1 /*****************************************************************************
5 * $Date: 2005/06/21 18:29:48 $ *
8 * part of the Chelsio 10Gb Ethernet Driver. *
10 * This program is free software; you can redistribute it and/or modify *
11 * it under the terms of the GNU General Public License, version 2, as *
12 * published by the Free Software Foundation. *
14 * You should have received a copy of the GNU General Public License along *
15 * with this program; if not, write to the Free Software Foundation, Inc., *
16 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
18 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED *
19 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF *
20 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. *
22 * http://www.chelsio.com *
24 * Copyright (c) 2003 - 2005 Chelsio Communications, Inc. *
25 * All rights reserved. *
27 * Maintainers: maintainers@chelsio.com *
29 * Authors: Dimitrios Michailidis <dm@chelsio.com> *
30 * Tina Yang <tainay@chelsio.com> *
31 * Felix Marti <felix@chelsio.com> *
32 * Scott Bardone <sbardone@chelsio.com> *
33 * Kurt Ottaway <kottaway@chelsio.com> *
34 * Frank DiMambro <frank@chelsio.com> *
38 ****************************************************************************/
42 #include <linux/types.h>
43 #include <linux/errno.h>
44 #include <linux/pci.h>
45 #include <linux/ktime.h>
46 #include <linux/netdevice.h>
47 #include <linux/etherdevice.h>
48 #include <linux/if_vlan.h>
49 #include <linux/skbuff.h>
50 #include <linux/init.h>
52 #include <linux/tcp.h>
55 #include <linux/if_arp.h>
62 /* This belongs in if_ether.h */
63 #define ETH_P_CPL5 0xf
66 #define SGE_FREELQ_N 2
67 #define SGE_CMDQ0_E_N 1024
68 #define SGE_CMDQ1_E_N 128
69 #define SGE_FREEL_SIZE 4096
70 #define SGE_JUMBO_FREEL_SIZE 512
71 #define SGE_FREEL_REFILL_THRESH 16
72 #define SGE_RESPQ_E_N 1024
73 #define SGE_INTRTIMER_NRES 1000
74 #define SGE_RX_COPY_THRES 256
75 #define SGE_RX_SM_BUF_SIZE 1536
76 #define SGE_TX_DESC_MAX_PLEN 16384
78 # define SGE_RX_DROP_THRES 2
80 #define SGE_RESPQ_REPLENISH_THRES (SGE_RESPQ_E_N / 4)
83 * Period of the TX buffer reclaim timer. This timer does not need to run
84 * frequently as TX buffers are usually reclaimed by new TX packets.
86 #define TX_RECLAIM_PERIOD (HZ / 4)
89 # define NET_IP_ALIGN 2
92 #define M_CMD_LEN 0x7fffffff
93 #define V_CMD_LEN(v) (v)
94 #define G_CMD_LEN(v) ((v) & M_CMD_LEN)
95 #define V_CMD_GEN1(v) ((v) << 31)
96 #define V_CMD_GEN2(v) (v)
97 #define F_CMD_DATAVALID (1 << 1)
98 #define F_CMD_SOP (1 << 2)
99 #define V_CMD_EOP(v) ((v) << 3)
102 * Command queue, receive buffer list, and response queue descriptors.
104 #if defined(__BIG_ENDIAN_BITFIELD)
121 u32 Cmdq1CreditReturn
: 5;
122 u32 Cmdq1DmaComplete
: 5;
123 u32 Cmdq0CreditReturn
: 5;
124 u32 Cmdq0DmaComplete
: 5;
131 u32 GenerationBit
: 1;
134 #elif defined(__LITTLE_ENDIAN_BITFIELD)
151 u32 GenerationBit
: 1;
158 u32 Cmdq0DmaComplete
: 5;
159 u32 Cmdq0CreditReturn
: 5;
160 u32 Cmdq1DmaComplete
: 5;
161 u32 Cmdq1CreditReturn
: 5;
167 * SW Context Command and Freelist Queue Descriptors
171 DECLARE_PCI_UNMAP_ADDR(dma_addr
);
172 DECLARE_PCI_UNMAP_LEN(dma_len
);
177 DECLARE_PCI_UNMAP_ADDR(dma_addr
);
178 DECLARE_PCI_UNMAP_LEN(dma_len
);
182 * SW command, freelist and response rings
185 unsigned long status
; /* HW DMA fetch status */
186 unsigned int in_use
; /* # of in-use command descriptors */
187 unsigned int size
; /* # of descriptors */
188 unsigned int processed
; /* total # of descs HW has processed */
189 unsigned int cleaned
; /* total # of descs SW has reclaimed */
190 unsigned int stop_thres
; /* SW TX queue suspend threshold */
191 u16 pidx
; /* producer index (SW) */
192 u16 cidx
; /* consumer index (HW) */
193 u8 genbit
; /* current generation (=valid) bit */
194 u8 sop
; /* is next entry start of packet? */
195 struct cmdQ_e
*entries
; /* HW command descriptor Q */
196 struct cmdQ_ce
*centries
; /* SW command context descriptor Q */
197 dma_addr_t dma_addr
; /* DMA addr HW command descriptor Q */
198 spinlock_t lock
; /* Lock to protect cmdQ enqueuing */
202 unsigned int credits
; /* # of available RX buffers */
203 unsigned int size
; /* free list capacity */
204 u16 pidx
; /* producer index (SW) */
205 u16 cidx
; /* consumer index (HW) */
206 u16 rx_buffer_size
; /* Buffer size on this free list */
207 u16 dma_offset
; /* DMA offset to align IP headers */
208 u16 recycleq_idx
; /* skb recycle q to use */
209 u8 genbit
; /* current generation (=valid) bit */
210 struct freelQ_e
*entries
; /* HW freelist descriptor Q */
211 struct freelQ_ce
*centries
; /* SW freelist context descriptor Q */
212 dma_addr_t dma_addr
; /* DMA addr HW freelist descriptor Q */
216 unsigned int credits
; /* credits to be returned to SGE */
217 unsigned int size
; /* # of response Q descriptors */
218 u16 cidx
; /* consumer index (SW) */
219 u8 genbit
; /* current generation(=valid) bit */
220 struct respQ_e
*entries
; /* HW response descriptor Q */
221 dma_addr_t dma_addr
; /* DMA addr HW response descriptor Q */
224 /* Bit flags for cmdQ.status */
226 CMDQ_STAT_RUNNING
= 1, /* fetch engine is running */
227 CMDQ_STAT_LAST_PKT_DB
= 2 /* last packet rung the doorbell */
230 /* T204 TX SW scheduler */
232 /* Per T204 TX port */
234 unsigned int avail
; /* available bits - quota */
235 unsigned int drain_bits_per_1024ns
; /* drain rate */
236 unsigned int speed
; /* drain rate, mbps */
237 unsigned int mtu
; /* mtu size */
238 struct sk_buff_head skbq
; /* pending skbs */
241 /* Per T204 device */
243 ktime_t last_updated
; /* last time quotas were computed */
244 unsigned int max_avail
; /* max bits to be sent to any port */
245 unsigned int port
; /* port index (round robin ports) */
246 unsigned int num
; /* num skbs in per port queues */
247 struct sched_port p
[MAX_NPORTS
];
248 struct tasklet_struct sched_tsk
;/* tasklet used to run scheduler */
250 static void restart_sched(unsigned long);
254 * Main SGE data structure
256 * Interrupts are handled by a single CPU and it is likely that on a MP system
257 * the application is migrated to another CPU. In that scenario, we try to
258 * seperate the RX(in irq context) and TX state in order to decrease memory
262 struct adapter
*adapter
; /* adapter backpointer */
263 struct net_device
*netdev
; /* netdevice backpointer */
264 struct freelQ freelQ
[SGE_FREELQ_N
]; /* buffer free lists */
265 struct respQ respQ
; /* response Q */
266 unsigned long stopped_tx_queues
; /* bitmap of suspended Tx queues */
267 unsigned int rx_pkt_pad
; /* RX padding for L2 packets */
268 unsigned int jumbo_fl
; /* jumbo freelist Q index */
269 unsigned int intrtimer_nres
; /* no-resource interrupt timer */
270 unsigned int fixed_intrtimer
;/* non-adaptive interrupt timer */
271 struct timer_list tx_reclaim_timer
; /* reclaims TX buffers */
272 struct timer_list espibug_timer
;
273 unsigned long espibug_timeout
;
274 struct sk_buff
*espibug_skb
[MAX_NPORTS
];
275 u32 sge_control
; /* shadow value of sge control reg */
276 struct sge_intr_counts stats
;
277 struct sge_port_stats
*port_stats
[MAX_NPORTS
];
278 struct sched
*tx_sched
;
279 struct cmdQ cmdQ
[SGE_CMDQ_N
] ____cacheline_aligned_in_smp
;
283 * stop tasklet and free all pending skb's
285 static void tx_sched_stop(struct sge
*sge
)
287 struct sched
*s
= sge
->tx_sched
;
290 tasklet_kill(&s
->sched_tsk
);
292 for (i
= 0; i
< MAX_NPORTS
; i
++)
293 __skb_queue_purge(&s
->p
[s
->port
].skbq
);
297 * t1_sched_update_parms() is called when the MTU or link speed changes. It
298 * re-computes scheduler parameters to scope with the change.
