
1485 #if AUDIT_DEBUG
1486 printk(KERN_ERR
1487 "audit(:%d) pid=%d in syscall=%d;"
1488 " entering syscall=%d\n",
1489 context->serial, tsk->pid, context->major, major);
1490 #endif
1491 newctx = audit_alloc_context(context->state);
1492 if (newctx) {
1493 newctx->previous = context;
1494 context = newctx;
1495 tsk->audit_context = newctx;
1496 } else {
1497 /* If we can't alloc a new context, the best we
1498 * can do is to leak memory (any pending putname
1499 * will be lost). The only other alternative is
1500 * to abandon auditing. */
1501 audit_zero_context(context, context->state);
1504 BUG_ON(context->in_syscall || context->name_count);
1506 if (!audit_enabled)
1507 return;
1509 context->arch = arch;
1510 context->major = major;
1511 context->argv[0] = a1;
1512 context->argv[1] = a2;
1513 context->argv[2] = a3;
1514 context->argv[3] = a4;
1516 state = context->state;
1517 context->dummy = !audit_n_rules;
1518 if (!context->dummy && (state == AUDIT_SETUP_CONTEXT || state == AUDIT_BUILD_CONTEXT))
1519 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
1520 if (likely(state == AUDIT_DISABLED))
1521 return;
1523 context->serial = 0;
1524 context->ctime = CURRENT_TIME;
1525 context->in_syscall = 1;
1526 context->auditable = !!(state == AUDIT_RECORD_CONTEXT);
1527 context->ppid = 0;
1531 * audit_syscall_exit - deallocate audit context after a system call
1532 * @tsk: task being audited
1533 * @valid: success/failure flag
1534 * @return_code: syscall return value
1536 * Tear down after system call. If the audit context has been marked as
1537 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1538 * filtering, or because some other part of the kernel write an audit
1539 * message), then write out the syscall information. In call cases,
1540 * free the names stored from getname().
1542 void audit_syscall_exit(int valid, long return_code)
1544 struct task_struct *tsk = current;
1545 struct audit_context *context;
1547 context = audit_get_context(tsk, valid, return_code);
1549 if (likely(!context))
1550 return;
1552 if (context->in_syscall && context->auditable)
1553 audit_log_exit(context, tsk);
1555 context->in_syscall = 0;
1556 context->auditable = 0;
1558 if (context->previous) {
1559 struct audit_context *new_context = context->previous;
1560 context->previous = NULL;
1561 audit_free_context(context);
1562 tsk->audit_context = new_context;
1563 } else {
1564 audit_free_names(context);
1565 unroll_tree_refs(context, NULL, 0);
1566 audit_free_aux(context);
1567 context->aux = NULL;
1568 context->aux_pids = NULL;
1569 context->target_pid = 0;
1570 context->target_sid = 0;
1571 kfree(context->filterkey);
1572 context->filterkey = NULL;
1573 tsk->audit_context = context;
1577 static inline void handle_one(const struct inode *inode)
1579 #ifdef CONFIG_AUDIT_TREE
1580 struct audit_context *context;
1581 struct audit_tree_refs *p;
1582 struct audit_chunk *chunk;
1583 int count;
1584 if (likely(list_empty(&inode->inotify_watches)))
1585 return;
1586 context = current->audit_context;
1587 p = context->trees;
1588 count = context->tree_count;
1589 rcu_read_lock();
1590 chunk = audit_tree_lookup(inode);
1591 rcu_read_unlock();
1592 if (!chunk)
1593 return;
1594 if (likely(put_tree_ref(context, chunk)))
1595 return;
1596 if (unlikely(!grow_tree_refs(context))) {
1597 printk(KERN_WARNING "out of memory, audit has lost a tree reference");
1598 audit_set_auditable(context);
1599 audit_put_chunk(chunk);
1600 unroll_tree_refs(context, p, count);
1601 return;
1603 put_tree_ref(context, chunk);
1604 #endif
1607 static void handle_path(const struct dentry *dentry)
1609 #ifdef CONFIG_AUDIT_TREE
1610 struct audit_context *context;
1611 struct audit_tree_refs *p;
1612 const struct dentry *d, *parent;
1613 struct audit_chunk *drop;
1614 unsigned long seq;
1615 int count;
1617 context = current->audit_context;
1618 p = context->trees;
1619 count = context->tree_count;
1620 retry:
1621 drop = NULL;
1622 d = dentry;
1623 rcu_read_lock();
1624 seq = read_seqbegin(&rename_lock);
1625 for(;;) {
1626 struct inode *inode = d->d_inode;
1627 if (inode && unlikely(!list_empty(&inode->inotify_watches))) {
1628 struct audit_chunk *chunk;
