Merge master.kernel.org:/pub/scm/linux/kernel/git/davem/net-2.6
[linux-2.6/pdupreez.git] / block / cfq-iosched.c
blob2b64f5852bfd7bb64afe6317d8df72d300c6a6e9
1 /*
2 * linux/drivers/block/cfq-iosched.c
4 * CFQ, or complete fairness queueing, disk scheduler.
6 * Based on ideas from a previously unfinished io
7 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
9 * Copyright (C) 2003 Jens Axboe <axboe@suse.de>
11 #include <linux/kernel.h>
12 #include <linux/fs.h>
13 #include <linux/blkdev.h>
14 #include <linux/elevator.h>
15 #include <linux/bio.h>
16 #include <linux/config.h>
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/init.h>
20 #include <linux/compiler.h>
21 #include <linux/hash.h>
22 #include <linux/rbtree.h>
23 #include <linux/mempool.h>
24 #include <linux/ioprio.h>
25 #include <linux/writeback.h>
28 * tunables
30 static int cfq_quantum = 4; /* max queue in one round of service */
31 static int cfq_queued = 8; /* minimum rq allocate limit per-queue*/
32 static int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
33 static int cfq_back_max = 16 * 1024; /* maximum backwards seek, in KiB */
34 static int cfq_back_penalty = 2; /* penalty of a backwards seek */
36 static int cfq_slice_sync = HZ / 10;
37 static int cfq_slice_async = HZ / 25;
38 static int cfq_slice_async_rq = 2;
39 static int cfq_slice_idle = HZ / 100;
41 #define CFQ_IDLE_GRACE (HZ / 10)
42 #define CFQ_SLICE_SCALE (5)
44 #define CFQ_KEY_ASYNC (0)
45 #define CFQ_KEY_ANY (0xffff)
48 * disable queueing at the driver/hardware level
50 static int cfq_max_depth = 2;
53 * for the hash of cfqq inside the cfqd
55 #define CFQ_QHASH_SHIFT 6
56 #define CFQ_QHASH_ENTRIES (1 << CFQ_QHASH_SHIFT)
57 #define list_entry_qhash(entry) hlist_entry((entry), struct cfq_queue, cfq_hash)
60 * for the hash of crq inside the cfqq
62 #define CFQ_MHASH_SHIFT 6
63 #define CFQ_MHASH_BLOCK(sec) ((sec) >> 3)
64 #define CFQ_MHASH_ENTRIES (1 << CFQ_MHASH_SHIFT)
65 #define CFQ_MHASH_FN(sec) hash_long(CFQ_MHASH_BLOCK(sec), CFQ_MHASH_SHIFT)
66 #define rq_hash_key(rq) ((rq)->sector + (rq)->nr_sectors)
67 #define list_entry_hash(ptr) hlist_entry((ptr), struct cfq_rq, hash)
69 #define list_entry_cfqq(ptr) list_entry((ptr), struct cfq_queue, cfq_list)
70 #define list_entry_fifo(ptr) list_entry((ptr), struct request, queuelist)
72 #define RQ_DATA(rq) (rq)->elevator_private
75 * rb-tree defines
77 #define RB_NONE (2)
78 #define RB_EMPTY(node) ((node)->rb_node == NULL)
79 #define RB_CLEAR_COLOR(node) (node)->rb_color = RB_NONE
80 #define RB_CLEAR(node) do { \
81 (node)->rb_parent = NULL; \
82 RB_CLEAR_COLOR((node)); \
83 (node)->rb_right = NULL; \
84 (node)->rb_left = NULL; \
85 } while (0)
86 #define RB_CLEAR_ROOT(root) ((root)->rb_node = NULL)
87 #define rb_entry_crq(node) rb_entry((node), struct cfq_rq, rb_node)
88 #define rq_rb_key(rq) (rq)->sector
90 static kmem_cache_t *crq_pool;
91 static kmem_cache_t *cfq_pool;
92 static kmem_cache_t *cfq_ioc_pool;
94 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
95 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
96 #define cfq_class_be(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_BE)
97 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
99 #define ASYNC (0)
100 #define SYNC (1)
102 #define cfq_cfqq_dispatched(cfqq) \
103 ((cfqq)->on_dispatch[ASYNC] + (cfqq)->on_dispatch[SYNC])
105 #define cfq_cfqq_class_sync(cfqq) ((cfqq)->key != CFQ_KEY_ASYNC)
107 #define cfq_cfqq_sync(cfqq) \
108 (cfq_cfqq_class_sync(cfqq) || (cfqq)->on_dispatch[SYNC])
111 * Per block device queue structure
113 struct cfq_data {
114 atomic_t ref;
115 request_queue_t *queue;
118 * rr list of queues with requests and the count of them
120 struct list_head rr_list[CFQ_PRIO_LISTS];
121 struct list_head busy_rr;
122 struct list_head cur_rr;
123 struct list_head idle_rr;
124 unsigned int busy_queues;
127 * non-ordered list of empty cfqq's
129 struct list_head empty_list;
132 * cfqq lookup hash
134 struct hlist_head *cfq_hash;
137 * global crq hash for all queues
139 struct hlist_head *crq_hash;
141 unsigned int max_queued;
143 mempool_t *crq_pool;
145 int rq_in_driver;
148 * schedule slice state info
151 * idle window management
153 struct timer_list idle_slice_timer;
154 struct work_struct unplug_work;
156 struct cfq_queue *active_queue;
157 struct cfq_io_context *active_cic;
158 int cur_prio, cur_end_prio;
159 unsigned int dispatch_slice;
161 struct timer_list idle_class_timer;
163 sector_t last_sector;
164 unsigned long last_end_request;
166 unsigned int rq_starved;
169 * tunables, see top of file
171 unsigned int cfq_quantum;
172 unsigned int cfq_queued;
173 unsigned int cfq_fifo_expire[2];
174 unsigned int cfq_back_penalty;
175 unsigned int cfq_back_max;
176 unsigned int cfq_slice[2];
177 unsigned int cfq_slice_async_rq;
178 unsigned int cfq_slice_idle;
179 unsigned int cfq_max_depth;
183 * Per process-grouping structure
185 struct cfq_queue {
186 /* reference count */
187 atomic_t ref;
188 /* parent cfq_data */
189 struct cfq_data *cfqd;
190 /* cfqq lookup hash */
191 struct hlist_node cfq_hash;
192 /* hash key */
193 unsigned int key;
194 /* on either rr or empty list of cfqd */
195 struct list_head cfq_list;
196 /* sorted list of pending requests */
197 struct rb_root sort_list;
198 /* if fifo isn't expired, next request to serve */
199 struct cfq_rq *next_crq;
200 /* requests queued in sort_list */
201 int queued[2];
202 /* currently allocated requests */
203 int allocated[2];
204 /* fifo list of requests in sort_list */
205 struct list_head fifo;
207 unsigned long slice_start;
208 unsigned long slice_end;
209 unsigned long slice_left;
210 unsigned long service_last;
212 /* number of requests that are on the dispatch list */
213 int on_dispatch[2];
215 /* io prio of this group */
216 unsigned short ioprio, org_ioprio;
217 unsigned short ioprio_class, org_ioprio_class;
219 /* various state flags, see below */
220 unsigned int flags;
223 struct cfq_rq {
224 struct rb_node rb_node;
225 sector_t rb_key;
226 struct request *request;
227 struct hlist_node hash;
229 struct cfq_queue *cfq_queue;
230 struct cfq_io_context *io_context;
232 unsigned int crq_flags;
235 enum cfqq_state_flags {
236 CFQ_CFQQ_FLAG_on_rr = 0,
237 CFQ_CFQQ_FLAG_wait_request,
238 CFQ_CFQQ_FLAG_must_alloc,
239 CFQ_CFQQ_FLAG_must_alloc_slice,
240 CFQ_CFQQ_FLAG_must_dispatch,
241 CFQ_CFQQ_FLAG_fifo_expire,
242 CFQ_CFQQ_FLAG_idle_window,
243 CFQ_CFQQ_FLAG_prio_changed,
244 CFQ_CFQQ_FLAG_expired,
247 #define CFQ_CFQQ_FNS(name) \
248 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
250 cfqq->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
252 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
254 cfqq->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
256 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
258 return (cfqq->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
261 CFQ_CFQQ_FNS(on_rr);
262 CFQ_CFQQ_FNS(wait_request);
263 CFQ_CFQQ_FNS(must_alloc);
264 CFQ_CFQQ_FNS(must_alloc_slice);
265 CFQ_CFQQ_FNS(must_dispatch);
266 CFQ_CFQQ_FNS(fifo_expire);
267 CFQ_CFQQ_FNS(idle_window);
268 CFQ_CFQQ_FNS(prio_changed);
269 CFQ_CFQQ_FNS(expired);
270 #undef CFQ_CFQQ_FNS
272 enum cfq_rq_state_flags {
273 CFQ_CRQ_FLAG_is_sync = 0,
276 #define CFQ_CRQ_FNS(name) \
277 static inline void cfq_mark_crq_##name(struct cfq_rq *crq) \
279 crq->crq_flags |= (1 << CFQ_CRQ_FLAG_##name); \
281 static inline void cfq_clear_crq_##name(struct cfq_rq *crq) \
283 crq->crq_flags &= ~(1 << CFQ_CRQ_FLAG_##name); \
285 static inline int cfq_crq_##name(const struct cfq_rq *crq) \
287 return (crq->crq_flags & (1 << CFQ_CRQ_FLAG_##name)) != 0; \
290 CFQ_CRQ_FNS(is_sync);
291 #undef CFQ_CRQ_FNS
293 static struct cfq_queue *cfq_find_cfq_hash(struct cfq_data *, unsigned int, unsigned short);
294 static void cfq_dispatch_insert(request_queue_t *, struct cfq_rq *);
295 static void cfq_put_cfqd(struct cfq_data *cfqd);
297 #define process_sync(tsk) ((tsk)->flags & PF_SYNCWRITE)
300 * lots of deadline iosched dupes, can be abstracted later...
