[ARM] nommu: defines CPU_CP15, CPU_CP15_MMU and CPU_CP15_MPU
[linux-2.6/pdupreez.git] / mm / mempolicy.c
bloba9963ceddd65c483f589efe4f5c5124bddd36e8c
1 /*
2 * Simple NUMA memory policy for the Linux kernel.
4 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6 * Subject to the GNU Public License, version 2.
8 * NUMA policy allows the user to give hints in which node(s) memory should
9 * be allocated.
11 * Support four policies per VMA and per process:
13 * The VMA policy has priority over the process policy for a page fault.
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
20 * is used.
22 * bind Only allocate memory on a specific set of nodes,
23 * no fallback.
24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead
28 * preferred Try a specific node first before normal fallback.
29 * As a special case node -1 here means do the allocation
30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default
32 * process policy.
34 * default Allocate on the local node first, or when on a VMA
35 * use the process policy. This is what Linux always did
36 * in a NUMA aware kernel and still does by, ahem, default.
38 * The process policy is applied for most non interrupt memory allocations
39 * in that process' context. Interrupts ignore the policies and always
40 * try to allocate on the local CPU. The VMA policy is only applied for memory
41 * allocations for a VMA in the VM.
43 * Currently there are a few corner cases in swapping where the policy
44 * is not applied, but the majority should be handled. When process policy
45 * is used it is not remembered over swap outs/swap ins.
47 * Only the highest zone in the zone hierarchy gets policied. Allocations
48 * requesting a lower zone just use default policy. This implies that
49 * on systems with highmem kernel lowmem allocation don't get policied.
50 * Same with GFP_DMA allocations.
52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53 * all users and remembered even when nobody has memory mapped.
56 /* Notebook:
57 fix mmap readahead to honour policy and enable policy for any page cache
58 object
59 statistics for bigpages
60 global policy for page cache? currently it uses process policy. Requires
61 first item above.
62 handle mremap for shared memory (currently ignored for the policy)
63 grows down?
64 make bind policy root only? It can trigger oom much faster and the
65 kernel is not always grateful with that.
66 could replace all the switch()es with a mempolicy_ops structure.
69 #include <linux/mempolicy.h>
70 #include <linux/mm.h>
71 #include <linux/highmem.h>
72 #include <linux/hugetlb.h>
73 #include <linux/kernel.h>
74 #include <linux/sched.h>
75 #include <linux/mm.h>
76 #include <linux/nodemask.h>
77 #include <linux/cpuset.h>
78 #include <linux/gfp.h>
79 #include <linux/slab.h>
80 #include <linux/string.h>
81 #include <linux/module.h>
82 #include <linux/interrupt.h>
83 #include <linux/init.h>
84 #include <linux/compat.h>
85 #include <linux/mempolicy.h>
86 #include <linux/swap.h>
87 #include <linux/seq_file.h>
88 #include <linux/proc_fs.h>
89 #include <linux/migrate.h>
90 #include <linux/rmap.h>
91 #include <linux/security.h>
93 #include <asm/tlbflush.h>
94 #include <asm/uaccess.h>
96 /* Internal flags */
97 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
98 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
99 #define MPOL_MF_STATS (MPOL_MF_INTERNAL << 2) /* Gather statistics */
101 static struct kmem_cache *policy_cache;
102 static struct kmem_cache *sn_cache;
104 #define PDprintk(fmt...)
106 /* Highest zone. An specific allocation for a zone below that is not
107 policied. */
108 int policy_zone = ZONE_DMA;
110 struct mempolicy default_policy = {
111 .refcnt = ATOMIC_INIT(1), /* never free it */
112 .policy = MPOL_DEFAULT,
115 /* Do sanity checking on a policy */
116 static int mpol_check_policy(int mode, nodemask_t *nodes)
118 int empty = nodes_empty(*nodes);
120 switch (mode) {
121 case MPOL_DEFAULT:
122 if (!empty)
123 return -EINVAL;
124 break;
125 case MPOL_BIND:
126 case MPOL_INTERLEAVE:
127 /* Preferred will only use the first bit, but allow
128 more for now. */
129 if (empty)
130 return -EINVAL;
131 break;
133 return nodes_subset(*nodes, node_online_map) ? 0 : -EINVAL;
136 /* Generate a custom zonelist for the BIND policy. */
137 static struct zonelist *bind_zonelist(nodemask_t *nodes)
139 struct zonelist *zl;
140 int num, max, nd, k;
142 max = 1 + MAX_NR_ZONES * nodes_weight(*nodes);
143 zl = kmalloc(sizeof(struct zone *) * max, GFP_KERNEL);
144 if (!zl)
145 return NULL;
146 num = 0;
147 /* First put in the highest zones from all nodes, then all the next
148 lower zones etc. Avoid empty zones because the memory allocator
149 doesn't like them. If you implement node hot removal you
150 have to fix that. */
151 for (k = policy_zone; k >= 0; k--) {
152 for_each_node_mask(nd, *nodes) {
153 struct zone *z = &NODE_DATA(nd)->node_zones[k];
154 if (z->present_pages > 0)
155 zl->zones[num++] = z;
158 zl->zones[num] = NULL;
159 return zl;
162 /* Create a new policy */
163 static struct mempolicy *mpol_new(int mode, nodemask_t *nodes)
165 struct mempolicy *policy;
167 PDprintk("setting mode %d nodes[0] %lx\n", mode, nodes_addr(*nodes)[0]);
168 if (mode == MPOL_DEFAULT)
169 return NULL;
170 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
171 if (!policy)
172 return ERR_PTR(-ENOMEM);
173 atomic_set(&policy->refcnt, 1);
174 switch (mode) {
175 case MPOL_INTERLEAVE:
176 policy->v.nodes = *nodes;
177 if (nodes_weight(*nodes) == 0) {
178 kmem_cache_free(policy_cache, policy);
179 return ERR_PTR(-EINVAL);
181 break;
182 case MPOL_PREFERRED:
183 policy->v.preferred_node = first_node(*nodes);
184 if (policy->v.preferred_node >= MAX_NUMNODES)
185 policy->v.preferred_node = -1;
186 break;
187 case MPOL_BIND:
188 policy->v.zonelist = bind_zonelist(nodes);
189 if (policy->v.zonelist == NULL) {
190 kmem_cache_free(policy_cache, policy);
191 return ERR_PTR(-ENOMEM);
193 break;
195 policy->policy = mode;
196 policy->cpuset_mems_allowed = cpuset_mems_allowed(current);
197 return policy;
200 static void gather_stats(struct page *, void *, int pte_dirty);
201 static void migrate_page_add(struct page *page, struct list_head *pagelist,
202 unsigned long flags);
204 /* Scan through pages checking if pages follow certain conditions. */
205 static int check_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
206 unsigned long addr, unsigned long end,
207 const nodemask_t *nodes, unsigned long flags,
208 void *private)
210 pte_t *orig_pte;
211 pte_t *pte;
212 spinlock_t *ptl;
214 orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
215 do {
216 struct page *page;
217 unsigned int nid;
219 if (!pte_present(*pte))
220 continue;
221 page = vm_normal_page(vma, addr, *pte);
222 if (!page)
223 continue;
225 * The check for PageReserved here is important to avoid
226 * handling zero pages and other pages that may have been
227 * marked special by the system.
