[PATCH] libertas: remove WLAN_802_11_AUTHENTICATION_MODE
[linux-2.6/s3c2410-cpufreq.git] / fs / jfs / jfs_logmgr.c
blob44a2f33cb98d5d7e3e81ebe7cb0f7c2a12270d29
1 /*
2 * Copyright (C) International Business Machines Corp., 2000-2004
3 * Portions Copyright (C) Christoph Hellwig, 2001-2002
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
13 * the GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 * jfs_logmgr.c: log manager
23 * for related information, see transaction manager (jfs_txnmgr.c), and
24 * recovery manager (jfs_logredo.c).
26 * note: for detail, RTFS.
28 * log buffer manager:
29 * special purpose buffer manager supporting log i/o requirements.
30 * per log serial pageout of logpage
31 * queuing i/o requests and redrive i/o at iodone
32 * maintain current logpage buffer
33 * no caching since append only
34 * appropriate jfs buffer cache buffers as needed
36 * group commit:
37 * transactions which wrote COMMIT records in the same in-memory
38 * log page during the pageout of previous/current log page(s) are
39 * committed together by the pageout of the page.
41 * TBD lazy commit:
42 * transactions are committed asynchronously when the log page
43 * containing it COMMIT is paged out when it becomes full;
45 * serialization:
46 * . a per log lock serialize log write.
47 * . a per log lock serialize group commit.
48 * . a per log lock serialize log open/close;
50 * TBD log integrity:
51 * careful-write (ping-pong) of last logpage to recover from crash
52 * in overwrite.
53 * detection of split (out-of-order) write of physical sectors
54 * of last logpage via timestamp at end of each sector
55 * with its mirror data array at trailer).
57 * alternatives:
58 * lsn - 64-bit monotonically increasing integer vs
59 * 32-bit lspn and page eor.
62 #include <linux/fs.h>
63 #include <linux/blkdev.h>
64 #include <linux/interrupt.h>
65 #include <linux/completion.h>
66 #include <linux/kthread.h>
67 #include <linux/buffer_head.h> /* for sync_blockdev() */
68 #include <linux/bio.h>
69 #include <linux/freezer.h>
70 #include <linux/delay.h>
71 #include <linux/mutex.h>
72 #include "jfs_incore.h"
73 #include "jfs_filsys.h"
74 #include "jfs_metapage.h"
75 #include "jfs_superblock.h"
76 #include "jfs_txnmgr.h"
77 #include "jfs_debug.h"
81 * lbuf's ready to be redriven. Protected by log_redrive_lock (jfsIO thread)
83 static struct lbuf *log_redrive_list;
84 static DEFINE_SPINLOCK(log_redrive_lock);
88 * log read/write serialization (per log)
90 #define LOG_LOCK_INIT(log) mutex_init(&(log)->loglock)
91 #define LOG_LOCK(log) mutex_lock(&((log)->loglock))
92 #define LOG_UNLOCK(log) mutex_unlock(&((log)->loglock))
96 * log group commit serialization (per log)
99 #define LOGGC_LOCK_INIT(log) spin_lock_init(&(log)->gclock)
100 #define LOGGC_LOCK(log) spin_lock_irq(&(log)->gclock)
101 #define LOGGC_UNLOCK(log) spin_unlock_irq(&(log)->gclock)
102 #define LOGGC_WAKEUP(tblk) wake_up_all(&(tblk)->gcwait)
105 * log sync serialization (per log)
107 #define LOGSYNC_DELTA(logsize) min((logsize)/8, 128*LOGPSIZE)
108 #define LOGSYNC_BARRIER(logsize) ((logsize)/4)
110 #define LOGSYNC_DELTA(logsize) min((logsize)/4, 256*LOGPSIZE)
111 #define LOGSYNC_BARRIER(logsize) ((logsize)/2)
116 * log buffer cache synchronization
118 static DEFINE_SPINLOCK(jfsLCacheLock);
120 #define LCACHE_LOCK(flags) spin_lock_irqsave(&jfsLCacheLock, flags)
121 #define LCACHE_UNLOCK(flags) spin_unlock_irqrestore(&jfsLCacheLock, flags)
124 * See __SLEEP_COND in jfs_locks.h
126 #define LCACHE_SLEEP_COND(wq, cond, flags) \
127 do { \
128 if (cond) \
129 break; \
130 __SLEEP_COND(wq, cond, LCACHE_LOCK(flags), LCACHE_UNLOCK(flags)); \
131 } while (0)
133 #define LCACHE_WAKEUP(event) wake_up(event)
137 * lbuf buffer cache (lCache) control
139 /* log buffer manager pageout control (cumulative, inclusive) */
140 #define lbmREAD 0x0001
141 #define lbmWRITE 0x0002 /* enqueue at tail of write queue;
142 * init pageout if at head of queue;
144 #define lbmRELEASE 0x0004 /* remove from write queue
145 * at completion of pageout;
146 * do not free/recycle it yet:
147 * caller will free it;
149 #define lbmSYNC 0x0008 /* do not return to freelist
150 * when removed from write queue;
152 #define lbmFREE 0x0010 /* return to freelist
153 * at completion of pageout;
154 * the buffer may be recycled;
156 #define lbmDONE 0x0020
157 #define lbmERROR 0x0040
158 #define lbmGC 0x0080 /* lbmIODone to perform post-GC processing
159 * of log page
161 #define lbmDIRECT 0x0100
164 * Global list of active external journals
166 static LIST_HEAD(jfs_external_logs);
167 static struct jfs_log *dummy_log = NULL;
168 static DEFINE_MUTEX(jfs_log_mutex);
171 * forward references
173 static int lmWriteRecord(struct jfs_log * log, struct tblock * tblk,
174 struct lrd * lrd, struct tlock * tlck);
176 static int lmNextPage(struct jfs_log * log);
177 static int lmLogFileSystem(struct jfs_log * log, struct jfs_sb_info *sbi,
178 int activate);
180 static int open_inline_log(struct super_block *sb);
181 static int open_dummy_log(struct super_block *sb);
182 static int lbmLogInit(struct jfs_log * log);
183 static void lbmLogShutdown(struct jfs_log * log);
184 static struct lbuf *lbmAllocate(struct jfs_log * log, int);
185 static void lbmFree(struct lbuf * bp);
186 static void lbmfree(struct lbuf * bp);
187 static int lbmRead(struct jfs_log * log, int pn, struct lbuf ** bpp);
188 static void lbmWrite(struct jfs_log * log, struct lbuf * bp, int flag, int cant_block);
189 static void lbmDirectWrite(struct jfs_log * log, struct lbuf * bp, int flag);
190 static int lbmIOWait(struct lbuf * bp, int flag);
191 static bio_end_io_t lbmIODone;
192 static void lbmStartIO(struct lbuf * bp);
193 static void lmGCwrite(struct jfs_log * log, int cant_block);
194 static int lmLogSync(struct jfs_log * log, int hard_sync);
199 * statistics
201 #ifdef CONFIG_JFS_STATISTICS
202 static struct lmStat {
203 uint commit; /* # of commit */
204 uint pagedone; /* # of page written */
205 uint submitted; /* # of pages submitted */
206 uint full_page; /* # of full pages submitted */
207 uint partial_page; /* # of partial pages submitted */
208 } lmStat;
209 #endif
213 * NAME: lmLog()
215 * FUNCTION: write a log record;
217 * PARAMETER:
219 * RETURN: lsn - offset to the next log record to write (end-of-log);
220 * -1 - error;
222 * note: todo: log error handler
224 int lmLog(struct jfs_log * log, struct tblock * tblk, struct lrd * lrd,
225 struct tlock * tlck)
227 int lsn;
228 int diffp, difft;
229 struct metapage *mp = NULL;
230 unsigned long flags;
232 jfs_info("lmLog: log:0x%p tblk:0x%p, lrd:0x%p tlck:0x%p",
233 log, tblk, lrd, tlck);
235 LOG_LOCK(log);
237 /* log by (out-of-transaction) JFS ? */
238 if (tblk == NULL)
239 goto writeRecord;
241 /* log from page ? */
242 if (tlck == NULL ||
243 tlck->type & tlckBTROOT || (mp = tlck->mp) == NULL)
244 goto writeRecord;
247 * initialize/update page/transaction recovery lsn
249 lsn = log->lsn;
251 LOGSYNC_LOCK(log, flags);
254 * initialize page lsn if first log write of the page
256 if (mp->lsn == 0) {
257 mp->log = log;
258 mp->lsn = lsn;
259 log->count++;
261 /* insert page at tail of logsynclist */
262 list_add_tail(&mp->synclist, &log->synclist);
266 * initialize/update lsn of tblock of the page
268 * transaction inherits oldest lsn of pages associated
269 * with allocation/deallocation of resources (their
270 * log records are used to reconstruct allocation map
271 * at recovery time: inode for inode allocation map,
272 * B+-tree index of extent descriptors for block
273 * allocation map);
274 * allocation map pages inherit transaction lsn at
275 * commit time to allow forwarding log syncpt past log
276 * records associated with allocation/deallocation of
277 * resources only after persistent map of these map pages
278 * have been updated and propagated to home.
