x86: change size of node ids from u8 to u16
[linux-2.6/s3c2410-cpufreq.git] / arch / x86 / mm / numa_64.c
blobbc6dd5051d603b0bce38a480764f28b232409317
1 /*
2 * Generic VM initialization for x86-64 NUMA setups.
3 * Copyright 2002,2003 Andi Kleen, SuSE Labs.
4 */
5 #include <linux/kernel.h>
6 #include <linux/mm.h>
7 #include <linux/string.h>
8 #include <linux/init.h>
9 #include <linux/bootmem.h>
10 #include <linux/mmzone.h>
11 #include <linux/ctype.h>
12 #include <linux/module.h>
13 #include <linux/nodemask.h>
14 #include <linux/sched.h>
16 #include <asm/e820.h>
17 #include <asm/proto.h>
18 #include <asm/dma.h>
19 #include <asm/numa.h>
20 #include <asm/acpi.h>
21 #include <asm/k8.h>
23 #ifndef Dprintk
24 #define Dprintk(x...)
25 #endif
27 struct pglist_data *node_data[MAX_NUMNODES] __read_mostly;
28 EXPORT_SYMBOL(node_data);
30 bootmem_data_t plat_node_bdata[MAX_NUMNODES];
32 struct memnode memnode;
34 u16 cpu_to_node_map[NR_CPUS] __read_mostly = {
35 [0 ... NR_CPUS-1] = NUMA_NO_NODE
37 EXPORT_SYMBOL(cpu_to_node_map);
39 u16 apicid_to_node[MAX_LOCAL_APIC] __cpuinitdata = {
40 [0 ... MAX_LOCAL_APIC-1] = NUMA_NO_NODE
43 cpumask_t node_to_cpumask_map[MAX_NUMNODES] __read_mostly;
44 EXPORT_SYMBOL(node_to_cpumask_map);
46 int numa_off __initdata;
47 unsigned long __initdata nodemap_addr;
48 unsigned long __initdata nodemap_size;
51 * Given a shift value, try to populate memnodemap[]
52 * Returns :
53 * 1 if OK
54 * 0 if memnodmap[] too small (of shift too small)
55 * -1 if node overlap or lost ram (shift too big)
57 static int __init populate_memnodemap(const struct bootnode *nodes,
58 int numnodes, int shift)
60 unsigned long addr, end;
61 int i, res = -1;
63 memset(memnodemap, 0xff, memnodemapsize);
64 for (i = 0; i < numnodes; i++) {
65 addr = nodes[i].start;
66 end = nodes[i].end;
67 if (addr >= end)
68 continue;
69 if ((end >> shift) >= memnodemapsize)
70 return 0;
71 do {
72 if (memnodemap[addr >> shift] != 0xff)
73 return -1;
74 memnodemap[addr >> shift] = i;
75 addr += (1UL << shift);
76 } while (addr < end);
77 res = 1;
79 return res;
82 static int __init allocate_cachealigned_memnodemap(void)
84 unsigned long pad, pad_addr;
86 memnodemap = memnode.embedded_map;
87 if (memnodemapsize <= 48)
88 return 0;
90 pad = L1_CACHE_BYTES - 1;
91 pad_addr = 0x8000;
92 nodemap_size = pad + memnodemapsize;
93 nodemap_addr = find_e820_area(pad_addr, end_pfn<<PAGE_SHIFT,
94 nodemap_size);
95 if (nodemap_addr == -1UL) {
96 printk(KERN_ERR
97 "NUMA: Unable to allocate Memory to Node hash map\n");
98 nodemap_addr = nodemap_size = 0;
99 return -1;
101 pad_addr = (nodemap_addr + pad) & ~pad;
102 memnodemap = phys_to_virt(pad_addr);
104 printk(KERN_DEBUG "NUMA: Allocated memnodemap from %lx - %lx\n",
105 nodemap_addr, nodemap_addr + nodemap_size);
106 return 0;
110 * The LSB of all start and end addresses in the node map is the value of the
111 * maximum possible shift.