229 * If the PageReserved would not be checked here then f.e.
230 * the location of the zero page could have an influence
231 * on MPOL_MF_STRICT, zero pages would be counted for
232 * the per node stats, and there would be useless attempts
233 * to put zero pages on the migration list.
235 if (PageReserved(page))
236 continue;
237 nid = page_to_nid(page);
238 if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT))
239 continue;
241 if (flags & MPOL_MF_STATS)
242 gather_stats(page, private, pte_dirty(*pte));
243 else if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
244 migrate_page_add(page, private, flags);
245 else
246 break;
247 } while (pte++, addr += PAGE_SIZE, addr != end);
248 pte_unmap_unlock(orig_pte, ptl);
249 return addr != end;
252 static inline int check_pmd_range(struct vm_area_struct *vma, pud_t *pud,
253 unsigned long addr, unsigned long end,
254 const nodemask_t *nodes, unsigned long flags,
255 void *private)
257 pmd_t *pmd;
258 unsigned long next;
260 pmd = pmd_offset(pud, addr);
261 do {
262 next = pmd_addr_end(addr, end);
263 if (pmd_none_or_clear_bad(pmd))
264 continue;
265 if (check_pte_range(vma, pmd, addr, next, nodes,
266 flags, private))
267 return -EIO;
268 } while (pmd++, addr = next, addr != end);
269 return 0;
272 static inline int check_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
273 unsigned long addr, unsigned long end,
274 const nodemask_t *nodes, unsigned long flags,
275 void *private)
277 pud_t *pud;
278 unsigned long next;
280 pud = pud_offset(pgd, addr);
281 do {
282 next = pud_addr_end(addr, end);
283 if (pud_none_or_clear_bad(pud))
284 continue;
285 if (check_pmd_range(vma, pud, addr, next, nodes,
286 flags, private))
287 return -EIO;
288 } while (pud++, addr = next, addr != end);
289 return 0;
292 static inline int check_pgd_range(struct vm_area_struct *vma,
293 unsigned long addr, unsigned long end,
294 const nodemask_t *nodes, unsigned long flags,
295 void *private)
297 pgd_t *pgd;
298 unsigned long next;
300 pgd = pgd_offset(vma->vm_mm, addr);
301 do {
302 next = pgd_addr_end(addr, end);
303 if (pgd_none_or_clear_bad(pgd))
304 continue;
305 if (check_pud_range(vma, pgd, addr, next, nodes,
306 flags, private))
307 return -EIO;
308 } while (pgd++, addr = next, addr != end);
309 return 0;
312 /* Check if a vma is migratable */
313 static inline int vma_migratable(struct vm_area_struct *vma)
315 if (vma->vm_flags & (
316 VM_LOCKED|VM_IO|VM_HUGETLB|VM_PFNMAP|VM_RESERVED))
317 return 0;
318 return 1;
322 * Check if all pages in a range are on a set of nodes.
323 * If pagelist != NULL then isolate pages from the LRU and
324 * put them on the pagelist.
326 static struct vm_area_struct *
327 check_range(struct mm_struct *mm, unsigned long start, unsigned long end,
328 const nodemask_t *nodes, unsigned long flags, void *private)
330 int err;
331 struct vm_area_struct *first, *vma, *prev;
333 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
335 err = migrate_prep();
336 if (err)
337 return ERR_PTR(err);
340 first = find_vma(mm, start);
341 if (!first)
342 return ERR_PTR(-EFAULT);
343 prev = NULL;
344 for (vma = first; vma && vma->vm_start < end; vma = vma->vm_next) {
345 if (!(flags & MPOL_MF_DISCONTIG_OK)) {
346 if (!vma->vm_next && vma->vm_end < end)
347 return ERR_PTR(-EFAULT);
348 if (prev && prev->vm_end < vma->vm_start)
349 return ERR_PTR(-EFAULT);
351 if (!is_vm_hugetlb_page(vma) &&
352 ((flags & MPOL_MF_STRICT) ||
353 ((flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) &&
354 vma_migratable(vma)))) {
355 unsigned long endvma = vma->vm_end;
357 if (endvma > end)
358 endvma = end;
359 if (vma->vm_start > start)
360 start = vma->vm_start;
361 err = check_pgd_range(vma, start, endvma, nodes,
362 flags, private);
363 if (err) {
364 first = ERR_PTR(err);
365 break;
368 prev = vma;
370 return first;
373 /* Apply policy to a single VMA */
374 static int policy_vma(struct vm_area_struct *vma, struct mempolicy *new)
376 int err = 0;
377 struct mempolicy *old = vma->vm_policy;
379 PDprintk("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
380 vma->vm_start, vma->vm_end, vma->vm_pgoff,
381 vma->vm_ops, vma->vm_file,
382 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
384 if (vma->vm_ops && vma->vm_ops->set_policy)
385 err = vma->vm_ops->set_policy(vma, new);
386 if (!err) {
387 mpol_get(new);
388 vma->vm_policy = new;
389 mpol_free(old);
391 return err;
394 /* Step 2: apply policy to a range and do splits. */
395 static int mbind_range(struct vm_area_struct *vma, unsigned long start,
396 unsigned long end, struct mempolicy *new)
398 struct vm_area_struct *next;
399 int err;
401 err = 0;
402 for (; vma && vma->vm_start < end; vma = next) {
403 next = vma->vm_next;
404 if (vma->vm_start < start)
405 err = split_vma(vma->vm_mm, vma, start, 1);
406 if (!err && vma->vm_end > end)
407 err = split_vma(vma->vm_mm, vma, end, 0);
408 if (!err)
409 err = policy_vma(vma, new);
410 if (err)
411 break;
413 return err;
416 static int contextualize_policy(int mode, nodemask_t *nodes)
418 if (!nodes)
419 return 0;
421 cpuset_update_task_memory_state();
422 if (!cpuset_nodes_subset_current_mems_allowed(*nodes))
423 return -EINVAL;
424 return mpol_check_policy(mode, nodes);
429 * Update task->flags PF_MEMPOLICY bit: set iff non-default
430 * mempolicy. Allows more rapid checking of this (combined perhaps
431 * with other PF_* flag bits) on memory allocation hot code paths.
433 * If called from outside this file, the task 'p' should -only- be
434 * a newly forked child not yet visible on the task list, because
435 * manipulating the task flags of a visible task is not safe.
437 * The above limitation is why this routine has the funny name
438 * mpol_fix_fork_child_flag().
440 * It is also safe to call this with a task pointer of current,
441 * which the static wrapper mpol_set_task_struct_flag() does,
442 * for use within this file.