300 unsigned int t1_sched_update_parms(struct sge
*sge
, unsigned int port
,
301 unsigned int mtu
, unsigned int speed
)
303 struct sched
*s
= sge
->tx_sched
;
304 struct sched_port
*p
= &s
->p
[port
];
305 unsigned int max_avail_segs
;
307 pr_debug("t1_sched_update_params mtu=%d speed=%d\n", mtu
, speed
);
314 unsigned long long drain
= 1024ULL * p
->speed
* (p
->mtu
- 40);
315 do_div(drain
, (p
->mtu
+ 50) * 1000);
316 p
->drain_bits_per_1024ns
= (unsigned int) drain
;
319 p
->drain_bits_per_1024ns
=
320 90 * p
->drain_bits_per_1024ns
/ 100;
323 if (board_info(sge
->adapter
)->board
== CHBT_BOARD_CHT204
) {
324 p
->drain_bits_per_1024ns
-= 16;
325 s
->max_avail
= max(4096U, p
->mtu
+ 16 + 14 + 4);
326 max_avail_segs
= max(1U, 4096 / (p
->mtu
- 40));
328 s
->max_avail
= 16384;
329 max_avail_segs
= max(1U, 9000 / (p
->mtu
- 40));
332 pr_debug("t1_sched_update_parms: mtu %u speed %u max_avail %u "
333 "max_avail_segs %u drain_bits_per_1024ns %u\n", p
->mtu
,
334 p
->speed
, s
->max_avail
, max_avail_segs
,
335 p
->drain_bits_per_1024ns
);
337 return max_avail_segs
* (p
->mtu
- 40);
341 * t1_sched_max_avail_bytes() tells the scheduler the maximum amount of
342 * data that can be pushed per port.
344 void t1_sched_set_max_avail_bytes(struct sge
*sge
, unsigned int val
)
346 struct sched
*s
= sge
->tx_sched
;
350 for (i
= 0; i
< MAX_NPORTS
; i
++)
351 t1_sched_update_parms(sge
, i
, 0, 0);
355 * t1_sched_set_drain_bits_per_us() tells the scheduler at which rate a port
358 void t1_sched_set_drain_bits_per_us(struct sge
*sge
, unsigned int port
,
361 struct sched
*s
= sge
->tx_sched
;
362 struct sched_port
*p
= &s
->p
[port
];
363 p
->drain_bits_per_1024ns
= val
* 1024 / 1000;
364 t1_sched_update_parms(sge
, port
, 0, 0);
369 * get_clock() implements a ns clock (see ktime_get)
371 static inline ktime_t
get_clock(void)
376 return timespec_to_ktime(ts
);
380 * tx_sched_init() allocates resources and does basic initialization.
382 static int tx_sched_init(struct sge
*sge
)
387 s
= kzalloc(sizeof (struct sched
), GFP_KERNEL
);
391 pr_debug("tx_sched_init\n");
392 tasklet_init(&s
->sched_tsk
, restart_sched
, (unsigned long) sge
);
395 for (i
= 0; i
< MAX_NPORTS
; i
++) {
396 skb_queue_head_init(&s
->p
[i
].skbq
);
397 t1_sched_update_parms(sge
, i
, 1500, 1000);
404 * sched_update_avail() computes the delta since the last time it was called
405 * and updates the per port quota (number of bits that can be sent to the any
408 static inline int sched_update_avail(struct sge
*sge
)
410 struct sched
*s
= sge
->tx_sched
;
411 ktime_t now
= get_clock();
413 long long delta_time_ns
;
415 delta_time_ns
= ktime_to_ns(ktime_sub(now
, s
->last_updated
));
417 pr_debug("sched_update_avail delta=%lld\n", delta_time_ns
);
418 if (delta_time_ns
< 15000)
421 for (i
= 0; i
< MAX_NPORTS
; i
++) {
422 struct sched_port
*p
= &s
->p
[i
];
423 unsigned int delta_avail
;
425 delta_avail
= (p
->drain_bits_per_1024ns
* delta_time_ns
) >> 13;
426 p
->avail
= min(p
->avail
+ delta_avail
, s
->max_avail
);
429 s
->last_updated
= now
;
435 * sched_skb() is called from two different places. In the tx path, any
436 * packet generating load on an output port will call sched_skb()
437 * (skb != NULL). In addition, sched_skb() is called from the irq/soft irq
438 * context (skb == NULL).
439 * The scheduler only returns a skb (which will then be sent) if the
440 * length of the skb is <= the current quota of the output port.
442 static struct sk_buff
*sched_skb(struct sge
*sge
, struct sk_buff
*skb
,
443 unsigned int credits
)
445 struct sched
*s
= sge
->tx_sched
;
446 struct sk_buff_head
*skbq
;
447 unsigned int i
, len
, update
= 1;
449 pr_debug("sched_skb %p\n", skb
);
454 skbq
= &s
->p
[skb
->dev
->if_port
].skbq
;
455 __skb_queue_tail(skbq
, skb
);
460 if (credits
< MAX_SKB_FRAGS
+ 1)
464 for (i
= 0; i
< MAX_NPORTS
; i
++) {
465 s
->port
= ++s
->port
& (MAX_NPORTS
- 1);
466 skbq
= &s
->p
[s
->port
].skbq
;
468 skb
= skb_peek(skbq
);
474 if (len
<= s
->p
[s
->port
].avail
) {
475 s
->p
[s
->port
].avail
-= len
;
477 __skb_unlink(skb
, skbq
);
483 if (update
-- && sched_update_avail(sge
))
487 /* If there are more pending skbs, we use the hardware to schedule us
490 if (s
->num
&& !skb
) {
491 struct cmdQ
*q
= &sge
->cmdQ
[0];
492 clear_bit(CMDQ_STAT_LAST_PKT_DB
, &q
->status
);
493 if (test_and_set_bit(CMDQ_STAT_RUNNING
, &q
->status
) == 0) {
494 set_bit(CMDQ_STAT_LAST_PKT_DB
, &q
->status
);
495 writel(F_CMDQ0_ENABLE
, sge
->adapter
->regs
+ A_SG_DOORBELL
);
498 pr_debug("sched_skb ret %p\n", skb
);
504 * PIO to indicate that memory mapped Q contains valid descriptor(s).
506 static inline void doorbell_pio(struct adapter
*adapter
, u32 val
)
509 writel(val
, adapter
->regs
+ A_SG_DOORBELL
);
513 * Frees all RX buffers on the freelist Q. The caller must make sure that
514 * the SGE is turned off before calling this function.
516 static void free_freelQ_buffers(struct pci_dev
*pdev
, struct freelQ
*q
)
518 unsigned int cidx
= q
->cidx
;
520 while (q
->credits
--) {
521 struct freelQ_ce
*ce
= &q
->centries
[cidx
];
523 pci_unmap_single(pdev
, pci_unmap_addr(ce
, dma_addr
),
524 pci_unmap_len(ce
, dma_len
),
526 dev_kfree_skb(ce
->skb
);
528 if (++cidx
== q
->size
)
534 * Free RX free list and response queue resources.
536 static void free_rx_resources(struct sge
*sge
)
538 struct pci_dev
*pdev
= sge
->adapter
->pdev
;
539 unsigned int size
, i
;
541 if (sge
->respQ
.entries
) {
542 size
= sizeof(struct respQ_e
) * sge
->respQ
.size
;
543 pci_free_consistent(pdev
, size
, sge
->respQ
.entries
,
544 sge
->respQ
.dma_addr
);
547 for (i
= 0; i
< SGE_FREELQ_N
; i
++) {
548 struct freelQ
*q
= &sge
->freelQ
[i
];
551 free_freelQ_buffers(pdev
, q
);
555 size
= sizeof(struct freelQ_e
) * q
->size
;
556 pci_free_consistent(pdev
, size
, q
->entries
,
563 * Allocates basic RX resources, consisting of memory mapped freelist Qs and a
566 static int alloc_rx_resources(struct sge
*sge
, struct sge_params
*p
)
568 struct pci_dev
*pdev
= sge
->adapter
->pdev
;
569 unsigned int size
, i
;
571 for (i
= 0; i
< SGE_FREELQ_N
; i
++) {
572 struct freelQ
*q
= &sge
->freelQ
[i
];
575 q
->size
= p
->freelQ_size
[i
];
576 q
->dma_offset
= sge
->rx_pkt_pad
? 0 : NET_IP_ALIGN
;
577 size
= sizeof(struct freelQ_e
) * q
->size
;
578 q
->entries
= (struct freelQ_e
*)
579 pci_alloc_consistent(pdev
, size
, &q
->dma_addr
);
582 memset(q
->entries
, 0, size
);
583 size
= sizeof(struct freelQ_ce
) * q
->size
;
584 q
->centries
= kzalloc(size
, GFP_KERNEL
);
590 * Calculate the buffer sizes for the two free lists. FL0 accommodates
591 * regular sized Ethernet frames, FL1 is sized not to exceed 16K,
592 * including all the sk_buff overhead.
594 * Note: For T2 FL0 and FL1 are reversed.
596 sge
->freelQ
[!sge
->jumbo_fl
].rx_buffer_size
= SGE_RX_SM_BUF_SIZE
+
597 sizeof(struct cpl_rx_data
) +
598 sge
->freelQ
[!sge
->jumbo_fl
].dma_offset
;
601 SKB_DATA_ALIGN(sizeof(struct skb_shared_info
));
603 sge
->freelQ
[sge
->jumbo_fl
].rx_buffer_size
= size
;
606 * Setup which skb recycle Q should be used when recycling buffers from
609 sge
->freelQ
[!sge
->jumbo_fl
].recycleq_idx
= 0;
610 sge
->freelQ
[sge
->jumbo_fl
].recycleq_idx
= 1;
612 sge
->respQ
.genbit
= 1;
613 sge
->respQ
.size
= SGE_RESPQ_E_N
;
614 sge
->respQ
.credits
= 0;
615 size
= sizeof(struct respQ_e
) * sge
->respQ
.size
;
616 sge
->respQ
.entries
= (struct respQ_e
*)
617 pci_alloc_consistent(pdev
, size
, &sge
->respQ
.dma_addr
);
618 if (!sge
->respQ
.entries
)
620 memset(sge
->respQ
.entries
, 0, size
);
624 free_rx_resources(sge
);
629 * Reclaims n TX descriptors and frees the buffers associated with them.