281 * initialize transaction lsn:
283 if (tblk->lsn == 0) {
284 /* inherit lsn of its first page logged */
285 tblk->lsn = mp->lsn;
286 log->count++;
288 /* insert tblock after the page on logsynclist */
289 list_add(&tblk->synclist, &mp->synclist);
292 * update transaction lsn:
294 else {
295 /* inherit oldest/smallest lsn of page */
296 logdiff(diffp, mp->lsn, log);
297 logdiff(difft, tblk->lsn, log);
298 if (diffp < difft) {
299 /* update tblock lsn with page lsn */
300 tblk->lsn = mp->lsn;
302 /* move tblock after page on logsynclist */
303 list_move(&tblk->synclist, &mp->synclist);
307 LOGSYNC_UNLOCK(log, flags);
310 * write the log record
312 writeRecord:
313 lsn = lmWriteRecord(log, tblk, lrd, tlck);
316 * forward log syncpt if log reached next syncpt trigger
318 logdiff(diffp, lsn, log);
319 if (diffp >= log->nextsync)
320 lsn = lmLogSync(log, 0);
322 /* update end-of-log lsn */
323 log->lsn = lsn;
325 LOG_UNLOCK(log);
327 /* return end-of-log address */
328 return lsn;
332 * NAME: lmWriteRecord()
334 * FUNCTION: move the log record to current log page
336 * PARAMETER: cd - commit descriptor
338 * RETURN: end-of-log address
340 * serialization: LOG_LOCK() held on entry/exit
342 static int
343 lmWriteRecord(struct jfs_log * log, struct tblock * tblk, struct lrd * lrd,
344 struct tlock * tlck)
346 int lsn = 0; /* end-of-log address */
347 struct lbuf *bp; /* dst log page buffer */
348 struct logpage *lp; /* dst log page */
349 caddr_t dst; /* destination address in log page */
350 int dstoffset; /* end-of-log offset in log page */
351 int freespace; /* free space in log page */
352 caddr_t p; /* src meta-data page */
353 caddr_t src;
354 int srclen;
355 int nbytes; /* number of bytes to move */
356 int i;
357 int len;
358 struct linelock *linelock;
359 struct lv *lv;
360 struct lvd *lvd;
361 int l2linesize;
363 len = 0;
365 /* retrieve destination log page to write */
366 bp = (struct lbuf *) log->bp;
367 lp = (struct logpage *) bp->l_ldata;
368 dstoffset = log->eor;
370 /* any log data to write ? */
371 if (tlck == NULL)
372 goto moveLrd;
375 * move log record data
377 /* retrieve source meta-data page to log */
378 if (tlck->flag & tlckPAGELOCK) {
379 p = (caddr_t) (tlck->mp->data);
380 linelock = (struct linelock *) & tlck->lock;
382 /* retrieve source in-memory inode to log */
383 else if (tlck->flag & tlckINODELOCK) {
384 if (tlck->type & tlckDTREE)
385 p = (caddr_t) &JFS_IP(tlck->ip)->i_dtroot;
386 else
387 p = (caddr_t) &JFS_IP(tlck->ip)->i_xtroot;
388 linelock = (struct linelock *) & tlck->lock;
390 #ifdef _JFS_WIP
391 else if (tlck->flag & tlckINLINELOCK) {
393 inlinelock = (struct inlinelock *) & tlck;
394 p = (caddr_t) & inlinelock->pxd;
395 linelock = (struct linelock *) & tlck;
397 #endif /* _JFS_WIP */
398 else {
399 jfs_err("lmWriteRecord: UFO tlck:0x%p", tlck);
400 return 0; /* Probably should trap */
402 l2linesize = linelock->l2linesize;
404 moveData:
405 ASSERT(linelock->index <= linelock->maxcnt);
407 lv = linelock->lv;
408 for (i = 0; i < linelock->index; i++, lv++) {
409 if (lv->length == 0)
410 continue;
412 /* is page full ? */
413 if (dstoffset >= LOGPSIZE - LOGPTLRSIZE) {
414 /* page become full: move on to next page */
415 lmNextPage(log);
417 bp = log->bp;
418 lp = (struct logpage *) bp->l_ldata;
419 dstoffset = LOGPHDRSIZE;
423 * move log vector data
425 src = (u8 *) p + (lv->offset << l2linesize);
426 srclen = lv->length << l2linesize;
427 len += srclen;
428 while (srclen > 0) {
429 freespace = (LOGPSIZE - LOGPTLRSIZE) - dstoffset;
430 nbytes = min(freespace, srclen);
431 dst = (caddr_t) lp + dstoffset;
432 memcpy(dst, src, nbytes);
433 dstoffset += nbytes;
435 /* is page not full ? */
436 if (dstoffset < LOGPSIZE - LOGPTLRSIZE)
437 break;
439 /* page become full: move on to next page */
440 lmNextPage(log);
442 bp = (struct lbuf *) log->bp;
443 lp = (struct logpage *) bp->l_ldata;
444 dstoffset = LOGPHDRSIZE;
446 srclen -= nbytes;
447 src += nbytes;
451 * move log vector descriptor
453 len += 4;
454 lvd = (struct lvd *) ((caddr_t) lp + dstoffset);
455 lvd->offset = cpu_to_le16(lv->offset);
456 lvd->length = cpu_to_le16(lv->length);
457 dstoffset += 4;
458 jfs_info("lmWriteRecord: lv offset:%d length:%d",
459 lv->offset, lv->length);
462 if ((i = linelock->next)) {
463 linelock = (struct linelock *) lid_to_tlock(i);
464 goto moveData;
468 * move log record descriptor
470 moveLrd:
471 lrd->length = cpu_to_le16(len);
473 src = (caddr_t) lrd;
474 srclen = LOGRDSIZE;
476 while (srclen > 0) {
477 freespace = (LOGPSIZE - LOGPTLRSIZE) - dstoffset;
478 nbytes = min(freespace, srclen);
479 dst = (caddr_t) lp + dstoffset;
480 memcpy(dst, src, nbytes);
482 dstoffset += nbytes;
483 srclen -= nbytes;
485 /* are there more to move than freespace of page ? */
486 if (srclen)
487 goto pageFull;
490 * end of log record descriptor
493 /* update last log record eor */
494 log->eor = dstoffset;
495 bp->l_eor = dstoffset;
496 lsn = (log->page << L2LOGPSIZE) + dstoffset;
498 if (lrd->type & cpu_to_le16(LOG_COMMIT)) {
499 tblk->clsn = lsn;
500 jfs_info("wr: tclsn:0x%x, beor:0x%x", tblk->clsn,
501 bp->l_eor);
503 INCREMENT(lmStat.commit); /* # of commit */
506 * enqueue tblock for group commit:
508 * enqueue tblock of non-trivial/synchronous COMMIT
509 * at tail of group commit queue
510 * (trivial/asynchronous COMMITs are ignored by
511 * group commit.)
513 LOGGC_LOCK(log);
515 /* init tblock gc state */
516 tblk->flag = tblkGC_QUEUE;
517 tblk->bp = log->bp;
518 tblk->pn = log->page;
519 tblk->eor = log->eor;
521 /* enqueue transaction to commit queue */
522 list_add_tail(&tblk->cqueue, &log->cqueue);
524 LOGGC_UNLOCK(log);
527 jfs_info("lmWriteRecord: lrd:0x%04x bp:0x%p pn:%d eor:0x%x",
528 le16_to_cpu(lrd->type), log->bp, log->page, dstoffset);
530 /* page not full ? */
531 if (dstoffset < LOGPSIZE - LOGPTLRSIZE)
532 return lsn;
534 pageFull:
535 /* page become full: move on to next page */
536 lmNextPage(log);
538 bp = (struct lbuf *) log->bp;
539 lp = (struct logpage *) bp->l_ldata;
540 dstoffset = LOGPHDRSIZE;
541 src += nbytes;
544 return lsn;
549 * NAME: lmNextPage()
551 * FUNCTION: write current page and allocate next page.
553 * PARAMETER: log
555 * RETURN: 0
557 * serialization: LOG_LOCK() held on entry/exit
559 static int lmNextPage(struct jfs_log * log)
561 struct logpage *lp;
562 int lspn; /* log sequence page number */
563 int pn; /* current page number */
564 struct lbuf *bp;
565 struct lbuf *nextbp;
566 struct tblock *tblk;
568 /* get current log page number and log sequence page number */
569 pn = log->page;
570 bp = log->bp;
571 lp = (struct logpage *) bp->l_ldata;
572 lspn = le32_to_cpu(lp->h.page);
574 LOGGC_LOCK(log);
577 * write or queue the full page at the tail of write queue
579 /* get the tail tblk on commit queue */
580 if (list_empty(&log->cqueue))
581 tblk = NULL;
582 else
583 tblk = list_entry(log->cqueue.prev, struct tblock, cqueue);
585 /* every tblk who has COMMIT record on the current page,
586 * and has not been committed, must be on commit queue
587 * since tblk is queued at commit queueu at the time
588 * of writing its COMMIT record on the page before
589 * page becomes full (even though the tblk thread
590 * who wrote COMMIT record may have been suspended
591 * currently);
594 /* is page bound with outstanding tail tblk ? */
595 if (tblk && tblk->pn == pn) {
596 /* mark tblk for end-of-page */
597 tblk->flag |= tblkGC_EOP;
599 if (log->cflag & logGC_PAGEOUT) {
600 /* if page is not already on write queue,
601 * just enqueue (no lbmWRITE to prevent redrive)
602 * buffer to wqueue to ensure correct serial order
603 * of the pages since log pages will be added
604 * continuously
606 if (bp->l_wqnext == NULL)
607 lbmWrite(log, bp, 0, 0);
608 } else {
610 * No current GC leader, initiate group commit
612 log->cflag |= logGC_PAGEOUT;
613 lmGCwrite(log, 0);
616 /* page is not bound with outstanding tblk:
617 * init write or mark it to be redriven (lbmWRITE)
619 else {
620 /* finalize the page */
621 bp->l_ceor = bp->l_eor;
622 lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_ceor);
623 lbmWrite(log, bp, lbmWRITE | lbmRELEASE | lbmFREE, 0);
625 LOGGC_UNLOCK(log);
628 * allocate/initialize next page
630 /* if log wraps, the first data page of log is 2
631 * (0 never used, 1 is superblock).