113 static int __init extract_lsb_from_nodes(const struct bootnode *nodes,
114 int numnodes)
116 int i, nodes_used = 0;
117 unsigned long start, end;
118 unsigned long bitfield = 0, memtop = 0;
120 for (i = 0; i < numnodes; i++) {
121 start = nodes[i].start;
122 end = nodes[i].end;
123 if (start >= end)
124 continue;
125 bitfield |= start;
126 nodes_used++;
127 if (end > memtop)
128 memtop = end;
130 if (nodes_used <= 1)
131 i = 63;
132 else
133 i = find_first_bit(&bitfield, sizeof(unsigned long)*8);
134 memnodemapsize = (memtop >> i)+1;
135 return i;
138 int __init compute_hash_shift(struct bootnode *nodes, int numnodes)
140 int shift;
142 shift = extract_lsb_from_nodes(nodes, numnodes);
143 if (allocate_cachealigned_memnodemap())
144 return -1;
145 printk(KERN_DEBUG "NUMA: Using %d for the hash shift.\n",
146 shift);
148 if (populate_memnodemap(nodes, numnodes, shift) != 1) {
149 printk(KERN_INFO "Your memory is not aligned you need to "
150 "rebuild your kernel with a bigger NODEMAPSIZE "
151 "shift=%d\n", shift);
152 return -1;
154 return shift;
157 int early_pfn_to_nid(unsigned long pfn)
159 return phys_to_nid(pfn << PAGE_SHIFT);
162 static void * __init early_node_mem(int nodeid, unsigned long start,
163 unsigned long end, unsigned long size)
165 unsigned long mem = find_e820_area(start, end, size);
166 void *ptr;
168 if (mem != -1L)
169 return __va(mem);
170 ptr = __alloc_bootmem_nopanic(size,
171 SMP_CACHE_BYTES, __pa(MAX_DMA_ADDRESS));
172 if (ptr == NULL) {
173 printk(KERN_ERR "Cannot find %lu bytes in node %d\n",
174 size, nodeid);
175 return NULL;
177 return ptr;
180 /* Initialize bootmem allocator for a node */
181 void __init setup_node_bootmem(int nodeid, unsigned long start,
182 unsigned long end)
184 unsigned long start_pfn, end_pfn, bootmap_pages, bootmap_size;
185 unsigned long bootmap_start, nodedata_phys;
186 void *bootmap;
187 const int pgdat_size = round_up(sizeof(pg_data_t), PAGE_SIZE);
189 start = round_up(start, ZONE_ALIGN);
191 printk(KERN_INFO "Bootmem setup node %d %016lx-%016lx\n", nodeid,
192 start, end);
194 start_pfn = start >> PAGE_SHIFT;
195 end_pfn = end >> PAGE_SHIFT;
197 node_data[nodeid] = early_node_mem(nodeid, start, end, pgdat_size);
198 if (node_data[nodeid] == NULL)
199 return;
200 nodedata_phys = __pa(node_data[nodeid]);
202 memset(NODE_DATA(nodeid), 0, sizeof(pg_data_t));
203 NODE_DATA(nodeid)->bdata = &plat_node_bdata[nodeid];
204 NODE_DATA(nodeid)->node_start_pfn = start_pfn;
205 NODE_DATA(nodeid)->node_spanned_pages = end_pfn - start_pfn;
207 /* Find a place for the bootmem map */
208 bootmap_pages = bootmem_bootmap_pages(end_pfn - start_pfn);
209 bootmap_start = round_up(nodedata_phys + pgdat_size, PAGE_SIZE);
210 bootmap = early_node_mem(nodeid, bootmap_start, end,
211 bootmap_pages<<PAGE_SHIFT);
212 if (bootmap == NULL) {
213 if (nodedata_phys < start || nodedata_phys >= end)
214 free_bootmem((unsigned long)node_data[nodeid],
215 pgdat_size);
216 node_data[nodeid] = NULL;
217 return;
219 bootmap_start = __pa(bootmap);
220 Dprintk("bootmap start %lu pages %lu\n", bootmap_start, bootmap_pages);
222 bootmap_size = init_bootmem_node(NODE_DATA(nodeid),
223 bootmap_start >> PAGE_SHIFT,
224 start_pfn, end_pfn);
226 free_bootmem_with_active_regions(nodeid, end);
228 reserve_bootmem_node(NODE_DATA(nodeid), nodedata_phys, pgdat_size);
229 reserve_bootmem_node(NODE_DATA(nodeid), bootmap_start,
230 bootmap_pages<<PAGE_SHIFT);
231 #ifdef CONFIG_ACPI_NUMA
232 srat_reserve_add_area(nodeid);
233 #endif
234 node_set_online(nodeid);
237 #ifdef CONFIG_FLAT_NODE_MEM_MAP
238 /* Initialize final allocator for a zone */
239 static void __init flat_setup_node_zones(int nodeid)
241 unsigned long start_pfn, end_pfn, memmapsize, limit;
243 start_pfn = node_start_pfn(nodeid);
244 end_pfn = node_end_pfn(nodeid);
246 Dprintk(KERN_INFO "Setting up memmap for node %d %lx-%lx\n",
247 nodeid, start_pfn, end_pfn);
250 * Try to allocate mem_map at end to not fill up precious <4GB
251 * memory.
