4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
10 * Notes on the allocation strategy:
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/module.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
37 int sysctl_vfs_cache_pressure __read_mostly
= 100;
38 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure
);
40 __cacheline_aligned_in_smp
DEFINE_SPINLOCK(dcache_lock
);
41 __cacheline_aligned_in_smp
DEFINE_SEQLOCK(rename_lock
);
43 EXPORT_SYMBOL(dcache_lock
);
45 static struct kmem_cache
*dentry_cache __read_mostly
;
47 #define DNAME_INLINE_LEN (sizeof(struct dentry)-offsetof(struct dentry,d_iname))
50 * This is the single most critical data structure when it comes
51 * to the dcache: the hashtable for lookups. Somebody should try
52 * to make this good - I've just made it work.
54 * This hash-function tries to avoid losing too many bits of hash
55 * information, yet avoid using a prime hash-size or similar.
57 #define D_HASHBITS d_hash_shift
58 #define D_HASHMASK d_hash_mask
60 static unsigned int d_hash_mask __read_mostly
;
61 static unsigned int d_hash_shift __read_mostly
;
62 static struct hlist_head
*dentry_hashtable __read_mostly
;
63 static LIST_HEAD(dentry_unused
);
65 /* Statistics gathering. */
66 struct dentry_stat_t dentry_stat
= {
70 static void __d_free(struct dentry
*dentry
)
72 if (dname_external(dentry
))
73 kfree(dentry
->d_name
.name
);
74 kmem_cache_free(dentry_cache
, dentry
);
77 static void d_callback(struct rcu_head
*head
)
79 struct dentry
* dentry
= container_of(head
, struct dentry
, d_u
.d_rcu
);
84 * no dcache_lock, please. The caller must decrement dentry_stat.nr_dentry
87 static void d_free(struct dentry
*dentry
)
89 if (dentry
->d_op
&& dentry
->d_op
->d_release
)
90 dentry
->d_op
->d_release(dentry
);
91 /* if dentry was never inserted into hash, immediate free is OK */
92 if (hlist_unhashed(&dentry
->d_hash
))
95 call_rcu(&dentry
->d_u
.d_rcu
, d_callback
);
99 * Release the dentry's inode, using the filesystem
100 * d_iput() operation if defined.
101 * Called with dcache_lock and per dentry lock held, drops both.
103 static void dentry_iput(struct dentry
* dentry
)
105 struct inode
*inode
= dentry
->d_inode
;
107 dentry
->d_inode
= NULL
;
108 list_del_init(&dentry
->d_alias
);
109 spin_unlock(&dentry
->d_lock
);
110 spin_unlock(&dcache_lock
);
112 fsnotify_inoderemove(inode
);
113 if (dentry
->d_op
&& dentry
->d_op
->d_iput
)
114 dentry
->d_op
->d_iput(dentry
, inode
);
118 spin_unlock(&dentry
->d_lock
);
119 spin_unlock(&dcache_lock
);
124 * d_kill - kill dentry and return parent
125 * @dentry: dentry to kill
127 * Called with dcache_lock and d_lock, releases both. The dentry must
128 * already be unhashed and removed from the LRU.
130 * If this is the root of the dentry tree, return NULL.
132 static struct dentry
*d_kill(struct dentry
*dentry
)
134 struct dentry
*parent
;
136 list_del(&dentry
->d_u
.d_child
);
137 dentry_stat
.nr_dentry
--; /* For d_free, below */
138 /*drops the locks, at that point nobody can reach this dentry */
140 parent
= dentry
->d_parent
;
142 return dentry
== parent
? NULL
: parent
;
148 * This is complicated by the fact that we do not want to put
149 * dentries that are no longer on any hash chain on the unused
150 * list: we'd much rather just get rid of them immediately.
152 * However, that implies that we have to traverse the dentry
153 * tree upwards to the parents which might _also_ now be
154 * scheduled for deletion (it may have been only waiting for
155 * its last child to go away).
157 * This tail recursion is done by hand as we don't want to depend
158 * on the compiler to always get this right (gcc generally doesn't).
159 * Real recursion would eat up our stack space.
163 * dput - release a dentry
164 * @dentry: dentry to release
166 * Release a dentry. This will drop the usage count and if appropriate
167 * call the dentry unlink method as well as removing it from the queues and
168 * releasing its resources. If the parent dentries were scheduled for release
169 * they too may now get deleted.
171 * no dcache lock, please.
174 void dput(struct dentry
*dentry
)
180 if (atomic_read(&dentry
->d_count
) == 1)
182 if (!atomic_dec_and_lock(&dentry
->d_count
, &dcache_lock
))
185 spin_lock(&dentry
->d_lock
);
186 if (atomic_read(&dentry
->d_count
)) {
187 spin_unlock(&dentry
->d_lock
);
188 spin_unlock(&dcache_lock
);
193 * AV: ->d_delete() is _NOT_ allowed to block now.
195 if (dentry
->d_op
&& dentry
->d_op
->d_delete
) {
196 if (dentry
->d_op
->d_delete(dentry
))
199 /* Unreachable? Get rid of it */
200 if (d_unhashed(dentry
))
202 if (list_empty(&dentry
->d_lru
)) {
203 dentry
->d_flags
|= DCACHE_REFERENCED
;
204 list_add(&dentry
->d_lru
, &dentry_unused
);
205 dentry_stat
.nr_unused
++;
207 spin_unlock(&dentry
->d_lock
);
208 spin_unlock(&dcache_lock
);
214 /* If dentry was on d_lru list
215 * delete it from there
217 if (!list_empty(&dentry
->d_lru
)) {
218 list_del(&dentry
->d_lru
);
219 dentry_stat
.nr_unused
--;
221 dentry
= d_kill(dentry
);
227 * d_invalidate - invalidate a dentry
228 * @dentry: dentry to invalidate
230 * Try to invalidate the dentry if it turns out to be
231 * possible. If there are other dentries that can be
232 * reached through this one we can't delete it and we
233 * return -EBUSY. On success we return 0.
238 int d_invalidate(struct dentry
* dentry
)
241 * If it's already been dropped, return OK.
243 spin_lock(&dcache_lock
);
244 if (d_unhashed(dentry
)) {
245 spin_unlock(&dcache_lock
);
249 * Check whether to do a partial shrink_dcache
250 * to get rid of unused child entries.
252 if (!list_empty(&dentry
->d_subdirs
)) {
253 spin_unlock(&dcache_lock
);
254 shrink_dcache_parent(dentry
);
255 spin_lock(&dcache_lock
);
259 * Somebody else still using it?
261 * If it's a directory, we can't drop it
262 * for fear of somebody re-populating it
263 * with children (even though dropping it
264 * would make it unreachable from the root,
265 * we might still populate it if it was a
266 * working directory or similar).
268 spin_lock(&dentry
->d_lock
);
269 if (atomic_read(&dentry
->d_count
) > 1) {
270 if (dentry
->d_inode
&& S_ISDIR(dentry
->d_inode
->i_mode
)) {
271 spin_unlock(&dentry
->d_lock
);
272 spin_unlock(&dcache_lock
);
278 spin_unlock(&dentry
->d_lock
);
279 spin_unlock(&dcache_lock
);
283 /* This should be called _only_ with dcache_lock held */
285 static inline struct dentry
* __dget_locked(struct dentry
*dentry
)
287 atomic_inc(&dentry
->d_count
);
288 if (!list_empty(&dentry
->d_lru
)) {
289 dentry_stat
.nr_unused
--;
290 list_del_init(&dentry
->d_lru
);
295 struct dentry
* dget_locked(struct dentry
*dentry
)
297 return __dget_locked(dentry
);
301 * d_find_alias - grab a hashed alias of inode
302 * @inode: inode in question
303 * @want_discon: flag, used by d_splice_alias, to request
304 * that only a DISCONNECTED alias be returned.