633 log->page = (pn == log->size - 1) ? 2 : pn + 1;
634 log->eor = LOGPHDRSIZE; /* ? valid page empty/full at logRedo() */
636 /* allocate/initialize next log page buffer */
637 nextbp = lbmAllocate(log, log->page);
638 nextbp->l_eor = log->eor;
639 log->bp = nextbp;
641 /* initialize next log page */
642 lp = (struct logpage *) nextbp->l_ldata;
643 lp->h.page = lp->t.page = cpu_to_le32(lspn + 1);
644 lp->h.eor = lp->t.eor = cpu_to_le16(LOGPHDRSIZE);
646 return 0;
651 * NAME: lmGroupCommit()
653 * FUNCTION: group commit
654 * initiate pageout of the pages with COMMIT in the order of
655 * page number - redrive pageout of the page at the head of
656 * pageout queue until full page has been written.
658 * RETURN:
660 * NOTE:
661 * LOGGC_LOCK serializes log group commit queue, and
662 * transaction blocks on the commit queue.
663 * N.B. LOG_LOCK is NOT held during lmGroupCommit().
665 int lmGroupCommit(struct jfs_log * log, struct tblock * tblk)
667 int rc = 0;
669 LOGGC_LOCK(log);
671 /* group committed already ? */
672 if (tblk->flag & tblkGC_COMMITTED) {
673 if (tblk->flag & tblkGC_ERROR)
674 rc = -EIO;
676 LOGGC_UNLOCK(log);
677 return rc;
679 jfs_info("lmGroup Commit: tblk = 0x%p, gcrtc = %d", tblk, log->gcrtc);
681 if (tblk->xflag & COMMIT_LAZY)
682 tblk->flag |= tblkGC_LAZY;
684 if ((!(log->cflag & logGC_PAGEOUT)) && (!list_empty(&log->cqueue)) &&
685 (!(tblk->xflag & COMMIT_LAZY) || test_bit(log_FLUSH, &log->flag)
686 || jfs_tlocks_low)) {
688 * No pageout in progress
690 * start group commit as its group leader.
692 log->cflag |= logGC_PAGEOUT;
694 lmGCwrite(log, 0);
697 if (tblk->xflag & COMMIT_LAZY) {
699 * Lazy transactions can leave now
701 LOGGC_UNLOCK(log);
702 return 0;
705 /* lmGCwrite gives up LOGGC_LOCK, check again */
707 if (tblk->flag & tblkGC_COMMITTED) {
708 if (tblk->flag & tblkGC_ERROR)
709 rc = -EIO;
711 LOGGC_UNLOCK(log);
712 return rc;
715 /* upcount transaction waiting for completion
717 log->gcrtc++;
718 tblk->flag |= tblkGC_READY;
720 __SLEEP_COND(tblk->gcwait, (tblk->flag & tblkGC_COMMITTED),
721 LOGGC_LOCK(log), LOGGC_UNLOCK(log));
723 /* removed from commit queue */
724 if (tblk->flag & tblkGC_ERROR)
725 rc = -EIO;
727 LOGGC_UNLOCK(log);
728 return rc;
732 * NAME: lmGCwrite()
734 * FUNCTION: group commit write
735 * initiate write of log page, building a group of all transactions
736 * with commit records on that page.
738 * RETURN: None
740 * NOTE:
741 * LOGGC_LOCK must be held by caller.
742 * N.B. LOG_LOCK is NOT held during lmGroupCommit().
744 static void lmGCwrite(struct jfs_log * log, int cant_write)
746 struct lbuf *bp;
747 struct logpage *lp;
748 int gcpn; /* group commit page number */
749 struct tblock *tblk;
750 struct tblock *xtblk = NULL;
753 * build the commit group of a log page
755 * scan commit queue and make a commit group of all
756 * transactions with COMMIT records on the same log page.
758 /* get the head tblk on the commit queue */
759 gcpn = list_entry(log->cqueue.next, struct tblock, cqueue)->pn;
761 list_for_each_entry(tblk, &log->cqueue, cqueue) {
762 if (tblk->pn != gcpn)
763 break;
765 xtblk = tblk;
767 /* state transition: (QUEUE, READY) -> COMMIT */
768 tblk->flag |= tblkGC_COMMIT;
770 tblk = xtblk; /* last tblk of the page */
773 * pageout to commit transactions on the log page.
775 bp = (struct lbuf *) tblk->bp;
776 lp = (struct logpage *) bp->l_ldata;
777 /* is page already full ? */
778 if (tblk->flag & tblkGC_EOP) {
779 /* mark page to free at end of group commit of the page */
780 tblk->flag &= ~tblkGC_EOP;
781 tblk->flag |= tblkGC_FREE;
782 bp->l_ceor = bp->l_eor;
783 lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_ceor);
784 lbmWrite(log, bp, lbmWRITE | lbmRELEASE | lbmGC,
785 cant_write);
786 INCREMENT(lmStat.full_page);
788 /* page is not yet full */
789 else {
790 bp->l_ceor = tblk->eor; /* ? bp->l_ceor = bp->l_eor; */
791 lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_ceor);
792 lbmWrite(log, bp, lbmWRITE | lbmGC, cant_write);
793 INCREMENT(lmStat.partial_page);
798 * NAME: lmPostGC()
800 * FUNCTION: group commit post-processing
801 * Processes transactions after their commit records have been written
802 * to disk, redriving log I/O if necessary.
804 * RETURN: None
806 * NOTE:
807 * This routine is called a interrupt time by lbmIODone
809 static void lmPostGC(struct lbuf * bp)
811 unsigned long flags;
812 struct jfs_log *log = bp->l_log;
813 struct logpage *lp;
814 struct tblock *tblk, *temp;
816 //LOGGC_LOCK(log);
817 spin_lock_irqsave(&log->gclock, flags);
819 * current pageout of group commit completed.
821 * remove/wakeup transactions from commit queue who were
822 * group committed with the current log page
824 list_for_each_entry_safe(tblk, temp, &log->cqueue, cqueue) {
825 if (!(tblk->flag & tblkGC_COMMIT))
826 break;
827 /* if transaction was marked GC_COMMIT then
828 * it has been shipped in the current pageout
829 * and made it to disk - it is committed.
832 if (bp->l_flag & lbmERROR)
833 tblk->flag |= tblkGC_ERROR;
835 /* remove it from the commit queue */
836 list_del(&tblk->cqueue);
837 tblk->flag &= ~tblkGC_QUEUE;
839 if (tblk == log->flush_tblk) {
840 /* we can stop flushing the log now */
841 clear_bit(log_FLUSH, &log->flag);
842 log->flush_tblk = NULL;
845 jfs_info("lmPostGC: tblk = 0x%p, flag = 0x%x", tblk,
846 tblk->flag);
848 if (!(tblk->xflag & COMMIT_FORCE))
850 * Hand tblk over to lazy commit thread
852 txLazyUnlock(tblk);
853 else {
854 /* state transition: COMMIT -> COMMITTED */
855 tblk->flag |= tblkGC_COMMITTED;
857 if (tblk->flag & tblkGC_READY)
858 log->gcrtc--;
860 LOGGC_WAKEUP(tblk);
863 /* was page full before pageout ?
864 * (and this is the last tblk bound with the page)
866 if (tblk->flag & tblkGC_FREE)
867 lbmFree(bp);
868 /* did page become full after pageout ?
869 * (and this is the last tblk bound with the page)
871 else if (tblk->flag & tblkGC_EOP) {
872 /* finalize the page */
873 lp = (struct logpage *) bp->l_ldata;
874 bp->l_ceor = bp->l_eor;
875 lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_eor);
876 jfs_info("lmPostGC: calling lbmWrite");
877 lbmWrite(log, bp, lbmWRITE | lbmRELEASE | lbmFREE,
883 /* are there any transactions who have entered lnGroupCommit()
884 * (whose COMMITs are after that of the last log page written.
885 * They are waiting for new group commit (above at (SLEEP 1))
886 * or lazy transactions are on a full (queued) log page,
887 * select the latest ready transaction as new group leader and
888 * wake her up to lead her group.
890 if ((!list_empty(&log->cqueue)) &&
891 ((log->gcrtc > 0) || (tblk->bp->l_wqnext != NULL) ||
892 test_bit(log_FLUSH, &log->flag) || jfs_tlocks_low))
894 * Call lmGCwrite with new group leader
896 lmGCwrite(log, 1);
898 /* no transaction are ready yet (transactions are only just
899 * queued (GC_QUEUE) and not entered for group commit yet).
900 * the first transaction entering group commit
901 * will elect herself as new group leader.
903 else
904 log->cflag &= ~logGC_PAGEOUT;
906 //LOGGC_UNLOCK(log);
907 spin_unlock_irqrestore(&log->gclock, flags);
908 return;
912 * NAME: lmLogSync()
914 * FUNCTION: write log SYNCPT record for specified log
915 * if new sync address is available
916 * (normally the case if sync() is executed by back-ground
917 * process).
918 * calculate new value of i_nextsync which determines when
919 * this code is called again.
921 * PARAMETERS: log - log structure
922 * hard_sync - 1 to force all metadata to be written
924 * RETURN: 0
926 * serialization: LOG_LOCK() held on entry/exit
928 static int lmLogSync(struct jfs_log * log, int hard_sync)
930 int logsize;
931 int written; /* written since last syncpt */
932 int free; /* free space left available */
933 int delta; /* additional delta to write normally */
934 int more; /* additional write granted */
935 struct lrd lrd;
936 int lsn;
937 struct logsyncblk *lp;
938 struct jfs_sb_info *sbi;
939 unsigned long flags;
941 /* push dirty metapages out to disk */
942 if (hard_sync)
943 list_for_each_entry(sbi, &log->sb_list, log_list) {
944 filemap_fdatawrite(sbi->ipbmap->i_mapping);
945 filemap_fdatawrite(sbi->ipimap->i_mapping);
946 filemap_fdatawrite(sbi->direct_inode->i_mapping);
948 else
949 list_for_each_entry(sbi, &log->sb_list, log_list) {
950 filemap_flush(sbi->ipbmap->i_mapping);
951 filemap_flush(sbi->ipimap->i_mapping);
952 filemap_flush(sbi->direct_inode->i_mapping);
956 * forward syncpt
958 /* if last sync is same as last syncpt,
959 * invoke sync point forward processing to update sync.