253 memmapsize = sizeof(struct page) * (end_pfn-start_pfn);
254 limit = end_pfn << PAGE_SHIFT;
256 NODE_DATA(nodeid)->node_mem_map =
257 __alloc_bootmem_core(NODE_DATA(nodeid)->bdata,
258 memmapsize, SMP_CACHE_BYTES,
259 round_down(limit - memmapsize, PAGE_SIZE),
260 limit);
262 #else
263 #define flat_setup_node_zones(i) do {} while (0)
264 #endif
267 * There are unfortunately some poorly designed mainboards around that
268 * only connect memory to a single CPU. This breaks the 1:1 cpu->node
269 * mapping. To avoid this fill in the mapping for all possible CPUs,
270 * as the number of CPUs is not known yet. We round robin the existing
271 * nodes.
273 void __init numa_init_array(void)
275 int rr, i;
277 rr = first_node(node_online_map);
278 for (i = 0; i < NR_CPUS; i++) {
279 if (cpu_to_node(i) != NUMA_NO_NODE)
280 continue;
281 numa_set_node(i, rr);
282 rr = next_node(rr, node_online_map);
283 if (rr == MAX_NUMNODES)
284 rr = first_node(node_online_map);
288 #ifdef CONFIG_NUMA_EMU
289 /* Numa emulation */
290 char *cmdline __initdata;
293 * Setups up nid to range from addr to addr + size. If the end
294 * boundary is greater than max_addr, then max_addr is used instead.
295 * The return value is 0 if there is additional memory left for
296 * allocation past addr and -1 otherwise. addr is adjusted to be at
297 * the end of the node.
299 static int __init setup_node_range(int nid, struct bootnode *nodes, u64 *addr,
300 u64 size, u64 max_addr)
302 int ret = 0;
304 nodes[nid].start = *addr;
305 *addr += size;
306 if (*addr >= max_addr) {
307 *addr = max_addr;
308 ret = -1;
310 nodes[nid].end = *addr;
311 node_set(nid, node_possible_map);
312 printk(KERN_INFO "Faking node %d at %016Lx-%016Lx (%LuMB)\n", nid,
313 nodes[nid].start, nodes[nid].end,
314 (nodes[nid].end - nodes[nid].start) >> 20);
315 return ret;
319 * Splits num_nodes nodes up equally starting at node_start. The return value
320 * is the number of nodes split up and addr is adjusted to be at the end of the
321 * last node allocated.
323 static int __init split_nodes_equally(struct bootnode *nodes, u64 *addr,
324 u64 max_addr, int node_start,
325 int num_nodes)
327 unsigned int big;
328 u64 size;
329 int i;
331 if (num_nodes <= 0)
332 return -1;
333 if (num_nodes > MAX_NUMNODES)
334 num_nodes = MAX_NUMNODES;
335 size = (max_addr - *addr - e820_hole_size(*addr, max_addr)) /
336 num_nodes;
338 * Calculate the number of big nodes that can be allocated as a result
339 * of consolidating the leftovers.
341 big = ((size & ~FAKE_NODE_MIN_HASH_MASK) * num_nodes) /
342 FAKE_NODE_MIN_SIZE;
344 /* Round down to nearest FAKE_NODE_MIN_SIZE. */
345 size &= FAKE_NODE_MIN_HASH_MASK;
346 if (!size) {
347 printk(KERN_ERR "Not enough memory for each node. "
348 "NUMA emulation disabled.\n");
349 return -1;
352 for (i = node_start; i < num_nodes + node_start; i++) {
353 u64 end = *addr + size;
355 if (i < big)
356 end += FAKE_NODE_MIN_SIZE;
358 * The final node can have the remaining system RAM. Other
359 * nodes receive roughly the same amount of available pages.
361 if (i == num_nodes + node_start - 1)
362 end = max_addr;
363 else
364 while (end - *addr - e820_hole_size(*addr, end) <
365 size) {
366 end += FAKE_NODE_MIN_SIZE;
367 if (end > max_addr) {
368 end = max_addr;
369 break;
372 if (setup_node_range(i, nodes, addr, end - *addr, max_addr) < 0)
373 break;
375 return i - node_start + 1;
379 * Splits the remaining system RAM into chunks of size. The remaining memory is
380 * always assigned to a final node and can be asymmetric. Returns the number of
381 * nodes split.