1629 chunk = audit_tree_lookup(inode);
1630 if (chunk) {
1631 if (unlikely(!put_tree_ref(context, chunk))) {
1632 drop = chunk;
1633 break;
1637 parent = d->d_parent;
1638 if (parent == d)
1639 break;
1640 d = parent;
1642 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
1643 rcu_read_unlock();
1644 if (!drop) {
1645 /* just a race with rename */
1646 unroll_tree_refs(context, p, count);
1647 goto retry;
1649 audit_put_chunk(drop);
1650 if (grow_tree_refs(context)) {
1651 /* OK, got more space */
1652 unroll_tree_refs(context, p, count);
1653 goto retry;
1655 /* too bad */
1656 printk(KERN_WARNING
1657 "out of memory, audit has lost a tree reference");
1658 unroll_tree_refs(context, p, count);
1659 audit_set_auditable(context);
1660 return;
1662 rcu_read_unlock();
1663 #endif
1667 * audit_getname - add a name to the list
1668 * @name: name to add
1670 * Add a name to the list of audit names for this context.
1671 * Called from fs/namei.c:getname().
1673 void __audit_getname(const char *name)
1675 struct audit_context *context = current->audit_context;
1677 if (IS_ERR(name) || !name)
1678 return;
1680 if (!context->in_syscall) {
1681 #if AUDIT_DEBUG == 2
1682 printk(KERN_ERR "%s:%d(:%d): ignoring getname(%p)\n",
1683 __FILE__, __LINE__, context->serial, name);
1684 dump_stack();
1685 #endif
1686 return;
1688 BUG_ON(context->name_count >= AUDIT_NAMES);
1689 context->names[context->name_count].name = name;
1690 context->names[context->name_count].name_len = AUDIT_NAME_FULL;
1691 context->names[context->name_count].name_put = 1;
1692 context->names[context->name_count].ino = (unsigned long)-1;
1693 context->names[context->name_count].osid = 0;
1694 ++context->name_count;
1695 if (!context->pwd.dentry) {
1696 read_lock(&current->fs->lock);
1697 context->pwd = current->fs->pwd;
1698 path_get(&current->fs->pwd);
1699 read_unlock(&current->fs->lock);
1704 /* audit_putname - intercept a putname request
1705 * @name: name to intercept and delay for putname
1707 * If we have stored the name from getname in the audit context,
1708 * then we delay the putname until syscall exit.
1709 * Called from include/linux/fs.h:putname().
1711 void audit_putname(const char *name)
1713 struct audit_context *context = current->audit_context;
1715 BUG_ON(!context);
1716 if (!context->in_syscall) {
1717 #if AUDIT_DEBUG == 2
1718 printk(KERN_ERR "%s:%d(:%d): __putname(%p)\n",
1719 __FILE__, __LINE__, context->serial, name);
1720 if (context->name_count) {
1721 int i;
1722 for (i = 0; i < context->name_count; i++)
1723 printk(KERN_ERR "name[%d] = %p = %s\n", i,
1724 context->names[i].name,
1725 context->names[i].name ?: "(null)");
1727 #endif
1728 __putname(name);
1730 #if AUDIT_DEBUG
1731 else {
1732 ++context->put_count;
1733 if (context->put_count > context->name_count) {
1734 printk(KERN_ERR "%s:%d(:%d): major=%d"
1735 " in_syscall=%d putname(%p) name_count=%d"
1736 " put_count=%d\n",
1737 __FILE__, __LINE__,
1738 context->serial, context->major,
1739 context->in_syscall, name, context->name_count,
1740 context->put_count);
1741 dump_stack();
1744 #endif
1747 static int audit_inc_name_count(struct audit_context *context,
1748 const struct inode *inode)
1750 if (context->name_count >= AUDIT_NAMES) {
1751 if (inode)
1752 printk(KERN_DEBUG "name_count maxed, losing inode data: "
1753 "dev=%02x:%02x, inode=%lu",
1754 MAJOR(inode->i_sb->s_dev),
1755 MINOR(inode->i_sb->s_dev),
1756 inode->i_ino);
1758 else
1759 printk(KERN_DEBUG "name_count maxed, losing inode data");
1760 return 1;
1762 context->name_count++;
1763 #if AUDIT_DEBUG
1764 context->ino_count++;
1765 #endif
1766 return 0;
1769 /* Copy inode data into an audit_names. */
1770 static void audit_copy_inode(struct audit_names *name, const struct inode *inode)
1772 name->ino = inode->i_ino;
1773 name->dev = inode->i_sb->s_dev;
1774 name->mode = inode->i_mode;
1775 name->uid = inode->i_uid;
1776 name->gid = inode->i_gid;
1777 name->rdev = inode->i_rdev;
1778 selinux_get_inode_sid(inode, &name->osid);
1782 * audit_inode - store the inode and device from a lookup
1783 * @name: name being audited
1784 * @dentry: dentry being audited
1786 * Called from fs/namei.c:path_lookup().