962 if (log->sync == log->syncpt) {
963 LOGSYNC_LOCK(log, flags);
964 if (list_empty(&log->synclist))
965 log->sync = log->lsn;
966 else {
967 lp = list_entry(log->synclist.next,
968 struct logsyncblk, synclist);
969 log->sync = lp->lsn;
971 LOGSYNC_UNLOCK(log, flags);
975 /* if sync is different from last syncpt,
976 * write a SYNCPT record with syncpt = sync.
977 * reset syncpt = sync
979 if (log->sync != log->syncpt) {
980 lrd.logtid = 0;
981 lrd.backchain = 0;
982 lrd.type = cpu_to_le16(LOG_SYNCPT);
983 lrd.length = 0;
984 lrd.log.syncpt.sync = cpu_to_le32(log->sync);
985 lsn = lmWriteRecord(log, NULL, &lrd, NULL);
987 log->syncpt = log->sync;
988 } else
989 lsn = log->lsn;
992 * setup next syncpt trigger (SWAG)
994 logsize = log->logsize;
996 logdiff(written, lsn, log);
997 free = logsize - written;
998 delta = LOGSYNC_DELTA(logsize);
999 more = min(free / 2, delta);
1000 if (more < 2 * LOGPSIZE) {
1001 jfs_warn("\n ... Log Wrap ... Log Wrap ... Log Wrap ...\n");
1003 * log wrapping
1005 * option 1 - panic ? No.!
1006 * option 2 - shutdown file systems
1007 * associated with log ?
1008 * option 3 - extend log ?
1011 * option 4 - second chance
1013 * mark log wrapped, and continue.
1014 * when all active transactions are completed,
1015 * mark log vaild for recovery.
1016 * if crashed during invalid state, log state
1017 * implies invald log, forcing fsck().
1019 /* mark log state log wrap in log superblock */
1020 /* log->state = LOGWRAP; */
1022 /* reset sync point computation */
1023 log->syncpt = log->sync = lsn;
1024 log->nextsync = delta;
1025 } else
1026 /* next syncpt trigger = written + more */
1027 log->nextsync = written + more;
1029 /* if number of bytes written from last sync point is more
1030 * than 1/4 of the log size, stop new transactions from
1031 * starting until all current transactions are completed
1032 * by setting syncbarrier flag.
1034 if (!test_bit(log_SYNCBARRIER, &log->flag) &&
1035 (written > LOGSYNC_BARRIER(logsize)) && log->active) {
1036 set_bit(log_SYNCBARRIER, &log->flag);
1037 jfs_info("log barrier on: lsn=0x%x syncpt=0x%x", lsn,
1038 log->syncpt);
1040 * We may have to initiate group commit
1042 jfs_flush_journal(log, 0);
1045 return lsn;
1049 * NAME: jfs_syncpt
1051 * FUNCTION: write log SYNCPT record for specified log
1053 * PARAMETERS: log - log structure
1054 * hard_sync - set to 1 to force metadata to be written
1056 void jfs_syncpt(struct jfs_log *log, int hard_sync)
1057 { LOG_LOCK(log);
1058 lmLogSync(log, hard_sync);
1059 LOG_UNLOCK(log);
1063 * NAME: lmLogOpen()
1065 * FUNCTION: open the log on first open;
1066 * insert filesystem in the active list of the log.
1068 * PARAMETER: ipmnt - file system mount inode
1069 * iplog - log inode (out)
1071 * RETURN:
1073 * serialization:
1075 int lmLogOpen(struct super_block *sb)
1077 int rc;
1078 struct block_device *bdev;
1079 struct jfs_log *log;
1080 struct jfs_sb_info *sbi = JFS_SBI(sb);
1082 if (sbi->flag & JFS_NOINTEGRITY)
1083 return open_dummy_log(sb);
1085 if (sbi->mntflag & JFS_INLINELOG)
1086 return open_inline_log(sb);
1088 mutex_lock(&jfs_log_mutex);
1089 list_for_each_entry(log, &jfs_external_logs, journal_list) {
1090 if (log->bdev->bd_dev == sbi->logdev) {
1091 if (memcmp(log->uuid, sbi->loguuid,
1092 sizeof(log->uuid))) {
1093 jfs_warn("wrong uuid on JFS journal\n");
1094 mutex_unlock(&jfs_log_mutex);
1095 return -EINVAL;
1098 * add file system to log active file system list
1100 if ((rc = lmLogFileSystem(log, sbi, 1))) {
1101 mutex_unlock(&jfs_log_mutex);
1102 return rc;
1104 goto journal_found;
1108 if (!(log = kzalloc(sizeof(struct jfs_log), GFP_KERNEL))) {
1109 mutex_unlock(&jfs_log_mutex);
1110 return -ENOMEM;
1112 INIT_LIST_HEAD(&log->sb_list);
1113 init_waitqueue_head(&log->syncwait);
1116 * external log as separate logical volume
1118 * file systems to log may have n-to-1 relationship;
1121 bdev = open_by_devnum(sbi->logdev, FMODE_READ|FMODE_WRITE);
1122 if (IS_ERR(bdev)) {
1123 rc = -PTR_ERR(bdev);
1124 goto free;
1127 if ((rc = bd_claim(bdev, log))) {
1128 goto close;
1131 log->bdev = bdev;
1132 memcpy(log->uuid, sbi->loguuid, sizeof(log->uuid));
1135 * initialize log:
1137 if ((rc = lmLogInit(log)))
1138 goto unclaim;
1140 list_add(&log->journal_list, &jfs_external_logs);
1143 * add file system to log active file system list
1145 if ((rc = lmLogFileSystem(log, sbi, 1)))
1146 goto shutdown;
1148 journal_found:
1149 LOG_LOCK(log);
1150 list_add(&sbi->log_list, &log->sb_list);
1151 sbi->log = log;
1152 LOG_UNLOCK(log);
1154 mutex_unlock(&jfs_log_mutex);
1155 return 0;
1158 * unwind on error
1160 shutdown: /* unwind lbmLogInit() */
1161 list_del(&log->journal_list);
1162 lbmLogShutdown(log);
1164 unclaim:
1165 bd_release(bdev);
1167 close: /* close external log device */
1168 blkdev_put(bdev);
1170 free: /* free log descriptor */
1171 mutex_unlock(&jfs_log_mutex);
1172 kfree(log);
1174 jfs_warn("lmLogOpen: exit(%d)", rc);
1175 return rc;
1178 static int open_inline_log(struct super_block *sb)
1180 struct jfs_log *log;
1181 int rc;
1183 if (!(log = kzalloc(sizeof(struct jfs_log), GFP_KERNEL)))
1184 return -ENOMEM;
1185 INIT_LIST_HEAD(&log->sb_list);
1186 init_waitqueue_head(&log->syncwait);
1188 set_bit(log_INLINELOG, &log->flag);
1189 log->bdev = sb->s_bdev;
1190 log->base = addressPXD(&JFS_SBI(sb)->logpxd);
1191 log->size = lengthPXD(&JFS_SBI(sb)->logpxd) >>
1192 (L2LOGPSIZE - sb->s_blocksize_bits);
1193 log->l2bsize = sb->s_blocksize_bits;
1194 ASSERT(L2LOGPSIZE >= sb->s_blocksize_bits);
1197 * initialize log.
1199 if ((rc = lmLogInit(log))) {
1200 kfree(log);
1201 jfs_warn("lmLogOpen: exit(%d)", rc);
1202 return rc;
1205 list_add(&JFS_SBI(sb)->log_list, &log->sb_list);
1206 JFS_SBI(sb)->log = log;
1208 return rc;
1211 static int open_dummy_log(struct super_block *sb)
1213 int rc;
1215 mutex_lock(&jfs_log_mutex);
1216 if (!dummy_log) {
1217 dummy_log = kzalloc(sizeof(struct jfs_log), GFP_KERNEL);
1218 if (!dummy_log) {
1219 mutex_unlock(&jfs_log_mutex);
1220 return -ENOMEM;
1222 INIT_LIST_HEAD(&dummy_log->sb_list);
1223 init_waitqueue_head(&dummy_log->syncwait);
1224 dummy_log->no_integrity = 1;
1225 /* Make up some stuff */
1226 dummy_log->base = 0;
1227 dummy_log->size = 1024;
1228 rc = lmLogInit(dummy_log);
1229 if (rc) {
1230 kfree(dummy_log);
1231 dummy_log = NULL;
1232 mutex_unlock(&jfs_log_mutex);
1233 return rc;
1237 LOG_LOCK(dummy_log);
1238 list_add(&JFS_SBI(sb)->log_list, &dummy_log->sb_list);
1239 JFS_SBI(sb)->log = dummy_log;
1240 LOG_UNLOCK(dummy_log);
1241 mutex_unlock(&jfs_log_mutex);
1243 return 0;
1247 * NAME: lmLogInit()
1249 * FUNCTION: log initialization at first log open.
1251 * logredo() (or logformat()) should have been run previously.
1252 * initialize the log from log superblock.
1253 * set the log state in the superblock to LOGMOUNT and
1254 * write SYNCPT log record.