445 void mpol_fix_fork_child_flag(struct task_struct *p)
447 if (p->mempolicy)
448 p->flags |= PF_MEMPOLICY;
449 else
450 p->flags &= ~PF_MEMPOLICY;
453 static void mpol_set_task_struct_flag(void)
455 mpol_fix_fork_child_flag(current);
458 /* Set the process memory policy */
459 long do_set_mempolicy(int mode, nodemask_t *nodes)
461 struct mempolicy *new;
463 if (contextualize_policy(mode, nodes))
464 return -EINVAL;
465 new = mpol_new(mode, nodes);
466 if (IS_ERR(new))
467 return PTR_ERR(new);
468 mpol_free(current->mempolicy);
469 current->mempolicy = new;
470 mpol_set_task_struct_flag();
471 if (new && new->policy == MPOL_INTERLEAVE)
472 current->il_next = first_node(new->v.nodes);
473 return 0;
476 /* Fill a zone bitmap for a policy */
477 static void get_zonemask(struct mempolicy *p, nodemask_t *nodes)
479 int i;
481 nodes_clear(*nodes);
482 switch (p->policy) {
483 case MPOL_BIND:
484 for (i = 0; p->v.zonelist->zones[i]; i++)
485 node_set(p->v.zonelist->zones[i]->zone_pgdat->node_id,
486 *nodes);
487 break;
488 case MPOL_DEFAULT:
489 break;
490 case MPOL_INTERLEAVE:
491 *nodes = p->v.nodes;
492 break;
493 case MPOL_PREFERRED:
494 /* or use current node instead of online map? */
495 if (p->v.preferred_node < 0)
496 *nodes = node_online_map;
497 else
498 node_set(p->v.preferred_node, *nodes);
499 break;
500 default:
501 BUG();
505 static int lookup_node(struct mm_struct *mm, unsigned long addr)
507 struct page *p;
508 int err;
510 err = get_user_pages(current, mm, addr & PAGE_MASK, 1, 0, 0, &p, NULL);
511 if (err >= 0) {
512 err = page_to_nid(p);
513 put_page(p);
515 return err;
518 /* Retrieve NUMA policy */
519 long do_get_mempolicy(int *policy, nodemask_t *nmask,
520 unsigned long addr, unsigned long flags)
522 int err;
523 struct mm_struct *mm = current->mm;
524 struct vm_area_struct *vma = NULL;
525 struct mempolicy *pol = current->mempolicy;
527 cpuset_update_task_memory_state();
528 if (flags & ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR))
529 return -EINVAL;
530 if (flags & MPOL_F_ADDR) {
531 down_read(&mm->mmap_sem);
532 vma = find_vma_intersection(mm, addr, addr+1);
533 if (!vma) {
534 up_read(&mm->mmap_sem);
535 return -EFAULT;
537 if (vma->vm_ops && vma->vm_ops->get_policy)
538 pol = vma->vm_ops->get_policy(vma, addr);
539 else
540 pol = vma->vm_policy;
541 } else if (addr)
542 return -EINVAL;
544 if (!pol)
545 pol = &default_policy;
547 if (flags & MPOL_F_NODE) {
548 if (flags & MPOL_F_ADDR) {
549 err = lookup_node(mm, addr);
550 if (err < 0)
551 goto out;
552 *policy = err;
553 } else if (pol == current->mempolicy &&
554 pol->policy == MPOL_INTERLEAVE) {
555 *policy = current->il_next;
556 } else {
557 err = -EINVAL;
558 goto out;
560 } else
561 *policy = pol->policy;
563 if (vma) {
564 up_read(&current->mm->mmap_sem);
565 vma = NULL;
568 err = 0;
569 if (nmask)
570 get_zonemask(pol, nmask);
572 out:
573 if (vma)
574 up_read(&current->mm->mmap_sem);
575 return err;
578 #ifdef CONFIG_MIGRATION
580 * page migration
582 static void migrate_page_add(struct page *page, struct list_head *pagelist,
583 unsigned long flags)
586 * Avoid migrating a page that is shared with others.
588 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1)
589 isolate_lru_page(page, pagelist);
592 static struct page *new_node_page(struct page *page, unsigned long node, int **x)
594 return alloc_pages_node(node, GFP_HIGHUSER, 0);
598 * Migrate pages from one node to a target node.
599 * Returns error or the number of pages not migrated.
601 int migrate_to_node(struct mm_struct *mm, int source, int dest, int flags)
603 nodemask_t nmask;
604 LIST_HEAD(pagelist);
605 int err = 0;
607 nodes_clear(nmask);
608 node_set(source, nmask);
610 check_range(mm, mm->mmap->vm_start, TASK_SIZE, &nmask,
611 flags | MPOL_MF_DISCONTIG_OK, &pagelist);
613 if (!list_empty(&pagelist))
614 err = migrate_pages(&pagelist, new_node_page, dest);
616 return err;
620 * Move pages between the two nodesets so as to preserve the physical
621 * layout as much as possible.
623 * Returns the number of page that could not be moved.
625 int do_migrate_pages(struct mm_struct *mm,
626 const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags)
628 LIST_HEAD(pagelist);
629 int busy = 0;
630 int err = 0;
631 nodemask_t tmp;
633 down_read(&mm->mmap_sem);
635 err = migrate_vmas(mm, from_nodes, to_nodes, flags);
636 if (err)
637 goto out;
640 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
641 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
642 * bit in 'tmp', and return that <source, dest> pair for migration.
643 * The pair of nodemasks 'to' and 'from' define the map.
645 * If no pair of bits is found that way, fallback to picking some
646 * pair of 'source' and 'dest' bits that are not the same. If the
647 * 'source' and 'dest' bits are the same, this represents a node
648 * that will be migrating to itself, so no pages need move.
650 * If no bits are left in 'tmp', or if all remaining bits left
651 * in 'tmp' correspond to the same bit in 'to', return false
652 * (nothing left to migrate).
654 * This lets us pick a pair of nodes to migrate between, such that
655 * if possible the dest node is not already occupied by some other
656 * source node, minimizing the risk of overloading the memory on a
657 * node that would happen if we migrated incoming memory to a node
658 * before migrating outgoing memory source that same node.
660 * A single scan of tmp is sufficient. As we go, we remember the
661 * most recent <s, d> pair that moved (s != d). If we find a pair
662 * that not only moved, but what's better, moved to an empty slot
663 * (d is not set in tmp), then we break out then, with that pair.
664 * Otherwise when we finish scannng from_tmp, we at least have the
665 * most recent <s, d> pair that moved. If we get all the way through
666 * the scan of tmp without finding any node that moved, much less
667 * moved to an empty node, then there is nothing left worth migrating.