306 * If inode has a hashed alias, or is a directory and has any alias,
307 * acquire the reference to alias and return it. Otherwise return NULL.
308 * Notice that if inode is a directory there can be only one alias and
309 * it can be unhashed only if it has no children, or if it is the root
312 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
313 * any other hashed alias over that one unless @want_discon is set,
314 * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
317 static struct dentry
* __d_find_alias(struct inode
*inode
, int want_discon
)
319 struct list_head
*head
, *next
, *tmp
;
320 struct dentry
*alias
, *discon_alias
=NULL
;
322 head
= &inode
->i_dentry
;
323 next
= inode
->i_dentry
.next
;
324 while (next
!= head
) {
328 alias
= list_entry(tmp
, struct dentry
, d_alias
);
329 if (S_ISDIR(inode
->i_mode
) || !d_unhashed(alias
)) {
330 if (IS_ROOT(alias
) &&
331 (alias
->d_flags
& DCACHE_DISCONNECTED
))
332 discon_alias
= alias
;
333 else if (!want_discon
) {
334 __dget_locked(alias
);
340 __dget_locked(discon_alias
);
344 struct dentry
* d_find_alias(struct inode
*inode
)
346 struct dentry
*de
= NULL
;
348 if (!list_empty(&inode
->i_dentry
)) {
349 spin_lock(&dcache_lock
);
350 de
= __d_find_alias(inode
, 0);
351 spin_unlock(&dcache_lock
);
357 * Try to kill dentries associated with this inode.
358 * WARNING: you must own a reference to inode.
360 void d_prune_aliases(struct inode
*inode
)
362 struct dentry
*dentry
;
364 spin_lock(&dcache_lock
);
365 list_for_each_entry(dentry
, &inode
->i_dentry
, d_alias
) {
366 spin_lock(&dentry
->d_lock
);
367 if (!atomic_read(&dentry
->d_count
)) {
368 __dget_locked(dentry
);
370 spin_unlock(&dentry
->d_lock
);
371 spin_unlock(&dcache_lock
);
375 spin_unlock(&dentry
->d_lock
);
377 spin_unlock(&dcache_lock
);
381 * Throw away a dentry - free the inode, dput the parent. This requires that
382 * the LRU list has already been removed.
384 * Try to prune ancestors as well. This is necessary to prevent
385 * quadratic behavior of shrink_dcache_parent(), but is also expected
386 * to be beneficial in reducing dentry cache fragmentation.
388 * Called with dcache_lock, drops it and then regains.
389 * Called with dentry->d_lock held, drops it.
391 static void prune_one_dentry(struct dentry
* dentry
)
394 dentry
= d_kill(dentry
);
397 * Prune ancestors. Locking is simpler than in dput(),
398 * because dcache_lock needs to be taken anyway.
400 spin_lock(&dcache_lock
);
402 if (!atomic_dec_and_lock(&dentry
->d_count
, &dentry
->d_lock
))
405 if (dentry
->d_op
&& dentry
->d_op
->d_delete
)
406 dentry
->d_op
->d_delete(dentry
);
407 if (!list_empty(&dentry
->d_lru
)) {
408 list_del(&dentry
->d_lru
);
409 dentry_stat
.nr_unused
--;
412 dentry
= d_kill(dentry
);
413 spin_lock(&dcache_lock
);
418 * prune_dcache - shrink the dcache
419 * @count: number of entries to try and free
420 * @sb: if given, ignore dentries for other superblocks
421 * which are being unmounted.
423 * Shrink the dcache. This is done when we need
424 * more memory, or simply when we need to unmount
425 * something (at which point we need to unuse
428 * This function may fail to free any resources if
429 * all the dentries are in use.
432 static void prune_dcache(int count
, struct super_block
*sb
)
434 spin_lock(&dcache_lock
);
435 for (; count
; count
--) {
436 struct dentry
*dentry
;
437 struct list_head
*tmp
;
438 struct rw_semaphore
*s_umount
;
440 cond_resched_lock(&dcache_lock
);
442 tmp
= dentry_unused
.prev
;
444 /* Try to find a dentry for this sb, but don't try
445 * too hard, if they aren't near the tail they will
446 * be moved down again soon
449 while (skip
&& tmp
!= &dentry_unused
&&
450 list_entry(tmp
, struct dentry
, d_lru
)->d_sb
!= sb
) {
455 if (tmp
== &dentry_unused
)
458 prefetch(dentry_unused
.prev
);
459 dentry_stat
.nr_unused
--;
460 dentry
= list_entry(tmp
, struct dentry
, d_lru
);
462 spin_lock(&dentry
->d_lock
);
464 * We found an inuse dentry which was not removed from
465 * dentry_unused because of laziness during lookup. Do not free
466 * it - just keep it off the dentry_unused list.
468 if (atomic_read(&dentry
->d_count
)) {
469 spin_unlock(&dentry
->d_lock
);
472 /* If the dentry was recently referenced, don't free it. */
473 if (dentry
->d_flags
& DCACHE_REFERENCED
) {
474 dentry
->d_flags
&= ~DCACHE_REFERENCED
;
475 list_add(&dentry
->d_lru
, &dentry_unused
);
476 dentry_stat
.nr_unused
++;
477 spin_unlock(&dentry
->d_lock
);
481 * If the dentry is not DCACHED_REFERENCED, it is time
482 * to remove it from the dcache, provided the super block is
483 * NULL (which means we are trying to reclaim memory)
484 * or this dentry belongs to the same super block that
488 * If this dentry is for "my" filesystem, then I can prune it
489 * without taking the s_umount lock (I already hold it).
491 if (sb
&& dentry
->d_sb
== sb
) {
492 prune_one_dentry(dentry
);
496 * ...otherwise we need to be sure this filesystem isn't being
497 * unmounted, otherwise we could race with
498 * generic_shutdown_super(), and end up holding a reference to
499 * an inode while the filesystem is unmounted.
500 * So we try to get s_umount, and make sure s_root isn't NULL.
501 * (Take a local copy of s_umount to avoid a use-after-free of
504 s_umount
= &dentry
->d_sb
->s_umount
;
505 if (down_read_trylock(s_umount
)) {
506 if (dentry
->d_sb
->s_root
!= NULL
) {
507 prune_one_dentry(dentry
);
513 spin_unlock(&dentry
->d_lock
);
515 * Insert dentry at the head of the list as inserting at the
516 * tail leads to a cycle.
518 list_add(&dentry
->d_lru
, &dentry_unused
);
519 dentry_stat
.nr_unused
++;
521 spin_unlock(&dcache_lock
);
525 * Shrink the dcache for the specified super block.
526 * This allows us to unmount a device without disturbing
527 * the dcache for the other devices.
529 * This implementation makes just two traversals of the
530 * unused list. On the first pass we move the selected
531 * dentries to the most recent end, and on the second
532 * pass we free them. The second pass must restart after
533 * each dput(), but since the target dentries are all at
534 * the end, it's really just a single traversal.
538 * shrink_dcache_sb - shrink dcache for a superblock
541 * Shrink the dcache for the specified super block. This
542 * is used to free the dcache before unmounting a file
546 void shrink_dcache_sb(struct super_block
* sb
)
548 struct list_head
*tmp
, *next
;
549 struct dentry
*dentry
;
552 * Pass one ... move the dentries for the specified
553 * superblock to the most recent end of the unused list.
555 spin_lock(&dcache_lock
);
556 list_for_each_prev_safe(tmp
, next
, &dentry_unused
) {
557 dentry
= list_entry(tmp
, struct dentry
, d_lru
);
558 if (dentry
->d_sb
!= sb
)
560 list_move_tail(tmp
, &dentry_unused
);
564 * Pass two ... free the dentries for this superblock.