631 static void free_cmdQ_buffers(struct sge
*sge
, struct cmdQ
*q
, unsigned int n
)
634 struct pci_dev
*pdev
= sge
->adapter
->pdev
;
635 unsigned int cidx
= q
->cidx
;
638 ce
= &q
->centries
[cidx
];
641 if (likely(pci_unmap_len(ce
, dma_len
))) {
642 pci_unmap_single(pdev
,
643 pci_unmap_addr(ce
, dma_addr
),
644 pci_unmap_len(ce
, dma_len
),
649 if (likely(pci_unmap_len(ce
, dma_len
))) {
650 pci_unmap_page(pdev
, pci_unmap_addr(ce
, dma_addr
),
651 pci_unmap_len(ce
, dma_len
),
656 dev_kfree_skb_any(ce
->skb
);
660 if (++cidx
== q
->size
) {
671 * Assumes that SGE is stopped and all interrupts are disabled.
673 static void free_tx_resources(struct sge
*sge
)
675 struct pci_dev
*pdev
= sge
->adapter
->pdev
;
676 unsigned int size
, i
;
678 for (i
= 0; i
< SGE_CMDQ_N
; i
++) {
679 struct cmdQ
*q
= &sge
->cmdQ
[i
];
683 free_cmdQ_buffers(sge
, q
, q
->in_use
);
687 size
= sizeof(struct cmdQ_e
) * q
->size
;
688 pci_free_consistent(pdev
, size
, q
->entries
,
695 * Allocates basic TX resources, consisting of memory mapped command Qs.
697 static int alloc_tx_resources(struct sge
*sge
, struct sge_params
*p
)
699 struct pci_dev
*pdev
= sge
->adapter
->pdev
;
700 unsigned int size
, i
;
702 for (i
= 0; i
< SGE_CMDQ_N
; i
++) {
703 struct cmdQ
*q
= &sge
->cmdQ
[i
];
707 q
->size
= p
->cmdQ_size
[i
];
710 q
->processed
= q
->cleaned
= 0;
712 spin_lock_init(&q
->lock
);
713 size
= sizeof(struct cmdQ_e
) * q
->size
;
714 q
->entries
= (struct cmdQ_e
*)
715 pci_alloc_consistent(pdev
, size
, &q
->dma_addr
);
718 memset(q
->entries
, 0, size
);
719 size
= sizeof(struct cmdQ_ce
) * q
->size
;
720 q
->centries
= kzalloc(size
, GFP_KERNEL
);
726 * CommandQ 0 handles Ethernet and TOE packets, while queue 1 is TOE
727 * only. For queue 0 set the stop threshold so we can handle one more
728 * packet from each port, plus reserve an additional 24 entries for
729 * Ethernet packets only. Queue 1 never suspends nor do we reserve
730 * space for Ethernet packets.
732 sge
->cmdQ
[0].stop_thres
= sge
->adapter
->params
.nports
*
737 free_tx_resources(sge
);
741 static inline void setup_ring_params(struct adapter
*adapter
, u64 addr
,
742 u32 size
, int base_reg_lo
,
743 int base_reg_hi
, int size_reg
)
745 writel((u32
)addr
, adapter
->regs
+ base_reg_lo
);
746 writel(addr
>> 32, adapter
->regs
+ base_reg_hi
);
747 writel(size
, adapter
->regs
+ size_reg
);
751 * Enable/disable VLAN acceleration.
753 void t1_set_vlan_accel(struct adapter
*adapter
, int on_off
)
755 struct sge
*sge
= adapter
->sge
;
757 sge
->sge_control
&= ~F_VLAN_XTRACT
;
759 sge
->sge_control
|= F_VLAN_XTRACT
;
760 if (adapter
->open_device_map
) {
761 writel(sge
->sge_control
, adapter
->regs
+ A_SG_CONTROL
);
762 readl(adapter
->regs
+ A_SG_CONTROL
); /* flush */
767 * Programs the various SGE registers. However, the engine is not yet enabled,
768 * but sge->sge_control is setup and ready to go.
770 static void configure_sge(struct sge
*sge
, struct sge_params
*p
)
772 struct adapter
*ap
= sge
->adapter
;
774 writel(0, ap
->regs
+ A_SG_CONTROL
);
775 setup_ring_params(ap
, sge
->cmdQ
[0].dma_addr
, sge
->cmdQ
[0].size
,
776 A_SG_CMD0BASELWR
, A_SG_CMD0BASEUPR
, A_SG_CMD0SIZE
);
777 setup_ring_params(ap
, sge
->cmdQ
[1].dma_addr
, sge
->cmdQ
[1].size
,
778 A_SG_CMD1BASELWR
, A_SG_CMD1BASEUPR
, A_SG_CMD1SIZE
);
779 setup_ring_params(ap
, sge
->freelQ
[0].dma_addr
,
780 sge
->freelQ
[0].size
, A_SG_FL0BASELWR
,
781 A_SG_FL0BASEUPR
, A_SG_FL0SIZE
);
782 setup_ring_params(ap
, sge
->freelQ
[1].dma_addr
,
783 sge
->freelQ
[1].size
, A_SG_FL1BASELWR
,
784 A_SG_FL1BASEUPR
, A_SG_FL1SIZE
);
786 /* The threshold comparison uses <. */
787 writel(SGE_RX_SM_BUF_SIZE
+ 1, ap
->regs
+ A_SG_FLTHRESHOLD
);
789 setup_ring_params(ap
, sge
->respQ
.dma_addr
, sge
->respQ
.size
,
790 A_SG_RSPBASELWR
, A_SG_RSPBASEUPR
, A_SG_RSPSIZE
);
791 writel((u32
)sge
->respQ
.size
- 1, ap
->regs
+ A_SG_RSPQUEUECREDIT
);
793 sge
->sge_control
= F_CMDQ0_ENABLE
| F_CMDQ1_ENABLE
| F_FL0_ENABLE
|
794 F_FL1_ENABLE
| F_CPL_ENABLE
| F_RESPONSE_QUEUE_ENABLE
|
795 V_CMDQ_PRIORITY(2) | F_DISABLE_CMDQ1_GTS
| F_ISCSI_COALESCE
|
796 V_RX_PKT_OFFSET(sge
->rx_pkt_pad
);
798 #if defined(__BIG_ENDIAN_BITFIELD)
799 sge
->sge_control
|= F_ENABLE_BIG_ENDIAN
;
802 /* Initialize no-resource timer */
803 sge
->intrtimer_nres
= SGE_INTRTIMER_NRES
* core_ticks_per_usec(ap
);
805 t1_sge_set_coalesce_params(sge
, p
);
809 * Return the payload capacity of the jumbo free-list buffers.
811 static inline unsigned int jumbo_payload_capacity(const struct sge
*sge
)
813 return sge
->freelQ
[sge
->jumbo_fl
].rx_buffer_size
-
814 sge
->freelQ
[sge
->jumbo_fl
].dma_offset
-
815 sizeof(struct cpl_rx_data
);
819 * Frees all SGE related resources and the sge structure itself
821 void t1_sge_destroy(struct sge
*sge
)
825 for_each_port(sge
->adapter
, i
)
826 free_percpu(sge
->port_stats
[i
]);
828 kfree(sge
->tx_sched
);
829 free_tx_resources(sge
);
830 free_rx_resources(sge
);
835 * Allocates new RX buffers on the freelist Q (and tracks them on the freelist
836 * context Q) until the Q is full or alloc_skb fails.
838 * It is possible that the generation bits already match, indicating that the
839 * buffer is already valid and nothing needs to be done. This happens when we
840 * copied a received buffer into a new sk_buff during the interrupt processing.
842 * If the SGE doesn't automatically align packets properly (!sge->rx_pkt_pad),
843 * we specify a RX_OFFSET in order to make sure that the IP header is 4B
846 static void refill_free_list(struct sge
*sge
, struct freelQ
*q
)
848 struct pci_dev
*pdev
= sge
->adapter
->pdev
;
849 struct freelQ_ce
*ce
= &q
->centries
[q
->pidx
];
850 struct freelQ_e
*e
= &q
->entries
[q
->pidx
];
851 unsigned int dma_len
= q
->rx_buffer_size
- q
->dma_offset
;
854 while (q
->credits
< q
->size
) {
858 skb
= alloc_skb(q
->rx_buffer_size
, GFP_ATOMIC
);
862 skb_reserve(skb
, q
->dma_offset
);
863 mapping
= pci_map_single(pdev
, skb
->data
, dma_len
,
866 pci_unmap_addr_set(ce
, dma_addr
, mapping
);
867 pci_unmap_len_set(ce
, dma_len
, dma_len
);
868 e
->addr_lo
= (u32
)mapping
;
869 e
->addr_hi
= (u64
)mapping
>> 32;
870 e
->len_gen
= V_CMD_LEN(dma_len
) | V_CMD_GEN1(q
->genbit
);
872 e
->gen2
= V_CMD_GEN2(q
->genbit
);
876 if (++q
->pidx
== q
->size
) {
888 * Calls refill_free_list for both free lists. If we cannot fill at least 1/4
889 * of both rings, we go into 'few interrupt mode' in order to give the system
890 * time to free up resources.
892 static void freelQs_empty(struct sge
*sge
)
894 struct adapter
*adapter
= sge
->adapter
;
895 u32 irq_reg
= readl(adapter
->regs
+ A_SG_INT_ENABLE
);
898 refill_free_list(sge
, &sge
->freelQ
[0]);
899 refill_free_list(sge
, &sge
->freelQ
[1]);
901 if (sge
->freelQ
[0].credits
> (sge
->freelQ
[0].size
>> 2) &&
902 sge
->freelQ
[1].credits
> (sge
->freelQ
[1].size
>> 2)) {
903 irq_reg
|= F_FL_EXHAUSTED
;
904 irqholdoff_reg
= sge
->fixed_intrtimer
;
906 /* Clear the F_FL_EXHAUSTED interrupts for now */
907 irq_reg
&= ~F_FL_EXHAUSTED
;
908 irqholdoff_reg
= sge
->intrtimer_nres
;
910 writel(irqholdoff_reg
, adapter
->regs
+ A_SG_INTRTIMER
);
911 writel(irq_reg
, adapter
->regs
+ A_SG_INT_ENABLE
);
913 /* We reenable the Qs to force a freelist GTS interrupt later */
914 doorbell_pio(adapter
, F_FL0_ENABLE
| F_FL1_ENABLE
);
917 #define SGE_PL_INTR_MASK (F_PL_INTR_SGE_ERR | F_PL_INTR_SGE_DATA)
918 #define SGE_INT_FATAL (F_RESPQ_OVERFLOW | F_PACKET_TOO_BIG | F_PACKET_MISMATCH)
919 #define SGE_INT_ENABLE (F_RESPQ_EXHAUSTED | F_RESPQ_OVERFLOW | \
920 F_FL_EXHAUSTED | F_PACKET_TOO_BIG | F_PACKET_MISMATCH)
923 * Disable SGE Interrupts
925 void t1_sge_intr_disable(struct sge
*sge
)
927 u32 val
= readl(sge
->adapter
->regs
+ A_PL_ENABLE
);
929 writel(val
& ~SGE_PL_INTR_MASK
, sge
->adapter
->regs
+ A_PL_ENABLE
);
930 writel(0, sge
->adapter
->regs
+ A_SG_INT_ENABLE
);
934 * Enable SGE interrupts.