383 static int __init split_nodes_by_size(struct bootnode *nodes, u64 *addr,
384 u64 max_addr, int node_start, u64 size)
386 int i = node_start;
387 size = (size << 20) & FAKE_NODE_MIN_HASH_MASK;
388 while (!setup_node_range(i++, nodes, addr, size, max_addr))
390 return i - node_start;
394 * Sets up the system RAM area from start_pfn to end_pfn according to the
395 * numa=fake command-line option.
397 static int __init numa_emulation(unsigned long start_pfn, unsigned long end_pfn)
399 struct bootnode nodes[MAX_NUMNODES];
400 u64 size, addr = start_pfn << PAGE_SHIFT;
401 u64 max_addr = end_pfn << PAGE_SHIFT;
402 int num_nodes = 0, num = 0, coeff_flag, coeff = -1, i;
404 memset(&nodes, 0, sizeof(nodes));
406 * If the numa=fake command-line is just a single number N, split the
407 * system RAM into N fake nodes.
409 if (!strchr(cmdline, '*') && !strchr(cmdline, ',')) {
410 long n = simple_strtol(cmdline, NULL, 0);
412 num_nodes = split_nodes_equally(nodes, &addr, max_addr, 0, n);
413 if (num_nodes < 0)
414 return num_nodes;
415 goto out;
418 /* Parse the command line. */
419 for (coeff_flag = 0; ; cmdline++) {
420 if (*cmdline && isdigit(*cmdline)) {
421 num = num * 10 + *cmdline - '0';
422 continue;
424 if (*cmdline == '*') {
425 if (num > 0)
426 coeff = num;
427 coeff_flag = 1;
429 if (!*cmdline || *cmdline == ',') {
430 if (!coeff_flag)
431 coeff = 1;
433 * Round down to the nearest FAKE_NODE_MIN_SIZE.
434 * Command-line coefficients are in megabytes.
436 size = ((u64)num << 20) & FAKE_NODE_MIN_HASH_MASK;
437 if (size)
438 for (i = 0; i < coeff; i++, num_nodes++)
439 if (setup_node_range(num_nodes, nodes,
440 &addr, size, max_addr) < 0)
441 goto done;
442 if (!*cmdline)
443 break;
444 coeff_flag = 0;
445 coeff = -1;
447 num = 0;
449 done:
450 if (!num_nodes)
451 return -1;
452 /* Fill remainder of system RAM, if appropriate. */
453 if (addr < max_addr) {
454 if (coeff_flag && coeff < 0) {
455 /* Split remaining nodes into num-sized chunks */
456 num_nodes += split_nodes_by_size(nodes, &addr, max_addr,
457 num_nodes, num);
458 goto out;
460 switch (*(cmdline - 1)) {
461 case '*':
462 /* Split remaining nodes into coeff chunks */
463 if (coeff <= 0)
464 break;
465 num_nodes += split_nodes_equally(nodes, &addr, max_addr,
466 num_nodes, coeff);
467 break;
468 case ',':
469 /* Do not allocate remaining system RAM */
470 break;
471 default:
472 /* Give one final node */
473 setup_node_range(num_nodes, nodes, &addr,
474 max_addr - addr, max_addr);
475 num_nodes++;
478 out:
479 memnode_shift = compute_hash_shift(nodes, num_nodes);
480 if (memnode_shift < 0) {
481 memnode_shift = 0;
482 printk(KERN_ERR "No NUMA hash function found. NUMA emulation "
483 "disabled.\n");
484 return -1;
488 * We need to vacate all active ranges that may have been registered by
489 * SRAT and set acpi_numa to -1 so that srat_disabled() always returns
490 * true. NUMA emulation has succeeded so we will not scan ACPI nodes.