670 tmp = *from_nodes;
671 while (!nodes_empty(tmp)) {
672 int s,d;
673 int source = -1;
674 int dest = 0;
676 for_each_node_mask(s, tmp) {
677 d = node_remap(s, *from_nodes, *to_nodes);
678 if (s == d)
679 continue;
681 source = s; /* Node moved. Memorize */
682 dest = d;
684 /* dest not in remaining from nodes? */
685 if (!node_isset(dest, tmp))
686 break;
688 if (source == -1)
689 break;
691 node_clear(source, tmp);
692 err = migrate_to_node(mm, source, dest, flags);
693 if (err > 0)
694 busy += err;
695 if (err < 0)
696 break;
698 out:
699 up_read(&mm->mmap_sem);
700 if (err < 0)
701 return err;
702 return busy;
706 static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
708 struct vm_area_struct *vma = (struct vm_area_struct *)private;
710 return alloc_page_vma(GFP_HIGHUSER, vma, page_address_in_vma(page, vma));
712 #else
714 static void migrate_page_add(struct page *page, struct list_head *pagelist,
715 unsigned long flags)
719 int do_migrate_pages(struct mm_struct *mm,
720 const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags)
722 return -ENOSYS;
725 static struct page *new_vma_page(struct page *page, unsigned long private)
727 return NULL;
729 #endif
731 long do_mbind(unsigned long start, unsigned long len,
732 unsigned long mode, nodemask_t *nmask, unsigned long flags)
734 struct vm_area_struct *vma;
735 struct mm_struct *mm = current->mm;
736 struct mempolicy *new;
737 unsigned long end;
738 int err;
739 LIST_HEAD(pagelist);
741 if ((flags & ~(unsigned long)(MPOL_MF_STRICT |
742 MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
743 || mode > MPOL_MAX)
744 return -EINVAL;
745 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
746 return -EPERM;
748 if (start & ~PAGE_MASK)
749 return -EINVAL;
751 if (mode == MPOL_DEFAULT)
752 flags &= ~MPOL_MF_STRICT;
754 len = (len + PAGE_SIZE - 1) & PAGE_MASK;
755 end = start + len;
757 if (end < start)
758 return -EINVAL;
759 if (end == start)
760 return 0;
762 if (mpol_check_policy(mode, nmask))
763 return -EINVAL;
765 new = mpol_new(mode, nmask);
766 if (IS_ERR(new))
767 return PTR_ERR(new);
770 * If we are using the default policy then operation
771 * on discontinuous address spaces is okay after all
773 if (!new)
774 flags |= MPOL_MF_DISCONTIG_OK;
776 PDprintk("mbind %lx-%lx mode:%ld nodes:%lx\n",start,start+len,
777 mode,nodes_addr(nodes)[0]);
779 down_write(&mm->mmap_sem);
780 vma = check_range(mm, start, end, nmask,
781 flags | MPOL_MF_INVERT, &pagelist);
783 err = PTR_ERR(vma);
784 if (!IS_ERR(vma)) {
785 int nr_failed = 0;
787 err = mbind_range(vma, start, end, new);
789 if (!list_empty(&pagelist))
790 nr_failed = migrate_pages(&pagelist, new_vma_page,
791 (unsigned long)vma);
793 if (!err && nr_failed && (flags & MPOL_MF_STRICT))
794 err = -EIO;
797 up_write(&mm->mmap_sem);
798 mpol_free(new);
799 return err;
803 * User space interface with variable sized bitmaps for nodelists.
806 /* Copy a node mask from user space. */
807 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
808 unsigned long maxnode)
810 unsigned long k;
811 unsigned long nlongs;
812 unsigned long endmask;
814 --maxnode;
815 nodes_clear(*nodes);
816 if (maxnode == 0 || !nmask)
817 return 0;
818 if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
819 return -EINVAL;
821 nlongs = BITS_TO_LONGS(maxnode);
822 if ((maxnode % BITS_PER_LONG) == 0)
823 endmask = ~0UL;
824 else
825 endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
827 /* When the user specified more nodes than supported just check
828 if the non supported part is all zero. */
829 if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
830 if (nlongs > PAGE_SIZE/sizeof(long))
831 return -EINVAL;
832 for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
833 unsigned long t;
834 if (get_user(t, nmask + k))
835 return -EFAULT;
836 if (k == nlongs - 1) {
837 if (t & endmask)
838 return -EINVAL;
839 } else if (t)
840 return -EINVAL;
842 nlongs = BITS_TO_LONGS(MAX_NUMNODES);
843 endmask = ~0UL;
846 if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
847 return -EFAULT;
848 nodes_addr(*nodes)[nlongs-1] &= endmask;
849 return 0;
852 /* Copy a kernel node mask to user space */
853 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
854 nodemask_t *nodes)
856 unsigned long copy = ALIGN(maxnode-1, 64) / 8;
857 const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
859 if (copy > nbytes) {
860 if (copy > PAGE_SIZE)
861 return -EINVAL;
862 if (clear_user((char __user *)mask + nbytes, copy - nbytes))
863 return -EFAULT;
864 copy = nbytes;
866 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
869 asmlinkage long sys_mbind(unsigned long start, unsigned long len,
870 unsigned long mode,
871 unsigned long __user *nmask, unsigned long maxnode,
872 unsigned flags)
874 nodemask_t nodes;
875 int err;
877 err = get_nodes(&nodes, nmask, maxnode);
878 if (err)
879 return err;
880 return do_mbind(start, len, mode, &nodes, flags);
883 /* Set the process memory policy */
884 asmlinkage long sys_set_mempolicy(int mode, unsigned long __user *nmask,
885 unsigned long maxnode)
887 int err;
888 nodemask_t nodes;
890 if (mode < 0 || mode > MPOL_MAX)
891 return -EINVAL;
892 err = get_nodes(&nodes, nmask, maxnode);
893 if (err)
894 return err;
895 return do_set_mempolicy(mode, &nodes);
898 asmlinkage long sys_migrate_pages(pid_t pid, unsigned long maxnode,
899 const unsigned long __user *old_nodes,
900 const unsigned long __user *new_nodes)
902 struct mm_struct *mm;
903 struct task_struct *task;
904 nodemask_t old;
905 nodemask_t new;
906 nodemask_t task_nodes;
907 int err;
909 err = get_nodes(&old, old_nodes, maxnode);
910 if (err)
911 return err;
913 err = get_nodes(&new, new_nodes, maxnode);
914 if (err)
915 return err;
917 /* Find the mm_struct */
918 read_lock(&tasklist_lock);
919 task = pid ? find_task_by_pid(pid) : current;
920 if (!task) {
921 read_unlock(&tasklist_lock);
922 return -ESRCH;
924 mm = get_task_mm(task);
925 read_unlock(&tasklist_lock);
927 if (!mm)
928 return -EINVAL;
931 * Check if this process has the right to modify the specified
932 * process. The right exists if the process has administrative
933 * capabilities, superuser privileges or the same
934 * userid as the target process.