302 static inline void cfq_del_crq_hash(struct cfq_rq *crq)
304 hlist_del_init(&crq->hash);
307 static inline void cfq_add_crq_hash(struct cfq_data *cfqd, struct cfq_rq *crq)
309 const int hash_idx = CFQ_MHASH_FN(rq_hash_key(crq->request));
311 hlist_add_head(&crq->hash, &cfqd->crq_hash[hash_idx]);
314 static struct request *cfq_find_rq_hash(struct cfq_data *cfqd, sector_t offset)
316 struct hlist_head *hash_list = &cfqd->crq_hash[CFQ_MHASH_FN(offset)];
317 struct hlist_node *entry, *next;
319 hlist_for_each_safe(entry, next, hash_list) {
320 struct cfq_rq *crq = list_entry_hash(entry);
321 struct request *__rq = crq->request;
323 if (!rq_mergeable(__rq)) {
324 cfq_del_crq_hash(crq);
325 continue;
328 if (rq_hash_key(__rq) == offset)
329 return __rq;
332 return NULL;
336 * scheduler run of queue, if there are requests pending and no one in the
337 * driver that will restart queueing
339 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
341 if (!cfqd->rq_in_driver && cfqd->busy_queues)
342 kblockd_schedule_work(&cfqd->unplug_work);
345 static int cfq_queue_empty(request_queue_t *q)
347 struct cfq_data *cfqd = q->elevator->elevator_data;
349 return !cfqd->busy_queues;
353 * Lifted from AS - choose which of crq1 and crq2 that is best served now.
354 * We choose the request that is closest to the head right now. Distance
355 * behind the head are penalized and only allowed to a certain extent.
357 static struct cfq_rq *
358 cfq_choose_req(struct cfq_data *cfqd, struct cfq_rq *crq1, struct cfq_rq *crq2)
360 sector_t last, s1, s2, d1 = 0, d2 = 0;
361 int r1_wrap = 0, r2_wrap = 0; /* requests are behind the disk head */
362 unsigned long back_max;
364 if (crq1 == NULL || crq1 == crq2)
365 return crq2;
366 if (crq2 == NULL)
367 return crq1;
369 if (cfq_crq_is_sync(crq1) && !cfq_crq_is_sync(crq2))
370 return crq1;
371 else if (cfq_crq_is_sync(crq2) && !cfq_crq_is_sync(crq1))
372 return crq2;
374 s1 = crq1->request->sector;
375 s2 = crq2->request->sector;
377 last = cfqd->last_sector;
380 * by definition, 1KiB is 2 sectors
382 back_max = cfqd->cfq_back_max * 2;
385 * Strict one way elevator _except_ in the case where we allow
386 * short backward seeks which are biased as twice the cost of a
387 * similar forward seek.
389 if (s1 >= last)
390 d1 = s1 - last;
391 else if (s1 + back_max >= last)
392 d1 = (last - s1) * cfqd->cfq_back_penalty;
393 else
394 r1_wrap = 1;
396 if (s2 >= last)
397 d2 = s2 - last;
398 else if (s2 + back_max >= last)
399 d2 = (last - s2) * cfqd->cfq_back_penalty;
400 else
401 r2_wrap = 1;
403 /* Found required data */
404 if (!r1_wrap && r2_wrap)
405 return crq1;
406 else if (!r2_wrap && r1_wrap)
407 return crq2;
408 else if (r1_wrap && r2_wrap) {
409 /* both behind the head */
410 if (s1 <= s2)
411 return crq1;
412 else
413 return crq2;
416 /* Both requests in front of the head */
417 if (d1 < d2)
418 return crq1;
419 else if (d2 < d1)
420 return crq2;
421 else {
422 if (s1 >= s2)
423 return crq1;
424 else
425 return crq2;
430 * would be nice to take fifo expire time into account as well
432 static struct cfq_rq *
433 cfq_find_next_crq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
434 struct cfq_rq *last)
436 struct cfq_rq *crq_next = NULL, *crq_prev = NULL;
437 struct rb_node *rbnext, *rbprev;
439 if (!(rbnext = rb_next(&last->rb_node))) {
440 rbnext = rb_first(&cfqq->sort_list);
441 if (rbnext == &last->rb_node)
442 rbnext = NULL;
445 rbprev = rb_prev(&last->rb_node);
447 if (rbprev)
448 crq_prev = rb_entry_crq(rbprev);
449 if (rbnext)
450 crq_next = rb_entry_crq(rbnext);
452 return cfq_choose_req(cfqd, crq_next, crq_prev);
455 static void cfq_update_next_crq(struct cfq_rq *crq)
457 struct cfq_queue *cfqq = crq->cfq_queue;
459 if (cfqq->next_crq == crq)
460 cfqq->next_crq = cfq_find_next_crq(cfqq->cfqd, cfqq, crq);
463 static void cfq_resort_rr_list(struct cfq_queue *cfqq, int preempted)
465 struct cfq_data *cfqd = cfqq->cfqd;
466 struct list_head *list, *entry;
468 BUG_ON(!cfq_cfqq_on_rr(cfqq));
470 list_del(&cfqq->cfq_list);
472 if (cfq_class_rt(cfqq))
473 list = &cfqd->cur_rr;
474 else if (cfq_class_idle(cfqq))
475 list = &cfqd->idle_rr;
476 else {
478 * if cfqq has requests in flight, don't allow it to be
479 * found in cfq_set_active_queue before it has finished them.
480 * this is done to increase fairness between a process that
481 * has lots of io pending vs one that only generates one
482 * sporadically or synchronously
484 if (cfq_cfqq_dispatched(cfqq))
485 list = &cfqd->busy_rr;
486 else
487 list = &cfqd->rr_list[cfqq->ioprio];
491 * if queue was preempted, just add to front to be fair. busy_rr
492 * isn't sorted.
494 if (preempted || list == &cfqd->busy_rr) {
495 list_add(&cfqq->cfq_list, list);
496 return;
500 * sort by when queue was last serviced
502 entry = list;
503 while ((entry = entry->prev) != list) {
504 struct cfq_queue *__cfqq = list_entry_cfqq(entry);
506 if (!__cfqq->service_last)
507 break;
508 if (time_before(__cfqq->service_last, cfqq->service_last))
509 break;
512 list_add(&cfqq->cfq_list, entry);
516 * add to busy list of queues for service, trying to be fair in ordering
517 * the pending list according to last request service
519 static inline void
520 cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
522 BUG_ON(cfq_cfqq_on_rr(cfqq));
523 cfq_mark_cfqq_on_rr(cfqq);
524 cfqd->busy_queues++;
526 cfq_resort_rr_list(cfqq, 0);
529 static inline void
530 cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
532 BUG_ON(!cfq_cfqq_on_rr(cfqq));
533 cfq_clear_cfqq_on_rr(cfqq);
534 list_move(&cfqq->cfq_list, &cfqd->empty_list);
536 BUG_ON(!cfqd->busy_queues);
537 cfqd->busy_queues--;
541 * rb tree support functions
543 static inline void cfq_del_crq_rb(struct cfq_rq *crq)
545 struct cfq_queue *cfqq = crq->cfq_queue;
546 struct cfq_data *cfqd = cfqq->cfqd;
547 const int sync = cfq_crq_is_sync(crq);
549 BUG_ON(!cfqq->queued[sync]);
550 cfqq->queued[sync]--;
552 cfq_update_next_crq(crq);
554 rb_erase(&crq->rb_node, &cfqq->sort_list);
555 RB_CLEAR_COLOR(&crq->rb_node);
557 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY(&cfqq->sort_list))
558 cfq_del_cfqq_rr(cfqd, cfqq);
561 static struct cfq_rq *
562 __cfq_add_crq_rb(struct cfq_rq *crq)
564 struct rb_node **p = &crq->cfq_queue->sort_list.rb_node;
565 struct rb_node *parent = NULL;
566 struct cfq_rq *__crq;
568 while (*p) {
569 parent = *p;
570 __crq = rb_entry_crq(parent);
572 if (crq->rb_key < __crq->rb_key)
573 p = &(*p)->rb_left;
574 else if (crq->rb_key > __crq->rb_key)
575 p = &(*p)->rb_right;
576 else
577 return __crq;
580 rb_link_node(&crq->rb_node, parent, p);
581 return NULL;
584 static void cfq_add_crq_rb(struct cfq_rq *crq)
586 struct cfq_queue *cfqq = crq->cfq_queue;
587 struct cfq_data *cfqd = cfqq->cfqd;
588 struct request *rq = crq->request;
589 struct cfq_rq *__alias;
591 crq->rb_key = rq_rb_key(rq);
592 cfqq->queued[cfq_crq_is_sync(crq)]++;
595 * looks a little odd, but the first insert might return an alias.