1788 void __audit_inode(const char *name, const struct dentry *dentry)
1790 int idx;
1791 struct audit_context *context = current->audit_context;
1792 const struct inode *inode = dentry->d_inode;
1794 if (!context->in_syscall)
1795 return;
1796 if (context->name_count
1797 && context->names[context->name_count-1].name
1798 && context->names[context->name_count-1].name == name)
1799 idx = context->name_count - 1;
1800 else if (context->name_count > 1
1801 && context->names[context->name_count-2].name
1802 && context->names[context->name_count-2].name == name)
1803 idx = context->name_count - 2;
1804 else {
1805 /* FIXME: how much do we care about inodes that have no
1806 * associated name? */
1807 if (audit_inc_name_count(context, inode))
1808 return;
1809 idx = context->name_count - 1;
1810 context->names[idx].name = NULL;
1812 handle_path(dentry);
1813 audit_copy_inode(&context->names[idx], inode);
1817 * audit_inode_child - collect inode info for created/removed objects
1818 * @dname: inode's dentry name
1819 * @dentry: dentry being audited
1820 * @parent: inode of dentry parent
1822 * For syscalls that create or remove filesystem objects, audit_inode
1823 * can only collect information for the filesystem object's parent.
1824 * This call updates the audit context with the child's information.
1825 * Syscalls that create a new filesystem object must be hooked after
1826 * the object is created. Syscalls that remove a filesystem object
1827 * must be hooked prior, in order to capture the target inode during
1828 * unsuccessful attempts.
1830 void __audit_inode_child(const char *dname, const struct dentry *dentry,
1831 const struct inode *parent)
1833 int idx;
1834 struct audit_context *context = current->audit_context;
1835 const char *found_parent = NULL, *found_child = NULL;
1836 const struct inode *inode = dentry->d_inode;
1837 int dirlen = 0;
1839 if (!context->in_syscall)
1840 return;
1842 if (inode)
1843 handle_one(inode);
1844 /* determine matching parent */
1845 if (!dname)
1846 goto add_names;
1848 /* parent is more likely, look for it first */
1849 for (idx = 0; idx < context->name_count; idx++) {
1850 struct audit_names *n = &context->names[idx];
1852 if (!n->name)
1853 continue;
1855 if (n->ino == parent->i_ino &&
1856 !audit_compare_dname_path(dname, n->name, &dirlen)) {
1857 n->name_len = dirlen; /* update parent data in place */
1858 found_parent = n->name;
1859 goto add_names;
1863 /* no matching parent, look for matching child */
1864 for (idx = 0; idx < context->name_count; idx++) {
1865 struct audit_names *n = &context->names[idx];
1867 if (!n->name)
1868 continue;
1870 /* strcmp() is the more likely scenario */
1871 if (!strcmp(dname, n->name) ||
1872 !audit_compare_dname_path(dname, n->name, &dirlen)) {
1873 if (inode)
1874 audit_copy_inode(n, inode);
1875 else
1876 n->ino = (unsigned long)-1;
1877 found_child = n->name;
1878 goto add_names;
1882 add_names:
1883 if (!found_parent) {
1884 if (audit_inc_name_count(context, parent))
1885 return;
1886 idx = context->name_count - 1;
1887 context->names[idx].name = NULL;
1888 audit_copy_inode(&context->names[idx], parent);
1891 if (!found_child) {
1892 if (audit_inc_name_count(context, inode))
1893 return;
1894 idx = context->name_count - 1;
1896 /* Re-use the name belonging to the slot for a matching parent
1897 * directory. All names for this context are relinquished in
1898 * audit_free_names() */
1899 if (found_parent) {
1900 context->names[idx].name = found_parent;
1901 context->names[idx].name_len = AUDIT_NAME_FULL;
1902 /* don't call __putname() */
1903 context->names[idx].name_put = 0;
1904 } else {
1905 context->names[idx].name = NULL;
1908 if (inode)
1909 audit_copy_inode(&context->names[idx], inode);
1910 else
1911 context->names[idx].ino = (unsigned long)-1;
1914 EXPORT_SYMBOL_GPL(__audit_inode_child);
1917 * auditsc_get_stamp - get local copies of audit_context values
1918 * @ctx: audit_context for the task
1919 * @t: timespec to store time recorded in the audit_context
1920 * @serial: serial value that is recorded in the audit_context
1922 * Also sets the context as auditable.