567 list_for_each_prev_safe(tmp
, next
, &dentry_unused
) {
568 dentry
= list_entry(tmp
, struct dentry
, d_lru
);
569 if (dentry
->d_sb
!= sb
)
571 dentry_stat
.nr_unused
--;
573 spin_lock(&dentry
->d_lock
);
574 if (atomic_read(&dentry
->d_count
)) {
575 spin_unlock(&dentry
->d_lock
);
578 prune_one_dentry(dentry
);
579 cond_resched_lock(&dcache_lock
);
582 spin_unlock(&dcache_lock
);
586 * destroy a single subtree of dentries for unmount
587 * - see the comments on shrink_dcache_for_umount() for a description of the
590 static void shrink_dcache_for_umount_subtree(struct dentry
*dentry
)
592 struct dentry
*parent
;
593 unsigned detached
= 0;
595 BUG_ON(!IS_ROOT(dentry
));
597 /* detach this root from the system */
598 spin_lock(&dcache_lock
);
599 if (!list_empty(&dentry
->d_lru
)) {
600 dentry_stat
.nr_unused
--;
601 list_del_init(&dentry
->d_lru
);
604 spin_unlock(&dcache_lock
);
607 /* descend to the first leaf in the current subtree */
608 while (!list_empty(&dentry
->d_subdirs
)) {
611 /* this is a branch with children - detach all of them
612 * from the system in one go */
613 spin_lock(&dcache_lock
);
614 list_for_each_entry(loop
, &dentry
->d_subdirs
,
616 if (!list_empty(&loop
->d_lru
)) {
617 dentry_stat
.nr_unused
--;
618 list_del_init(&loop
->d_lru
);
622 cond_resched_lock(&dcache_lock
);
624 spin_unlock(&dcache_lock
);
626 /* move to the first child */
627 dentry
= list_entry(dentry
->d_subdirs
.next
,
628 struct dentry
, d_u
.d_child
);
631 /* consume the dentries from this leaf up through its parents
632 * until we find one with children or run out altogether */
636 if (atomic_read(&dentry
->d_count
) != 0) {
638 "BUG: Dentry %p{i=%lx,n=%s}"
640 " [unmount of %s %s]\n",
643 dentry
->d_inode
->i_ino
: 0UL,
645 atomic_read(&dentry
->d_count
),
646 dentry
->d_sb
->s_type
->name
,
651 parent
= dentry
->d_parent
;
652 if (parent
== dentry
)
655 atomic_dec(&parent
->d_count
);
657 list_del(&dentry
->d_u
.d_child
);
660 inode
= dentry
->d_inode
;
662 dentry
->d_inode
= NULL
;
663 list_del_init(&dentry
->d_alias
);
664 if (dentry
->d_op
&& dentry
->d_op
->d_iput
)
665 dentry
->d_op
->d_iput(dentry
, inode
);
672 /* finished when we fall off the top of the tree,
673 * otherwise we ascend to the parent and move to the
674 * next sibling if there is one */
680 } while (list_empty(&dentry
->d_subdirs
));
682 dentry
= list_entry(dentry
->d_subdirs
.next
,
683 struct dentry
, d_u
.d_child
);
686 /* several dentries were freed, need to correct nr_dentry */
687 spin_lock(&dcache_lock
);
688 dentry_stat
.nr_dentry
-= detached
;
689 spin_unlock(&dcache_lock
);
693 * destroy the dentries attached to a superblock on unmounting
694 * - we don't need to use dentry->d_lock, and only need dcache_lock when
695 * removing the dentry from the system lists and hashes because:
696 * - the superblock is detached from all mountings and open files, so the
697 * dentry trees will not be rearranged by the VFS
698 * - s_umount is write-locked, so the memory pressure shrinker will ignore
699 * any dentries belonging to this superblock that it comes across
700 * - the filesystem itself is no longer permitted to rearrange the dentries
703 void shrink_dcache_for_umount(struct super_block
*sb
)
705 struct dentry
*dentry
;
707 if (down_read_trylock(&sb
->s_umount
))
712 atomic_dec(&dentry
->d_count
);
713 shrink_dcache_for_umount_subtree(dentry
);
715 while (!hlist_empty(&sb
->s_anon
)) {
716 dentry
= hlist_entry(sb
->s_anon
.first
, struct dentry
, d_hash
);
717 shrink_dcache_for_umount_subtree(dentry
);
722 * Search for at least 1 mount point in the dentry's subdirs.
723 * We descend to the next level whenever the d_subdirs
724 * list is non-empty and continue searching.
728 * have_submounts - check for mounts over a dentry
729 * @parent: dentry to check.
731 * Return true if the parent or its subdirectories contain
735 int have_submounts(struct dentry
*parent
)
737 struct dentry
*this_parent
= parent
;
738 struct list_head
*next
;
740 spin_lock(&dcache_lock
);
741 if (d_mountpoint(parent
))
744 next
= this_parent
->d_subdirs
.next
;
746 while (next
!= &this_parent
->d_subdirs
) {
747 struct list_head
*tmp
= next
;
748 struct dentry
*dentry
= list_entry(tmp
, struct dentry
, d_u
.d_child
);
750 /* Have we found a mount point ? */
751 if (d_mountpoint(dentry
))
753 if (!list_empty(&dentry
->d_subdirs
)) {
754 this_parent
= dentry
;
759 * All done at this level ... ascend and resume the search.
761 if (this_parent
!= parent
) {
762 next
= this_parent
->d_u
.d_child
.next
;
763 this_parent
= this_parent
->d_parent
;
766 spin_unlock(&dcache_lock
);
767 return 0; /* No mount points found in tree */
769 spin_unlock(&dcache_lock
);
774 * Search the dentry child list for the specified parent,
775 * and move any unused dentries to the end of the unused
776 * list for prune_dcache(). We descend to the next level
777 * whenever the d_subdirs list is non-empty and continue
780 * It returns zero iff there are no unused children,
781 * otherwise it returns the number of children moved to
782 * the end of the unused list. This may not be the total
783 * number of unused children, because select_parent can
784 * drop the lock and return early due to latency
787 static int select_parent(struct dentry
* parent
)
789 struct dentry
*this_parent
= parent
;
790 struct list_head
*next
;
793 spin_lock(&dcache_lock
);
795 next
= this_parent
->d_subdirs
.next
;
797 while (next
!= &this_parent
->d_subdirs
) {
798 struct list_head
*tmp
= next
;
799 struct dentry
*dentry
= list_entry(tmp
, struct dentry
, d_u
.d_child
);
802 if (!list_empty(&dentry
->d_lru
)) {
803 dentry_stat
.nr_unused
--;
804 list_del_init(&dentry
->d_lru
);
807 * move only zero ref count dentries to the end
808 * of the unused list for prune_dcache
810 if (!atomic_read(&dentry
->d_count
)) {
811 list_add_tail(&dentry
->d_lru
, &dentry_unused
);
812 dentry_stat
.nr_unused
++;
817 * We can return to the caller if we have found some (this
818 * ensures forward progress). We'll be coming back to find
821 if (found
&& need_resched())
825 * Descend a level if the d_subdirs list is non-empty.
827 if (!list_empty(&dentry
->d_subdirs
)) {
828 this_parent
= dentry
;
833 * All done at this level ... ascend and resume the search.
835 if (this_parent
!= parent
) {
836 next
= this_parent
->d_u
.d_child
.next
;
837 this_parent
= this_parent
->d_parent
;
841 spin_unlock(&dcache_lock
);
846 * shrink_dcache_parent - prune dcache
847 * @parent: parent of entries to prune
849 * Prune the dcache to remove unused children of the parent dentry.
852 void shrink_dcache_parent(struct dentry
* parent
)
856 while ((found
= select_parent(parent
)) != 0)
857 prune_dcache(found
, parent
->d_sb
);
861 * Scan `nr' dentries and return the number which remain.
863 * We need to avoid reentering the filesystem if the caller is performing a
864 * GFP_NOFS allocation attempt. One example deadlock is:
866 * ext2_new_block->getblk->GFP->shrink_dcache_memory->prune_dcache->
867 * prune_one_dentry->dput->dentry_iput->iput->inode->i_sb->s_op->put_inode->
868 * ext2_discard_prealloc->ext2_free_blocks->lock_super->DEADLOCK.