596 * if that happens, put the alias on the dispatch list
598 while ((__alias = __cfq_add_crq_rb(crq)) != NULL)
599 cfq_dispatch_insert(cfqd->queue, __alias);
601 rb_insert_color(&crq->rb_node, &cfqq->sort_list);
603 if (!cfq_cfqq_on_rr(cfqq))
604 cfq_add_cfqq_rr(cfqd, cfqq);
607 * check if this request is a better next-serve candidate
609 cfqq->next_crq = cfq_choose_req(cfqd, cfqq->next_crq, crq);
612 static inline void
613 cfq_reposition_crq_rb(struct cfq_queue *cfqq, struct cfq_rq *crq)
615 rb_erase(&crq->rb_node, &cfqq->sort_list);
616 cfqq->queued[cfq_crq_is_sync(crq)]--;
618 cfq_add_crq_rb(crq);
621 static struct request *cfq_find_rq_rb(struct cfq_data *cfqd, sector_t sector)
624 struct cfq_queue *cfqq = cfq_find_cfq_hash(cfqd, current->pid, CFQ_KEY_ANY);
625 struct rb_node *n;
627 if (!cfqq)
628 goto out;
630 n = cfqq->sort_list.rb_node;
631 while (n) {
632 struct cfq_rq *crq = rb_entry_crq(n);
634 if (sector < crq->rb_key)
635 n = n->rb_left;
636 else if (sector > crq->rb_key)
637 n = n->rb_right;
638 else
639 return crq->request;
642 out:
643 return NULL;
646 static void cfq_activate_request(request_queue_t *q, struct request *rq)
648 struct cfq_data *cfqd = q->elevator->elevator_data;
650 cfqd->rq_in_driver++;
653 static void cfq_deactivate_request(request_queue_t *q, struct request *rq)
655 struct cfq_data *cfqd = q->elevator->elevator_data;
657 WARN_ON(!cfqd->rq_in_driver);
658 cfqd->rq_in_driver--;
661 static void cfq_remove_request(struct request *rq)
663 struct cfq_rq *crq = RQ_DATA(rq);
665 list_del_init(&rq->queuelist);
666 cfq_del_crq_rb(crq);
667 cfq_del_crq_hash(crq);
670 static int
671 cfq_merge(request_queue_t *q, struct request **req, struct bio *bio)
673 struct cfq_data *cfqd = q->elevator->elevator_data;
674 struct request *__rq;
675 int ret;
677 __rq = cfq_find_rq_hash(cfqd, bio->bi_sector);
678 if (__rq && elv_rq_merge_ok(__rq, bio)) {
679 ret = ELEVATOR_BACK_MERGE;
680 goto out;
683 __rq = cfq_find_rq_rb(cfqd, bio->bi_sector + bio_sectors(bio));
684 if (__rq && elv_rq_merge_ok(__rq, bio)) {
685 ret = ELEVATOR_FRONT_MERGE;
686 goto out;
689 return ELEVATOR_NO_MERGE;
690 out:
691 *req = __rq;
692 return ret;
695 static void cfq_merged_request(request_queue_t *q, struct request *req)
697 struct cfq_data *cfqd = q->elevator->elevator_data;
698 struct cfq_rq *crq = RQ_DATA(req);
700 cfq_del_crq_hash(crq);
701 cfq_add_crq_hash(cfqd, crq);
703 if (rq_rb_key(req) != crq->rb_key) {
704 struct cfq_queue *cfqq = crq->cfq_queue;
706 cfq_update_next_crq(crq);
707 cfq_reposition_crq_rb(cfqq, crq);
711 static void
712 cfq_merged_requests(request_queue_t *q, struct request *rq,
713 struct request *next)
715 cfq_merged_request(q, rq);
718 * reposition in fifo if next is older than rq
720 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
721 time_before(next->start_time, rq->start_time))
722 list_move(&rq->queuelist, &next->queuelist);
724 cfq_remove_request(next);
727 static inline void
728 __cfq_set_active_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
730 if (cfqq) {
732 * stop potential idle class queues waiting service
734 del_timer(&cfqd->idle_class_timer);
736 cfqq->slice_start = jiffies;
737 cfqq->slice_end = 0;
738 cfqq->slice_left = 0;
739 cfq_clear_cfqq_must_alloc_slice(cfqq);
740 cfq_clear_cfqq_fifo_expire(cfqq);
741 cfq_clear_cfqq_expired(cfqq);
744 cfqd->active_queue = cfqq;
749 * 0,1
750 * 0,1,2
751 * 0,1,2,3
752 * 0,1,2,3,4
753 * 0,1,2,3,4,5
754 * 0,1,2,3,4,5,6
755 * 0,1,2,3,4,5,6,7
757 static int cfq_get_next_prio_level(struct cfq_data *cfqd)
759 int prio, wrap;
761 prio = -1;
762 wrap = 0;
763 do {
764 int p;
766 for (p = cfqd->cur_prio; p <= cfqd->cur_end_prio; p++) {
767 if (!list_empty(&cfqd->rr_list[p])) {
768 prio = p;
769 break;
773 if (prio != -1)
774 break;
775 cfqd->cur_prio = 0;
776 if (++cfqd->cur_end_prio == CFQ_PRIO_LISTS) {
777 cfqd->cur_end_prio = 0;
778 if (wrap)
779 break;
780 wrap = 1;
782 } while (1);
784 if (unlikely(prio == -1))
785 return -1;
787 BUG_ON(prio >= CFQ_PRIO_LISTS);
789 list_splice_init(&cfqd->rr_list[prio], &cfqd->cur_rr);
791 cfqd->cur_prio = prio + 1;
792 if (cfqd->cur_prio > cfqd->cur_end_prio) {
793 cfqd->cur_end_prio = cfqd->cur_prio;
794 cfqd->cur_prio = 0;
796 if (cfqd->cur_end_prio == CFQ_PRIO_LISTS) {
797 cfqd->cur_prio = 0;
798 cfqd->cur_end_prio = 0;
801 return prio;
804 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd)
806 struct cfq_queue *cfqq;
809 * if current queue is expired but not done with its requests yet,
810 * wait for that to happen
812 if ((cfqq = cfqd->active_queue) != NULL) {
813 if (cfq_cfqq_expired(cfqq) && cfq_cfqq_dispatched(cfqq))
814 return NULL;
818 * if current list is non-empty, grab first entry. if it is empty,
819 * get next prio level and grab first entry then if any are spliced
821 if (!list_empty(&cfqd->cur_rr) || cfq_get_next_prio_level(cfqd) != -1)
822 cfqq = list_entry_cfqq(cfqd->cur_rr.next);
825 * if we have idle queues and no rt or be queues had pending
826 * requests, either allow immediate service if the grace period
827 * has passed or arm the idle grace timer
829 if (!cfqq && !list_empty(&cfqd->idle_rr)) {
830 unsigned long end = cfqd->last_end_request + CFQ_IDLE_GRACE;
832 if (time_after_eq(jiffies, end))
833 cfqq = list_entry_cfqq(cfqd->idle_rr.next);
834 else
835 mod_timer(&cfqd->idle_class_timer, end);
838 __cfq_set_active_queue(cfqd, cfqq);
839 return cfqq;
843 * current cfqq expired its slice (or was too idle), select new one
845 static void
846 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
847 int preempted)
849 unsigned long now = jiffies;
851 if (cfq_cfqq_wait_request(cfqq))
852 del_timer(&cfqd->idle_slice_timer);
854 if (!preempted && !cfq_cfqq_dispatched(cfqq))
855 cfqq->service_last = now;
857 cfq_clear_cfqq_must_dispatch(cfqq);
858 cfq_clear_cfqq_wait_request(cfqq);
861 * store what was left of this slice, if the queue idled out
862 * or was preempted
864 if (time_after(cfqq->slice_end, now))
865 cfqq->slice_left = cfqq->slice_end - now;
866 else
867 cfqq->slice_left = 0;
869 if (cfq_cfqq_on_rr(cfqq))
870 cfq_resort_rr_list(cfqq, preempted);
872 if (cfqq == cfqd->active_queue)
873 cfqd->active_queue = NULL;
875 if (cfqd->active_cic) {
876 put_io_context(cfqd->active_cic->ioc);
877 cfqd->active_cic = NULL;
880 cfqd->dispatch_slice = 0;
883 static inline void cfq_slice_expired(struct cfq_data *cfqd, int preempted)
885 struct cfq_queue *cfqq = cfqd->active_queue;
887 if (cfqq) {
889 * use deferred expiry, if there are requests in progress as
890 * not to disturb the slice of the next queue
892 if (cfq_cfqq_dispatched(cfqq))
893 cfq_mark_cfqq_expired(cfqq);
894 else
895 __cfq_slice_expired(cfqd, cfqq, preempted);
899 static int cfq_arm_slice_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
902 WARN_ON(!RB_EMPTY(&cfqq->sort_list));
903 WARN_ON(cfqq != cfqd->active_queue);
906 * idle is disabled, either manually or by past process history
908 if (!cfqd->cfq_slice_idle)
909 return 0;
910 if (!cfq_cfqq_idle_window(cfqq))
911 return 0;
913 * task has exited, don't wait
915 if (cfqd->active_cic && !cfqd->active_cic->ioc->task)
916 return 0;
918 cfq_mark_cfqq_must_dispatch(cfqq);
919 cfq_mark_cfqq_wait_request(cfqq);
921 if (!timer_pending(&cfqd->idle_slice_timer)) {
922 unsigned long slice_left = min(cfqq->slice_end - 1, (unsigned long) cfqd->cfq_slice_idle);
924 cfqd->idle_slice_timer.expires = jiffies + slice_left;
925 add_timer(&cfqd->idle_slice_timer);
928 return 1;
931 static void cfq_dispatch_insert(request_queue_t *q, struct cfq_rq *crq)
933 struct cfq_data *cfqd = q->elevator->elevator_data;
934 struct cfq_queue *cfqq = crq->cfq_queue;
936 cfqq->next_crq = cfq_find_next_crq(cfqd, cfqq, crq);
937 cfq_remove_request(crq->request);
938 cfqq->on_dispatch[cfq_crq_is_sync(crq)]++;
939 elv_dispatch_sort(q, crq->request);
943 * return expired entry, or NULL to just start from scratch in rbtree
945 static inline struct cfq_rq *cfq_check_fifo(struct cfq_queue *cfqq)
947 struct cfq_data *cfqd = cfqq->cfqd;
948 struct request *rq;
949 struct cfq_rq *crq;
951 if (cfq_cfqq_fifo_expire(cfqq))
952 return NULL;
954 if (!list_empty(&cfqq->fifo)) {
955 int fifo = cfq_cfqq_class_sync(cfqq);
957 crq = RQ_DATA(list_entry_fifo(cfqq->fifo.next));
958 rq = crq->request;
959 if (time_after(jiffies, rq->start_time + cfqd->cfq_fifo_expire[fifo])) {
960 cfq_mark_cfqq_fifo_expire(cfqq);
961 return crq;
965 return NULL;
969 * Scale schedule slice based on io priority. Use the sync time slice only
970 * if a queue is marked sync and has sync io queued. A sync queue with async
971 * io only, should not get full sync slice length.