1924 void auditsc_get_stamp(struct audit_context *ctx,
1925 struct timespec *t, unsigned int *serial)
1927 if (!ctx->serial)
1928 ctx->serial = audit_serial();
1929 t->tv_sec = ctx->ctime.tv_sec;
1930 t->tv_nsec = ctx->ctime.tv_nsec;
1931 *serial = ctx->serial;
1932 ctx->auditable = 1;
1935 /* global counter which is incremented every time something logs in */
1936 static atomic_t session_id = ATOMIC_INIT(0);
1939 * audit_set_loginuid - set a task's audit_context loginuid
1940 * @task: task whose audit context is being modified
1941 * @loginuid: loginuid value
1943 * Returns 0.
1945 * Called (set) from fs/proc/base.c::proc_loginuid_write().
1947 int audit_set_loginuid(struct task_struct *task, uid_t loginuid)
1949 unsigned int sessionid = atomic_inc_return(&session_id);
1950 struct audit_context *context = task->audit_context;
1952 if (context && context->in_syscall) {
1953 struct audit_buffer *ab;
1955 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
1956 if (ab) {
1957 audit_log_format(ab, "login pid=%d uid=%u "
1958 "old auid=%u new auid=%u"
1959 " old ses=%u new ses=%u",
1960 task->pid, task->uid,
1961 task->loginuid, loginuid,
1962 task->sessionid, sessionid);
1963 audit_log_end(ab);
1966 task->sessionid = sessionid;
1967 task->loginuid = loginuid;
1968 return 0;
1972 * __audit_mq_open - record audit data for a POSIX MQ open
1973 * @oflag: open flag
1974 * @mode: mode bits
1975 * @u_attr: queue attributes
1977 * Returns 0 for success or NULL context or < 0 on error.
1979 int __audit_mq_open(int oflag, mode_t mode, struct mq_attr __user *u_attr)
1981 struct audit_aux_data_mq_open *ax;
1982 struct audit_context *context = current->audit_context;
1984 if (!audit_enabled)
1985 return 0;
1987 if (likely(!context))
1988 return 0;
1990 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
1991 if (!ax)
1992 return -ENOMEM;
1994 if (u_attr != NULL) {
1995 if (copy_from_user(&ax->attr, u_attr, sizeof(ax->attr))) {
1996 kfree(ax);
1997 return -EFAULT;
1999 } else
2000 memset(&ax->attr, 0, sizeof(ax->attr));
2002 ax->oflag = oflag;
2003 ax->mode = mode;
2005 ax->d.type = AUDIT_MQ_OPEN;
2006 ax->d.next = context->aux;
2007 context->aux = (void *)ax;
2008 return 0;
2012 * __audit_mq_timedsend - record audit data for a POSIX MQ timed send
2013 * @mqdes: MQ descriptor
2014 * @msg_len: Message length
2015 * @msg_prio: Message priority
2016 * @u_abs_timeout: Message timeout in absolute time
2018 * Returns 0 for success or NULL context or < 0 on error.