936 if ((current->euid != task->suid) && (current->euid != task->uid) &&
937 (current->uid != task->suid) && (current->uid != task->uid) &&
938 !capable(CAP_SYS_NICE)) {
939 err = -EPERM;
940 goto out;
943 task_nodes = cpuset_mems_allowed(task);
944 /* Is the user allowed to access the target nodes? */
945 if (!nodes_subset(new, task_nodes) && !capable(CAP_SYS_NICE)) {
946 err = -EPERM;
947 goto out;
950 err = security_task_movememory(task);
951 if (err)
952 goto out;
954 err = do_migrate_pages(mm, &old, &new,
955 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
956 out:
957 mmput(mm);
958 return err;
962 /* Retrieve NUMA policy */
963 asmlinkage long sys_get_mempolicy(int __user *policy,
964 unsigned long __user *nmask,
965 unsigned long maxnode,
966 unsigned long addr, unsigned long flags)
968 int err, pval;
969 nodemask_t nodes;
971 if (nmask != NULL && maxnode < MAX_NUMNODES)
972 return -EINVAL;
974 err = do_get_mempolicy(&pval, &nodes, addr, flags);
976 if (err)
977 return err;
979 if (policy && put_user(pval, policy))
980 return -EFAULT;
982 if (nmask)
983 err = copy_nodes_to_user(nmask, maxnode, &nodes);
985 return err;
988 #ifdef CONFIG_COMPAT
990 asmlinkage long compat_sys_get_mempolicy(int __user *policy,
991 compat_ulong_t __user *nmask,
992 compat_ulong_t maxnode,
993 compat_ulong_t addr, compat_ulong_t flags)
995 long err;
996 unsigned long __user *nm = NULL;
997 unsigned long nr_bits, alloc_size;
998 DECLARE_BITMAP(bm, MAX_NUMNODES);
1000 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1001 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1003 if (nmask)
1004 nm = compat_alloc_user_space(alloc_size);
1006 err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1008 if (!err && nmask) {
1009 err = copy_from_user(bm, nm, alloc_size);
1010 /* ensure entire bitmap is zeroed */
1011 err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1012 err |= compat_put_bitmap(nmask, bm, nr_bits);
1015 return err;
1018 asmlinkage long compat_sys_set_mempolicy(int mode, compat_ulong_t __user *nmask,
1019 compat_ulong_t maxnode)
1021 long err = 0;
1022 unsigned long __user *nm = NULL;
1023 unsigned long nr_bits, alloc_size;
1024 DECLARE_BITMAP(bm, MAX_NUMNODES);
1026 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1027 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1029 if (nmask) {
1030 err = compat_get_bitmap(bm, nmask, nr_bits);
1031 nm = compat_alloc_user_space(alloc_size);
1032 err |= copy_to_user(nm, bm, alloc_size);
1035 if (err)
1036 return -EFAULT;
1038 return sys_set_mempolicy(mode, nm, nr_bits+1);
1041 asmlinkage long compat_sys_mbind(compat_ulong_t start, compat_ulong_t len,
1042 compat_ulong_t mode, compat_ulong_t __user *nmask,
1043 compat_ulong_t maxnode, compat_ulong_t flags)
1045 long err = 0;
1046 unsigned long __user *nm = NULL;
1047 unsigned long nr_bits, alloc_size;
1048 nodemask_t bm;
1050 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1051 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1053 if (nmask) {
1054 err = compat_get_bitmap(nodes_addr(bm), nmask, nr_bits);
1055 nm = compat_alloc_user_space(alloc_size);
1056 err |= copy_to_user(nm, nodes_addr(bm), alloc_size);
1059 if (err)
1060 return -EFAULT;
1062 return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
1065 #endif
1067 /* Return effective policy for a VMA */
1068 static struct mempolicy * get_vma_policy(struct task_struct *task,
1069 struct vm_area_struct *vma, unsigned long addr)
1071 struct mempolicy *pol = task->mempolicy;
1073 if (vma) {
1074 if (vma->vm_ops && vma->vm_ops->get_policy)
1075 pol = vma->vm_ops->get_policy(vma, addr);
1076 else if (vma->vm_policy &&
1077 vma->vm_policy->policy != MPOL_DEFAULT)
1078 pol = vma->vm_policy;
1080 if (!pol)
1081 pol = &default_policy;
1082 return pol;
1085 /* Return a zonelist representing a mempolicy */
1086 static struct zonelist *zonelist_policy(gfp_t gfp, struct mempolicy *policy)
1088 int nd;
1090 switch (policy->policy) {
1091 case MPOL_PREFERRED:
1092 nd = policy->v.preferred_node;
1093 if (nd < 0)
1094 nd = numa_node_id();
1095 break;
1096 case MPOL_BIND:
1097 /* Lower zones don't get a policy applied */
1098 /* Careful: current->mems_allowed might have moved */
1099 if (gfp_zone(gfp) >= policy_zone)
1100 if (cpuset_zonelist_valid_mems_allowed(policy->v.zonelist))
1101 return policy->v.zonelist;
1102 /*FALL THROUGH*/
1103 case MPOL_INTERLEAVE: /* should not happen */
1104 case MPOL_DEFAULT:
1105 nd = numa_node_id();
1106 break;
1107 default:
1108 nd = 0;
1109 BUG();
1111 return NODE_DATA(nd)->node_zonelists + gfp_zone(gfp);
1114 /* Do dynamic interleaving for a process */
1115 static unsigned interleave_nodes(struct mempolicy *policy)
1117 unsigned nid, next;
1118 struct task_struct *me = current;
1120 nid = me->il_next;
1121 next = next_node(nid, policy->v.nodes);
1122 if (next >= MAX_NUMNODES)
1123 next = first_node(policy->v.nodes);
1124 me->il_next = next;
1125 return nid;
1129 * Depending on the memory policy provide a node from which to allocate the
1130 * next slab entry.
1132 unsigned slab_node(struct mempolicy *policy)
1134 switch (policy->policy) {
1135 case MPOL_INTERLEAVE:
1136 return interleave_nodes(policy);
1138 case MPOL_BIND:
1140 * Follow bind policy behavior and start allocation at the
1141 * first node.
1143 return policy->v.zonelist->zones[0]->zone_pgdat->node_id;
1145 case MPOL_PREFERRED:
1146 if (policy->v.preferred_node >= 0)
1147 return policy->v.preferred_node;
1148 /* Fall through */
1150 default:
1151 return numa_node_id();
1155 /* Do static interleaving for a VMA with known offset. */
1156 static unsigned offset_il_node(struct mempolicy *pol,
1157 struct vm_area_struct *vma, unsigned long off)
1159 unsigned nnodes = nodes_weight(pol->v.nodes);
1160 unsigned target = (unsigned)off % nnodes;
1161 int c;
1162 int nid = -1;
1164 c = 0;
1165 do {
1166 nid = next_node(nid, pol->v.nodes);
1167 c++;
1168 } while (c <= target);
1169 return nid;
1172 /* Determine a node number for interleave */
1173 static inline unsigned interleave_nid(struct mempolicy *pol,
1174 struct vm_area_struct *vma, unsigned long addr, int shift)
1176 if (vma) {
1177 unsigned long off;
1180 * for small pages, there is no difference between
1181 * shift and PAGE_SHIFT, so the bit-shift is safe.
1182 * for huge pages, since vm_pgoff is in units of small
1183 * pages, we need to shift off the always 0 bits to get
1184 * a useful offset.
1186 BUG_ON(shift < PAGE_SHIFT);
1187 off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1188 off += (addr - vma->vm_start) >> shift;
1189 return offset_il_node(pol, vma, off);
1190 } else
1191 return interleave_nodes(pol);
1194 #ifdef CONFIG_HUGETLBFS
1195 /* Return a zonelist suitable for a huge page allocation. */
1196 struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr)
1198 struct mempolicy *pol = get_vma_policy(current, vma, addr);
1200 if (pol->policy == MPOL_INTERLEAVE) {
1201 unsigned nid;
1203 nid = interleave_nid(pol, vma, addr, HPAGE_SHIFT);
1204 return NODE_DATA(nid)->node_zonelists + gfp_zone(GFP_HIGHUSER);
1206 return zonelist_policy(GFP_HIGHUSER, pol);
1208 #endif
1210 /* Allocate a page in interleaved policy.