973 static inline int
974 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
976 const int base_slice = cfqd->cfq_slice[cfq_cfqq_sync(cfqq)];
978 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
980 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - cfqq->ioprio));
983 static inline void
984 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
986 cfqq->slice_end = cfq_prio_to_slice(cfqd, cfqq) + jiffies;
989 static inline int
990 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
992 const int base_rq = cfqd->cfq_slice_async_rq;
994 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
996 return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1000 * get next queue for service
1002 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
1004 unsigned long now = jiffies;
1005 struct cfq_queue *cfqq;
1007 cfqq = cfqd->active_queue;
1008 if (!cfqq)
1009 goto new_queue;
1011 if (cfq_cfqq_expired(cfqq))
1012 goto new_queue;
1015 * slice has expired
1017 if (!cfq_cfqq_must_dispatch(cfqq) && time_after(now, cfqq->slice_end))
1018 goto expire;
1021 * if queue has requests, dispatch one. if not, check if
1022 * enough slice is left to wait for one
1024 if (!RB_EMPTY(&cfqq->sort_list))
1025 goto keep_queue;
1026 else if (cfq_cfqq_class_sync(cfqq) &&
1027 time_before(now, cfqq->slice_end)) {
1028 if (cfq_arm_slice_timer(cfqd, cfqq))
1029 return NULL;
1032 expire:
1033 cfq_slice_expired(cfqd, 0);
1034 new_queue:
1035 cfqq = cfq_set_active_queue(cfqd);
1036 keep_queue:
1037 return cfqq;
1040 static int
1041 __cfq_dispatch_requests(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1042 int max_dispatch)
1044 int dispatched = 0;
1046 BUG_ON(RB_EMPTY(&cfqq->sort_list));
1048 do {
1049 struct cfq_rq *crq;
1052 * follow expired path, else get first next available
1054 if ((crq = cfq_check_fifo(cfqq)) == NULL)
1055 crq = cfqq->next_crq;
1058 * finally, insert request into driver dispatch list
1060 cfq_dispatch_insert(cfqd->queue, crq);
1062 cfqd->dispatch_slice++;
1063 dispatched++;
1065 if (!cfqd->active_cic) {
1066 atomic_inc(&crq->io_context->ioc->refcount);
1067 cfqd->active_cic = crq->io_context;
1070 if (RB_EMPTY(&cfqq->sort_list))
1071 break;
1073 } while (dispatched < max_dispatch);
1076 * if slice end isn't set yet, set it. if at least one request was
1077 * sync, use the sync time slice value
1079 if (!cfqq->slice_end)
1080 cfq_set_prio_slice(cfqd, cfqq);
1083 * expire an async queue immediately if it has used up its slice. idle
1084 * queue always expire after 1 dispatch round.
1086 if ((!cfq_cfqq_sync(cfqq) &&
1087 cfqd->dispatch_slice >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
1088 cfq_class_idle(cfqq))
1089 cfq_slice_expired(cfqd, 0);
1091 return dispatched;
1094 static int
1095 cfq_forced_dispatch_cfqqs(struct list_head *list)
1097 int dispatched = 0;
1098 struct cfq_queue *cfqq, *next;
1099 struct cfq_rq *crq;
1101 list_for_each_entry_safe(cfqq, next, list, cfq_list) {
1102 while ((crq = cfqq->next_crq)) {
1103 cfq_dispatch_insert(cfqq->cfqd->queue, crq);
1104 dispatched++;
1106 BUG_ON(!list_empty(&cfqq->fifo));
1108 return dispatched;
1111 static int
1112 cfq_forced_dispatch(struct cfq_data *cfqd)
1114 int i, dispatched = 0;
1116 for (i = 0; i < CFQ_PRIO_LISTS; i++)
1117 dispatched += cfq_forced_dispatch_cfqqs(&cfqd->rr_list[i]);
1119 dispatched += cfq_forced_dispatch_cfqqs(&cfqd->busy_rr);
1120 dispatched += cfq_forced_dispatch_cfqqs(&cfqd->cur_rr);
1121 dispatched += cfq_forced_dispatch_cfqqs(&cfqd->idle_rr);
1123 cfq_slice_expired(cfqd, 0);
1125 BUG_ON(cfqd->busy_queues);
1127 return dispatched;
1130 static int
1131 cfq_dispatch_requests(request_queue_t *q, int force)
1133 struct cfq_data *cfqd = q->elevator->elevator_data;
1134 struct cfq_queue *cfqq;
1136 if (!cfqd->busy_queues)
1137 return 0;
1139 if (unlikely(force))
1140 return cfq_forced_dispatch(cfqd);
1142 cfqq = cfq_select_queue(cfqd);
1143 if (cfqq) {
1144 int max_dispatch;
1147 * if idle window is disabled, allow queue buildup
1149 if (!cfq_cfqq_idle_window(cfqq) &&
1150 cfqd->rq_in_driver >= cfqd->cfq_max_depth)
1151 return 0;
1153 cfq_clear_cfqq_must_dispatch(cfqq);
1154 cfq_clear_cfqq_wait_request(cfqq);
1155 del_timer(&cfqd->idle_slice_timer);
1157 max_dispatch = cfqd->cfq_quantum;
1158 if (cfq_class_idle(cfqq))
1159 max_dispatch = 1;
1161 return __cfq_dispatch_requests(cfqd, cfqq, max_dispatch);
1164 return 0;
1168 * task holds one reference to the queue, dropped when task exits. each crq
1169 * in-flight on this queue also holds a reference, dropped when crq is freed.
1171 * queue lock must be held here.