936 void t1_sge_intr_enable(struct sge
*sge
)
938 u32 en
= SGE_INT_ENABLE
;
939 u32 val
= readl(sge
->adapter
->regs
+ A_PL_ENABLE
);
941 if (sge
->adapter
->flags
& TSO_CAPABLE
)
942 en
&= ~F_PACKET_TOO_BIG
;
943 writel(en
, sge
->adapter
->regs
+ A_SG_INT_ENABLE
);
944 writel(val
| SGE_PL_INTR_MASK
, sge
->adapter
->regs
+ A_PL_ENABLE
);
948 * Clear SGE interrupts.
950 void t1_sge_intr_clear(struct sge
*sge
)
952 writel(SGE_PL_INTR_MASK
, sge
->adapter
->regs
+ A_PL_CAUSE
);
953 writel(0xffffffff, sge
->adapter
->regs
+ A_SG_INT_CAUSE
);
957 * SGE 'Error' interrupt handler
959 int t1_sge_intr_error_handler(struct sge
*sge
)
961 struct adapter
*adapter
= sge
->adapter
;
962 u32 cause
= readl(adapter
->regs
+ A_SG_INT_CAUSE
);
964 if (adapter
->flags
& TSO_CAPABLE
)
965 cause
&= ~F_PACKET_TOO_BIG
;
966 if (cause
& F_RESPQ_EXHAUSTED
)
967 sge
->stats
.respQ_empty
++;
968 if (cause
& F_RESPQ_OVERFLOW
) {
969 sge
->stats
.respQ_overflow
++;
970 CH_ALERT("%s: SGE response queue overflow\n",
973 if (cause
& F_FL_EXHAUSTED
) {
974 sge
->stats
.freelistQ_empty
++;
977 if (cause
& F_PACKET_TOO_BIG
) {
978 sge
->stats
.pkt_too_big
++;
979 CH_ALERT("%s: SGE max packet size exceeded\n",
982 if (cause
& F_PACKET_MISMATCH
) {
983 sge
->stats
.pkt_mismatch
++;
984 CH_ALERT("%s: SGE packet mismatch\n", adapter
->name
);
986 if (cause
& SGE_INT_FATAL
)
987 t1_fatal_err(adapter
);
989 writel(cause
, adapter
->regs
+ A_SG_INT_CAUSE
);
993 const struct sge_intr_counts
*t1_sge_get_intr_counts(const struct sge
*sge
)
998 void t1_sge_get_port_stats(const struct sge
*sge
, int port
,
999 struct sge_port_stats
*ss
)
1003 memset(ss
, 0, sizeof(*ss
));
1004 for_each_possible_cpu(cpu
) {
1005 struct sge_port_stats
*st
= per_cpu_ptr(sge
->port_stats
[port
], cpu
);
1007 ss
->rx_packets
+= st
->rx_packets
;
1008 ss
->rx_cso_good
+= st
->rx_cso_good
;
1009 ss
->tx_packets
+= st
->tx_packets
;
1010 ss
->tx_cso
+= st
->tx_cso
;
1011 ss
->tx_tso
+= st
->tx_tso
;
1012 ss
->vlan_xtract
+= st
->vlan_xtract
;
1013 ss
->vlan_insert
+= st
->vlan_insert
;
1018 * recycle_fl_buf - recycle a free list buffer
1019 * @fl: the free list
1020 * @idx: index of buffer to recycle
1022 * Recycles the specified buffer on the given free list by adding it at
1023 * the next available slot on the list.
1025 static void recycle_fl_buf(struct freelQ
*fl
, int idx
)
1027 struct freelQ_e
*from
= &fl
->entries
[idx
];
1028 struct freelQ_e
*to
= &fl
->entries
[fl
->pidx
];
1030 fl
->centries
[fl
->pidx
] = fl
->centries
[idx
];
1031 to
->addr_lo
= from
->addr_lo
;
1032 to
->addr_hi
= from
->addr_hi
;
1033 to
->len_gen
= G_CMD_LEN(from
->len_gen
) | V_CMD_GEN1(fl
->genbit
);
1035 to
->gen2
= V_CMD_GEN2(fl
->genbit
);
1038 if (++fl
->pidx
== fl
->size
) {
1045 * get_packet - return the next ingress packet buffer
1046 * @pdev: the PCI device that received the packet
1047 * @fl: the SGE free list holding the packet
1048 * @len: the actual packet length, excluding any SGE padding
1049 * @dma_pad: padding at beginning of buffer left by SGE DMA
1050 * @skb_pad: padding to be used if the packet is copied
1051 * @copy_thres: length threshold under which a packet should be copied
1052 * @drop_thres: # of remaining buffers before we start dropping packets
1054 * Get the next packet from a free list and complete setup of the
1055 * sk_buff. If the packet is small we make a copy and recycle the
1056 * original buffer, otherwise we use the original buffer itself. If a
1057 * positive drop threshold is supplied packets are dropped and their
1058 * buffers recycled if (a) the number of remaining buffers is under the
1059 * threshold and the packet is too big to copy, or (b) the packet should
1060 * be copied but there is no memory for the copy.
1062 static inline struct sk_buff
*get_packet(struct pci_dev
*pdev
,
1063 struct freelQ
*fl
, unsigned int len
,
1064 int dma_pad
, int skb_pad
,
1065 unsigned int copy_thres
,
1066 unsigned int drop_thres
)
1068 struct sk_buff
*skb
;
1069 struct freelQ_ce
*ce
= &fl
->centries
[fl
->cidx
];
1071 if (len
< copy_thres
) {
1072 skb
= alloc_skb(len
+ skb_pad
, GFP_ATOMIC
);
1073 if (likely(skb
!= NULL
)) {
1074 skb_reserve(skb
, skb_pad
);
1076 pci_dma_sync_single_for_cpu(pdev
,
1077 pci_unmap_addr(ce
, dma_addr
),
1078 pci_unmap_len(ce
, dma_len
),
1079 PCI_DMA_FROMDEVICE
);
1080 memcpy(skb
->data
, ce
->skb
->data
+ dma_pad
, len
);
1081 pci_dma_sync_single_for_device(pdev
,
1082 pci_unmap_addr(ce
, dma_addr
),
1083 pci_unmap_len(ce
, dma_len
),
1084 PCI_DMA_FROMDEVICE
);
1085 } else if (!drop_thres
)
1088 recycle_fl_buf(fl
, fl
->cidx
);
1092 if (fl
->credits
< drop_thres
) {
1093 recycle_fl_buf(fl
, fl
->cidx
);
1098 pci_unmap_single(pdev
, pci_unmap_addr(ce
, dma_addr
),
1099 pci_unmap_len(ce
, dma_len
), PCI_DMA_FROMDEVICE
);
1101 skb_reserve(skb
, dma_pad
);
1107 * unexpected_offload - handle an unexpected offload packet
1108 * @adapter: the adapter
1109 * @fl: the free list that received the packet
1111 * Called when we receive an unexpected offload packet (e.g., the TOE
1112 * function is disabled or the card is a NIC). Prints a message and
1113 * recycles the buffer.
1115 static void unexpected_offload(struct adapter
*adapter
, struct freelQ
*fl
)
1117 struct freelQ_ce
*ce
= &fl
->centries
[fl
->cidx
];
1118 struct sk_buff
*skb
= ce
->skb
;
1120 pci_dma_sync_single_for_cpu(adapter
->pdev
, pci_unmap_addr(ce
, dma_addr
),
1121 pci_unmap_len(ce
, dma_len
), PCI_DMA_FROMDEVICE
);
1122 CH_ERR("%s: unexpected offload packet, cmd %u\n",
1123 adapter
->name
, *skb
->data
);
1124 recycle_fl_buf(fl
, fl
->cidx
);
1128 * T1/T2 SGE limits the maximum DMA size per TX descriptor to
1129 * SGE_TX_DESC_MAX_PLEN (16KB). If the PAGE_SIZE is larger than 16KB, the
1130 * stack might send more than SGE_TX_DESC_MAX_PLEN in a contiguous manner.
1131 * Note that the *_large_page_tx_descs stuff will be optimized out when
1132 * PAGE_SIZE <= SGE_TX_DESC_MAX_PLEN.
1134 * compute_large_page_descs() computes how many additional descriptors are
1135 * required to break down the stack's request.
1137 static inline unsigned int compute_large_page_tx_descs(struct sk_buff
*skb
)
1139 unsigned int count
= 0;
1140 if (PAGE_SIZE
> SGE_TX_DESC_MAX_PLEN
) {
1141 unsigned int nfrags
= skb_shinfo(skb
)->nr_frags
;
1142 unsigned int i
, len
= skb
->len
- skb
->data_len
;
1143 while (len
> SGE_TX_DESC_MAX_PLEN
) {
1145 len
-= SGE_TX_DESC_MAX_PLEN
;
1147 for (i
= 0; nfrags
--; i
++) {
1148 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
1150 while (len
> SGE_TX_DESC_MAX_PLEN
) {
1152 len
-= SGE_TX_DESC_MAX_PLEN
;
1160 * Write a cmdQ entry.