870 * In this case we return -1 to tell the caller that we baled.
872 static int shrink_dcache_memory(int nr
, gfp_t gfp_mask
)
875 if (!(gfp_mask
& __GFP_FS
))
877 prune_dcache(nr
, NULL
);
879 return (dentry_stat
.nr_unused
/ 100) * sysctl_vfs_cache_pressure
;
882 static struct shrinker dcache_shrinker
= {
883 .shrink
= shrink_dcache_memory
,
884 .seeks
= DEFAULT_SEEKS
,
888 * d_alloc - allocate a dcache entry
889 * @parent: parent of entry to allocate
890 * @name: qstr of the name
892 * Allocates a dentry. It returns %NULL if there is insufficient memory
893 * available. On a success the dentry is returned. The name passed in is
894 * copied and the copy passed in may be reused after this call.
897 struct dentry
*d_alloc(struct dentry
* parent
, const struct qstr
*name
)
899 struct dentry
*dentry
;
902 dentry
= kmem_cache_alloc(dentry_cache
, GFP_KERNEL
);
906 if (name
->len
> DNAME_INLINE_LEN
-1) {
907 dname
= kmalloc(name
->len
+ 1, GFP_KERNEL
);
909 kmem_cache_free(dentry_cache
, dentry
);
913 dname
= dentry
->d_iname
;
915 dentry
->d_name
.name
= dname
;
917 dentry
->d_name
.len
= name
->len
;
918 dentry
->d_name
.hash
= name
->hash
;
919 memcpy(dname
, name
->name
, name
->len
);
920 dname
[name
->len
] = 0;
922 atomic_set(&dentry
->d_count
, 1);
923 dentry
->d_flags
= DCACHE_UNHASHED
;
924 spin_lock_init(&dentry
->d_lock
);
925 dentry
->d_inode
= NULL
;
926 dentry
->d_parent
= NULL
;
929 dentry
->d_fsdata
= NULL
;
930 dentry
->d_mounted
= 0;
931 #ifdef CONFIG_PROFILING
932 dentry
->d_cookie
= NULL
;
934 INIT_HLIST_NODE(&dentry
->d_hash
);
935 INIT_LIST_HEAD(&dentry
->d_lru
);
936 INIT_LIST_HEAD(&dentry
->d_subdirs
);
937 INIT_LIST_HEAD(&dentry
->d_alias
);
940 dentry
->d_parent
= dget(parent
);
941 dentry
->d_sb
= parent
->d_sb
;
943 INIT_LIST_HEAD(&dentry
->d_u
.d_child
);
946 spin_lock(&dcache_lock
);
948 list_add(&dentry
->d_u
.d_child
, &parent
->d_subdirs
);
949 dentry_stat
.nr_dentry
++;
950 spin_unlock(&dcache_lock
);
955 struct dentry
*d_alloc_name(struct dentry
*parent
, const char *name
)
960 q
.len
= strlen(name
);
961 q
.hash
= full_name_hash(q
.name
, q
.len
);
962 return d_alloc(parent
, &q
);
966 * d_instantiate - fill in inode information for a dentry
967 * @entry: dentry to complete
968 * @inode: inode to attach to this dentry
970 * Fill in inode information in the entry.
972 * This turns negative dentries into productive full members
975 * NOTE! This assumes that the inode count has been incremented
976 * (or otherwise set) by the caller to indicate that it is now
977 * in use by the dcache.
980 void d_instantiate(struct dentry
*entry
, struct inode
* inode
)
982 BUG_ON(!list_empty(&entry
->d_alias
));
983 spin_lock(&dcache_lock
);
985 list_add(&entry
->d_alias
, &inode
->i_dentry
);
986 entry
->d_inode
= inode
;
987 fsnotify_d_instantiate(entry
, inode
);
988 spin_unlock(&dcache_lock
);
989 security_d_instantiate(entry
, inode
);
993 * d_instantiate_unique - instantiate a non-aliased dentry
994 * @entry: dentry to instantiate
995 * @inode: inode to attach to this dentry
997 * Fill in inode information in the entry. On success, it returns NULL.
998 * If an unhashed alias of "entry" already exists, then we return the
999 * aliased dentry instead and drop one reference to inode.
1001 * Note that in order to avoid conflicts with rename() etc, the caller
1002 * had better be holding the parent directory semaphore.
1004 * This also assumes that the inode count has been incremented
1005 * (or otherwise set) by the caller to indicate that it is now
1006 * in use by the dcache.
1008 static struct dentry
*__d_instantiate_unique(struct dentry
*entry
,
1009 struct inode
*inode
)
1011 struct dentry
*alias
;
1012 int len
= entry
->d_name
.len
;
1013 const char *name
= entry
->d_name
.name
;
1014 unsigned int hash
= entry
->d_name
.hash
;
1017 entry
->d_inode
= NULL
;
1021 list_for_each_entry(alias
, &inode
->i_dentry
, d_alias
) {
1022 struct qstr
*qstr
= &alias
->d_name
;
1024 if (qstr
->hash
!= hash
)
1026 if (alias
->d_parent
!= entry
->d_parent
)
1028 if (qstr
->len
!= len
)
1030 if (memcmp(qstr
->name
, name
, len
))
1036 list_add(&entry
->d_alias
, &inode
->i_dentry
);
1037 entry
->d_inode
= inode
;
1038 fsnotify_d_instantiate(entry
, inode
);
1042 struct dentry
*d_instantiate_unique(struct dentry
*entry
, struct inode
*inode
)
1044 struct dentry
*result
;
1046 BUG_ON(!list_empty(&entry
->d_alias
));
1048 spin_lock(&dcache_lock
);
1049 result
= __d_instantiate_unique(entry
, inode
);
1050 spin_unlock(&dcache_lock
);
1053 security_d_instantiate(entry
, inode
);
1057 BUG_ON(!d_unhashed(result
));
1062 EXPORT_SYMBOL(d_instantiate_unique
);
1065 * d_alloc_root - allocate root dentry
1066 * @root_inode: inode to allocate the root for
1068 * Allocate a root ("/") dentry for the inode given. The inode is
1069 * instantiated and returned. %NULL is returned if there is insufficient
1070 * memory or the inode passed is %NULL.
1073 struct dentry
* d_alloc_root(struct inode
* root_inode
)
1075 struct dentry
*res
= NULL
;
1078 static const struct qstr name
= { .name
= "/", .len
= 1 };
1080 res
= d_alloc(NULL
, &name
);
1082 res
->d_sb
= root_inode
->i_sb
;
1083 res
->d_parent
= res
;
1084 d_instantiate(res
, root_inode
);
1090 static inline struct hlist_head
*d_hash(struct dentry
*parent
,
1093 hash
+= ((unsigned long) parent
^ GOLDEN_RATIO_PRIME
) / L1_CACHE_BYTES
;
1094 hash
= hash
^ ((hash
^ GOLDEN_RATIO_PRIME
) >> D_HASHBITS
);
1095 return dentry_hashtable
+ (hash
& D_HASHMASK
);
1099 * d_alloc_anon - allocate an anonymous dentry
1100 * @inode: inode to allocate the dentry for
1102 * This is similar to d_alloc_root. It is used by filesystems when
1103 * creating a dentry for a given inode, often in the process of
1104 * mapping a filehandle to a dentry. The returned dentry may be
1105 * anonymous, or may have a full name (if the inode was already
1106 * in the cache). The file system may need to make further
1107 * efforts to connect this dentry into the dcache properly.
1109 * When called on a directory inode, we must ensure that
1110 * the inode only ever has one dentry. If a dentry is
1111 * found, that is returned instead of allocating a new one.
1113 * On successful return, the reference to the inode has been transferred
1114 * to the dentry. If %NULL is returned (indicating kmalloc failure),
1115 * the reference on the inode has not been released.