2020 int __audit_mq_timedsend(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2021 const struct timespec __user *u_abs_timeout)
2023 struct audit_aux_data_mq_sendrecv *ax;
2024 struct audit_context *context = current->audit_context;
2026 if (!audit_enabled)
2027 return 0;
2029 if (likely(!context))
2030 return 0;
2032 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
2033 if (!ax)
2034 return -ENOMEM;
2036 if (u_abs_timeout != NULL) {
2037 if (copy_from_user(&ax->abs_timeout, u_abs_timeout, sizeof(ax->abs_timeout))) {
2038 kfree(ax);
2039 return -EFAULT;
2041 } else
2042 memset(&ax->abs_timeout, 0, sizeof(ax->abs_timeout));
2044 ax->mqdes = mqdes;
2045 ax->msg_len = msg_len;
2046 ax->msg_prio = msg_prio;
2048 ax->d.type = AUDIT_MQ_SENDRECV;
2049 ax->d.next = context->aux;
2050 context->aux = (void *)ax;
2051 return 0;
2055 * __audit_mq_timedreceive - record audit data for a POSIX MQ timed receive
2056 * @mqdes: MQ descriptor
2057 * @msg_len: Message length
2058 * @u_msg_prio: Message priority
2059 * @u_abs_timeout: Message timeout in absolute time
2061 * Returns 0 for success or NULL context or < 0 on error.
2063 int __audit_mq_timedreceive(mqd_t mqdes, size_t msg_len,
2064 unsigned int __user *u_msg_prio,
2065 const struct timespec __user *u_abs_timeout)
2067 struct audit_aux_data_mq_sendrecv *ax;
2068 struct audit_context *context = current->audit_context;
2070 if (!audit_enabled)
2071 return 0;
2073 if (likely(!context))
2074 return 0;
2076 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
2077 if (!ax)
2078 return -ENOMEM;
2080 if (u_msg_prio != NULL) {
2081 if (get_user(ax->msg_prio, u_msg_prio)) {
2082 kfree(ax);
2083 return -EFAULT;
2085 } else
2086 ax->msg_prio = 0;
2088 if (u_abs_timeout != NULL) {
2089 if (copy_from_user(&ax->abs_timeout, u_abs_timeout, sizeof(ax->abs_timeout))) {
2090 kfree(ax);
2091 return -EFAULT;
2093 } else
2094 memset(&ax->abs_timeout, 0, sizeof(ax->abs_timeout));
2096 ax->mqdes = mqdes;
2097 ax->msg_len = msg_len;
2099 ax->d.type = AUDIT_MQ_SENDRECV;
2100 ax->d.next = context->aux;
2101 context->aux = (void *)ax;
2102 return 0;
2106 * __audit_mq_notify - record audit data for a POSIX MQ notify
2107 * @mqdes: MQ descriptor
2108 * @u_notification: Notification event
2110 * Returns 0 for success or NULL context or < 0 on error.
2113 int __audit_mq_notify(mqd_t mqdes, const struct sigevent __user *u_notification)
2115 struct audit_aux_data_mq_notify *ax;
2116 struct audit_context *context = current->audit_context;
2118 if (!audit_enabled)
2119 return 0;
2121 if (likely(!context))
2122 return 0;
2124 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
2125 if (!ax)
2126 return -ENOMEM;
2128 if (u_notification != NULL) {
2129 if (copy_from_user(&ax->notification, u_notification, sizeof(ax->notification))) {
2130 kfree(ax);
2131 return -EFAULT;
2133 } else
2134 memset(&ax->notification, 0, sizeof(ax->notification));
2136 ax->mqdes = mqdes;
2138 ax->d.type = AUDIT_MQ_NOTIFY;
2139 ax->d.next = context->aux;
2140 context->aux = (void *)ax;
2141 return 0;
2145 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2146 * @mqdes: MQ descriptor
2147 * @mqstat: MQ flags
2149 * Returns 0 for success or NULL context or < 0 on error.