1162 * Since this function writes the 'flags' field, it must not be used to
1163 * write the first cmdQ entry.
1165 static inline void write_tx_desc(struct cmdQ_e
*e
, dma_addr_t mapping
,
1166 unsigned int len
, unsigned int gen
,
1169 if (unlikely(len
> SGE_TX_DESC_MAX_PLEN
))
1171 e
->addr_lo
= (u32
)mapping
;
1172 e
->addr_hi
= (u64
)mapping
>> 32;
1173 e
->len_gen
= V_CMD_LEN(len
) | V_CMD_GEN1(gen
);
1174 e
->flags
= F_CMD_DATAVALID
| V_CMD_EOP(eop
) | V_CMD_GEN2(gen
);
1178 * See comment for previous function.
1180 * write_tx_descs_large_page() writes additional SGE tx descriptors if
1181 * *desc_len exceeds HW's capability.
1183 static inline unsigned int write_large_page_tx_descs(unsigned int pidx
,
1185 struct cmdQ_ce
**ce
,
1187 dma_addr_t
*desc_mapping
,
1188 unsigned int *desc_len
,
1189 unsigned int nfrags
,
1192 if (PAGE_SIZE
> SGE_TX_DESC_MAX_PLEN
) {
1193 struct cmdQ_e
*e1
= *e
;
1194 struct cmdQ_ce
*ce1
= *ce
;
1196 while (*desc_len
> SGE_TX_DESC_MAX_PLEN
) {
1197 *desc_len
-= SGE_TX_DESC_MAX_PLEN
;
1198 write_tx_desc(e1
, *desc_mapping
, SGE_TX_DESC_MAX_PLEN
,
1199 *gen
, nfrags
== 0 && *desc_len
== 0);
1201 pci_unmap_len_set(ce1
, dma_len
, 0);
1202 *desc_mapping
+= SGE_TX_DESC_MAX_PLEN
;
1206 if (++pidx
== q
->size
) {
1221 * Write the command descriptors to transmit the given skb starting at
1222 * descriptor pidx with the given generation.
1224 static inline void write_tx_descs(struct adapter
*adapter
, struct sk_buff
*skb
,
1225 unsigned int pidx
, unsigned int gen
,
1228 dma_addr_t mapping
, desc_mapping
;
1229 struct cmdQ_e
*e
, *e1
;
1231 unsigned int i
, flags
, first_desc_len
, desc_len
,
1232 nfrags
= skb_shinfo(skb
)->nr_frags
;
1234 e
= e1
= &q
->entries
[pidx
];
1235 ce
= &q
->centries
[pidx
];
1237 mapping
= pci_map_single(adapter
->pdev
, skb
->data
,
1238 skb
->len
- skb
->data_len
, PCI_DMA_TODEVICE
);
1240 desc_mapping
= mapping
;
1241 desc_len
= skb
->len
- skb
->data_len
;
1243 flags
= F_CMD_DATAVALID
| F_CMD_SOP
|
1244 V_CMD_EOP(nfrags
== 0 && desc_len
<= SGE_TX_DESC_MAX_PLEN
) |
1246 first_desc_len
= (desc_len
<= SGE_TX_DESC_MAX_PLEN
) ?
1247 desc_len
: SGE_TX_DESC_MAX_PLEN
;
1248 e
->addr_lo
= (u32
)desc_mapping
;
1249 e
->addr_hi
= (u64
)desc_mapping
>> 32;
1250 e
->len_gen
= V_CMD_LEN(first_desc_len
) | V_CMD_GEN1(gen
);
1252 pci_unmap_len_set(ce
, dma_len
, 0);
1254 if (PAGE_SIZE
> SGE_TX_DESC_MAX_PLEN
&&
1255 desc_len
> SGE_TX_DESC_MAX_PLEN
) {
1256 desc_mapping
+= first_desc_len
;
1257 desc_len
-= first_desc_len
;
1260 if (++pidx
== q
->size
) {
1266 pidx
= write_large_page_tx_descs(pidx
, &e1
, &ce
, &gen
,
1267 &desc_mapping
, &desc_len
,
1270 if (likely(desc_len
))
1271 write_tx_desc(e1
, desc_mapping
, desc_len
, gen
,
1276 pci_unmap_addr_set(ce
, dma_addr
, mapping
);
1277 pci_unmap_len_set(ce
, dma_len
, skb
->len
- skb
->data_len
);
1279 for (i
= 0; nfrags
--; i
++) {
1280 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
1283 if (++pidx
== q
->size
) {
1290 mapping
= pci_map_page(adapter
->pdev
, frag
->page
,
1291 frag
->page_offset
, frag
->size
,
1293 desc_mapping
= mapping
;
1294 desc_len
= frag
->size
;
1296 pidx
= write_large_page_tx_descs(pidx
, &e1
, &ce
, &gen
,
1297 &desc_mapping
, &desc_len
,
1299 if (likely(desc_len
))
1300 write_tx_desc(e1
, desc_mapping
, desc_len
, gen
,
1303 pci_unmap_addr_set(ce
, dma_addr
, mapping
);
1304 pci_unmap_len_set(ce
, dma_len
, frag
->size
);
1312 * Clean up completed Tx buffers.
1314 static inline void reclaim_completed_tx(struct sge
*sge
, struct cmdQ
*q
)
1316 unsigned int reclaim
= q
->processed
- q
->cleaned
;
1319 pr_debug("reclaim_completed_tx processed:%d cleaned:%d\n",
1320 q
->processed
, q
->cleaned
);
1321 free_cmdQ_buffers(sge
, q
, reclaim
);
1322 q
->cleaned
+= reclaim
;
1327 * Called from tasklet. Checks the scheduler for any
1328 * pending skbs that can be sent.
1330 static void restart_sched(unsigned long arg
)
1332 struct sge
*sge
= (struct sge
*) arg
;
1333 struct adapter
*adapter
= sge
->adapter
;
1334 struct cmdQ
*q
= &sge
->cmdQ
[0];
1335 struct sk_buff
*skb
;
1336 unsigned int credits
, queued_skb
= 0;
1338 spin_lock(&q
->lock
);
1339 reclaim_completed_tx(sge
, q
);
1341 credits
= q
->size
- q
->in_use
;
1342 pr_debug("restart_sched credits=%d\n", credits
);
1343 while ((skb
= sched_skb(sge
, NULL
, credits
)) != NULL
) {
1344 unsigned int genbit
, pidx
, count
;
1345 count
= 1 + skb_shinfo(skb
)->nr_frags
;
1346 count
+= compute_large_page_tx_descs(skb
);
1351 if (q
->pidx
>= q
->size
) {
1355 write_tx_descs(adapter
, skb
, pidx
, genbit
, q
);
1356 credits
= q
->size
- q
->in_use
;
1361 clear_bit(CMDQ_STAT_LAST_PKT_DB
, &q
->status
);
1362 if (test_and_set_bit(CMDQ_STAT_RUNNING
, &q
->status
) == 0) {
1363 set_bit(CMDQ_STAT_LAST_PKT_DB
, &q
->status
);
1364 writel(F_CMDQ0_ENABLE
, adapter
->regs
+ A_SG_DOORBELL
);
1367 spin_unlock(&q
->lock
);
1371 * sge_rx - process an ingress ethernet packet
1372 * @sge: the sge structure
1373 * @fl: the free list that contains the packet buffer
1374 * @len: the packet length
1376 * Process an ingress ethernet pakcet and deliver it to the stack.
1378 static int sge_rx(struct sge
*sge
, struct freelQ
*fl
, unsigned int len
)
1380 struct sk_buff
*skb
;
1381 struct cpl_rx_pkt
*p
;
1382 struct adapter
*adapter
= sge
->adapter
;
1383 struct sge_port_stats
*st
;
1385 skb
= get_packet(adapter
->pdev
, fl
, len
- sge
->rx_pkt_pad
,
1386 sge
->rx_pkt_pad
, 2, SGE_RX_COPY_THRES
,
1388 if (unlikely(!skb
)) {
1389 sge
->stats
.rx_drops
++;
1393 p
= (struct cpl_rx_pkt
*)skb
->data
;
1394 skb_pull(skb
, sizeof(*p
));
1395 if (p
->iff
>= adapter
->params
.nports
) {
1400 skb
->dev
= adapter
->port
[p
->iff
].dev
;
1401 skb
->dev
->last_rx
= jiffies
;
1402 st
= per_cpu_ptr(sge
->port_stats
[p
->iff
], smp_processor_id());
1405 skb
->protocol
= eth_type_trans(skb
, skb
->dev
);
1406 if ((adapter
->flags
& RX_CSUM_ENABLED
) && p
->csum
== 0xffff &&
1407 skb
->protocol
== htons(ETH_P_IP
) &&
1408 (skb
->data
[9] == IPPROTO_TCP
|| skb
->data
[9] == IPPROTO_UDP
)) {
1410 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
1412 skb
->ip_summed
= CHECKSUM_NONE
;
1414 if (unlikely(adapter
->vlan_grp
&& p
->vlan_valid
)) {
1416 if (adapter
->params
.sge
.polling
)
1417 vlan_hwaccel_receive_skb(skb
, adapter
->vlan_grp
,
1420 vlan_hwaccel_rx(skb
, adapter
->vlan_grp
,
1422 } else if (adapter
->params
.sge
.polling
)
1423 netif_receive_skb(skb
);
1430 * Returns true if a command queue has enough available descriptors that
1431 * we can resume Tx operation after temporarily disabling its packet queue.
1433 static inline int enough_free_Tx_descs(const struct cmdQ
*q
)
1435 unsigned int r
= q
->processed
- q
->cleaned
;
1437 return q
->in_use
- r
< (q
->size
>> 1);
1441 * Called when sufficient space has become available in the SGE command queues
1442 * after the Tx packet schedulers have been suspended to restart the Tx path.