1173 static void cfq_put_queue(struct cfq_queue *cfqq)
1175 struct cfq_data *cfqd = cfqq->cfqd;
1177 BUG_ON(atomic_read(&cfqq->ref) <= 0);
1179 if (!atomic_dec_and_test(&cfqq->ref))
1180 return;
1182 BUG_ON(rb_first(&cfqq->sort_list));
1183 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
1184 BUG_ON(cfq_cfqq_on_rr(cfqq));
1186 if (unlikely(cfqd->active_queue == cfqq)) {
1187 __cfq_slice_expired(cfqd, cfqq, 0);
1188 cfq_schedule_dispatch(cfqd);
1191 cfq_put_cfqd(cfqq->cfqd);
1194 * it's on the empty list and still hashed
1196 list_del(&cfqq->cfq_list);
1197 hlist_del(&cfqq->cfq_hash);
1198 kmem_cache_free(cfq_pool, cfqq);
1201 static inline struct cfq_queue *
1202 __cfq_find_cfq_hash(struct cfq_data *cfqd, unsigned int key, unsigned int prio,
1203 const int hashval)
1205 struct hlist_head *hash_list = &cfqd->cfq_hash[hashval];
1206 struct hlist_node *entry, *next;
1208 hlist_for_each_safe(entry, next, hash_list) {
1209 struct cfq_queue *__cfqq = list_entry_qhash(entry);
1210 const unsigned short __p = IOPRIO_PRIO_VALUE(__cfqq->ioprio_class, __cfqq->ioprio);
1212 if (__cfqq->key == key && (__p == prio || prio == CFQ_KEY_ANY))
1213 return __cfqq;
1216 return NULL;
1219 static struct cfq_queue *
1220 cfq_find_cfq_hash(struct cfq_data *cfqd, unsigned int key, unsigned short prio)
1222 return __cfq_find_cfq_hash(cfqd, key, prio, hash_long(key, CFQ_QHASH_SHIFT));
1225 static void cfq_free_io_context(struct cfq_io_context *cic)
1227 struct cfq_io_context *__cic;
1228 struct list_head *entry, *next;
1230 list_for_each_safe(entry, next, &cic->list) {
1231 __cic = list_entry(entry, struct cfq_io_context, list);
1232 kmem_cache_free(cfq_ioc_pool, __cic);
1235 kmem_cache_free(cfq_ioc_pool, cic);
1239 * Called with interrupts disabled
1241 static void cfq_exit_single_io_context(struct cfq_io_context *cic)
1243 struct cfq_data *cfqd = cic->cfqq->cfqd;
1244 request_queue_t *q = cfqd->queue;
1246 WARN_ON(!irqs_disabled());
1248 spin_lock(q->queue_lock);
1250 if (unlikely(cic->cfqq == cfqd->active_queue)) {
1251 __cfq_slice_expired(cfqd, cic->cfqq, 0);
1252 cfq_schedule_dispatch(cfqd);
1255 cfq_put_queue(cic->cfqq);
1256 cic->cfqq = NULL;
1257 spin_unlock(q->queue_lock);
1261 * Another task may update the task cic list, if it is doing a queue lookup
1262 * on its behalf. cfq_cic_lock excludes such concurrent updates
1264 static void cfq_exit_io_context(struct cfq_io_context *cic)
1266 struct cfq_io_context *__cic;
1267 struct list_head *entry;
1268 unsigned long flags;
1270 local_irq_save(flags);
1273 * put the reference this task is holding to the various queues
1275 list_for_each(entry, &cic->list) {
1276 __cic = list_entry(entry, struct cfq_io_context, list);
1277 cfq_exit_single_io_context(__cic);
1280 cfq_exit_single_io_context(cic);
1281 local_irq_restore(flags);
1284 static struct cfq_io_context *
1285 cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1287 struct cfq_io_context *cic = kmem_cache_alloc(cfq_ioc_pool, gfp_mask);
1289 if (cic) {
1290 INIT_LIST_HEAD(&cic->list);
1291 cic->cfqq = NULL;
1292 cic->key = NULL;
1293 cic->last_end_request = jiffies;
1294 cic->ttime_total = 0;
1295 cic->ttime_samples = 0;
1296 cic->ttime_mean = 0;
1297 cic->dtor = cfq_free_io_context;
1298 cic->exit = cfq_exit_io_context;
1301 return cic;
1304 static void cfq_init_prio_data(struct cfq_queue *cfqq)
1306 struct task_struct *tsk = current;
1307 int ioprio_class;
1309 if (!cfq_cfqq_prio_changed(cfqq))
1310 return;
1312 ioprio_class = IOPRIO_PRIO_CLASS(tsk->ioprio);
1313 switch (ioprio_class) {
1314 default:
1315 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
1316 case IOPRIO_CLASS_NONE:
1318 * no prio set, place us in the middle of the BE classes
1320 cfqq->ioprio = task_nice_ioprio(tsk);
1321 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1322 break;
1323 case IOPRIO_CLASS_RT:
1324 cfqq->ioprio = task_ioprio(tsk);
1325 cfqq->ioprio_class = IOPRIO_CLASS_RT;
1326 break;
1327 case IOPRIO_CLASS_BE:
1328 cfqq->ioprio = task_ioprio(tsk);
1329 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1330 break;
1331 case IOPRIO_CLASS_IDLE:
1332 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
1333 cfqq->ioprio = 7;
1334 cfq_clear_cfqq_idle_window(cfqq);
1335 break;
1339 * keep track of original prio settings in case we have to temporarily
1340 * elevate the priority of this queue
1342 cfqq->org_ioprio = cfqq->ioprio;
1343 cfqq->org_ioprio_class = cfqq->ioprio_class;
1345 if (cfq_cfqq_on_rr(cfqq))
1346 cfq_resort_rr_list(cfqq, 0);
1348 cfq_clear_cfqq_prio_changed(cfqq);
1351 static inline void changed_ioprio(struct cfq_queue *cfqq)
1353 if (cfqq) {
1354 struct cfq_data *cfqd = cfqq->cfqd;
1356 spin_lock(cfqd->queue->queue_lock);
1357 cfq_mark_cfqq_prio_changed(cfqq);
1358 cfq_init_prio_data(cfqq);
1359 spin_unlock(cfqd->queue->queue_lock);
1364 * callback from sys_ioprio_set, irqs are disabled
1366 static int cfq_ioc_set_ioprio(struct io_context *ioc, unsigned int ioprio)
1368 struct cfq_io_context *cic = ioc->cic;
1370 changed_ioprio(cic->cfqq);
1372 list_for_each_entry(cic, &cic->list, list)
1373 changed_ioprio(cic->cfqq);
1375 return 0;
1378 static struct cfq_queue *
1379 cfq_get_queue(struct cfq_data *cfqd, unsigned int key, unsigned short ioprio,
1380 gfp_t gfp_mask)
1382 const int hashval = hash_long(key, CFQ_QHASH_SHIFT);
1383 struct cfq_queue *cfqq, *new_cfqq = NULL;
1385 retry:
1386 cfqq = __cfq_find_cfq_hash(cfqd, key, ioprio, hashval);
1388 if (!cfqq) {
1389 if (new_cfqq) {
1390 cfqq = new_cfqq;
1391 new_cfqq = NULL;
1392 } else if (gfp_mask & __GFP_WAIT) {
1393 spin_unlock_irq(cfqd->queue->queue_lock);
1394 new_cfqq = kmem_cache_alloc(cfq_pool, gfp_mask);
1395 spin_lock_irq(cfqd->queue->queue_lock);
1396 goto retry;
1397 } else {
1398 cfqq = kmem_cache_alloc(cfq_pool, gfp_mask);
1399 if (!cfqq)
1400 goto out;
1403 memset(cfqq, 0, sizeof(*cfqq));
1405 INIT_HLIST_NODE(&cfqq->cfq_hash);
1406 INIT_LIST_HEAD(&cfqq->cfq_list);
1407 RB_CLEAR_ROOT(&cfqq->sort_list);
1408 INIT_LIST_HEAD(&cfqq->fifo);
1410 cfqq->key = key;
1411 hlist_add_head(&cfqq->cfq_hash, &cfqd->cfq_hash[hashval]);
1412 atomic_set(&cfqq->ref, 0);
1413 cfqq->cfqd = cfqd;
1414 atomic_inc(&cfqd->ref);
1415 cfqq->service_last = 0;
1417 * set ->slice_left to allow preemption for a new process
1419 cfqq->slice_left = 2 * cfqd->cfq_slice_idle;
1420 cfq_mark_cfqq_idle_window(cfqq);
1421 cfq_mark_cfqq_prio_changed(cfqq);
1422 cfq_init_prio_data(cfqq);
1425 if (new_cfqq)
1426 kmem_cache_free(cfq_pool, new_cfqq);
1428 atomic_inc(&cfqq->ref);
1429 out:
1430 WARN_ON((gfp_mask & __GFP_WAIT) && !cfqq);
1431 return cfqq;
1435 * Setup general io context and cfq io context. There can be several cfq
1436 * io contexts per general io context, if this process is doing io to more
1437 * than one device managed by cfq. Note that caller is holding a reference to
1438 * cfqq, so we don't need to worry about it disappearing
1440 static struct cfq_io_context *
1441 cfq_get_io_context(struct cfq_data *cfqd, pid_t pid, gfp_t gfp_mask)
1443 struct io_context *ioc = NULL;
1444 struct cfq_io_context *cic;
1446 might_sleep_if(gfp_mask & __GFP_WAIT);
1448 ioc = get_io_context(gfp_mask);
1449 if (!ioc)
1450 return NULL;
1452 if ((cic = ioc->cic) == NULL) {
1453 cic = cfq_alloc_io_context(cfqd, gfp_mask);
1455 if (cic == NULL)
1456 goto err;
1459 * manually increment generic io_context usage count, it
1460 * cannot go away since we are already holding one ref to it
1462 ioc->cic = cic;
1463 ioc->set_ioprio = cfq_ioc_set_ioprio;
1464 cic->ioc = ioc;
1465 cic->key = cfqd;
1466 atomic_inc(&cfqd->ref);
1467 } else {
1468 struct cfq_io_context *__cic;
1471 * the first cic on the list is actually the head itself
1473 if (cic->key == cfqd)
1474 goto out;
1477 * cic exists, check if we already are there. linear search
1478 * should be ok here, the list will usually not be more than
1479 * 1 or a few entries long
1481 list_for_each_entry(__cic, &cic->list, list) {
1483 * this process is already holding a reference to
1484 * this queue, so no need to get one more
1486 if (__cic->key == cfqd) {
1487 cic = __cic;
1488 goto out;
1493 * nope, process doesn't have a cic assoicated with this
1494 * cfqq yet. get a new one and add to list
1496 __cic = cfq_alloc_io_context(cfqd, gfp_mask);
1497 if (__cic == NULL)
1498 goto err;
1500 __cic->ioc = ioc;
1501 __cic->key = cfqd;
1502 atomic_inc(&cfqd->ref);
1503 list_add(&__cic->list, &cic->list);
1504 cic = __cic;
1507 out:
1508 return cic;
1509 err:
1510 put_io_context(ioc);
1511 return NULL;
1514 static void
1515 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1517 unsigned long elapsed, ttime;
1520 * if this context already has stuff queued, thinktime is from
1521 * last queue not last end
1523 #if 0
1524 if (time_after(cic->last_end_request, cic->last_queue))
1525 elapsed = jiffies - cic->last_end_request;
1526 else
1527 elapsed = jiffies - cic->last_queue;
1528 #else
1529 elapsed = jiffies - cic->last_end_request;
1530 #endif
1532 ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
1534 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
1535 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
1536 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
1539 #define sample_valid(samples) ((samples) > 80)
1542 * Disable idle window if the process thinks too long or seeks so much that
1543 * it doesn't matter
1545 static void
1546 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1547 struct cfq_io_context *cic)
1549 int enable_idle = cfq_cfqq_idle_window(cfqq);
1551 if (!cic->ioc->task || !cfqd->cfq_slice_idle)
1552 enable_idle = 0;
1553 else if (sample_valid(cic->ttime_samples)) {
1554 if (cic->ttime_mean > cfqd->cfq_slice_idle)
1555 enable_idle = 0;
1556 else
1557 enable_idle = 1;
1560 if (enable_idle)
1561 cfq_mark_cfqq_idle_window(cfqq);
1562 else
1563 cfq_clear_cfqq_idle_window(cfqq);
1568 * Check if new_cfqq should preempt the currently active queue. Return 0 for
1569 * no or if we aren't sure, a 1 will cause a preempt.