1118 struct dentry
* d_alloc_anon(struct inode
*inode
)
1120 static const struct qstr anonstring
= { .name
= "" };
1124 if ((res
= d_find_alias(inode
))) {
1129 tmp
= d_alloc(NULL
, &anonstring
);
1133 tmp
->d_parent
= tmp
; /* make sure dput doesn't croak */
1135 spin_lock(&dcache_lock
);
1136 res
= __d_find_alias(inode
, 0);
1138 /* attach a disconnected dentry */
1141 spin_lock(&res
->d_lock
);
1142 res
->d_sb
= inode
->i_sb
;
1143 res
->d_parent
= res
;
1144 res
->d_inode
= inode
;
1145 res
->d_flags
|= DCACHE_DISCONNECTED
;
1146 res
->d_flags
&= ~DCACHE_UNHASHED
;
1147 list_add(&res
->d_alias
, &inode
->i_dentry
);
1148 hlist_add_head(&res
->d_hash
, &inode
->i_sb
->s_anon
);
1149 spin_unlock(&res
->d_lock
);
1151 inode
= NULL
; /* don't drop reference */
1153 spin_unlock(&dcache_lock
);
1164 * d_splice_alias - splice a disconnected dentry into the tree if one exists
1165 * @inode: the inode which may have a disconnected dentry
1166 * @dentry: a negative dentry which we want to point to the inode.
1168 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1169 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1170 * and return it, else simply d_add the inode to the dentry and return NULL.
1172 * This is needed in the lookup routine of any filesystem that is exportable
1173 * (via knfsd) so that we can build dcache paths to directories effectively.
1175 * If a dentry was found and moved, then it is returned. Otherwise NULL
1176 * is returned. This matches the expected return value of ->lookup.
1179 struct dentry
*d_splice_alias(struct inode
*inode
, struct dentry
*dentry
)
1181 struct dentry
*new = NULL
;
1183 if (inode
&& S_ISDIR(inode
->i_mode
)) {
1184 spin_lock(&dcache_lock
);
1185 new = __d_find_alias(inode
, 1);
1187 BUG_ON(!(new->d_flags
& DCACHE_DISCONNECTED
));
1188 fsnotify_d_instantiate(new, inode
);
1189 spin_unlock(&dcache_lock
);
1190 security_d_instantiate(new, inode
);
1192 d_move(new, dentry
);
1195 /* d_instantiate takes dcache_lock, so we do it by hand */
1196 list_add(&dentry
->d_alias
, &inode
->i_dentry
);
1197 dentry
->d_inode
= inode
;
1198 fsnotify_d_instantiate(dentry
, inode
);
1199 spin_unlock(&dcache_lock
);
1200 security_d_instantiate(dentry
, inode
);
1204 d_add(dentry
, inode
);
1210 * d_lookup - search for a dentry
1211 * @parent: parent dentry
1212 * @name: qstr of name we wish to find
1214 * Searches the children of the parent dentry for the name in question. If
1215 * the dentry is found its reference count is incremented and the dentry
1216 * is returned. The caller must use d_put to free the entry when it has
1217 * finished using it. %NULL is returned on failure.
1219 * __d_lookup is dcache_lock free. The hash list is protected using RCU.
1220 * Memory barriers are used while updating and doing lockless traversal.
1221 * To avoid races with d_move while rename is happening, d_lock is used.
1223 * Overflows in memcmp(), while d_move, are avoided by keeping the length
1224 * and name pointer in one structure pointed by d_qstr.
1226 * rcu_read_lock() and rcu_read_unlock() are used to disable preemption while
1227 * lookup is going on.
1229 * dentry_unused list is not updated even if lookup finds the required dentry
1230 * in there. It is updated in places such as prune_dcache, shrink_dcache_sb,
1231 * select_parent and __dget_locked. This laziness saves lookup from dcache_lock
1234 * d_lookup() is protected against the concurrent renames in some unrelated
1235 * directory using the seqlockt_t rename_lock.
1238 struct dentry
* d_lookup(struct dentry
* parent
, struct qstr
* name
)
1240 struct dentry
* dentry
= NULL
;
1244 seq
= read_seqbegin(&rename_lock
);
1245 dentry
= __d_lookup(parent
, name
);
1248 } while (read_seqretry(&rename_lock
, seq
));
1252 struct dentry
* __d_lookup(struct dentry
* parent
, struct qstr
* name
)
1254 unsigned int len
= name
->len
;
1255 unsigned int hash
= name
->hash
;
1256 const unsigned char *str
= name
->name
;
1257 struct hlist_head
*head
= d_hash(parent
,hash
);
1258 struct dentry
*found
= NULL
;
1259 struct hlist_node
*node
;
1260 struct dentry
*dentry
;
1264 hlist_for_each_entry_rcu(dentry
, node
, head
, d_hash
) {
1267 if (dentry
->d_name
.hash
!= hash
)
1269 if (dentry
->d_parent
!= parent
)
1272 spin_lock(&dentry
->d_lock
);
1275 * Recheck the dentry after taking the lock - d_move may have
1276 * changed things. Don't bother checking the hash because we're
1277 * about to compare the whole name anyway.
1279 if (dentry
->d_parent
!= parent
)
1283 * It is safe to compare names since d_move() cannot
1284 * change the qstr (protected by d_lock).
1286 qstr
= &dentry
->d_name
;
1287 if (parent
->d_op
&& parent
->d_op
->d_compare
) {
1288 if (parent
->d_op
->d_compare(parent
, qstr
, name
))
1291 if (qstr
->len
!= len
)
1293 if (memcmp(qstr
->name
, str
, len
))
1297 if (!d_unhashed(dentry
)) {
1298 atomic_inc(&dentry
->d_count
);
1301 spin_unlock(&dentry
->d_lock
);
1304 spin_unlock(&dentry
->d_lock
);
1312 * d_hash_and_lookup - hash the qstr then search for a dentry
1313 * @dir: Directory to search in
1314 * @name: qstr of name we wish to find
1316 * On hash failure or on lookup failure NULL is returned.
1318 struct dentry
*d_hash_and_lookup(struct dentry
*dir
, struct qstr
*name
)
1320 struct dentry
*dentry
= NULL
;
1323 * Check for a fs-specific hash function. Note that we must
1324 * calculate the standard hash first, as the d_op->d_hash()
1325 * routine may choose to leave the hash value unchanged.
1327 name
->hash
= full_name_hash(name
->name
, name
->len
);
1328 if (dir
->d_op
&& dir
->d_op
->d_hash
) {
1329 if (dir
->d_op
->d_hash(dir
, name
) < 0)
1332 dentry
= d_lookup(dir
, name
);
1338 * d_validate - verify dentry provided from insecure source
1339 * @dentry: The dentry alleged to be valid child of @dparent
1340 * @dparent: The parent dentry (known to be valid)
1341 * @hash: Hash of the dentry
1342 * @len: Length of the name
1344 * An insecure source has sent us a dentry, here we verify it and dget() it.
1345 * This is used by ncpfs in its readdir implementation.
1346 * Zero is returned in the dentry is invalid.
1349 int d_validate(struct dentry
*dentry
, struct dentry
*dparent
)
1351 struct hlist_head
*base
;
1352 struct hlist_node
*lhp
;
1354 /* Check whether the ptr might be valid at all.. */
1355 if (!kmem_ptr_validate(dentry_cache
, dentry
))
1358 if (dentry
->d_parent
!= dparent
)
1361 spin_lock(&dcache_lock
);
1362 base
= d_hash(dparent
, dentry
->d_name
.hash
);
1363 hlist_for_each(lhp
,base
) {
1364 /* hlist_for_each_entry_rcu() not required for d_hash list
1365 * as it is parsed under dcache_lock
1367 if (dentry
== hlist_entry(lhp
, struct dentry
, d_hash
)) {
1368 __dget_locked(dentry
);
1369 spin_unlock(&dcache_lock
);
1373 spin_unlock(&dcache_lock
);
1379 * When a file is deleted, we have two options:
1380 * - turn this dentry into a negative dentry
1381 * - unhash this dentry and free it.