1211 Own path because it needs to do special accounting. */
1212 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1213 unsigned nid)
1215 struct zonelist *zl;
1216 struct page *page;
1218 zl = NODE_DATA(nid)->node_zonelists + gfp_zone(gfp);
1219 page = __alloc_pages(gfp, order, zl);
1220 if (page && page_zone(page) == zl->zones[0])
1221 inc_zone_page_state(page, NUMA_INTERLEAVE_HIT);
1222 return page;
1226 * alloc_page_vma - Allocate a page for a VMA.
1228 * @gfp:
1229 * %GFP_USER user allocation.
1230 * %GFP_KERNEL kernel allocations,
1231 * %GFP_HIGHMEM highmem/user allocations,
1232 * %GFP_FS allocation should not call back into a file system.
1233 * %GFP_ATOMIC don't sleep.
1235 * @vma: Pointer to VMA or NULL if not available.
1236 * @addr: Virtual Address of the allocation. Must be inside the VMA.
1238 * This function allocates a page from the kernel page pool and applies
1239 * a NUMA policy associated with the VMA or the current process.
1240 * When VMA is not NULL caller must hold down_read on the mmap_sem of the
1241 * mm_struct of the VMA to prevent it from going away. Should be used for
1242 * all allocations for pages that will be mapped into
1243 * user space. Returns NULL when no page can be allocated.
1245 * Should be called with the mm_sem of the vma hold.
1247 struct page *
1248 alloc_page_vma(gfp_t gfp, struct vm_area_struct *vma, unsigned long addr)
1250 struct mempolicy *pol = get_vma_policy(current, vma, addr);
1252 cpuset_update_task_memory_state();
1254 if (unlikely(pol->policy == MPOL_INTERLEAVE)) {
1255 unsigned nid;
1257 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT);
1258 return alloc_page_interleave(gfp, 0, nid);
1260 return __alloc_pages(gfp, 0, zonelist_policy(gfp, pol));
1264 * alloc_pages_current - Allocate pages.
1266 * @gfp:
1267 * %GFP_USER user allocation,
1268 * %GFP_KERNEL kernel allocation,
1269 * %GFP_HIGHMEM highmem allocation,
1270 * %GFP_FS don't call back into a file system.
1271 * %GFP_ATOMIC don't sleep.
1272 * @order: Power of two of allocation size in pages. 0 is a single page.
1274 * Allocate a page from the kernel page pool. When not in
1275 * interrupt context and apply the current process NUMA policy.
1276 * Returns NULL when no page can be allocated.
1278 * Don't call cpuset_update_task_memory_state() unless
1279 * 1) it's ok to take cpuset_sem (can WAIT), and
1280 * 2) allocating for current task (not interrupt).
1282 struct page *alloc_pages_current(gfp_t gfp, unsigned order)
1284 struct mempolicy *pol = current->mempolicy;
1286 if ((gfp & __GFP_WAIT) && !in_interrupt())
1287 cpuset_update_task_memory_state();
1288 if (!pol || in_interrupt())
1289 pol = &default_policy;
1290 if (pol->policy == MPOL_INTERLEAVE)
1291 return alloc_page_interleave(gfp, order, interleave_nodes(pol));
1292 return __alloc_pages(gfp, order, zonelist_policy(gfp, pol));
1294 EXPORT_SYMBOL(alloc_pages_current);
1297 * If mpol_copy() sees current->cpuset == cpuset_being_rebound, then it
1298 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
1299 * with the mems_allowed returned by cpuset_mems_allowed(). This
1300 * keeps mempolicies cpuset relative after its cpuset moves. See
1301 * further kernel/cpuset.c update_nodemask().
1303 void *cpuset_being_rebound;
1305 /* Slow path of a mempolicy copy */
1306 struct mempolicy *__mpol_copy(struct mempolicy *old)
1308 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
1310 if (!new)
1311 return ERR_PTR(-ENOMEM);
1312 if (current_cpuset_is_being_rebound()) {
1313 nodemask_t mems = cpuset_mems_allowed(current);
1314 mpol_rebind_policy(old, &mems);
1316 *new = *old;
1317 atomic_set(&new->refcnt, 1);
1318 if (new->policy == MPOL_BIND) {
1319 int sz = ksize(old->v.zonelist);
1320 new->v.zonelist = kmalloc(sz, SLAB_KERNEL);
1321 if (!new->v.zonelist) {
1322 kmem_cache_free(policy_cache, new);
1323 return ERR_PTR(-ENOMEM);
1325 memcpy(new->v.zonelist, old->v.zonelist, sz);
1327 return new;
1330 /* Slow path of a mempolicy comparison */
1331 int __mpol_equal(struct mempolicy *a, struct mempolicy *b)
1333 if (!a || !b)
1334 return 0;
1335 if (a->policy != b->policy)
1336 return 0;
1337 switch (a->policy) {
1338 case MPOL_DEFAULT:
1339 return 1;
1340 case MPOL_INTERLEAVE:
1341 return nodes_equal(a->v.nodes, b->v.nodes);
1342 case MPOL_PREFERRED:
1343 return a->v.preferred_node == b->v.preferred_node;
1344 case MPOL_BIND: {
1345 int i;
1346 for (i = 0; a->v.zonelist->zones[i]; i++)
1347 if (a->v.zonelist->zones[i] != b->v.zonelist->zones[i])
1348 return 0;
1349 return b->v.zonelist->zones[i] == NULL;
1351 default:
1352 BUG();
1353 return 0;
1357 /* Slow path of a mpol destructor. */
1358 void __mpol_free(struct mempolicy *p)
1360 if (!atomic_dec_and_test(&p->refcnt))
1361 return;
1362 if (p->policy == MPOL_BIND)
1363 kfree(p->v.zonelist);
1364 p->policy = MPOL_DEFAULT;
1365 kmem_cache_free(policy_cache, p);
1369 * Shared memory backing store policy support.
1371 * Remember policies even when nobody has shared memory mapped.
1372 * The policies are kept in Red-Black tree linked from the inode.
1373 * They are protected by the sp->lock spinlock, which should be held
1374 * for any accesses to the tree.