1571 static int
1572 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
1573 struct cfq_rq *crq)
1575 struct cfq_queue *cfqq = cfqd->active_queue;
1577 if (cfq_class_idle(new_cfqq))
1578 return 0;
1580 if (!cfqq)
1581 return 1;
1583 if (cfq_class_idle(cfqq))
1584 return 1;
1585 if (!cfq_cfqq_wait_request(new_cfqq))
1586 return 0;
1588 * if it doesn't have slice left, forget it
1590 if (new_cfqq->slice_left < cfqd->cfq_slice_idle)
1591 return 0;
1592 if (cfq_crq_is_sync(crq) && !cfq_cfqq_sync(cfqq))
1593 return 1;
1595 return 0;
1599 * cfqq preempts the active queue. if we allowed preempt with no slice left,
1600 * let it have half of its nominal slice.
1602 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1604 struct cfq_queue *__cfqq, *next;
1606 list_for_each_entry_safe(__cfqq, next, &cfqd->cur_rr, cfq_list)
1607 cfq_resort_rr_list(__cfqq, 1);
1609 if (!cfqq->slice_left)
1610 cfqq->slice_left = cfq_prio_to_slice(cfqd, cfqq) / 2;
1612 cfqq->slice_end = cfqq->slice_left + jiffies;
1613 __cfq_slice_expired(cfqd, cfqq, 1);
1614 __cfq_set_active_queue(cfqd, cfqq);
1618 * should really be a ll_rw_blk.c helper
1620 static void cfq_start_queueing(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1622 request_queue_t *q = cfqd->queue;
1624 if (!blk_queue_plugged(q))
1625 q->request_fn(q);
1626 else
1627 __generic_unplug_device(q);
1631 * Called when a new fs request (crq) is added (to cfqq). Check if there's
1632 * something we should do about it
1634 static void
1635 cfq_crq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1636 struct cfq_rq *crq)
1638 struct cfq_io_context *cic;
1640 cfqq->next_crq = cfq_choose_req(cfqd, cfqq->next_crq, crq);
1643 * we never wait for an async request and we don't allow preemption
1644 * of an async request. so just return early
1646 if (!cfq_crq_is_sync(crq))
1647 return;
1649 cic = crq->io_context;
1651 cfq_update_io_thinktime(cfqd, cic);
1652 cfq_update_idle_window(cfqd, cfqq, cic);
1654 cic->last_queue = jiffies;
1656 if (cfqq == cfqd->active_queue) {
1658 * if we are waiting for a request for this queue, let it rip
1659 * immediately and flag that we must not expire this queue
1660 * just now
1662 if (cfq_cfqq_wait_request(cfqq)) {
1663 cfq_mark_cfqq_must_dispatch(cfqq);
1664 del_timer(&cfqd->idle_slice_timer);
1665 cfq_start_queueing(cfqd, cfqq);
1667 } else if (cfq_should_preempt(cfqd, cfqq, crq)) {
1669 * not the active queue - expire current slice if it is
1670 * idle and has expired it's mean thinktime or this new queue
1671 * has some old slice time left and is of higher priority
1673 cfq_preempt_queue(cfqd, cfqq);
1674 cfq_mark_cfqq_must_dispatch(cfqq);
1675 cfq_start_queueing(cfqd, cfqq);
1679 static void cfq_insert_request(request_queue_t *q, struct request *rq)
1681 struct cfq_data *cfqd = q->elevator->elevator_data;
1682 struct cfq_rq *crq = RQ_DATA(rq);
1683 struct cfq_queue *cfqq = crq->cfq_queue;
1685 cfq_init_prio_data(cfqq);
1687 cfq_add_crq_rb(crq);
1689 list_add_tail(&rq->queuelist, &cfqq->fifo);
1691 if (rq_mergeable(rq))
1692 cfq_add_crq_hash(cfqd, crq);
1694 cfq_crq_enqueued(cfqd, cfqq, crq);
1697 static void cfq_completed_request(request_queue_t *q, struct request *rq)
1699 struct cfq_rq *crq = RQ_DATA(rq);
1700 struct cfq_queue *cfqq = crq->cfq_queue;
1701 struct cfq_data *cfqd = cfqq->cfqd;
1702 const int sync = cfq_crq_is_sync(crq);
1703 unsigned long now;
1705 now = jiffies;
1707 WARN_ON(!cfqd->rq_in_driver);
1708 WARN_ON(!cfqq->on_dispatch[sync]);
1709 cfqd->rq_in_driver--;
1710 cfqq->on_dispatch[sync]--;
1712 if (!cfq_class_idle(cfqq))
1713 cfqd->last_end_request = now;
1715 if (!cfq_cfqq_dispatched(cfqq)) {
1716 if (cfq_cfqq_on_rr(cfqq)) {
1717 cfqq->service_last = now;
1718 cfq_resort_rr_list(cfqq, 0);
1720 if (cfq_cfqq_expired(cfqq)) {
1721 __cfq_slice_expired(cfqd, cfqq, 0);
1722 cfq_schedule_dispatch(cfqd);
1726 if (cfq_crq_is_sync(crq))
1727 crq->io_context->last_end_request = now;
1730 static struct request *
1731 cfq_former_request(request_queue_t *q, struct request *rq)
1733 struct cfq_rq *crq = RQ_DATA(rq);
1734 struct rb_node *rbprev = rb_prev(&crq->rb_node);
1736 if (rbprev)
1737 return rb_entry_crq(rbprev)->request;
1739 return NULL;
1742 static struct request *
1743 cfq_latter_request(request_queue_t *q, struct request *rq)
1745 struct cfq_rq *crq = RQ_DATA(rq);
1746 struct rb_node *rbnext = rb_next(&crq->rb_node);
1748 if (rbnext)
1749 return rb_entry_crq(rbnext)->request;
1751 return NULL;
1755 * we temporarily boost lower priority queues if they are holding fs exclusive
1756 * resources. they are boosted to normal prio (CLASS_BE/4)
1758 static void cfq_prio_boost(struct cfq_queue *cfqq)
1760 const int ioprio_class = cfqq->ioprio_class;
1761 const int ioprio = cfqq->ioprio;
1763 if (has_fs_excl()) {
1765 * boost idle prio on transactions that would lock out other
1766 * users of the filesystem
1768 if (cfq_class_idle(cfqq))
1769 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1770 if (cfqq->ioprio > IOPRIO_NORM)
1771 cfqq->ioprio = IOPRIO_NORM;
1772 } else {
1774 * check if we need to unboost the queue
1776 if (cfqq->ioprio_class != cfqq->org_ioprio_class)
1777 cfqq->ioprio_class = cfqq->org_ioprio_class;
1778 if (cfqq->ioprio != cfqq->org_ioprio)
1779 cfqq->ioprio = cfqq->org_ioprio;
1783 * refile between round-robin lists if we moved the priority class
1785 if ((ioprio_class != cfqq->ioprio_class || ioprio != cfqq->ioprio) &&
1786 cfq_cfqq_on_rr(cfqq))
1787 cfq_resort_rr_list(cfqq, 0);
1790 static inline pid_t cfq_queue_pid(struct task_struct *task, int rw)
1792 if (rw == READ || process_sync(task))
1793 return task->pid;
1795 return CFQ_KEY_ASYNC;
1798 static inline int
1799 __cfq_may_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1800 struct task_struct *task, int rw)
1802 #if 1
1803 if ((cfq_cfqq_wait_request(cfqq) || cfq_cfqq_must_alloc(cfqq)) &&
1804 !cfq_cfqq_must_alloc_slice(cfqq)) {
1805 cfq_mark_cfqq_must_alloc_slice(cfqq);
1806 return ELV_MQUEUE_MUST;
1809 return ELV_MQUEUE_MAY;
1810 #else
1811 if (!cfqq || task->flags & PF_MEMALLOC)
1812 return ELV_MQUEUE_MAY;
1813 if (!cfqq->allocated[rw] || cfq_cfqq_must_alloc(cfqq)) {
1814 if (cfq_cfqq_wait_request(cfqq))
1815 return ELV_MQUEUE_MUST;
1818 * only allow 1 ELV_MQUEUE_MUST per slice, otherwise we
1819 * can quickly flood the queue with writes from a single task
1821 if (rw == READ || !cfq_cfqq_must_alloc_slice(cfqq)) {
1822 cfq_mark_cfqq_must_alloc_slice(cfqq);
1823 return ELV_MQUEUE_MUST;
1826 return ELV_MQUEUE_MAY;
1828 if (cfq_class_idle(cfqq))
1829 return ELV_MQUEUE_NO;
1830 if (cfqq->allocated[rw] >= cfqd->max_queued) {
1831 struct io_context *ioc = get_io_context(GFP_ATOMIC);
1832 int ret = ELV_MQUEUE_NO;
1834 if (ioc && ioc->nr_batch_requests)
1835 ret = ELV_MQUEUE_MAY;
1837 put_io_context(ioc);
1838 return ret;
1841 return ELV_MQUEUE_MAY;
1842 #endif
1845 static int cfq_may_queue(request_queue_t *q, int rw, struct bio *bio)
1847 struct cfq_data *cfqd = q->elevator->elevator_data;
1848 struct task_struct *tsk = current;
1849 struct cfq_queue *cfqq;
1852 * don't force setup of a queue from here, as a call to may_queue
1853 * does not necessarily imply that a request actually will be queued.