1383 * Usually, we want to just turn this into
1384 * a negative dentry, but if anybody else is
1385 * currently using the dentry or the inode
1386 * we can't do that and we fall back on removing
1387 * it from the hash queues and waiting for
1388 * it to be deleted later when it has no users
1392 * d_delete - delete a dentry
1393 * @dentry: The dentry to delete
1395 * Turn the dentry into a negative dentry if possible, otherwise
1396 * remove it from the hash queues so it can be deleted later
1399 void d_delete(struct dentry
* dentry
)
1403 * Are we the only user?
1405 spin_lock(&dcache_lock
);
1406 spin_lock(&dentry
->d_lock
);
1407 isdir
= S_ISDIR(dentry
->d_inode
->i_mode
);
1408 if (atomic_read(&dentry
->d_count
) == 1) {
1409 dentry_iput(dentry
);
1410 fsnotify_nameremove(dentry
, isdir
);
1414 if (!d_unhashed(dentry
))
1417 spin_unlock(&dentry
->d_lock
);
1418 spin_unlock(&dcache_lock
);
1420 fsnotify_nameremove(dentry
, isdir
);
1423 static void __d_rehash(struct dentry
* entry
, struct hlist_head
*list
)
1426 entry
->d_flags
&= ~DCACHE_UNHASHED
;
1427 hlist_add_head_rcu(&entry
->d_hash
, list
);
1430 static void _d_rehash(struct dentry
* entry
)
1432 __d_rehash(entry
, d_hash(entry
->d_parent
, entry
->d_name
.hash
));
1436 * d_rehash - add an entry back to the hash
1437 * @entry: dentry to add to the hash
1439 * Adds a dentry to the hash according to its name.
1442 void d_rehash(struct dentry
* entry
)
1444 spin_lock(&dcache_lock
);
1445 spin_lock(&entry
->d_lock
);
1447 spin_unlock(&entry
->d_lock
);
1448 spin_unlock(&dcache_lock
);
1451 #define do_switch(x,y) do { \
1452 __typeof__ (x) __tmp = x; \
1453 x = y; y = __tmp; } while (0)
1456 * When switching names, the actual string doesn't strictly have to
1457 * be preserved in the target - because we're dropping the target
1458 * anyway. As such, we can just do a simple memcpy() to copy over
1459 * the new name before we switch.
1461 * Note that we have to be a lot more careful about getting the hash
1462 * switched - we have to switch the hash value properly even if it
1463 * then no longer matches the actual (corrupted) string of the target.
1464 * The hash value has to match the hash queue that the dentry is on..
1466 static void switch_names(struct dentry
*dentry
, struct dentry
*target
)
1468 if (dname_external(target
)) {
1469 if (dname_external(dentry
)) {
1471 * Both external: swap the pointers
1473 do_switch(target
->d_name
.name
, dentry
->d_name
.name
);
1476 * dentry:internal, target:external. Steal target's
1477 * storage and make target internal.
1479 memcpy(target
->d_iname
, dentry
->d_name
.name
,
1480 dentry
->d_name
.len
+ 1);
1481 dentry
->d_name
.name
= target
->d_name
.name
;
1482 target
->d_name
.name
= target
->d_iname
;
1485 if (dname_external(dentry
)) {
1487 * dentry:external, target:internal. Give dentry's
1488 * storage to target and make dentry internal
1490 memcpy(dentry
->d_iname
, target
->d_name
.name
,
1491 target
->d_name
.len
+ 1);
1492 target
->d_name
.name
= dentry
->d_name
.name
;
1493 dentry
->d_name
.name
= dentry
->d_iname
;
1496 * Both are internal. Just copy target to dentry
1498 memcpy(dentry
->d_iname
, target
->d_name
.name
,
1499 target
->d_name
.len
+ 1);
1505 * We cannibalize "target" when moving dentry on top of it,
1506 * because it's going to be thrown away anyway. We could be more
1507 * polite about it, though.
1509 * This forceful removal will result in ugly /proc output if
1510 * somebody holds a file open that got deleted due to a rename.
1511 * We could be nicer about the deleted file, and let it show
1512 * up under the name it had before it was deleted rather than
1513 * under the original name of the file that was moved on top of it.
1517 * d_move_locked - move a dentry
1518 * @dentry: entry to move
1519 * @target: new dentry
1521 * Update the dcache to reflect the move of a file name. Negative
1522 * dcache entries should not be moved in this way.
1524 static void d_move_locked(struct dentry
* dentry
, struct dentry
* target
)
1526 struct hlist_head
*list
;
1528 if (!dentry
->d_inode
)
1529 printk(KERN_WARNING
"VFS: moving negative dcache entry\n");
1531 write_seqlock(&rename_lock
);
1533 * XXXX: do we really need to take target->d_lock?
1535 if (target
< dentry
) {
1536 spin_lock(&target
->d_lock
);
1537 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
1539 spin_lock(&dentry
->d_lock
);
1540 spin_lock_nested(&target
->d_lock
, DENTRY_D_LOCK_NESTED
);
1543 /* Move the dentry to the target hash queue, if on different bucket */
1544 if (d_unhashed(dentry
))
1545 goto already_unhashed
;
1547 hlist_del_rcu(&dentry
->d_hash
);
1550 list
= d_hash(target
->d_parent
, target
->d_name
.hash
);
1551 __d_rehash(dentry
, list
);
1553 /* Unhash the target: dput() will then get rid of it */
1556 list_del(&dentry
->d_u
.d_child
);
1557 list_del(&target
->d_u
.d_child
);
1559 /* Switch the names.. */
1560 switch_names(dentry
, target
);
1561 do_switch(dentry
->d_name
.len
, target
->d_name
.len
);
1562 do_switch(dentry
->d_name
.hash
, target
->d_name
.hash
);
1564 /* ... and switch the parents */
1565 if (IS_ROOT(dentry
)) {
1566 dentry
->d_parent
= target
->d_parent
;
1567 target
->d_parent
= target
;
1568 INIT_LIST_HEAD(&target
->d_u
.d_child
);
1570 do_switch(dentry
->d_parent
, target
->d_parent
);
1572 /* And add them back to the (new) parent lists */
1573 list_add(&target
->d_u
.d_child
, &target
->d_parent
->d_subdirs
);
1576 list_add(&dentry
->d_u
.d_child
, &dentry
->d_parent
->d_subdirs
);
1577 spin_unlock(&target
->d_lock
);
1578 fsnotify_d_move(dentry
);
1579 spin_unlock(&dentry
->d_lock
);
1580 write_sequnlock(&rename_lock
);
1584 * d_move - move a dentry
1585 * @dentry: entry to move
1586 * @target: new dentry
1588 * Update the dcache to reflect the move of a file name. Negative
1589 * dcache entries should not be moved in this way.
1592 void d_move(struct dentry
* dentry
, struct dentry
* target
)
1594 spin_lock(&dcache_lock
);
1595 d_move_locked(dentry
, target
);
1596 spin_unlock(&dcache_lock
);
1600 * Helper that returns 1 if p1 is a parent of p2, else 0
1602 static int d_isparent(struct dentry
*p1
, struct dentry
*p2
)
1606 for (p
= p2
; p
->d_parent
!= p
; p
= p
->d_parent
) {
1607 if (p
->d_parent
== p1
)
1614 * This helper attempts to cope with remotely renamed directories
1616 * It assumes that the caller is already holding
1617 * dentry->d_parent->d_inode->i_mutex and the dcache_lock
1619 * Note: If ever the locking in lock_rename() changes, then please
1620 * remember to update this too...
1622 * On return, dcache_lock will have been unlocked.