492 remove_all_active_ranges();
493 #ifdef CONFIG_ACPI_NUMA
494 acpi_numa = -1;
495 #endif
496 for_each_node_mask(i, node_possible_map) {
497 e820_register_active_regions(i, nodes[i].start >> PAGE_SHIFT,
498 nodes[i].end >> PAGE_SHIFT);
499 setup_node_bootmem(i, nodes[i].start, nodes[i].end);
501 acpi_fake_nodes(nodes, num_nodes);
502 numa_init_array();
503 return 0;
505 #endif /* CONFIG_NUMA_EMU */
507 void __init numa_initmem_init(unsigned long start_pfn, unsigned long end_pfn)
509 int i;
511 nodes_clear(node_possible_map);
513 #ifdef CONFIG_NUMA_EMU
514 if (cmdline && !numa_emulation(start_pfn, end_pfn))
515 return;
516 nodes_clear(node_possible_map);
517 #endif
519 #ifdef CONFIG_ACPI_NUMA
520 if (!numa_off && !acpi_scan_nodes(start_pfn << PAGE_SHIFT,
521 end_pfn << PAGE_SHIFT))
522 return;
523 nodes_clear(node_possible_map);
524 #endif
526 #ifdef CONFIG_K8_NUMA
527 if (!numa_off && !k8_scan_nodes(start_pfn<<PAGE_SHIFT,
528 end_pfn<<PAGE_SHIFT))
529 return;
530 nodes_clear(node_possible_map);
531 #endif
532 printk(KERN_INFO "%s\n",
533 numa_off ? "NUMA turned off" : "No NUMA configuration found");
535 printk(KERN_INFO "Faking a node at %016lx-%016lx\n",
536 start_pfn << PAGE_SHIFT,
537 end_pfn << PAGE_SHIFT);
538 /* setup dummy node covering all memory */
539 memnode_shift = 63;
540 memnodemap = memnode.embedded_map;
541 memnodemap[0] = 0;
542 nodes_clear(node_online_map);
543 node_set_online(0);
544 node_set(0, node_possible_map);
545 for (i = 0; i < NR_CPUS; i++)
546 numa_set_node(i, 0);
547 /* we can't use cpumask_of_cpu() yet */
548 memset(&node_to_cpumask_map[0], 0, sizeof(node_to_cpumask_map[0]));
549 cpu_set(0, node_to_cpumask_map[0]);
550 e820_register_active_regions(0, start_pfn, end_pfn);
551 setup_node_bootmem(0, start_pfn << PAGE_SHIFT, end_pfn << PAGE_SHIFT);
554 __cpuinit void numa_add_cpu(int cpu)
556 set_bit(cpu, (unsigned long *)&node_to_cpumask_map[cpu_to_node(cpu)]);
559 void __cpuinit numa_set_node(int cpu, int node)
561 cpu_pda(cpu)->nodenumber = node;
562 cpu_to_node_map[cpu] = node;
565 unsigned long __init numa_free_all_bootmem(void)
567 unsigned long pages = 0;
568 int i;
570 for_each_online_node(i)
571 pages += free_all_bootmem_node(NODE_DATA(i));
573 return pages;
576 void __init paging_init(void)
578 unsigned long max_zone_pfns[MAX_NR_ZONES];
579 int i;
581 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
582 max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN;
583 max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN;
584 max_zone_pfns[ZONE_NORMAL] = end_pfn;
586 sparse_memory_present_with_active_regions(MAX_NUMNODES);
587 sparse_init();
589 for_each_online_node(i)
590 flat_setup_node_zones(i);
592 free_area_init_nodes(max_zone_pfns);
595 static __init int numa_setup(char *opt)
597 if (!opt)
598 return -EINVAL;
599 if (!strncmp(opt, "off", 3))
600 numa_off = 1;
601 #ifdef CONFIG_NUMA_EMU
602 if (!strncmp(opt, "fake=", 5))
603 cmdline = opt + 5;
604 #endif
605 #ifdef CONFIG_ACPI_NUMA
606 if (!strncmp(opt, "noacpi", 6))
607 acpi_numa = -1;
608 if (!strncmp(opt, "hotadd=", 7))
609 hotadd_percent = simple_strtoul(opt+7, NULL, 10);
610 #endif
611 return 0;
613 early_param("numa", numa_setup);
616 * Setup early cpu_to_node.
618 * Populate cpu_to_node[] only if x86_cpu_to_apicid[],
619 * and apicid_to_node[] tables have valid entries for a CPU.
620 * This means we skip cpu_to_node[] initialisation for NUMA
621 * emulation and faking node case (when running a kernel compiled
622 * for NUMA on a non NUMA box), which is OK as cpu_to_node[]
623 * is already initialized in a round robin manner at numa_init_array,
624 * prior to this call, and this initialization is good enough
625 * for the fake NUMA cases.
627 void __init init_cpu_to_node(void)
629 int i;
631 for (i = 0; i < NR_CPUS; i++) {
632 u16 apicid = x86_cpu_to_apicid_init[i];
634 if (apicid == BAD_APICID)
635 continue;
636 if (apicid_to_node[apicid] == NUMA_NO_NODE)
637 continue;
638 numa_set_node(i, apicid_to_node[apicid]);