2151 int __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2153 struct audit_aux_data_mq_getsetattr *ax;
2154 struct audit_context *context = current->audit_context;
2156 if (!audit_enabled)
2157 return 0;
2159 if (likely(!context))
2160 return 0;
2162 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
2163 if (!ax)
2164 return -ENOMEM;
2166 ax->mqdes = mqdes;
2167 ax->mqstat = *mqstat;
2169 ax->d.type = AUDIT_MQ_GETSETATTR;
2170 ax->d.next = context->aux;
2171 context->aux = (void *)ax;
2172 return 0;
2176 * audit_ipc_obj - record audit data for ipc object
2177 * @ipcp: ipc permissions
2179 * Returns 0 for success or NULL context or < 0 on error.
2181 int __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2183 struct audit_aux_data_ipcctl *ax;
2184 struct audit_context *context = current->audit_context;
2186 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
2187 if (!ax)
2188 return -ENOMEM;
2190 ax->uid = ipcp->uid;
2191 ax->gid = ipcp->gid;
2192 ax->mode = ipcp->mode;
2193 selinux_get_ipc_sid(ipcp, &ax->osid);
2195 ax->d.type = AUDIT_IPC;
2196 ax->d.next = context->aux;
2197 context->aux = (void *)ax;
2198 return 0;
2202 * audit_ipc_set_perm - record audit data for new ipc permissions
2203 * @qbytes: msgq bytes
2204 * @uid: msgq user id
2205 * @gid: msgq group id
2206 * @mode: msgq mode (permissions)
2208 * Returns 0 for success or NULL context or < 0 on error.
2210 int __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, mode_t mode)
2212 struct audit_aux_data_ipcctl *ax;
2213 struct audit_context *context = current->audit_context;
2215 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
2216 if (!ax)
2217 return -ENOMEM;
2219 ax->qbytes = qbytes;
2220 ax->uid = uid;
2221 ax->gid = gid;
2222 ax->mode = mode;
2224 ax->d.type = AUDIT_IPC_SET_PERM;
2225 ax->d.next = context->aux;
2226 context->aux = (void *)ax;
2227 return 0;
2230 int audit_bprm(struct linux_binprm *bprm)
2232 struct audit_aux_data_execve *ax;
2233 struct audit_context *context = current->audit_context;
2235 if (likely(!audit_enabled || !context || context->dummy))
2236 return 0;
2238 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2239 if (!ax)
2240 return -ENOMEM;
2242 ax->argc = bprm->argc;
2243 ax->envc = bprm->envc;
2244 ax->mm = bprm->mm;
2245 ax->d.type = AUDIT_EXECVE;
2246 ax->d.next = context->aux;
2247 context->aux = (void *)ax;
2248 return 0;
2253 * audit_socketcall - record audit data for sys_socketcall
2254 * @nargs: number of args
2255 * @args: args array
2257 * Returns 0 for success or NULL context or < 0 on error.
2259 int audit_socketcall(int nargs, unsigned long *args)
2261 struct audit_aux_data_socketcall *ax;
2262 struct audit_context *context = current->audit_context;
2264 if (likely(!context || context->dummy))
2265 return 0;
2267 ax = kmalloc(sizeof(*ax) + nargs * sizeof(unsigned long), GFP_KERNEL);
2268 if (!ax)
2269 return -ENOMEM;
2271 ax->nargs = nargs;
2272 memcpy(ax->args, args, nargs * sizeof(unsigned long));
2274 ax->d.type = AUDIT_SOCKETCALL;
2275 ax->d.next = context->aux;
2276 context->aux = (void *)ax;
2277 return 0;
2281 * __audit_fd_pair - record audit data for pipe and socketpair
2282 * @fd1: the first file descriptor
2283 * @fd2: the second file descriptor
2285 * Returns 0 for success or NULL context or < 0 on error.
2287 int __audit_fd_pair(int fd1, int fd2)
2289 struct audit_context *context = current->audit_context;
2290 struct audit_aux_data_fd_pair *ax;
2292 if (likely(!context)) {
2293 return 0;
2296 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2297 if (!ax) {
2298 return -ENOMEM;
2301 ax->fd[0] = fd1;
2302 ax->fd[1] = fd2;
2304 ax->d.type = AUDIT_FD_PAIR;
2305 ax->d.next = context->aux;
2306 context->aux = (void *)ax;
2307 return 0;
2311 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2312 * @len: data length in user space
2313 * @a: data address in kernel space
2315 * Returns 0 for success or NULL context or < 0 on error.