1624 static struct dentry
*__d_unalias(struct dentry
*dentry
, struct dentry
*alias
)
1626 struct mutex
*m1
= NULL
, *m2
= NULL
;
1629 /* If alias and dentry share a parent, then no extra locks required */
1630 if (alias
->d_parent
== dentry
->d_parent
)
1633 /* Check for loops */
1634 ret
= ERR_PTR(-ELOOP
);
1635 if (d_isparent(alias
, dentry
))
1638 /* See lock_rename() */
1639 ret
= ERR_PTR(-EBUSY
);
1640 if (!mutex_trylock(&dentry
->d_sb
->s_vfs_rename_mutex
))
1642 m1
= &dentry
->d_sb
->s_vfs_rename_mutex
;
1643 if (!mutex_trylock(&alias
->d_parent
->d_inode
->i_mutex
))
1645 m2
= &alias
->d_parent
->d_inode
->i_mutex
;
1647 d_move_locked(alias
, dentry
);
1650 spin_unlock(&dcache_lock
);
1659 * Prepare an anonymous dentry for life in the superblock's dentry tree as a
1660 * named dentry in place of the dentry to be replaced.
1662 static void __d_materialise_dentry(struct dentry
*dentry
, struct dentry
*anon
)
1664 struct dentry
*dparent
, *aparent
;
1666 switch_names(dentry
, anon
);
1667 do_switch(dentry
->d_name
.len
, anon
->d_name
.len
);
1668 do_switch(dentry
->d_name
.hash
, anon
->d_name
.hash
);
1670 dparent
= dentry
->d_parent
;
1671 aparent
= anon
->d_parent
;
1673 dentry
->d_parent
= (aparent
== anon
) ? dentry
: aparent
;
1674 list_del(&dentry
->d_u
.d_child
);
1675 if (!IS_ROOT(dentry
))
1676 list_add(&dentry
->d_u
.d_child
, &dentry
->d_parent
->d_subdirs
);
1678 INIT_LIST_HEAD(&dentry
->d_u
.d_child
);
1680 anon
->d_parent
= (dparent
== dentry
) ? anon
: dparent
;
1681 list_del(&anon
->d_u
.d_child
);
1683 list_add(&anon
->d_u
.d_child
, &anon
->d_parent
->d_subdirs
);
1685 INIT_LIST_HEAD(&anon
->d_u
.d_child
);
1687 anon
->d_flags
&= ~DCACHE_DISCONNECTED
;
1691 * d_materialise_unique - introduce an inode into the tree
1692 * @dentry: candidate dentry
1693 * @inode: inode to bind to the dentry, to which aliases may be attached
1695 * Introduces an dentry into the tree, substituting an extant disconnected
1696 * root directory alias in its place if there is one
1698 struct dentry
*d_materialise_unique(struct dentry
*dentry
, struct inode
*inode
)
1700 struct dentry
*actual
;
1702 BUG_ON(!d_unhashed(dentry
));
1704 spin_lock(&dcache_lock
);
1708 dentry
->d_inode
= NULL
;
1712 if (S_ISDIR(inode
->i_mode
)) {
1713 struct dentry
*alias
;
1715 /* Does an aliased dentry already exist? */
1716 alias
= __d_find_alias(inode
, 0);
1719 /* Is this an anonymous mountpoint that we could splice
1721 if (IS_ROOT(alias
)) {
1722 spin_lock(&alias
->d_lock
);
1723 __d_materialise_dentry(dentry
, alias
);
1727 /* Nope, but we must(!) avoid directory aliasing */
1728 actual
= __d_unalias(dentry
, alias
);
1735 /* Add a unique reference */
1736 actual
= __d_instantiate_unique(dentry
, inode
);
1739 else if (unlikely(!d_unhashed(actual
)))
1740 goto shouldnt_be_hashed
;
1743 spin_lock(&actual
->d_lock
);
1746 spin_unlock(&actual
->d_lock
);
1747 spin_unlock(&dcache_lock
);
1749 if (actual
== dentry
) {
1750 security_d_instantiate(dentry
, inode
);
1758 spin_unlock(&dcache_lock
);
1760 goto shouldnt_be_hashed
;
1764 * d_path - return the path of a dentry
1765 * @dentry: dentry to report
1766 * @vfsmnt: vfsmnt to which the dentry belongs
1767 * @root: root dentry
1768 * @rootmnt: vfsmnt to which the root dentry belongs
1769 * @buffer: buffer to return value in
1770 * @buflen: buffer length
1772 * Convert a dentry into an ASCII path name. If the entry has been deleted
1773 * the string " (deleted)" is appended. Note that this is ambiguous.
1775 * Returns the buffer or an error code if the path was too long.
1777 * "buflen" should be positive. Caller holds the dcache_lock.
1779 static char * __d_path( struct dentry
*dentry
, struct vfsmount
*vfsmnt
,
1780 struct dentry
*root
, struct vfsmount
*rootmnt
,
1781 char *buffer
, int buflen
)
1783 char * end
= buffer
+buflen
;
1789 if (!IS_ROOT(dentry
) && d_unhashed(dentry
)) {
1794 memcpy(end
, " (deleted)", 10);
1804 struct dentry
* parent
;
1806 if (dentry
== root
&& vfsmnt
== rootmnt
)
1808 if (dentry
== vfsmnt
->mnt_root
|| IS_ROOT(dentry
)) {
1810 spin_lock(&vfsmount_lock
);
1811 if (vfsmnt
->mnt_parent
== vfsmnt
) {
1812 spin_unlock(&vfsmount_lock
);
1815 dentry
= vfsmnt
->mnt_mountpoint
;
1816 vfsmnt
= vfsmnt
->mnt_parent
;
1817 spin_unlock(&vfsmount_lock
);
1820 parent
= dentry
->d_parent
;
1822 namelen
= dentry
->d_name
.len
;
1823 buflen
-= namelen
+ 1;
1827 memcpy(end
, dentry
->d_name
.name
, namelen
);
1836 namelen
= dentry
->d_name
.len
;
1840 retval
-= namelen
-1; /* hit the slash */
1841 memcpy(retval
, dentry
->d_name
.name
, namelen
);
1844 return ERR_PTR(-ENAMETOOLONG
);
1847 /* write full pathname into buffer and return start of pathname */
1848 char * d_path(struct dentry
*dentry
, struct vfsmount
*vfsmnt
,
1849 char *buf
, int buflen
)
1852 struct vfsmount
*rootmnt
;
1853 struct dentry
*root
;
1856 * We have various synthetic filesystems that never get mounted. On
1857 * these filesystems dentries are never used for lookup purposes, and
1858 * thus don't need to be hashed. They also don't need a name until a
1859 * user wants to identify the object in /proc/pid/fd/. The little hack
1860 * below allows us to generate a name for these objects on demand:
1862 if (dentry
->d_op
&& dentry
->d_op
->d_dname
)
1863 return dentry
->d_op
->d_dname(dentry
, buf
, buflen
);
1865 read_lock(¤t
->fs
->lock
);
1866 rootmnt
= mntget(current
->fs
->rootmnt
);
1867 root
= dget(current
->fs
->root
);
1868 read_unlock(¤t
->fs
->lock
);
1869 spin_lock(&dcache_lock
);
1870 res
= __d_path(dentry
, vfsmnt
, root
, rootmnt
, buf
, buflen
);
1871 spin_unlock(&dcache_lock
);
1878 * Helper function for dentry_operations.d_dname() members
1880 char *dynamic_dname(struct dentry
*dentry
, char *buffer
, int buflen
,
1881 const char *fmt
, ...)