1256 * PARAMETER: log - log structure
1258 * RETURN: 0 - if ok
1259 * -EINVAL - bad log magic number or superblock dirty
1260 * error returned from logwait()
1262 * serialization: single first open thread
1264 int lmLogInit(struct jfs_log * log)
1266 int rc = 0;
1267 struct lrd lrd;
1268 struct logsuper *logsuper;
1269 struct lbuf *bpsuper;
1270 struct lbuf *bp;
1271 struct logpage *lp;
1272 int lsn = 0;
1274 jfs_info("lmLogInit: log:0x%p", log);
1276 /* initialize the group commit serialization lock */
1277 LOGGC_LOCK_INIT(log);
1279 /* allocate/initialize the log write serialization lock */
1280 LOG_LOCK_INIT(log);
1282 LOGSYNC_LOCK_INIT(log);
1284 INIT_LIST_HEAD(&log->synclist);
1286 INIT_LIST_HEAD(&log->cqueue);
1287 log->flush_tblk = NULL;
1289 log->count = 0;
1292 * initialize log i/o
1294 if ((rc = lbmLogInit(log)))
1295 return rc;
1297 if (!test_bit(log_INLINELOG, &log->flag))
1298 log->l2bsize = L2LOGPSIZE;
1300 /* check for disabled journaling to disk */
1301 if (log->no_integrity) {
1303 * Journal pages will still be filled. When the time comes
1304 * to actually do the I/O, the write is not done, and the
1305 * endio routine is called directly.
1307 bp = lbmAllocate(log , 0);
1308 log->bp = bp;
1309 bp->l_pn = bp->l_eor = 0;
1310 } else {
1312 * validate log superblock
1314 if ((rc = lbmRead(log, 1, &bpsuper)))
1315 goto errout10;
1317 logsuper = (struct logsuper *) bpsuper->l_ldata;
1319 if (logsuper->magic != cpu_to_le32(LOGMAGIC)) {
1320 jfs_warn("*** Log Format Error ! ***");
1321 rc = -EINVAL;
1322 goto errout20;
1325 /* logredo() should have been run successfully. */
1326 if (logsuper->state != cpu_to_le32(LOGREDONE)) {
1327 jfs_warn("*** Log Is Dirty ! ***");
1328 rc = -EINVAL;
1329 goto errout20;
1332 /* initialize log from log superblock */
1333 if (test_bit(log_INLINELOG,&log->flag)) {
1334 if (log->size != le32_to_cpu(logsuper->size)) {
1335 rc = -EINVAL;
1336 goto errout20;
1338 jfs_info("lmLogInit: inline log:0x%p base:0x%Lx "
1339 "size:0x%x", log,
1340 (unsigned long long) log->base, log->size);
1341 } else {
1342 if (memcmp(logsuper->uuid, log->uuid, 16)) {
1343 jfs_warn("wrong uuid on JFS log device");
1344 goto errout20;
1346 log->size = le32_to_cpu(logsuper->size);
1347 log->l2bsize = le32_to_cpu(logsuper->l2bsize);
1348 jfs_info("lmLogInit: external log:0x%p base:0x%Lx "
1349 "size:0x%x", log,
1350 (unsigned long long) log->base, log->size);
1353 log->page = le32_to_cpu(logsuper->end) / LOGPSIZE;
1354 log->eor = le32_to_cpu(logsuper->end) - (LOGPSIZE * log->page);
1357 * initialize for log append write mode
1359 /* establish current/end-of-log page/buffer */
1360 if ((rc = lbmRead(log, log->page, &bp)))
1361 goto errout20;
1363 lp = (struct logpage *) bp->l_ldata;
1365 jfs_info("lmLogInit: lsn:0x%x page:%d eor:%d:%d",
1366 le32_to_cpu(logsuper->end), log->page, log->eor,
1367 le16_to_cpu(lp->h.eor));
1369 log->bp = bp;
1370 bp->l_pn = log->page;
1371 bp->l_eor = log->eor;
1373 /* if current page is full, move on to next page */
1374 if (log->eor >= LOGPSIZE - LOGPTLRSIZE)
1375 lmNextPage(log);
1378 * initialize log syncpoint
1381 * write the first SYNCPT record with syncpoint = 0
1382 * (i.e., log redo up to HERE !);
1383 * remove current page from lbm write queue at end of pageout
1384 * (to write log superblock update), but do not release to
1385 * freelist;
1387 lrd.logtid = 0;
1388 lrd.backchain = 0;
1389 lrd.type = cpu_to_le16(LOG_SYNCPT);
1390 lrd.length = 0;
1391 lrd.log.syncpt.sync = 0;
1392 lsn = lmWriteRecord(log, NULL, &lrd, NULL);
1393 bp = log->bp;
1394 bp->l_ceor = bp->l_eor;
1395 lp = (struct logpage *) bp->l_ldata;
1396 lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_eor);
1397 lbmWrite(log, bp, lbmWRITE | lbmSYNC, 0);
1398 if ((rc = lbmIOWait(bp, 0)))
1399 goto errout30;
1402 * update/write superblock
1404 logsuper->state = cpu_to_le32(LOGMOUNT);
1405 log->serial = le32_to_cpu(logsuper->serial) + 1;
1406 logsuper->serial = cpu_to_le32(log->serial);
1407 lbmDirectWrite(log, bpsuper, lbmWRITE | lbmRELEASE | lbmSYNC);
1408 if ((rc = lbmIOWait(bpsuper, lbmFREE)))
1409 goto errout30;
1412 /* initialize logsync parameters */
1413 log->logsize = (log->size - 2) << L2LOGPSIZE;
1414 log->lsn = lsn;
1415 log->syncpt = lsn;
1416 log->sync = log->syncpt;
1417 log->nextsync = LOGSYNC_DELTA(log->logsize);
1419 jfs_info("lmLogInit: lsn:0x%x syncpt:0x%x sync:0x%x",
1420 log->lsn, log->syncpt, log->sync);
1423 * initialize for lazy/group commit
1425 log->clsn = lsn;
1427 return 0;
1430 * unwind on error
1432 errout30: /* release log page */
1433 log->wqueue = NULL;
1434 bp->l_wqnext = NULL;
1435 lbmFree(bp);
1437 errout20: /* release log superblock */
1438 lbmFree(bpsuper);
1440 errout10: /* unwind lbmLogInit() */
1441 lbmLogShutdown(log);
1443 jfs_warn("lmLogInit: exit(%d)", rc);
1444 return rc;
1449 * NAME: lmLogClose()
1451 * FUNCTION: remove file system <ipmnt> from active list of log <iplog>
1452 * and close it on last close.
1454 * PARAMETER: sb - superblock
1456 * RETURN: errors from subroutines
1458 * serialization:
1460 int lmLogClose(struct super_block *sb)
1462 struct jfs_sb_info *sbi = JFS_SBI(sb);
1463 struct jfs_log *log = sbi->log;
1464 struct block_device *bdev;
1465 int rc = 0;
1467 jfs_info("lmLogClose: log:0x%p", log);
1469 mutex_lock(&jfs_log_mutex);
1470 LOG_LOCK(log);
1471 list_del(&sbi->log_list);
1472 LOG_UNLOCK(log);
1473 sbi->log = NULL;
1476 * We need to make sure all of the "written" metapages
1477 * actually make it to disk
1479 sync_blockdev(sb->s_bdev);
1481 if (test_bit(log_INLINELOG, &log->flag)) {
1483 * in-line log in host file system
1485 rc = lmLogShutdown(log);
1486 kfree(log);
1487 goto out;
1490 if (!log->no_integrity)
1491 lmLogFileSystem(log, sbi, 0);
1493 if (!list_empty(&log->sb_list))
1494 goto out;
1497 * TODO: ensure that the dummy_log is in a state to allow
1498 * lbmLogShutdown to deallocate all the buffers and call
1499 * kfree against dummy_log. For now, leave dummy_log & its
1500 * buffers in memory, and resuse if another no-integrity mount
1501 * is requested.
1503 if (log->no_integrity)
1504 goto out;
1507 * external log as separate logical volume
1509 list_del(&log->journal_list);
1510 bdev = log->bdev;
1511 rc = lmLogShutdown(log);
1513 bd_release(bdev);
1514 blkdev_put(bdev);
1516 kfree(log);
1518 out:
1519 mutex_unlock(&jfs_log_mutex);
1520 jfs_info("lmLogClose: exit(%d)", rc);
1521 return rc;
1526 * NAME: jfs_flush_journal()
1528 * FUNCTION: initiate write of any outstanding transactions to the journal
1529 * and optionally wait until they are all written to disk
1531 * wait == 0 flush until latest txn is committed, don't wait
1532 * wait == 1 flush until latest txn is committed, wait
1533 * wait > 1 flush until all txn's are complete, wait
1535 void jfs_flush_journal(struct jfs_log *log, int wait)
1537 int i;
1538 struct tblock *target = NULL;
1539 struct jfs_sb_info *sbi;
1541 /* jfs_write_inode may call us during read-only mount */
1542 if (!log)
1543 return;
1545 jfs_info("jfs_flush_journal: log:0x%p wait=%d", log, wait);
1547 LOGGC_LOCK(log);
1549 if (!list_empty(&log->cqueue)) {
1551 * This ensures that we will keep writing to the journal as long
1552 * as there are unwritten commit records
1554 target = list_entry(log->cqueue.prev, struct tblock, cqueue);
1556 if (test_bit(log_FLUSH, &log->flag)) {
1558 * We're already flushing.