1377 /* lookup first element intersecting start-end */
1378 /* Caller holds sp->lock */
1379 static struct sp_node *
1380 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
1382 struct rb_node *n = sp->root.rb_node;
1384 while (n) {
1385 struct sp_node *p = rb_entry(n, struct sp_node, nd);
1387 if (start >= p->end)
1388 n = n->rb_right;
1389 else if (end <= p->start)
1390 n = n->rb_left;
1391 else
1392 break;
1394 if (!n)
1395 return NULL;
1396 for (;;) {
1397 struct sp_node *w = NULL;
1398 struct rb_node *prev = rb_prev(n);
1399 if (!prev)
1400 break;
1401 w = rb_entry(prev, struct sp_node, nd);
1402 if (w->end <= start)
1403 break;
1404 n = prev;
1406 return rb_entry(n, struct sp_node, nd);
1409 /* Insert a new shared policy into the list. */
1410 /* Caller holds sp->lock */
1411 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
1413 struct rb_node **p = &sp->root.rb_node;
1414 struct rb_node *parent = NULL;
1415 struct sp_node *nd;
1417 while (*p) {
1418 parent = *p;
1419 nd = rb_entry(parent, struct sp_node, nd);
1420 if (new->start < nd->start)
1421 p = &(*p)->rb_left;
1422 else if (new->end > nd->end)
1423 p = &(*p)->rb_right;
1424 else
1425 BUG();
1427 rb_link_node(&new->nd, parent, p);
1428 rb_insert_color(&new->nd, &sp->root);
1429 PDprintk("inserting %lx-%lx: %d\n", new->start, new->end,
1430 new->policy ? new->policy->policy : 0);
1433 /* Find shared policy intersecting idx */
1434 struct mempolicy *
1435 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
1437 struct mempolicy *pol = NULL;
1438 struct sp_node *sn;
1440 if (!sp->root.rb_node)
1441 return NULL;
1442 spin_lock(&sp->lock);
1443 sn = sp_lookup(sp, idx, idx+1);
1444 if (sn) {
1445 mpol_get(sn->policy);
1446 pol = sn->policy;
1448 spin_unlock(&sp->lock);
1449 return pol;
1452 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
1454 PDprintk("deleting %lx-l%x\n", n->start, n->end);
1455 rb_erase(&n->nd, &sp->root);
1456 mpol_free(n->policy);
1457 kmem_cache_free(sn_cache, n);
1460 struct sp_node *
1461 sp_alloc(unsigned long start, unsigned long end, struct mempolicy *pol)
1463 struct sp_node *n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
1465 if (!n)
1466 return NULL;
1467 n->start = start;
1468 n->end = end;
1469 mpol_get(pol);
1470 n->policy = pol;
1471 return n;
1474 /* Replace a policy range. */
1475 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
1476 unsigned long end, struct sp_node *new)
1478 struct sp_node *n, *new2 = NULL;
1480 restart:
1481 spin_lock(&sp->lock);
1482 n = sp_lookup(sp, start, end);
1483 /* Take care of old policies in the same range. */
1484 while (n && n->start < end) {
1485 struct rb_node *next = rb_next(&n->nd);
1486 if (n->start >= start) {
1487 if (n->end <= end)
1488 sp_delete(sp, n);
1489 else
1490 n->start = end;
1491 } else {
1492 /* Old policy spanning whole new range. */
1493 if (n->end > end) {
1494 if (!new2) {
1495 spin_unlock(&sp->lock);
1496 new2 = sp_alloc(end, n->end, n->policy);
1497 if (!new2)
1498 return -ENOMEM;
1499 goto restart;
1501 n->end = start;
1502 sp_insert(sp, new2);
1503 new2 = NULL;
1504 break;
1505 } else
1506 n->end = start;
1508 if (!next)
1509 break;
1510 n = rb_entry(next, struct sp_node, nd);
1512 if (new)
1513 sp_insert(sp, new);
1514 spin_unlock(&sp->lock);
1515 if (new2) {
1516 mpol_free(new2->policy);
1517 kmem_cache_free(sn_cache, new2);
1519 return 0;
1522 void mpol_shared_policy_init(struct shared_policy *info, int policy,
1523 nodemask_t *policy_nodes)
1525 info->root = RB_ROOT;
1526 spin_lock_init(&info->lock);
1528 if (policy != MPOL_DEFAULT) {
1529 struct mempolicy *newpol;
1531 /* Falls back to MPOL_DEFAULT on any error */
1532 newpol = mpol_new(policy, policy_nodes);
1533 if (!IS_ERR(newpol)) {
1534 /* Create pseudo-vma that contains just the policy */
1535 struct vm_area_struct pvma;
1537 memset(&pvma, 0, sizeof(struct vm_area_struct));
1538 /* Policy covers entire file */
1539 pvma.vm_end = TASK_SIZE;
1540 mpol_set_shared_policy(info, &pvma, newpol);
1541 mpol_free(newpol);
1546 int mpol_set_shared_policy(struct shared_policy *info,
1547 struct vm_area_struct *vma, struct mempolicy *npol)
1549 int err;
1550 struct sp_node *new = NULL;
1551 unsigned long sz = vma_pages(vma);
1553 PDprintk("set_shared_policy %lx sz %lu %d %lx\n",
1554 vma->vm_pgoff,
1555 sz, npol? npol->policy : -1,
1556 npol ? nodes_addr(npol->v.nodes)[0] : -1);
1558 if (npol) {
1559 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
1560 if (!new)
1561 return -ENOMEM;
1563 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
1564 if (err && new)
1565 kmem_cache_free(sn_cache, new);
1566 return err;
1569 /* Free a backing policy store on inode delete. */
1570 void mpol_free_shared_policy(struct shared_policy *p)
1572 struct sp_node *n;
1573 struct rb_node *next;
1575 if (!p->root.rb_node)
1576 return;
1577 spin_lock(&p->lock);
1578 next = rb_first(&p->root);
1579 while (next) {
1580 n = rb_entry(next, struct sp_node, nd);
1581 next = rb_next(&n->nd);
1582 rb_erase(&n->nd, &p->root);
1583 mpol_free(n->policy);
1584 kmem_cache_free(sn_cache, n);
1586 spin_unlock(&p->lock);
1589 /* assumes fs == KERNEL_DS */
1590 void __init numa_policy_init(void)
1592 policy_cache = kmem_cache_create("numa_policy",
1593 sizeof(struct mempolicy),
1594 0, SLAB_PANIC, NULL, NULL);
1596 sn_cache = kmem_cache_create("shared_policy_node",
1597 sizeof(struct sp_node),
1598 0, SLAB_PANIC, NULL, NULL);
1600 /* Set interleaving policy for system init. This way not all
1601 the data structures allocated at system boot end up in node zero. */
1603 if (do_set_mempolicy(MPOL_INTERLEAVE, &node_online_map))
1604 printk("numa_policy_init: interleaving failed\n");
1607 /* Reset policy of current process to default */
1608 void numa_default_policy(void)
1610 do_set_mempolicy(MPOL_DEFAULT, NULL);
1613 /* Migrate a policy to a different set of nodes */
1614 void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask)
1616 nodemask_t *mpolmask;
1617 nodemask_t tmp;
1619 if (!pol)
1620 return;
1621 mpolmask = &pol->cpuset_mems_allowed;
1622 if (nodes_equal(*mpolmask, *newmask))
1623 return;
1625 switch (pol->policy) {
1626 case MPOL_DEFAULT:
1627 break;
1628 case MPOL_INTERLEAVE:
1629 nodes_remap(tmp, pol->v.nodes, *mpolmask, *newmask);
1630 pol->v.nodes = tmp;
1631 *mpolmask = *newmask;
1632 current->il_next = node_remap(current->il_next,
1633 *mpolmask, *newmask);
1634 break;
1635 case MPOL_PREFERRED:
1636 pol->v.preferred_node = node_remap(pol->v.preferred_node,
1637 *mpolmask, *newmask);
1638 *mpolmask = *newmask;
1639 break;
1640 case MPOL_BIND: {
1641 nodemask_t nodes;
1642 struct zone **z;
1643 struct zonelist *zonelist;
1645 nodes_clear(nodes);
1646 for (z = pol->v.zonelist->zones; *z; z++)
1647 node_set((*z)->zone_pgdat->node_id, nodes);
1648 nodes_remap(tmp, nodes, *mpolmask, *newmask);
1649 nodes = tmp;
1651 zonelist = bind_zonelist(&nodes);
1653 /* If no mem, then zonelist is NULL and we keep old zonelist.