1444 static void restart_tx_queues(struct sge
*sge
)
1446 struct adapter
*adap
= sge
->adapter
;
1448 if (enough_free_Tx_descs(&sge
->cmdQ
[0])) {
1451 for_each_port(adap
, i
) {
1452 struct net_device
*nd
= adap
->port
[i
].dev
;
1454 if (test_and_clear_bit(nd
->if_port
,
1455 &sge
->stopped_tx_queues
) &&
1456 netif_running(nd
)) {
1457 sge
->stats
.cmdQ_restarted
[2]++;
1458 netif_wake_queue(nd
);
1465 * update_tx_info is called from the interrupt handler/NAPI to return cmdQ0
1468 static unsigned int update_tx_info(struct adapter
*adapter
,
1472 struct sge
*sge
= adapter
->sge
;
1473 struct cmdQ
*cmdq
= &sge
->cmdQ
[0];
1475 cmdq
->processed
+= pr0
;
1476 if (flags
& (F_FL0_ENABLE
| F_FL1_ENABLE
)) {
1478 flags
&= ~(F_FL0_ENABLE
| F_FL1_ENABLE
);
1480 if (flags
& F_CMDQ0_ENABLE
) {
1481 clear_bit(CMDQ_STAT_RUNNING
, &cmdq
->status
);
1483 if (cmdq
->cleaned
+ cmdq
->in_use
!= cmdq
->processed
&&
1484 !test_and_set_bit(CMDQ_STAT_LAST_PKT_DB
, &cmdq
->status
)) {
1485 set_bit(CMDQ_STAT_RUNNING
, &cmdq
->status
);
1486 writel(F_CMDQ0_ENABLE
, adapter
->regs
+ A_SG_DOORBELL
);
1489 tasklet_hi_schedule(&sge
->tx_sched
->sched_tsk
);
1491 flags
&= ~F_CMDQ0_ENABLE
;
1494 if (unlikely(sge
->stopped_tx_queues
!= 0))
1495 restart_tx_queues(sge
);
1501 * Process SGE responses, up to the supplied budget. Returns the number of
1502 * responses processed. A negative budget is effectively unlimited.
1504 static int process_responses(struct adapter
*adapter
, int budget
)
1506 struct sge
*sge
= adapter
->sge
;
1507 struct respQ
*q
= &sge
->respQ
;
1508 struct respQ_e
*e
= &q
->entries
[q
->cidx
];
1509 int budget_left
= budget
;
1510 unsigned int flags
= 0;
1511 unsigned int cmdq_processed
[SGE_CMDQ_N
] = {0, 0};
1514 while (likely(budget_left
&& e
->GenerationBit
== q
->genbit
)) {
1515 flags
|= e
->Qsleeping
;
1517 cmdq_processed
[0] += e
->Cmdq0CreditReturn
;
1518 cmdq_processed
[1] += e
->Cmdq1CreditReturn
;
1520 /* We batch updates to the TX side to avoid cacheline
1521 * ping-pong of TX state information on MP where the sender
1522 * might run on a different CPU than this function...
1524 if (unlikely(flags
& F_CMDQ0_ENABLE
|| cmdq_processed
[0] > 64)) {
1525 flags
= update_tx_info(adapter
, flags
, cmdq_processed
[0]);
1526 cmdq_processed
[0] = 0;
1528 if (unlikely(cmdq_processed
[1] > 16)) {
1529 sge
->cmdQ
[1].processed
+= cmdq_processed
[1];
1530 cmdq_processed
[1] = 0;
1532 if (likely(e
->DataValid
)) {
1533 struct freelQ
*fl
= &sge
->freelQ
[e
->FreelistQid
];
1535 BUG_ON(!e
->Sop
|| !e
->Eop
);
1536 if (unlikely(e
->Offload
))
1537 unexpected_offload(adapter
, fl
);
1539 sge_rx(sge
, fl
, e
->BufferLength
);
1542 * Note: this depends on each packet consuming a
1543 * single free-list buffer; cf. the BUG above.
1545 if (++fl
->cidx
== fl
->size
)
1547 if (unlikely(--fl
->credits
<
1548 fl
->size
- SGE_FREEL_REFILL_THRESH
))
1549 refill_free_list(sge
, fl
);
1551 sge
->stats
.pure_rsps
++;
1554 if (unlikely(++q
->cidx
== q
->size
)) {
1561 if (++q
->credits
> SGE_RESPQ_REPLENISH_THRES
) {
1562 writel(q
->credits
, adapter
->regs
+ A_SG_RSPQUEUECREDIT
);
1568 flags
= update_tx_info(adapter
, flags
, cmdq_processed
[0]);
1569 sge
->cmdQ
[1].processed
+= cmdq_processed
[1];
1571 budget
-= budget_left
;
1576 * A simpler version of process_responses() that handles only pure (i.e.,
1577 * non data-carrying) responses. Such respones are too light-weight to justify
1578 * calling a softirq when using NAPI, so we handle them specially in hard
1579 * interrupt context. The function is called with a pointer to a response,
1580 * which the caller must ensure is a valid pure response. Returns 1 if it
1581 * encounters a valid data-carrying response, 0 otherwise.
1583 static int process_pure_responses(struct adapter
*adapter
, struct respQ_e
*e
)
1585 struct sge
*sge
= adapter
->sge
;
1586 struct respQ
*q
= &sge
->respQ
;
1587 unsigned int flags
= 0;
1588 unsigned int cmdq_processed
[SGE_CMDQ_N
] = {0, 0};
1591 flags
|= e
->Qsleeping
;
1593 cmdq_processed
[0] += e
->Cmdq0CreditReturn
;
1594 cmdq_processed
[1] += e
->Cmdq1CreditReturn
;
1597 if (unlikely(++q
->cidx
== q
->size
)) {
1604 if (++q
->credits
> SGE_RESPQ_REPLENISH_THRES
) {
1605 writel(q
->credits
, adapter
->regs
+ A_SG_RSPQUEUECREDIT
);
1608 sge
->stats
.pure_rsps
++;
1609 } while (e
->GenerationBit
== q
->genbit
&& !e
->DataValid
);
1611 flags
= update_tx_info(adapter
, flags
, cmdq_processed
[0]);
1612 sge
->cmdQ
[1].processed
+= cmdq_processed
[1];
1614 return e
->GenerationBit
== q
->genbit
;
1618 * Handler for new data events when using NAPI. This does not need any locking
1619 * or protection from interrupts as data interrupts are off at this point and
1620 * other adapter interrupts do not interfere.
1622 static int t1_poll(struct net_device
*dev
, int *budget
)
1624 struct adapter
*adapter
= dev
->priv
;
1625 int effective_budget
= min(*budget
, dev
->quota
);
1627 int work_done
= process_responses(adapter
, effective_budget
);
1628 *budget
-= work_done
;
1629 dev
->quota
-= work_done
;
1631 if (work_done
>= effective_budget
)
1634 __netif_rx_complete(dev
);
1637 * Because we don't atomically flush the following write it is
1638 * possible that in very rare cases it can reach the device in a way
1639 * that races with a new response being written plus an error interrupt
1640 * causing the NAPI interrupt handler below to return unhandled status
1641 * to the OS. To protect against this would require flushing the write
1642 * and doing both the write and the flush with interrupts off. Way too
1643 * expensive and unjustifiable given the rarity of the race.
1645 writel(adapter
->sge
->respQ
.cidx
, adapter
->regs
+ A_SG_SLEEPING
);
1650 * Returns true if the device is already scheduled for polling.
1652 static inline int napi_is_scheduled(struct net_device
*dev
)
1654 return test_bit(__LINK_STATE_RX_SCHED
, &dev
->state
);
1658 * NAPI version of the main interrupt handler.
1660 static irqreturn_t
t1_interrupt_napi(int irq
, void *data
)
1663 struct adapter
*adapter
= data
;
1664 struct sge
*sge
= adapter
->sge
;
1665 struct respQ
*q
= &adapter
->sge
->respQ
;
1668 * Clear the SGE_DATA interrupt first thing. Normally the NAPI
1669 * handler has control of the response queue and the interrupt handler
1670 * can look at the queue reliably only once it knows NAPI is off.
1671 * We can't wait that long to clear the SGE_DATA interrupt because we
1672 * could race with t1_poll rearming the SGE interrupt, so we need to
1673 * clear the interrupt speculatively and really early on.
1675 writel(F_PL_INTR_SGE_DATA
, adapter
->regs
+ A_PL_CAUSE
);
1677 spin_lock(&adapter
->async_lock
);
1678 if (!napi_is_scheduled(sge
->netdev
)) {
1679 struct respQ_e
*e
= &q
->entries
[q
->cidx
];
1681 if (e
->GenerationBit
== q
->genbit
) {
1683 process_pure_responses(adapter
, e
)) {
1684 if (likely(__netif_rx_schedule_prep(sge
->netdev
)))
1685 __netif_rx_schedule(sge
->netdev
);
1686 else if (net_ratelimit())
1688 "NAPI schedule failure!\n");
1690 writel(q
->cidx
, adapter
->regs
+ A_SG_SLEEPING
);
1695 writel(q
->cidx
, adapter
->regs
+ A_SG_SLEEPING
);
1696 } else if (readl(adapter
->regs
+ A_PL_CAUSE
) & F_PL_INTR_SGE_DATA
) {
1697 printk(KERN_ERR
"data interrupt while NAPI running\n");
1700 handled
= t1_slow_intr_handler(adapter
);
1702 sge
->stats
.unhandled_irqs
++;
1704 spin_unlock(&adapter
->async_lock
);
1705 return IRQ_RETVAL(handled
!= 0);
1709 * Main interrupt handler, optimized assuming that we took a 'DATA'
1712 * 1. Clear the interrupt
1713 * 2. Loop while we find valid descriptors and process them; accumulate
1714 * information that can be processed after the loop
1715 * 3. Tell the SGE at which index we stopped processing descriptors
1716 * 4. Bookkeeping; free TX buffers, ring doorbell if there are any
1717 * outstanding TX buffers waiting, replenish RX buffers, potentially
1718 * reenable upper layers if they were turned off due to lack of TX
1719 * resources which are available again.