1559 * if flush_tblk is NULL, we are flushing everything,
1560 * so leave it that way. Otherwise, update it to the
1561 * latest transaction
1563 if (log->flush_tblk)
1564 log->flush_tblk = target;
1565 } else {
1566 /* Only flush until latest transaction is committed */
1567 log->flush_tblk = target;
1568 set_bit(log_FLUSH, &log->flag);
1571 * Initiate I/O on outstanding transactions
1573 if (!(log->cflag & logGC_PAGEOUT)) {
1574 log->cflag |= logGC_PAGEOUT;
1575 lmGCwrite(log, 0);
1579 if ((wait > 1) || test_bit(log_SYNCBARRIER, &log->flag)) {
1580 /* Flush until all activity complete */
1581 set_bit(log_FLUSH, &log->flag);
1582 log->flush_tblk = NULL;
1585 if (wait && target && !(target->flag & tblkGC_COMMITTED)) {
1586 DECLARE_WAITQUEUE(__wait, current);
1588 add_wait_queue(&target->gcwait, &__wait);
1589 set_current_state(TASK_UNINTERRUPTIBLE);
1590 LOGGC_UNLOCK(log);
1591 schedule();
1592 __set_current_state(TASK_RUNNING);
1593 LOGGC_LOCK(log);
1594 remove_wait_queue(&target->gcwait, &__wait);
1596 LOGGC_UNLOCK(log);
1598 if (wait < 2)
1599 return;
1601 list_for_each_entry(sbi, &log->sb_list, log_list) {
1602 filemap_fdatawrite(sbi->ipbmap->i_mapping);
1603 filemap_fdatawrite(sbi->ipimap->i_mapping);
1604 filemap_fdatawrite(sbi->direct_inode->i_mapping);
1608 * If there was recent activity, we may need to wait
1609 * for the lazycommit thread to catch up
1611 if ((!list_empty(&log->cqueue)) || !list_empty(&log->synclist)) {
1612 for (i = 0; i < 200; i++) { /* Too much? */
1613 msleep(250);
1614 if (list_empty(&log->cqueue) &&
1615 list_empty(&log->synclist))
1616 break;
1619 assert(list_empty(&log->cqueue));
1621 #ifdef CONFIG_JFS_DEBUG
1622 if (!list_empty(&log->synclist)) {
1623 struct logsyncblk *lp;
1625 list_for_each_entry(lp, &log->synclist, synclist) {
1626 if (lp->xflag & COMMIT_PAGE) {
1627 struct metapage *mp = (struct metapage *)lp;
1628 dump_mem("orphan metapage", lp,
1629 sizeof(struct metapage));
1630 dump_mem("page", mp->page, sizeof(struct page));
1632 else
1633 dump_mem("orphan tblock", lp,
1634 sizeof(struct tblock));
1637 #endif
1638 //assert(list_empty(&log->synclist));
1639 clear_bit(log_FLUSH, &log->flag);
1643 * NAME: lmLogShutdown()
1645 * FUNCTION: log shutdown at last LogClose().
1647 * write log syncpt record.
1648 * update super block to set redone flag to 0.
1650 * PARAMETER: log - log inode
1652 * RETURN: 0 - success
1654 * serialization: single last close thread
1656 int lmLogShutdown(struct jfs_log * log)
1658 int rc;
1659 struct lrd lrd;
1660 int lsn;
1661 struct logsuper *logsuper;
1662 struct lbuf *bpsuper;
1663 struct lbuf *bp;
1664 struct logpage *lp;
1666 jfs_info("lmLogShutdown: log:0x%p", log);
1668 jfs_flush_journal(log, 2);
1671 * write the last SYNCPT record with syncpoint = 0
1672 * (i.e., log redo up to HERE !)
1674 lrd.logtid = 0;
1675 lrd.backchain = 0;
1676 lrd.type = cpu_to_le16(LOG_SYNCPT);
1677 lrd.length = 0;
1678 lrd.log.syncpt.sync = 0;
1680 lsn = lmWriteRecord(log, NULL, &lrd, NULL);
1681 bp = log->bp;
1682 lp = (struct logpage *) bp->l_ldata;
1683 lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_eor);
1684 lbmWrite(log, log->bp, lbmWRITE | lbmRELEASE | lbmSYNC, 0);
1685 lbmIOWait(log->bp, lbmFREE);
1686 log->bp = NULL;
1689 * synchronous update log superblock
1690 * mark log state as shutdown cleanly
1691 * (i.e., Log does not need to be replayed).
1693 if ((rc = lbmRead(log, 1, &bpsuper)))
1694 goto out;
1696 logsuper = (struct logsuper *) bpsuper->l_ldata;
1697 logsuper->state = cpu_to_le32(LOGREDONE);
1698 logsuper->end = cpu_to_le32(lsn);
1699 lbmDirectWrite(log, bpsuper, lbmWRITE | lbmRELEASE | lbmSYNC);
1700 rc = lbmIOWait(bpsuper, lbmFREE);
1702 jfs_info("lmLogShutdown: lsn:0x%x page:%d eor:%d",
1703 lsn, log->page, log->eor);
1705 out:
1707 * shutdown per log i/o
1709 lbmLogShutdown(log);
1711 if (rc) {
1712 jfs_warn("lmLogShutdown: exit(%d)", rc);
1714 return rc;
1719 * NAME: lmLogFileSystem()
1721 * FUNCTION: insert (<activate> = true)/remove (<activate> = false)
1722 * file system into/from log active file system list.
1724 * PARAMETE: log - pointer to logs inode.
1725 * fsdev - kdev_t of filesystem.
1726 * serial - pointer to returned log serial number
1727 * activate - insert/remove device from active list.
1729 * RETURN: 0 - success
1730 * errors returned by vms_iowait().
1732 static int lmLogFileSystem(struct jfs_log * log, struct jfs_sb_info *sbi,
1733 int activate)
1735 int rc = 0;
1736 int i;
1737 struct logsuper *logsuper;
1738 struct lbuf *bpsuper;
1739 char *uuid = sbi->uuid;
1742 * insert/remove file system device to log active file system list.
1744 if ((rc = lbmRead(log, 1, &bpsuper)))
1745 return rc;
1747 logsuper = (struct logsuper *) bpsuper->l_ldata;
1748 if (activate) {
1749 for (i = 0; i < MAX_ACTIVE; i++)
1750 if (!memcmp(logsuper->active[i].uuid, NULL_UUID, 16)) {
1751 memcpy(logsuper->active[i].uuid, uuid, 16);
1752 sbi->aggregate = i;
1753 break;
1755 if (i == MAX_ACTIVE) {
1756 jfs_warn("Too many file systems sharing journal!");
1757 lbmFree(bpsuper);
1758 return -EMFILE; /* Is there a better rc? */
1760 } else {
1761 for (i = 0; i < MAX_ACTIVE; i++)
1762 if (!memcmp(logsuper->active[i].uuid, uuid, 16)) {
1763 memcpy(logsuper->active[i].uuid, NULL_UUID, 16);
1764 break;
1766 if (i == MAX_ACTIVE) {
1767 jfs_warn("Somebody stomped on the journal!");
1768 lbmFree(bpsuper);
1769 return -EIO;
1775 * synchronous write log superblock:
1777 * write sidestream bypassing write queue:
1778 * at file system mount, log super block is updated for
1779 * activation of the file system before any log record
1780 * (MOUNT record) of the file system, and at file system
1781 * unmount, all meta data for the file system has been
1782 * flushed before log super block is updated for deactivation
1783 * of the file system.
1785 lbmDirectWrite(log, bpsuper, lbmWRITE | lbmRELEASE | lbmSYNC);
1786 rc = lbmIOWait(bpsuper, lbmFREE);
1788 return rc;
1792 * log buffer manager (lbm)
1793 * ------------------------
1795 * special purpose buffer manager supporting log i/o requirements.
1797 * per log write queue:
1798 * log pageout occurs in serial order by fifo write queue and
1799 * restricting to a single i/o in pregress at any one time.
1800 * a circular singly-linked list
1801 * (log->wrqueue points to the tail, and buffers are linked via
1802 * bp->wrqueue field), and
1803 * maintains log page in pageout ot waiting for pageout in serial pageout.
1807 * lbmLogInit()
1809 * initialize per log I/O setup at lmLogInit()
1811 static int lbmLogInit(struct jfs_log * log)
1812 { /* log inode */
1813 int i;
1814 struct lbuf *lbuf;
1816 jfs_info("lbmLogInit: log:0x%p", log);
1818 /* initialize current buffer cursor */
1819 log->bp = NULL;
1821 /* initialize log device write queue */
1822 log->wqueue = NULL;
1825 * Each log has its own buffer pages allocated to it. These are
1826 * not managed by the page cache. This ensures that a transaction
1827 * writing to the log does not block trying to allocate a page from
1828 * the page cache (for the log). This would be bad, since page
1829 * allocation waits on the kswapd thread that may be committing inodes
1830 * which would cause log activity. Was that clear? I'm trying to
1831 * avoid deadlock here.
1833 init_waitqueue_head(&log->free_wait);
1835 log->lbuf_free = NULL;
1837 for (i = 0; i < LOGPAGES;) {
1838 char *buffer;
1839 uint offset;
1840 struct page *page;
1842 buffer = (char *) get_zeroed_page(GFP_KERNEL);
1843 if (buffer == NULL)
1844 goto error;
1845 page = virt_to_page(buffer);
1846 for (offset = 0; offset < PAGE_SIZE; offset += LOGPSIZE) {
1847 lbuf = kmalloc(sizeof(struct lbuf), GFP_KERNEL);
1848 if (lbuf == NULL) {
1849 if (offset == 0)
1850 free_page((unsigned long) buffer);
1851 goto error;
1853 if (offset) /* we already have one reference */
1854 get_page(page);
1855 lbuf->l_offset = offset;
1856 lbuf->l_ldata = buffer + offset;
1857 lbuf->l_page = page;
1858 lbuf->l_log = log;
1859 init_waitqueue_head(&lbuf->l_ioevent);
1861 lbuf->l_freelist = log->lbuf_free;
1862 log->lbuf_free = lbuf;
1863 i++;
1867 return (0);
1869 error:
1870 lbmLogShutdown(log);
1871 return -ENOMEM;
1876 * lbmLogShutdown()
1878 * finalize per log I/O setup at lmLogShutdown()
1880 static void lbmLogShutdown(struct jfs_log * log)
1882 struct lbuf *lbuf;
1884 jfs_info("lbmLogShutdown: log:0x%p", log);
1886 lbuf = log->lbuf_free;
1887 while (lbuf) {
1888 struct lbuf *next = lbuf->l_freelist;
1889 __free_page(lbuf->l_page);
1890 kfree(lbuf);
1891 lbuf = next;
1897 * lbmAllocate()
1899 * allocate an empty log buffer
1901 static struct lbuf *lbmAllocate(struct jfs_log * log, int pn)
1903 struct lbuf *bp;
1904 unsigned long flags;
1907 * recycle from log buffer freelist if any
1909 LCACHE_LOCK(flags);
1910 LCACHE_SLEEP_COND(log->free_wait, (bp = log->lbuf_free), flags);
1911 log->lbuf_free = bp->l_freelist;
1912 LCACHE_UNLOCK(flags);
1914 bp->l_flag = 0;
1916 bp->l_wqnext = NULL;
1917 bp->l_freelist = NULL;
1919 bp->l_pn = pn;
1920 bp->l_blkno = log->base + (pn << (L2LOGPSIZE - log->l2bsize));
1921 bp->l_ceor = 0;
1923 return bp;
1928 * lbmFree()
1930 * release a log buffer to freelist
1932 static void lbmFree(struct lbuf * bp)
1934 unsigned long flags;
1936 LCACHE_LOCK(flags);
1938 lbmfree(bp);
1940 LCACHE_UNLOCK(flags);
1943 static void lbmfree(struct lbuf * bp)
1945 struct jfs_log *log = bp->l_log;
1947 assert(bp->l_wqnext == NULL);
1950 * return the buffer to head of freelist
1952 bp->l_freelist = log->lbuf_free;
1953 log->lbuf_free = bp;
1955 wake_up(&log->free_wait);
1956 return;
1961 * NAME: lbmRedrive
1963 * FUNCTION: add a log buffer to the log redrive list
1965 * PARAMETER:
1966 * bp - log buffer
1968 * NOTES:
1969 * Takes log_redrive_lock.