1887 va_start(args
, fmt
);
1888 sz
= vsnprintf(temp
, sizeof(temp
), fmt
, args
) + 1;
1891 if (sz
> sizeof(temp
) || sz
> buflen
)
1892 return ERR_PTR(-ENAMETOOLONG
);
1894 buffer
+= buflen
- sz
;
1895 return memcpy(buffer
, temp
, sz
);
1899 * NOTE! The user-level library version returns a
1900 * character pointer. The kernel system call just
1901 * returns the length of the buffer filled (which
1902 * includes the ending '\0' character), or a negative
1903 * error value. So libc would do something like
1905 * char *getcwd(char * buf, size_t size)
1909 * retval = sys_getcwd(buf, size);
1916 asmlinkage
long sys_getcwd(char __user
*buf
, unsigned long size
)
1919 struct vfsmount
*pwdmnt
, *rootmnt
;
1920 struct dentry
*pwd
, *root
;
1921 char *page
= (char *) __get_free_page(GFP_USER
);
1926 read_lock(¤t
->fs
->lock
);
1927 pwdmnt
= mntget(current
->fs
->pwdmnt
);
1928 pwd
= dget(current
->fs
->pwd
);
1929 rootmnt
= mntget(current
->fs
->rootmnt
);
1930 root
= dget(current
->fs
->root
);
1931 read_unlock(¤t
->fs
->lock
);
1934 /* Has the current directory has been unlinked? */
1935 spin_lock(&dcache_lock
);
1936 if (pwd
->d_parent
== pwd
|| !d_unhashed(pwd
)) {
1940 cwd
= __d_path(pwd
, pwdmnt
, root
, rootmnt
, page
, PAGE_SIZE
);
1941 spin_unlock(&dcache_lock
);
1943 error
= PTR_ERR(cwd
);
1948 len
= PAGE_SIZE
+ page
- cwd
;
1951 if (copy_to_user(buf
, cwd
, len
))
1955 spin_unlock(&dcache_lock
);
1962 free_page((unsigned long) page
);
1967 * Test whether new_dentry is a subdirectory of old_dentry.
1969 * Trivially implemented using the dcache structure
1973 * is_subdir - is new dentry a subdirectory of old_dentry
1974 * @new_dentry: new dentry
1975 * @old_dentry: old dentry
1977 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
1978 * Returns 0 otherwise.
1979 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
1982 int is_subdir(struct dentry
* new_dentry
, struct dentry
* old_dentry
)
1985 struct dentry
* saved
= new_dentry
;
1988 /* need rcu_readlock to protect against the d_parent trashing due to
1993 /* for restarting inner loop in case of seq retry */
1996 seq
= read_seqbegin(&rename_lock
);
1998 if (new_dentry
!= old_dentry
) {
1999 struct dentry
* parent
= new_dentry
->d_parent
;
2000 if (parent
== new_dentry
)
2002 new_dentry
= parent
;
2008 } while (read_seqretry(&rename_lock
, seq
));
2014 void d_genocide(struct dentry
*root
)
2016 struct dentry
*this_parent
= root
;
2017 struct list_head
*next
;
2019 spin_lock(&dcache_lock
);
2021 next
= this_parent
->d_subdirs
.next
;
2023 while (next
!= &this_parent
->d_subdirs
) {
2024 struct list_head
*tmp
= next
;
2025 struct dentry
*dentry
= list_entry(tmp
, struct dentry
, d_u
.d_child
);
2027 if (d_unhashed(dentry
)||!dentry
->d_inode
)
2029 if (!list_empty(&dentry
->d_subdirs
)) {
2030 this_parent
= dentry
;
2033 atomic_dec(&dentry
->d_count
);
2035 if (this_parent
!= root
) {
2036 next
= this_parent
->d_u
.d_child
.next
;
2037 atomic_dec(&this_parent
->d_count
);
2038 this_parent
= this_parent
->d_parent
;
2041 spin_unlock(&dcache_lock
);
2045 * find_inode_number - check for dentry with name
2046 * @dir: directory to check
2047 * @name: Name to find.
2049 * Check whether a dentry already exists for the given name,
2050 * and return the inode number if it has an inode. Otherwise
2053 * This routine is used to post-process directory listings for
2054 * filesystems using synthetic inode numbers, and is necessary
2055 * to keep getcwd() working.
2058 ino_t
find_inode_number(struct dentry
*dir
, struct qstr
*name
)
2060 struct dentry
* dentry
;
2063 dentry
= d_hash_and_lookup(dir
, name
);
2065 if (dentry
->d_inode
)
2066 ino
= dentry
->d_inode
->i_ino
;
2072 static __initdata
unsigned long dhash_entries
;
2073 static int __init
set_dhash_entries(char *str
)
2077 dhash_entries
= simple_strtoul(str
, &str
, 0);
2080 __setup("dhash_entries=", set_dhash_entries
);
2082 static void __init
dcache_init_early(void)
2086 /* If hashes are distributed across NUMA nodes, defer
2087 * hash allocation until vmalloc space is available.
2093 alloc_large_system_hash("Dentry cache",
2094 sizeof(struct hlist_head
),
2102 for (loop
= 0; loop
< (1 << d_hash_shift
); loop
++)
2103 INIT_HLIST_HEAD(&dentry_hashtable
[loop
]);
2106 static void __init
dcache_init(void)
2111 * A constructor could be added for stable state like the lists,
2112 * but it is probably not worth it because of the cache nature
2115 dentry_cache
= KMEM_CACHE(dentry
,
2116 SLAB_RECLAIM_ACCOUNT
|SLAB_PANIC
|SLAB_MEM_SPREAD
);
2118 register_shrinker(&dcache_shrinker
);
2120 /* Hash may have been set up in dcache_init_early */
2125 alloc_large_system_hash("Dentry cache",
2126 sizeof(struct hlist_head
),
2134 for (loop
= 0; loop
< (1 << d_hash_shift
); loop
++)
2135 INIT_HLIST_HEAD(&dentry_hashtable
[loop
]);
2138 /* SLAB cache for __getname() consumers */
2139 struct kmem_cache
*names_cachep __read_mostly
;
2141 /* SLAB cache for file structures */
2142 struct kmem_cache
*filp_cachep __read_mostly
;
2144 EXPORT_SYMBOL(d_genocide
);
2146 void __init
vfs_caches_init_early(void)
2148 dcache_init_early();
2152 void __init
vfs_caches_init(unsigned long mempages
)
2154 unsigned long reserve
;
2156 /* Base hash sizes on available memory, with a reserve equal to
2157 150% of current kernel size */
2159 reserve
= min((mempages
- nr_free_pages()) * 3/2, mempages
- 1);
2160 mempages
-= reserve
;
2162 names_cachep
= kmem_cache_create("names_cache", PATH_MAX
, 0,
2163 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
);
2165 filp_cachep
= kmem_cache_create("filp", sizeof(struct file
), 0,
2166 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
);
2170 files_init(mempages
);
2176 EXPORT_SYMBOL(d_alloc
);
2177 EXPORT_SYMBOL(d_alloc_anon
);
2178 EXPORT_SYMBOL(d_alloc_root
);
2179 EXPORT_SYMBOL(d_delete
);
2180 EXPORT_SYMBOL(d_find_alias
);
2181 EXPORT_SYMBOL(d_instantiate
);
2182 EXPORT_SYMBOL(d_invalidate
);
2183 EXPORT_SYMBOL(d_lookup
);
2184 EXPORT_SYMBOL(d_move
);
2185 EXPORT_SYMBOL_GPL(d_materialise_unique
);
2186 EXPORT_SYMBOL(d_path
);
2187 EXPORT_SYMBOL(d_prune_aliases
);
2188 EXPORT_SYMBOL(d_rehash
);
2189 EXPORT_SYMBOL(d_splice_alias
);
2190 EXPORT_SYMBOL(d_validate
);
2191 EXPORT_SYMBOL(dget_locked
);
2192 EXPORT_SYMBOL(dput
);
2193 EXPORT_SYMBOL(find_inode_number
);
2194 EXPORT_SYMBOL(have_submounts
);
2195 EXPORT_SYMBOL(names_cachep
);
2196 EXPORT_SYMBOL(shrink_dcache_parent
);
2197 EXPORT_SYMBOL(shrink_dcache_sb
);