1720 * 5. If we took an interrupt, but no valid respQ descriptors was found we
1721 * let the slow_intr_handler run and do error handling.
1723 static irqreturn_t
t1_interrupt(int irq
, void *cookie
)
1727 struct adapter
*adapter
= cookie
;
1728 struct respQ
*Q
= &adapter
->sge
->respQ
;
1730 spin_lock(&adapter
->async_lock
);
1731 e
= &Q
->entries
[Q
->cidx
];
1734 writel(F_PL_INTR_SGE_DATA
, adapter
->regs
+ A_PL_CAUSE
);
1736 if (likely(e
->GenerationBit
== Q
->genbit
))
1737 work_done
= process_responses(adapter
, -1);
1739 work_done
= t1_slow_intr_handler(adapter
);
1742 * The unconditional clearing of the PL_CAUSE above may have raced
1743 * with DMA completion and the corresponding generation of a response
1744 * to cause us to miss the resulting data interrupt. The next write
1745 * is also unconditional to recover the missed interrupt and render
1746 * this race harmless.
1748 writel(Q
->cidx
, adapter
->regs
+ A_SG_SLEEPING
);
1751 adapter
->sge
->stats
.unhandled_irqs
++;
1752 spin_unlock(&adapter
->async_lock
);
1753 return IRQ_RETVAL(work_done
!= 0);
1756 irq_handler_t
t1_select_intr_handler(adapter_t
*adapter
)
1758 return adapter
->params
.sge
.polling
? t1_interrupt_napi
: t1_interrupt
;
1762 * Enqueues the sk_buff onto the cmdQ[qid] and has hardware fetch it.
1764 * The code figures out how many entries the sk_buff will require in the
1765 * cmdQ and updates the cmdQ data structure with the state once the enqueue
1766 * has complete. Then, it doesn't access the global structure anymore, but
1767 * uses the corresponding fields on the stack. In conjuction with a spinlock
1768 * around that code, we can make the function reentrant without holding the
1769 * lock when we actually enqueue (which might be expensive, especially on
1770 * architectures with IO MMUs).
1772 * This runs with softirqs disabled.
1774 static int t1_sge_tx(struct sk_buff
*skb
, struct adapter
*adapter
,
1775 unsigned int qid
, struct net_device
*dev
)
1777 struct sge
*sge
= adapter
->sge
;
1778 struct cmdQ
*q
= &sge
->cmdQ
[qid
];
1779 unsigned int credits
, pidx
, genbit
, count
, use_sched_skb
= 0;
1781 spin_lock(&q
->lock
);
1782 reclaim_completed_tx(sge
, q
);
1785 credits
= q
->size
- q
->in_use
;
1786 count
= 1 + skb_shinfo(skb
)->nr_frags
;
1787 count
+= compute_large_page_tx_descs(skb
);
1789 /* Ethernet packet */
1790 if (unlikely(credits
< count
)) {
1791 if (!netif_queue_stopped(dev
)) {
1792 netif_stop_queue(dev
);
1793 set_bit(dev
->if_port
, &sge
->stopped_tx_queues
);
1794 sge
->stats
.cmdQ_full
[2]++;
1795 CH_ERR("%s: Tx ring full while queue awake!\n",
1798 spin_unlock(&q
->lock
);
1799 return NETDEV_TX_BUSY
;
1802 if (unlikely(credits
- count
< q
->stop_thres
)) {
1803 netif_stop_queue(dev
);
1804 set_bit(dev
->if_port
, &sge
->stopped_tx_queues
);
1805 sge
->stats
.cmdQ_full
[2]++;
1808 /* T204 cmdQ0 skbs that are destined for a certain port have to go
1809 * through the scheduler.
1811 if (sge
->tx_sched
&& !qid
&& skb
->dev
) {
1814 /* Note that the scheduler might return a different skb than
1815 * the one passed in.
1817 skb
= sched_skb(sge
, skb
, credits
);
1819 spin_unlock(&q
->lock
);
1820 return NETDEV_TX_OK
;
1823 count
= 1 + skb_shinfo(skb
)->nr_frags
;
1824 count
+= compute_large_page_tx_descs(skb
);
1831 if (q
->pidx
>= q
->size
) {
1835 spin_unlock(&q
->lock
);
1837 write_tx_descs(adapter
, skb
, pidx
, genbit
, q
);
1840 * We always ring the doorbell for cmdQ1. For cmdQ0, we only ring
1841 * the doorbell if the Q is asleep. There is a natural race, where
1842 * the hardware is going to sleep just after we checked, however,
1843 * then the interrupt handler will detect the outstanding TX packet
1844 * and ring the doorbell for us.
1847 doorbell_pio(adapter
, F_CMDQ1_ENABLE
);
1849 clear_bit(CMDQ_STAT_LAST_PKT_DB
, &q
->status
);
1850 if (test_and_set_bit(CMDQ_STAT_RUNNING
, &q
->status
) == 0) {
1851 set_bit(CMDQ_STAT_LAST_PKT_DB
, &q
->status
);
1852 writel(F_CMDQ0_ENABLE
, adapter
->regs
+ A_SG_DOORBELL
);
1856 if (use_sched_skb
) {
1857 if (spin_trylock(&q
->lock
)) {
1858 credits
= q
->size
- q
->in_use
;
1863 return NETDEV_TX_OK
;
1866 #define MK_ETH_TYPE_MSS(type, mss) (((mss) & 0x3FFF) | ((type) << 14))
1869 * eth_hdr_len - return the length of an Ethernet header
1870 * @data: pointer to the start of the Ethernet header
1872 * Returns the length of an Ethernet header, including optional VLAN tag.
1874 static inline int eth_hdr_len(const void *data
)
1876 const struct ethhdr
*e
= data
;
1878 return e
->h_proto
== htons(ETH_P_8021Q
) ? VLAN_ETH_HLEN
: ETH_HLEN
;
1882 * Adds the CPL header to the sk_buff and passes it to t1_sge_tx.
1884 int t1_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
1886 struct adapter
*adapter
= dev
->priv
;
1887 struct sge
*sge
= adapter
->sge
;
1888 struct sge_port_stats
*st
= per_cpu_ptr(sge
->port_stats
[dev
->if_port
], smp_processor_id());
1889 struct cpl_tx_pkt
*cpl
;
1891 if (skb
->protocol
== htons(ETH_P_CPL5
))
1894 if (skb_shinfo(skb
)->gso_size
) {
1896 struct cpl_tx_pkt_lso
*hdr
;
1900 eth_type
= skb
->nh
.raw
- skb
->data
== ETH_HLEN
?
1901 CPL_ETH_II
: CPL_ETH_II_VLAN
;
1903 hdr
= (struct cpl_tx_pkt_lso
*)skb_push(skb
, sizeof(*hdr
));
1904 hdr
->opcode
= CPL_TX_PKT_LSO
;
1905 hdr
->ip_csum_dis
= hdr
->l4_csum_dis
= 0;
1906 hdr
->ip_hdr_words
= skb
->nh
.iph
->ihl
;
1907 hdr
->tcp_hdr_words
= skb
->h
.th
->doff
;
1908 hdr
->eth_type_mss
= htons(MK_ETH_TYPE_MSS(eth_type
,
1909 skb_shinfo(skb
)->gso_size
));
1910 hdr
->len
= htonl(skb
->len
- sizeof(*hdr
));
1911 cpl
= (struct cpl_tx_pkt
*)hdr
;
1914 * Packets shorter than ETH_HLEN can break the MAC, drop them
1915 * early. Also, we may get oversized packets because some
1916 * parts of the kernel don't handle our unusual hard_header_len
1917 * right, drop those too.
1919 if (unlikely(skb
->len
< ETH_HLEN
||
1920 skb
->len
> dev
->mtu
+ eth_hdr_len(skb
->data
))) {
1921 pr_debug("%s: packet size %d hdr %d mtu%d\n", dev
->name
,
1922 skb
->len
, eth_hdr_len(skb
->data
), dev
->mtu
);
1923 dev_kfree_skb_any(skb
);
1924 return NETDEV_TX_OK
;
1928 * We are using a non-standard hard_header_len and some kernel
1929 * components, such as pktgen, do not handle it right.
1930 * Complain when this happens but try to fix things up.
1932 if (unlikely(skb_headroom(skb
) < dev
->hard_header_len
- ETH_HLEN
)) {
1933 struct sk_buff
*orig_skb
= skb
;
1935 pr_debug("%s: headroom %d header_len %d\n", dev
->name
,
1936 skb_headroom(skb
), dev
->hard_header_len
);
1938 if (net_ratelimit())
1939 printk(KERN_ERR
"%s: inadequate headroom in "
1940 "Tx packet\n", dev
->name
);
1941 skb
= skb_realloc_headroom(skb
, sizeof(*cpl
));
1942 dev_kfree_skb_any(orig_skb
);
1944 return NETDEV_TX_OK
;
1947 if (!(adapter
->flags
& UDP_CSUM_CAPABLE
) &&
1948 skb
->ip_summed
== CHECKSUM_PARTIAL
&&
1949 skb
->nh
.iph
->protocol
== IPPROTO_UDP
) {
1950 if (unlikely(skb_checksum_help(skb
))) {
1951 pr_debug("%s: unable to do udp checksum\n", dev
->name
);
1952 dev_kfree_skb_any(skb
);
1953 return NETDEV_TX_OK
;
1957 /* Hmmm, assuming to catch the gratious arp... and we'll use
1958 * it to flush out stuck espi packets...
1960 if ((unlikely(!adapter
->sge
->espibug_skb
[dev
->if_port
]))) {
1961 if (skb
->protocol
== htons(ETH_P_ARP
) &&
1962 skb
->nh
.arph
->ar_op
== htons(ARPOP_REQUEST
)) {
1963 adapter
->sge
->espibug_skb
[dev
->if_port
] = skb
;
1964 /* We want to re-use this skb later. We
1965 * simply bump the reference count and it
1966 * will not be freed...