1854 * so just lookup a possibly existing queue, or return 'may queue'
1855 * if that fails
1857 cfqq = cfq_find_cfq_hash(cfqd, cfq_queue_pid(tsk, rw), tsk->ioprio);
1858 if (cfqq) {
1859 cfq_init_prio_data(cfqq);
1860 cfq_prio_boost(cfqq);
1862 return __cfq_may_queue(cfqd, cfqq, tsk, rw);
1865 return ELV_MQUEUE_MAY;
1868 static void cfq_check_waiters(request_queue_t *q, struct cfq_queue *cfqq)
1870 struct cfq_data *cfqd = q->elevator->elevator_data;
1871 struct request_list *rl = &q->rq;
1873 if (cfqq->allocated[READ] <= cfqd->max_queued || cfqd->rq_starved) {
1874 smp_mb();
1875 if (waitqueue_active(&rl->wait[READ]))
1876 wake_up(&rl->wait[READ]);
1879 if (cfqq->allocated[WRITE] <= cfqd->max_queued || cfqd->rq_starved) {
1880 smp_mb();
1881 if (waitqueue_active(&rl->wait[WRITE]))
1882 wake_up(&rl->wait[WRITE]);
1887 * queue lock held here
1889 static void cfq_put_request(request_queue_t *q, struct request *rq)
1891 struct cfq_data *cfqd = q->elevator->elevator_data;
1892 struct cfq_rq *crq = RQ_DATA(rq);
1894 if (crq) {
1895 struct cfq_queue *cfqq = crq->cfq_queue;
1896 const int rw = rq_data_dir(rq);
1898 BUG_ON(!cfqq->allocated[rw]);
1899 cfqq->allocated[rw]--;
1901 put_io_context(crq->io_context->ioc);
1903 mempool_free(crq, cfqd->crq_pool);
1904 rq->elevator_private = NULL;
1906 cfq_check_waiters(q, cfqq);
1907 cfq_put_queue(cfqq);
1912 * Allocate cfq data structures associated with this request.
1914 static int
1915 cfq_set_request(request_queue_t *q, struct request *rq, struct bio *bio,
1916 gfp_t gfp_mask)
1918 struct cfq_data *cfqd = q->elevator->elevator_data;
1919 struct task_struct *tsk = current;
1920 struct cfq_io_context *cic;
1921 const int rw = rq_data_dir(rq);
1922 pid_t key = cfq_queue_pid(tsk, rw);
1923 struct cfq_queue *cfqq;
1924 struct cfq_rq *crq;
1925 unsigned long flags;
1927 might_sleep_if(gfp_mask & __GFP_WAIT);
1929 cic = cfq_get_io_context(cfqd, key, gfp_mask);
1931 spin_lock_irqsave(q->queue_lock, flags);
1933 if (!cic)
1934 goto queue_fail;
1936 if (!cic->cfqq) {
1937 cfqq = cfq_get_queue(cfqd, key, tsk->ioprio, gfp_mask);
1938 if (!cfqq)
1939 goto queue_fail;
1941 cic->cfqq = cfqq;
1942 } else
1943 cfqq = cic->cfqq;
1945 cfqq->allocated[rw]++;
1946 cfq_clear_cfqq_must_alloc(cfqq);
1947 cfqd->rq_starved = 0;
1948 atomic_inc(&cfqq->ref);
1949 spin_unlock_irqrestore(q->queue_lock, flags);
1951 crq = mempool_alloc(cfqd->crq_pool, gfp_mask);
1952 if (crq) {
1953 RB_CLEAR(&crq->rb_node);
1954 crq->rb_key = 0;
1955 crq->request = rq;
1956 INIT_HLIST_NODE(&crq->hash);
1957 crq->cfq_queue = cfqq;
1958 crq->io_context = cic;
1960 if (rw == READ || process_sync(tsk))
1961 cfq_mark_crq_is_sync(crq);
1962 else
1963 cfq_clear_crq_is_sync(crq);
1965 rq->elevator_private = crq;
1966 return 0;
1969 spin_lock_irqsave(q->queue_lock, flags);
1970 cfqq->allocated[rw]--;
1971 if (!(cfqq->allocated[0] + cfqq->allocated[1]))
1972 cfq_mark_cfqq_must_alloc(cfqq);
1973 cfq_put_queue(cfqq);
1974 queue_fail:
1975 if (cic)
1976 put_io_context(cic->ioc);
1978 * mark us rq allocation starved. we need to kickstart the process
1979 * ourselves if there are no pending requests that can do it for us.
1980 * that would be an extremely rare OOM situation
1982 cfqd->rq_starved = 1;
1983 cfq_schedule_dispatch(cfqd);
1984 spin_unlock_irqrestore(q->queue_lock, flags);
1985 return 1;
1988 static void cfq_kick_queue(void *data)
1990 request_queue_t *q = data;
1991 struct cfq_data *cfqd = q->elevator->elevator_data;
1992 unsigned long flags;
1994 spin_lock_irqsave(q->queue_lock, flags);
1996 if (cfqd->rq_starved) {
1997 struct request_list *rl = &q->rq;
2000 * we aren't guaranteed to get a request after this, but we
2001 * have to be opportunistic
2003 smp_mb();
2004 if (waitqueue_active(&rl->wait[READ]))
2005 wake_up(&rl->wait[READ]);
2006 if (waitqueue_active(&rl->wait[WRITE]))
2007 wake_up(&rl->wait[WRITE]);
2010 blk_remove_plug(q);
2011 q->request_fn(q);
2012 spin_unlock_irqrestore(q->queue_lock, flags);
2016 * Timer running if the active_queue is currently idling inside its time slice
2018 static void cfq_idle_slice_timer(unsigned long data)
2020 struct cfq_data *cfqd = (struct cfq_data *) data;
2021 struct cfq_queue *cfqq;
2022 unsigned long flags;
2024 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2026 if ((cfqq = cfqd->active_queue) != NULL) {
2027 unsigned long now = jiffies;
2030 * expired
2032 if (time_after(now, cfqq->slice_end))
2033 goto expire;
2036 * only expire and reinvoke request handler, if there are
2037 * other queues with pending requests
2039 if (!cfqd->busy_queues) {
2040 cfqd->idle_slice_timer.expires = min(now + cfqd->cfq_slice_idle, cfqq->slice_end);
2041 add_timer(&cfqd->idle_slice_timer);
2042 goto out_cont;
2046 * not expired and it has a request pending, let it dispatch
2048 if (!RB_EMPTY(&cfqq->sort_list)) {
2049 cfq_mark_cfqq_must_dispatch(cfqq);
2050 goto out_kick;
2053 expire:
2054 cfq_slice_expired(cfqd, 0);
2055 out_kick:
2056 cfq_schedule_dispatch(cfqd);
2057 out_cont:
2058 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2062 * Timer running if an idle class queue is waiting for service
2064 static void cfq_idle_class_timer(unsigned long data)
2066 struct cfq_data *cfqd = (struct cfq_data *) data;
2067 unsigned long flags, end;
2069 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2072 * race with a non-idle queue, reset timer
2074 end = cfqd->last_end_request + CFQ_IDLE_GRACE;
2075 if (!time_after_eq(jiffies, end)) {
2076 cfqd->idle_class_timer.expires = end;
2077 add_timer(&cfqd->idle_class_timer);
2078 } else
2079 cfq_schedule_dispatch(cfqd);
2081 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2084 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
2086 del_timer_sync(&cfqd->idle_slice_timer);
2087 del_timer_sync(&cfqd->idle_class_timer);
2088 blk_sync_queue(cfqd->queue);
2091 static void cfq_put_cfqd(struct cfq_data *cfqd)
2093 request_queue_t *q = cfqd->queue;
2095 if (!atomic_dec_and_test(&cfqd->ref))
2096 return;
2098 cfq_shutdown_timer_wq(cfqd);
2099 blk_put_queue(q);
2101 mempool_destroy(cfqd->crq_pool);
2102 kfree(cfqd->crq_hash);
2103 kfree(cfqd->cfq_hash);
2104 kfree(cfqd);
2107 static void cfq_exit_queue(elevator_t *e)
2109 struct cfq_data *cfqd = e->elevator_data;
2111 cfq_shutdown_timer_wq(cfqd);
2112 cfq_put_cfqd(cfqd);
2115 static int cfq_init_queue(request_queue_t *q, elevator_t *e)
2117 struct cfq_data *cfqd;
2118 int i;
2120 cfqd = kmalloc(sizeof(*cfqd), GFP_KERNEL);
2121 if (!cfqd)
2122 return -ENOMEM;
2124 memset(cfqd, 0, sizeof(*cfqd));
2126 for (i = 0; i < CFQ_PRIO_LISTS; i++)
2127 INIT_LIST_HEAD(&cfqd->rr_list[i]);
2129 INIT_LIST_HEAD(&cfqd->busy_rr);
2130 INIT_LIST_HEAD(&cfqd->cur_rr);
2131 INIT_LIST_HEAD(&cfqd->idle_rr);
2132 INIT_LIST_HEAD(&cfqd->empty_list);
2134 cfqd->crq_hash = kmalloc(sizeof(struct hlist_head) * CFQ_MHASH_ENTRIES, GFP_KERNEL);
2135 if (!cfqd->crq_hash)
2136 goto out_crqhash;
2138 cfqd->cfq_hash = kmalloc(sizeof(struct hlist_head) * CFQ_QHASH_ENTRIES, GFP_KERNEL);