1654 * If that old zonelist has no remaining mems_allowed nodes,
1655 * then zonelist_policy() will "FALL THROUGH" to MPOL_DEFAULT.
1658 if (zonelist) {
1659 /* Good - got mem - substitute new zonelist */
1660 kfree(pol->v.zonelist);
1661 pol->v.zonelist = zonelist;
1663 *mpolmask = *newmask;
1664 break;
1666 default:
1667 BUG();
1668 break;
1673 * Wrapper for mpol_rebind_policy() that just requires task
1674 * pointer, and updates task mempolicy.
1677 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
1679 mpol_rebind_policy(tsk->mempolicy, new);
1683 * Rebind each vma in mm to new nodemask.
1685 * Call holding a reference to mm. Takes mm->mmap_sem during call.
1688 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
1690 struct vm_area_struct *vma;
1692 down_write(&mm->mmap_sem);
1693 for (vma = mm->mmap; vma; vma = vma->vm_next)
1694 mpol_rebind_policy(vma->vm_policy, new);
1695 up_write(&mm->mmap_sem);
1699 * Display pages allocated per node and memory policy via /proc.
1702 static const char *policy_types[] = { "default", "prefer", "bind",
1703 "interleave" };
1706 * Convert a mempolicy into a string.
1707 * Returns the number of characters in buffer (if positive)
1708 * or an error (negative)
1710 static inline int mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
1712 char *p = buffer;
1713 int l;
1714 nodemask_t nodes;
1715 int mode = pol ? pol->policy : MPOL_DEFAULT;
1717 switch (mode) {
1718 case MPOL_DEFAULT:
1719 nodes_clear(nodes);
1720 break;
1722 case MPOL_PREFERRED:
1723 nodes_clear(nodes);
1724 node_set(pol->v.preferred_node, nodes);
1725 break;
1727 case MPOL_BIND:
1728 get_zonemask(pol, &nodes);
1729 break;
1731 case MPOL_INTERLEAVE:
1732 nodes = pol->v.nodes;
1733 break;
1735 default:
1736 BUG();
1737 return -EFAULT;
1740 l = strlen(policy_types[mode]);
1741 if (buffer + maxlen < p + l + 1)
1742 return -ENOSPC;
1744 strcpy(p, policy_types[mode]);
1745 p += l;
1747 if (!nodes_empty(nodes)) {
1748 if (buffer + maxlen < p + 2)
1749 return -ENOSPC;
1750 *p++ = '=';
1751 p += nodelist_scnprintf(p, buffer + maxlen - p, nodes);
1753 return p - buffer;
1756 struct numa_maps {
1757 unsigned long pages;
1758 unsigned long anon;
1759 unsigned long active;
1760 unsigned long writeback;
1761 unsigned long mapcount_max;
1762 unsigned long dirty;
1763 unsigned long swapcache;
1764 unsigned long node[MAX_NUMNODES];
1767 static void gather_stats(struct page *page, void *private, int pte_dirty)
1769 struct numa_maps *md = private;
1770 int count = page_mapcount(page);
1772 md->pages++;
1773 if (pte_dirty || PageDirty(page))
1774 md->dirty++;
1776 if (PageSwapCache(page))
1777 md->swapcache++;
1779 if (PageActive(page))
1780 md->active++;
1782 if (PageWriteback(page))
1783 md->writeback++;
1785 if (PageAnon(page))
1786 md->anon++;
1788 if (count > md->mapcount_max)
1789 md->mapcount_max = count;
1791 md->node[page_to_nid(page)]++;
1794 #ifdef CONFIG_HUGETLB_PAGE
1795 static void check_huge_range(struct vm_area_struct *vma,
1796 unsigned long start, unsigned long end,
1797 struct numa_maps *md)
1799 unsigned long addr;
1800 struct page *page;
1802 for (addr = start; addr < end; addr += HPAGE_SIZE) {
1803 pte_t *ptep = huge_pte_offset(vma->vm_mm, addr & HPAGE_MASK);
1804 pte_t pte;
1806 if (!ptep)
1807 continue;
1809 pte = *ptep;
1810 if (pte_none(pte))
1811 continue;
1813 page = pte_page(pte);
1814 if (!page)
1815 continue;
1817 gather_stats(page, md, pte_dirty(*ptep));
1820 #else
1821 static inline void check_huge_range(struct vm_area_struct *vma,
1822 unsigned long start, unsigned long end,
1823 struct numa_maps *md)
1826 #endif
1828 int show_numa_map(struct seq_file *m, void *v)
1830 struct proc_maps_private *priv = m->private;
1831 struct vm_area_struct *vma = v;
1832 struct numa_maps *md;
1833 struct file *file = vma->vm_file;
1834 struct mm_struct *mm = vma->vm_mm;
1835 int n;
1836 char buffer[50];
1838 if (!mm)
1839 return 0;
1841 md = kzalloc(sizeof(struct numa_maps), GFP_KERNEL);
1842 if (!md)
1843 return 0;
1845 mpol_to_str(buffer, sizeof(buffer),
1846 get_vma_policy(priv->task, vma, vma->vm_start));
1848 seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1850 if (file) {
1851 seq_printf(m, " file=");
1852 seq_path(m, file->f_vfsmnt, file->f_dentry, "\n\t= ");
1853 } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1854 seq_printf(m, " heap");
1855 } else if (vma->vm_start <= mm->start_stack &&
1856 vma->vm_end >= mm->start_stack) {
1857 seq_printf(m, " stack");
1860 if (is_vm_hugetlb_page(vma)) {
1861 check_huge_range(vma, vma->vm_start, vma->vm_end, md);
1862 seq_printf(m, " huge");
1863 } else {
1864 check_pgd_range(vma, vma->vm_start, vma->vm_end,
1865 &node_online_map, MPOL_MF_STATS, md);
1868 if (!md->pages)
1869 goto out;
1871 if (md->anon)
1872 seq_printf(m," anon=%lu",md->anon);
1874 if (md->dirty)
1875 seq_printf(m," dirty=%lu",md->dirty);
1877 if (md->pages != md->anon && md->pages != md->dirty)
1878 seq_printf(m, " mapped=%lu", md->pages);
1880 if (md->mapcount_max > 1)
1881 seq_printf(m, " mapmax=%lu", md->mapcount_max);
1883 if (md->swapcache)
1884 seq_printf(m," swapcache=%lu", md->swapcache);
1886 if (md->active < md->pages && !is_vm_hugetlb_page(vma))
1887 seq_printf(m," active=%lu", md->active);
1889 if (md->writeback)
1890 seq_printf(m," writeback=%lu", md->writeback);
1892 for_each_online_node(n)
1893 if (md->node[n])
1894 seq_printf(m, " N%d=%lu", n, md->node[n]);
1895 out:
1896 seq_putc(m, '\n');
1897 kfree(md);
1899 if (m->count < m->size)
1900 m->version = (vma != priv->tail_vma) ? vma->vm_start : 0;
1901 return 0;