1972 cpl
= (struct cpl_tx_pkt
*)__skb_push(skb
, sizeof(*cpl
));
1973 cpl
->opcode
= CPL_TX_PKT
;
1974 cpl
->ip_csum_dis
= 1; /* SW calculates IP csum */
1975 cpl
->l4_csum_dis
= skb
->ip_summed
== CHECKSUM_PARTIAL
? 0 : 1;
1976 /* the length field isn't used so don't bother setting it */
1978 st
->tx_cso
+= (skb
->ip_summed
== CHECKSUM_PARTIAL
);
1980 cpl
->iff
= dev
->if_port
;
1982 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
1983 if (adapter
->vlan_grp
&& vlan_tx_tag_present(skb
)) {
1984 cpl
->vlan_valid
= 1;
1985 cpl
->vlan
= htons(vlan_tx_tag_get(skb
));
1989 cpl
->vlan_valid
= 0;
1993 dev
->trans_start
= jiffies
;
1994 return t1_sge_tx(skb
, adapter
, 0, dev
);
1998 * Callback for the Tx buffer reclaim timer. Runs with softirqs disabled.
2000 static void sge_tx_reclaim_cb(unsigned long data
)
2003 struct sge
*sge
= (struct sge
*)data
;
2005 for (i
= 0; i
< SGE_CMDQ_N
; ++i
) {
2006 struct cmdQ
*q
= &sge
->cmdQ
[i
];
2008 if (!spin_trylock(&q
->lock
))
2011 reclaim_completed_tx(sge
, q
);
2012 if (i
== 0 && q
->in_use
) { /* flush pending credits */
2013 writel(F_CMDQ0_ENABLE
, sge
->adapter
->regs
+ A_SG_DOORBELL
);
2015 spin_unlock(&q
->lock
);
2017 mod_timer(&sge
->tx_reclaim_timer
, jiffies
+ TX_RECLAIM_PERIOD
);
2021 * Propagate changes of the SGE coalescing parameters to the HW.
2023 int t1_sge_set_coalesce_params(struct sge
*sge
, struct sge_params
*p
)
2025 sge
->netdev
->poll
= t1_poll
;
2026 sge
->fixed_intrtimer
= p
->rx_coalesce_usecs
*
2027 core_ticks_per_usec(sge
->adapter
);
2028 writel(sge
->fixed_intrtimer
, sge
->adapter
->regs
+ A_SG_INTRTIMER
);
2033 * Allocates both RX and TX resources and configures the SGE. However,
2034 * the hardware is not enabled yet.
2036 int t1_sge_configure(struct sge
*sge
, struct sge_params
*p
)
2038 if (alloc_rx_resources(sge
, p
))
2040 if (alloc_tx_resources(sge
, p
)) {
2041 free_rx_resources(sge
);
2044 configure_sge(sge
, p
);
2047 * Now that we have sized the free lists calculate the payload
2048 * capacity of the large buffers. Other parts of the driver use
2049 * this to set the max offload coalescing size so that RX packets
2050 * do not overflow our large buffers.
2052 p
->large_buf_capacity
= jumbo_payload_capacity(sge
);
2057 * Disables the DMA engine.
2059 void t1_sge_stop(struct sge
*sge
)
2062 writel(0, sge
->adapter
->regs
+ A_SG_CONTROL
);
2063 readl(sge
->adapter
->regs
+ A_SG_CONTROL
); /* flush */
2065 if (is_T2(sge
->adapter
))
2066 del_timer_sync(&sge
->espibug_timer
);
2068 del_timer_sync(&sge
->tx_reclaim_timer
);
2072 for (i
= 0; i
< MAX_NPORTS
; i
++)
2073 if (sge
->espibug_skb
[i
])
2074 kfree_skb(sge
->espibug_skb
[i
]);
2078 * Enables the DMA engine.
2080 void t1_sge_start(struct sge
*sge
)
2082 refill_free_list(sge
, &sge
->freelQ
[0]);
2083 refill_free_list(sge
, &sge
->freelQ
[1]);
2085 writel(sge
->sge_control
, sge
->adapter
->regs
+ A_SG_CONTROL
);
2086 doorbell_pio(sge
->adapter
, F_FL0_ENABLE
| F_FL1_ENABLE
);
2087 readl(sge
->adapter
->regs
+ A_SG_CONTROL
); /* flush */
2089 mod_timer(&sge
->tx_reclaim_timer
, jiffies
+ TX_RECLAIM_PERIOD
);
2091 if (is_T2(sge
->adapter
))
2092 mod_timer(&sge
->espibug_timer
, jiffies
+ sge
->espibug_timeout
);
2096 * Callback for the T2 ESPI 'stuck packet feature' workaorund
2098 static void espibug_workaround_t204(unsigned long data
)
2100 struct adapter
*adapter
= (struct adapter
*)data
;
2101 struct sge
*sge
= adapter
->sge
;
2102 unsigned int nports
= adapter
->params
.nports
;
2103 u32 seop
[MAX_NPORTS
];
2105 if (adapter
->open_device_map
& PORT_MASK
) {
2107 if (t1_espi_get_mon_t204(adapter
, &(seop
[0]), 0) < 0) {
2110 for (i
= 0; i
< nports
; i
++) {
2111 struct sk_buff
*skb
= sge
->espibug_skb
[i
];
2112 if ( (netif_running(adapter
->port
[i
].dev
)) &&
2113 !(netif_queue_stopped(adapter
->port
[i
].dev
)) &&
2114 (seop
[i
] && ((seop
[i
] & 0xfff) == 0)) &&
2117 u8 ch_mac_addr
[ETH_ALEN
] =
2118 {0x0, 0x7, 0x43, 0x0, 0x0, 0x0};
2119 memcpy(skb
->data
+ sizeof(struct cpl_tx_pkt
),
2120 ch_mac_addr
, ETH_ALEN
);
2121 memcpy(skb
->data
+ skb
->len
- 10,
2122 ch_mac_addr
, ETH_ALEN
);
2126 /* bump the reference count to avoid freeing of
2127 * the skb once the DMA has completed.
2130 t1_sge_tx(skb
, adapter
, 0, adapter
->port
[i
].dev
);
2134 mod_timer(&sge
->espibug_timer
, jiffies
+ sge
->espibug_timeout
);
2137 static void espibug_workaround(unsigned long data
)
2139 struct adapter
*adapter
= (struct adapter
*)data
;
2140 struct sge
*sge
= adapter
->sge
;
2142 if (netif_running(adapter
->port
[0].dev
)) {
2143 struct sk_buff
*skb
= sge
->espibug_skb
[0];
2144 u32 seop
= t1_espi_get_mon(adapter
, 0x930, 0);
2146 if ((seop
& 0xfff0fff) == 0xfff && skb
) {
2148 u8 ch_mac_addr
[ETH_ALEN
] =
2149 {0x0, 0x7, 0x43, 0x0, 0x0, 0x0};
2150 memcpy(skb
->data
+ sizeof(struct cpl_tx_pkt
),
2151 ch_mac_addr
, ETH_ALEN
);
2152 memcpy(skb
->data
+ skb
->len
- 10, ch_mac_addr
,
2157 /* bump the reference count to avoid freeing of the
2158 * skb once the DMA has completed.
2161 t1_sge_tx(skb
, adapter
, 0, adapter
->port
[0].dev
);
2164 mod_timer(&sge
->espibug_timer
, jiffies
+ sge
->espibug_timeout
);
2168 * Creates a t1_sge structure and returns suggested resource parameters.
2170 struct sge
* __devinit
t1_sge_create(struct adapter
*adapter
,
2171 struct sge_params
*p
)
2173 struct sge
*sge
= kzalloc(sizeof(*sge
), GFP_KERNEL
);
2179 sge
->adapter
= adapter
;
2180 sge
->netdev
= adapter
->port
[0].dev
;
2181 sge
->rx_pkt_pad
= t1_is_T1B(adapter
) ? 0 : 2;
2182 sge
->jumbo_fl
= t1_is_T1B(adapter
) ? 1 : 0;
2184 for_each_port(adapter
, i
) {
2185 sge
->port_stats
[i
] = alloc_percpu(struct sge_port_stats
);
2186 if (!sge
->port_stats
[i
])
2190 init_timer(&sge
->tx_reclaim_timer
);
2191 sge
->tx_reclaim_timer
.data
= (unsigned long)sge
;
2192 sge
->tx_reclaim_timer
.function
= sge_tx_reclaim_cb
;
2194 if (is_T2(sge
->adapter
)) {
2195 init_timer(&sge
->espibug_timer
);
2197 if (adapter
->params
.nports
> 1) {
2199 sge
->espibug_timer
.function
= espibug_workaround_t204
;
2201 sge
->espibug_timer
.function
= espibug_workaround
;
2203 sge
->espibug_timer
.data
= (unsigned long)sge
->adapter
;
2205 sge
->espibug_timeout
= 1;
2206 /* for T204, every 10ms */
2207 if (adapter
->params
.nports
> 1)
2208 sge
->espibug_timeout
= HZ
/100;
2212 p
->cmdQ_size
[0] = SGE_CMDQ0_E_N
;
2213 p
->cmdQ_size
[1] = SGE_CMDQ1_E_N
;
2214 p
->freelQ_size
[!sge
->jumbo_fl
] = SGE_FREEL_SIZE
;
2215 p
->freelQ_size
[sge
->jumbo_fl
] = SGE_JUMBO_FREEL_SIZE
;
2216 if (sge
->tx_sched
) {
2217 if (board_info(sge
->adapter
)->board
== CHBT_BOARD_CHT204
)
2218 p
->rx_coalesce_usecs
= 15;
2220 p
->rx_coalesce_usecs
= 50;
2222 p
->rx_coalesce_usecs
= 50;
2224 p
->coalesce_enable
= 0;
2225 p
->sample_interval_usecs
= 0;
2231 free_percpu(sge
->port_stats
[i
]);