1971 static inline void lbmRedrive(struct lbuf *bp)
1973 unsigned long flags;
1975 spin_lock_irqsave(&log_redrive_lock, flags);
1976 bp->l_redrive_next = log_redrive_list;
1977 log_redrive_list = bp;
1978 spin_unlock_irqrestore(&log_redrive_lock, flags);
1980 wake_up_process(jfsIOthread);
1985 * lbmRead()
1987 static int lbmRead(struct jfs_log * log, int pn, struct lbuf ** bpp)
1989 struct bio *bio;
1990 struct lbuf *bp;
1993 * allocate a log buffer
1995 *bpp = bp = lbmAllocate(log, pn);
1996 jfs_info("lbmRead: bp:0x%p pn:0x%x", bp, pn);
1998 bp->l_flag |= lbmREAD;
2000 bio = bio_alloc(GFP_NOFS, 1);
2002 bio->bi_sector = bp->l_blkno << (log->l2bsize - 9);
2003 bio->bi_bdev = log->bdev;
2004 bio->bi_io_vec[0].bv_page = bp->l_page;
2005 bio->bi_io_vec[0].bv_len = LOGPSIZE;
2006 bio->bi_io_vec[0].bv_offset = bp->l_offset;
2008 bio->bi_vcnt = 1;
2009 bio->bi_idx = 0;
2010 bio->bi_size = LOGPSIZE;
2012 bio->bi_end_io = lbmIODone;
2013 bio->bi_private = bp;
2014 submit_bio(READ_SYNC, bio);
2016 wait_event(bp->l_ioevent, (bp->l_flag != lbmREAD));
2018 return 0;
2023 * lbmWrite()
2025 * buffer at head of pageout queue stays after completion of
2026 * partial-page pageout and redriven by explicit initiation of
2027 * pageout by caller until full-page pageout is completed and
2028 * released.
2030 * device driver i/o done redrives pageout of new buffer at
2031 * head of pageout queue when current buffer at head of pageout
2032 * queue is released at the completion of its full-page pageout.
2034 * LOGGC_LOCK() serializes lbmWrite() by lmNextPage() and lmGroupCommit().
2035 * LCACHE_LOCK() serializes xflag between lbmWrite() and lbmIODone()
2037 static void lbmWrite(struct jfs_log * log, struct lbuf * bp, int flag,
2038 int cant_block)
2040 struct lbuf *tail;
2041 unsigned long flags;
2043 jfs_info("lbmWrite: bp:0x%p flag:0x%x pn:0x%x", bp, flag, bp->l_pn);
2045 /* map the logical block address to physical block address */
2046 bp->l_blkno =
2047 log->base + (bp->l_pn << (L2LOGPSIZE - log->l2bsize));
2049 LCACHE_LOCK(flags); /* disable+lock */
2052 * initialize buffer for device driver
2054 bp->l_flag = flag;
2057 * insert bp at tail of write queue associated with log
2059 * (request is either for bp already/currently at head of queue
2060 * or new bp to be inserted at tail)
2062 tail = log->wqueue;
2064 /* is buffer not already on write queue ? */
2065 if (bp->l_wqnext == NULL) {
2066 /* insert at tail of wqueue */
2067 if (tail == NULL) {
2068 log->wqueue = bp;
2069 bp->l_wqnext = bp;
2070 } else {
2071 log->wqueue = bp;
2072 bp->l_wqnext = tail->l_wqnext;
2073 tail->l_wqnext = bp;
2076 tail = bp;
2079 /* is buffer at head of wqueue and for write ? */
2080 if ((bp != tail->l_wqnext) || !(flag & lbmWRITE)) {
2081 LCACHE_UNLOCK(flags); /* unlock+enable */
2082 return;
2085 LCACHE_UNLOCK(flags); /* unlock+enable */
2087 if (cant_block)
2088 lbmRedrive(bp);
2089 else if (flag & lbmSYNC)
2090 lbmStartIO(bp);
2091 else {
2092 LOGGC_UNLOCK(log);
2093 lbmStartIO(bp);
2094 LOGGC_LOCK(log);
2100 * lbmDirectWrite()
2102 * initiate pageout bypassing write queue for sidestream
2103 * (e.g., log superblock) write;
2105 static void lbmDirectWrite(struct jfs_log * log, struct lbuf * bp, int flag)
2107 jfs_info("lbmDirectWrite: bp:0x%p flag:0x%x pn:0x%x",
2108 bp, flag, bp->l_pn);
2111 * initialize buffer for device driver
2113 bp->l_flag = flag | lbmDIRECT;
2115 /* map the logical block address to physical block address */
2116 bp->l_blkno =
2117 log->base + (bp->l_pn << (L2LOGPSIZE - log->l2bsize));
2120 * initiate pageout of the page
2122 lbmStartIO(bp);
2127 * NAME: lbmStartIO()
2129 * FUNCTION: Interface to DD strategy routine
2131 * RETURN: none
2133 * serialization: LCACHE_LOCK() is NOT held during log i/o;
2135 static void lbmStartIO(struct lbuf * bp)
2137 struct bio *bio;
2138 struct jfs_log *log = bp->l_log;
2140 jfs_info("lbmStartIO\n");
2142 bio = bio_alloc(GFP_NOFS, 1);
2143 bio->bi_sector = bp->l_blkno << (log->l2bsize - 9);
2144 bio->bi_bdev = log->bdev;
2145 bio->bi_io_vec[0].bv_page = bp->l_page;
2146 bio->bi_io_vec[0].bv_len = LOGPSIZE;
2147 bio->bi_io_vec[0].bv_offset = bp->l_offset;
2149 bio->bi_vcnt = 1;
2150 bio->bi_idx = 0;
2151 bio->bi_size = LOGPSIZE;
2153 bio->bi_end_io = lbmIODone;
2154 bio->bi_private = bp;
2156 /* check if journaling to disk has been disabled */
2157 if (log->no_integrity) {
2158 bio->bi_size = 0;
2159 lbmIODone(bio, 0, 0);
2160 } else {
2161 submit_bio(WRITE_SYNC, bio);
2162 INCREMENT(lmStat.submitted);
2168 * lbmIOWait()
2170 static int lbmIOWait(struct lbuf * bp, int flag)
2172 unsigned long flags;
2173 int rc = 0;
2175 jfs_info("lbmIOWait1: bp:0x%p flag:0x%x:0x%x", bp, bp->l_flag, flag);
2177 LCACHE_LOCK(flags); /* disable+lock */
2179 LCACHE_SLEEP_COND(bp->l_ioevent, (bp->l_flag & lbmDONE), flags);
2181 rc = (bp->l_flag & lbmERROR) ? -EIO : 0;
2183 if (flag & lbmFREE)
2184 lbmfree(bp);
2186 LCACHE_UNLOCK(flags); /* unlock+enable */
2188 jfs_info("lbmIOWait2: bp:0x%p flag:0x%x:0x%x", bp, bp->l_flag, flag);
2189 return rc;
2193 * lbmIODone()
2195 * executed at INTIODONE level
2197 static int lbmIODone(struct bio *bio, unsigned int bytes_done, int error)
2199 struct lbuf *bp = bio->bi_private;
2200 struct lbuf *nextbp, *tail;
2201 struct jfs_log *log;
2202 unsigned long flags;
2204 if (bio->bi_size)
2205 return 1;
2208 * get back jfs buffer bound to the i/o buffer
2210 jfs_info("lbmIODone: bp:0x%p flag:0x%x", bp, bp->l_flag);
2212 LCACHE_LOCK(flags); /* disable+lock */
2214 bp->l_flag |= lbmDONE;
2216 if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) {
2217 bp->l_flag |= lbmERROR;
2219 jfs_err("lbmIODone: I/O error in JFS log");
2222 bio_put(bio);
2225 * pagein completion
2227 if (bp->l_flag & lbmREAD) {
2228 bp->l_flag &= ~lbmREAD;
2230 LCACHE_UNLOCK(flags); /* unlock+enable */
2232 /* wakeup I/O initiator */
2233 LCACHE_WAKEUP(&bp->l_ioevent);
2235 return 0;
2239 * pageout completion
2241 * the bp at the head of write queue has completed pageout.