2317 int audit_sockaddr(int len, void *a)
2319 struct audit_aux_data_sockaddr *ax;
2320 struct audit_context *context = current->audit_context;
2322 if (likely(!context || context->dummy))
2323 return 0;
2325 ax = kmalloc(sizeof(*ax) + len, GFP_KERNEL);
2326 if (!ax)
2327 return -ENOMEM;
2329 ax->len = len;
2330 memcpy(ax->a, a, len);
2332 ax->d.type = AUDIT_SOCKADDR;
2333 ax->d.next = context->aux;
2334 context->aux = (void *)ax;
2335 return 0;
2338 void __audit_ptrace(struct task_struct *t)
2340 struct audit_context *context = current->audit_context;
2342 context->target_pid = t->pid;
2343 context->target_auid = audit_get_loginuid(t);
2344 context->target_uid = t->uid;
2345 context->target_sessionid = audit_get_sessionid(t);
2346 selinux_get_task_sid(t, &context->target_sid);
2347 memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2351 * audit_signal_info - record signal info for shutting down audit subsystem
2352 * @sig: signal value
2353 * @t: task being signaled
2355 * If the audit subsystem is being terminated, record the task (pid)
2356 * and uid that is doing that.
2358 int __audit_signal_info(int sig, struct task_struct *t)
2360 struct audit_aux_data_pids *axp;
2361 struct task_struct *tsk = current;
2362 struct audit_context *ctx = tsk->audit_context;
2363 extern pid_t audit_sig_pid;
2364 extern uid_t audit_sig_uid;
2365 extern u32 audit_sig_sid;
2367 if (audit_pid && t->tgid == audit_pid) {
2368 if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1) {
2369 audit_sig_pid = tsk->pid;
2370 if (tsk->loginuid != -1)
2371 audit_sig_uid = tsk->loginuid;
2372 else
2373 audit_sig_uid = tsk->uid;
2374 selinux_get_task_sid(tsk, &audit_sig_sid);
2376 if (!audit_signals || audit_dummy_context())
2377 return 0;
2380 /* optimize the common case by putting first signal recipient directly
2381 * in audit_context */
2382 if (!ctx->target_pid) {
2383 ctx->target_pid = t->tgid;
2384 ctx->target_auid = audit_get_loginuid(t);
2385 ctx->target_uid = t->uid;
2386 ctx->target_sessionid = audit_get_sessionid(t);
2387 selinux_get_task_sid(t, &ctx->target_sid);
2388 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2389 return 0;
2392 axp = (void *)ctx->aux_pids;
2393 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2394 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2395 if (!axp)
2396 return -ENOMEM;
2398 axp->d.type = AUDIT_OBJ_PID;
2399 axp->d.next = ctx->aux_pids;
2400 ctx->aux_pids = (void *)axp;
2402 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2404 axp->target_pid[axp->pid_count] = t->tgid;
2405 axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2406 axp->target_uid[axp->pid_count] = t->uid;
2407 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2408 selinux_get_task_sid(t, &axp->target_sid[axp->pid_count]);
2409 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2410 axp->pid_count++;
2412 return 0;
2416 * audit_core_dumps - record information about processes that end abnormally
2417 * @signr: signal value
2419 * If a process ends with a core dump, something fishy is going on and we
2420 * should record the event for investigation.
2422 void audit_core_dumps(long signr)
2424 struct audit_buffer *ab;
2425 u32 sid;
2426 uid_t auid = audit_get_loginuid(current);
2427 unsigned int sessionid = audit_get_sessionid(current);
2429 if (!audit_enabled)
2430 return;
2432 if (signr == SIGQUIT) /* don't care for those */
2433 return;
2435 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2436 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2437 auid, current->uid, current->gid, sessionid);
2438 selinux_get_task_sid(current, &sid);
2439 if (sid) {
2440 char *ctx = NULL;
2441 u32 len;
2443 if (selinux_sid_to_string(sid, &ctx, &len))
2444 audit_log_format(ab, " ssid=%u", sid);
2445 else
2446 audit_log_format(ab, " subj=%s", ctx);
2447 kfree(ctx);
2449 audit_log_format(ab, " pid=%d comm=", current->pid);
2450 audit_log_untrustedstring(ab, current->comm);
2451 audit_log_format(ab, " sig=%ld", signr);
2452 audit_log_end(ab);