2243 * if single-commit/full-page pageout, remove the current buffer
2244 * from head of pageout queue, and redrive pageout with
2245 * the new buffer at head of pageout queue;
2246 * otherwise, the partial-page pageout buffer stays at
2247 * the head of pageout queue to be redriven for pageout
2248 * by lmGroupCommit() until full-page pageout is completed.
2250 bp->l_flag &= ~lbmWRITE;
2251 INCREMENT(lmStat.pagedone);
2253 /* update committed lsn */
2254 log = bp->l_log;
2255 log->clsn = (bp->l_pn << L2LOGPSIZE) + bp->l_ceor;
2257 if (bp->l_flag & lbmDIRECT) {
2258 LCACHE_WAKEUP(&bp->l_ioevent);
2259 LCACHE_UNLOCK(flags);
2260 return 0;
2263 tail = log->wqueue;
2265 /* single element queue */
2266 if (bp == tail) {
2267 /* remove head buffer of full-page pageout
2268 * from log device write queue
2270 if (bp->l_flag & lbmRELEASE) {
2271 log->wqueue = NULL;
2272 bp->l_wqnext = NULL;
2275 /* multi element queue */
2276 else {
2277 /* remove head buffer of full-page pageout
2278 * from log device write queue
2280 if (bp->l_flag & lbmRELEASE) {
2281 nextbp = tail->l_wqnext = bp->l_wqnext;
2282 bp->l_wqnext = NULL;
2285 * redrive pageout of next page at head of write queue:
2286 * redrive next page without any bound tblk
2287 * (i.e., page w/o any COMMIT records), or
2288 * first page of new group commit which has been
2289 * queued after current page (subsequent pageout
2290 * is performed synchronously, except page without
2291 * any COMMITs) by lmGroupCommit() as indicated
2292 * by lbmWRITE flag;
2294 if (nextbp->l_flag & lbmWRITE) {
2296 * We can't do the I/O at interrupt time.
2297 * The jfsIO thread can do it
2299 lbmRedrive(nextbp);
2305 * synchronous pageout:
2307 * buffer has not necessarily been removed from write queue
2308 * (e.g., synchronous write of partial-page with COMMIT):
2309 * leave buffer for i/o initiator to dispose
2311 if (bp->l_flag & lbmSYNC) {
2312 LCACHE_UNLOCK(flags); /* unlock+enable */
2314 /* wakeup I/O initiator */
2315 LCACHE_WAKEUP(&bp->l_ioevent);
2319 * Group Commit pageout:
2321 else if (bp->l_flag & lbmGC) {
2322 LCACHE_UNLOCK(flags);
2323 lmPostGC(bp);
2327 * asynchronous pageout:
2329 * buffer must have been removed from write queue:
2330 * insert buffer at head of freelist where it can be recycled
2332 else {
2333 assert(bp->l_flag & lbmRELEASE);
2334 assert(bp->l_flag & lbmFREE);
2335 lbmfree(bp);
2337 LCACHE_UNLOCK(flags); /* unlock+enable */
2340 return 0;
2343 int jfsIOWait(void *arg)
2345 struct lbuf *bp;
2347 do {
2348 spin_lock_irq(&log_redrive_lock);
2349 while ((bp = log_redrive_list) != 0) {
2350 log_redrive_list = bp->l_redrive_next;
2351 bp->l_redrive_next = NULL;
2352 spin_unlock_irq(&log_redrive_lock);
2353 lbmStartIO(bp);
2354 spin_lock_irq(&log_redrive_lock);
2357 if (freezing(current)) {
2358 spin_unlock_irq(&log_redrive_lock);
2359 refrigerator();
2360 } else {
2361 set_current_state(TASK_INTERRUPTIBLE);
2362 spin_unlock_irq(&log_redrive_lock);
2363 schedule();
2364 __set_current_state(TASK_RUNNING);
2366 } while (!kthread_should_stop());
2368 jfs_info("jfsIOWait being killed!");
2369 return 0;
2373 * NAME: lmLogFormat()/jfs_logform()
2375 * FUNCTION: format file system log
2377 * PARAMETERS:
2378 * log - volume log
2379 * logAddress - start address of log space in FS block
2380 * logSize - length of log space in FS block;
2382 * RETURN: 0 - success
2383 * -EIO - i/o error
2385 * XXX: We're synchronously writing one page at a time. This needs to
2386 * be improved by writing multiple pages at once.
2388 int lmLogFormat(struct jfs_log *log, s64 logAddress, int logSize)
2390 int rc = -EIO;
2391 struct jfs_sb_info *sbi;
2392 struct logsuper *logsuper;
2393 struct logpage *lp;
2394 int lspn; /* log sequence page number */
2395 struct lrd *lrd_ptr;
2396 int npages = 0;
2397 struct lbuf *bp;
2399 jfs_info("lmLogFormat: logAddress:%Ld logSize:%d",
2400 (long long)logAddress, logSize);
2402 sbi = list_entry(log->sb_list.next, struct jfs_sb_info, log_list);
2404 /* allocate a log buffer */
2405 bp = lbmAllocate(log, 1);
2407 npages = logSize >> sbi->l2nbperpage;
2410 * log space:
2412 * page 0 - reserved;
2413 * page 1 - log superblock;
2414 * page 2 - log data page: A SYNC log record is written
2415 * into this page at logform time;
2416 * pages 3-N - log data page: set to empty log data pages;
2419 * init log superblock: log page 1
2421 logsuper = (struct logsuper *) bp->l_ldata;
2423 logsuper->magic = cpu_to_le32(LOGMAGIC);
2424 logsuper->version = cpu_to_le32(LOGVERSION);
2425 logsuper->state = cpu_to_le32(LOGREDONE);
2426 logsuper->flag = cpu_to_le32(sbi->mntflag); /* ? */
2427 logsuper->size = cpu_to_le32(npages);
2428 logsuper->bsize = cpu_to_le32(sbi->bsize);
2429 logsuper->l2bsize = cpu_to_le32(sbi->l2bsize);
2430 logsuper->end = cpu_to_le32(2 * LOGPSIZE + LOGPHDRSIZE + LOGRDSIZE);
2432 bp->l_flag = lbmWRITE | lbmSYNC | lbmDIRECT;
2433 bp->l_blkno = logAddress + sbi->nbperpage;
2434 lbmStartIO(bp);
2435 if ((rc = lbmIOWait(bp, 0)))
2436 goto exit;
2439 * init pages 2 to npages-1 as log data pages:
2441 * log page sequence number (lpsn) initialization:
2443 * pn: 0 1 2 3 n-1
2444 * +-----+-----+=====+=====+===.....===+=====+
2445 * lspn: N-1 0 1 N-2
2446 * <--- N page circular file ---->
2448 * the N (= npages-2) data pages of the log is maintained as
2449 * a circular file for the log records;
2450 * lpsn grows by 1 monotonically as each log page is written
2451 * to the circular file of the log;
2452 * and setLogpage() will not reset the page number even if
2453 * the eor is equal to LOGPHDRSIZE. In order for binary search
2454 * still work in find log end process, we have to simulate the
2455 * log wrap situation at the log format time.
2456 * The 1st log page written will have the highest lpsn. Then
2457 * the succeeding log pages will have ascending order of
2458 * the lspn starting from 0, ... (N-2)
2460 lp = (struct logpage *) bp->l_ldata;
2462 * initialize 1st log page to be written: lpsn = N - 1,
2463 * write a SYNCPT log record is written to this page
2465 lp->h.page = lp->t.page = cpu_to_le32(npages - 3);
2466 lp->h.eor = lp->t.eor = cpu_to_le16(LOGPHDRSIZE + LOGRDSIZE);
2468 lrd_ptr = (struct lrd *) &lp->data;
2469 lrd_ptr->logtid = 0;
2470 lrd_ptr->backchain = 0;
2471 lrd_ptr->type = cpu_to_le16(LOG_SYNCPT);
2472 lrd_ptr->length = 0;
2473 lrd_ptr->log.syncpt.sync = 0;
2475 bp->l_blkno += sbi->nbperpage;
2476 bp->l_flag = lbmWRITE | lbmSYNC | lbmDIRECT;
2477 lbmStartIO(bp);
2478 if ((rc = lbmIOWait(bp, 0)))
2479 goto exit;
2482 * initialize succeeding log pages: lpsn = 0, 1, ..., (N-2)
2484 for (lspn = 0; lspn < npages - 3; lspn++) {
2485 lp->h.page = lp->t.page = cpu_to_le32(lspn);
2486 lp->h.eor = lp->t.eor = cpu_to_le16(LOGPHDRSIZE);
2488 bp->l_blkno += sbi->nbperpage;
2489 bp->l_flag = lbmWRITE | lbmSYNC | lbmDIRECT;
2490 lbmStartIO(bp);
2491 if ((rc = lbmIOWait(bp, 0)))
2492 goto exit;
2495 rc = 0;
2496 exit:
2498 * finalize log
2500 /* release the buffer */
2501 lbmFree(bp);
2503 return rc;
2506 #ifdef CONFIG_JFS_STATISTICS
2507 int jfs_lmstats_read(char *buffer, char **start, off_t offset, int length,
2508 int *eof, void *data)
2510 int len = 0;
2511 off_t begin;
2513 len += sprintf(buffer,
2514 "JFS Logmgr stats\n"
2515 "================\n"
2516 "commits = %d\n"
2517 "writes submitted = %d\n"
2518 "writes completed = %d\n"
2519 "full pages submitted = %d\n"
2520 "partial pages submitted = %d\n",
2521 lmStat.commit,
2522 lmStat.submitted,
2523 lmStat.pagedone,
2524 lmStat.full_page,
2525 lmStat.partial_page);
2527 begin = offset;
2528 *start = buffer + begin;
2529 len -= begin;
2531 if (len > length)
2532 len = length;
2533 else
2534 *eof = 1;
2536 if (len < 0)
2537 len = 0;
2539 return len;
2541 #endif /* CONFIG_JFS_STATISTICS */