2139 if (!cfqd->cfq_hash)
2140 goto out_cfqhash;
2142 cfqd->crq_pool = mempool_create(BLKDEV_MIN_RQ, mempool_alloc_slab, mempool_free_slab, crq_pool);
2143 if (!cfqd->crq_pool)
2144 goto out_crqpool;
2146 for (i = 0; i < CFQ_MHASH_ENTRIES; i++)
2147 INIT_HLIST_HEAD(&cfqd->crq_hash[i]);
2148 for (i = 0; i < CFQ_QHASH_ENTRIES; i++)
2149 INIT_HLIST_HEAD(&cfqd->cfq_hash[i]);
2151 e->elevator_data = cfqd;
2153 cfqd->queue = q;
2154 atomic_inc(&q->refcnt);
2156 cfqd->max_queued = q->nr_requests / 4;
2157 q->nr_batching = cfq_queued;
2159 init_timer(&cfqd->idle_slice_timer);
2160 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
2161 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
2163 init_timer(&cfqd->idle_class_timer);
2164 cfqd->idle_class_timer.function = cfq_idle_class_timer;
2165 cfqd->idle_class_timer.data = (unsigned long) cfqd;
2167 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue, q);
2169 atomic_set(&cfqd->ref, 1);
2171 cfqd->cfq_queued = cfq_queued;
2172 cfqd->cfq_quantum = cfq_quantum;
2173 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
2174 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
2175 cfqd->cfq_back_max = cfq_back_max;
2176 cfqd->cfq_back_penalty = cfq_back_penalty;
2177 cfqd->cfq_slice[0] = cfq_slice_async;
2178 cfqd->cfq_slice[1] = cfq_slice_sync;
2179 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
2180 cfqd->cfq_slice_idle = cfq_slice_idle;
2181 cfqd->cfq_max_depth = cfq_max_depth;
2183 return 0;
2184 out_crqpool:
2185 kfree(cfqd->cfq_hash);
2186 out_cfqhash:
2187 kfree(cfqd->crq_hash);
2188 out_crqhash:
2189 kfree(cfqd);
2190 return -ENOMEM;
2193 static void cfq_slab_kill(void)
2195 if (crq_pool)
2196 kmem_cache_destroy(crq_pool);
2197 if (cfq_pool)
2198 kmem_cache_destroy(cfq_pool);
2199 if (cfq_ioc_pool)
2200 kmem_cache_destroy(cfq_ioc_pool);
2203 static int __init cfq_slab_setup(void)
2205 crq_pool = kmem_cache_create("crq_pool", sizeof(struct cfq_rq), 0, 0,
2206 NULL, NULL);
2207 if (!crq_pool)
2208 goto fail;
2210 cfq_pool = kmem_cache_create("cfq_pool", sizeof(struct cfq_queue), 0, 0,
2211 NULL, NULL);
2212 if (!cfq_pool)
2213 goto fail;
2215 cfq_ioc_pool = kmem_cache_create("cfq_ioc_pool",
2216 sizeof(struct cfq_io_context), 0, 0, NULL, NULL);
2217 if (!cfq_ioc_pool)
2218 goto fail;
2220 return 0;
2221 fail:
2222 cfq_slab_kill();
2223 return -ENOMEM;
2227 * sysfs parts below -->
2229 struct cfq_fs_entry {
2230 struct attribute attr;
2231 ssize_t (*show)(struct cfq_data *, char *);
2232 ssize_t (*store)(struct cfq_data *, const char *, size_t);
2235 static ssize_t
2236 cfq_var_show(unsigned int var, char *page)
2238 return sprintf(page, "%d\n", var);
2241 static ssize_t
2242 cfq_var_store(unsigned int *var, const char *page, size_t count)
2244 char *p = (char *) page;
2246 *var = simple_strtoul(p, &p, 10);
2247 return count;
2250 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
2251 static ssize_t __FUNC(struct cfq_data *cfqd, char *page) \
2253 unsigned int __data = __VAR; \
2254 if (__CONV) \
2255 __data = jiffies_to_msecs(__data); \
2256 return cfq_var_show(__data, (page)); \
2258 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
2259 SHOW_FUNCTION(cfq_queued_show, cfqd->cfq_queued, 0);
2260 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
2261 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
2262 SHOW_FUNCTION(cfq_back_max_show, cfqd->cfq_back_max, 0);
2263 SHOW_FUNCTION(cfq_back_penalty_show, cfqd->cfq_back_penalty, 0);
2264 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
2265 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
2266 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
2267 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
2268 SHOW_FUNCTION(cfq_max_depth_show, cfqd->cfq_max_depth, 0);
2269 #undef SHOW_FUNCTION
2271 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
2272 static ssize_t __FUNC(struct cfq_data *cfqd, const char *page, size_t count) \
2274 unsigned int __data; \
2275 int ret = cfq_var_store(&__data, (page), count); \
2276 if (__data < (MIN)) \
2277 __data = (MIN); \
2278 else if (__data > (MAX)) \
2279 __data = (MAX); \
2280 if (__CONV) \
2281 *(__PTR) = msecs_to_jiffies(__data); \
2282 else \
2283 *(__PTR) = __data; \
2284 return ret; \
2286 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
2287 STORE_FUNCTION(cfq_queued_store, &cfqd->cfq_queued, 1, UINT_MAX, 0);
2288 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1, UINT_MAX, 1);
2289 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1, UINT_MAX, 1);
2290 STORE_FUNCTION(cfq_back_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
2291 STORE_FUNCTION(cfq_back_penalty_store, &cfqd->cfq_back_penalty, 1, UINT_MAX, 0);
2292 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
2293 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
2294 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
2295 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1, UINT_MAX, 0);
2296 STORE_FUNCTION(cfq_max_depth_store, &cfqd->cfq_max_depth, 1, UINT_MAX, 0);
2297 #undef STORE_FUNCTION
2299 static struct cfq_fs_entry cfq_quantum_entry = {
2300 .attr = {.name = "quantum", .mode = S_IRUGO | S_IWUSR },
2301 .show = cfq_quantum_show,
2302 .store = cfq_quantum_store,
2304 static struct cfq_fs_entry cfq_queued_entry = {
2305 .attr = {.name = "queued", .mode = S_IRUGO | S_IWUSR },
2306 .show = cfq_queued_show,
2307 .store = cfq_queued_store,
2309 static struct cfq_fs_entry cfq_fifo_expire_sync_entry = {
2310 .attr = {.name = "fifo_expire_sync", .mode = S_IRUGO | S_IWUSR },
2311 .show = cfq_fifo_expire_sync_show,
2312 .store = cfq_fifo_expire_sync_store,
2314 static struct cfq_fs_entry cfq_fifo_expire_async_entry = {
2315 .attr = {.name = "fifo_expire_async", .mode = S_IRUGO | S_IWUSR },
2316 .show = cfq_fifo_expire_async_show,
2317 .store = cfq_fifo_expire_async_store,
2319 static struct cfq_fs_entry cfq_back_max_entry = {
2320 .attr = {.name = "back_seek_max", .mode = S_IRUGO | S_IWUSR },
2321 .show = cfq_back_max_show,
2322 .store = cfq_back_max_store,
2324 static struct cfq_fs_entry cfq_back_penalty_entry = {
2325 .attr = {.name = "back_seek_penalty", .mode = S_IRUGO | S_IWUSR },
2326 .show = cfq_back_penalty_show,
2327 .store = cfq_back_penalty_store,
2329 static struct cfq_fs_entry cfq_slice_sync_entry = {
2330 .attr = {.name = "slice_sync", .mode = S_IRUGO | S_IWUSR },
2331 .show = cfq_slice_sync_show,
2332 .store = cfq_slice_sync_store,
2334 static struct cfq_fs_entry cfq_slice_async_entry = {
2335 .attr = {.name = "slice_async", .mode = S_IRUGO | S_IWUSR },
2336 .show = cfq_slice_async_show,
2337 .store = cfq_slice_async_store,
2339 static struct cfq_fs_entry cfq_slice_async_rq_entry = {
2340 .attr = {.name = "slice_async_rq", .mode = S_IRUGO | S_IWUSR },
2341 .show = cfq_slice_async_rq_show,
2342 .store = cfq_slice_async_rq_store,
2344 static struct cfq_fs_entry cfq_slice_idle_entry = {
2345 .attr = {.name = "slice_idle", .mode = S_IRUGO | S_IWUSR },
2346 .show = cfq_slice_idle_show,
2347 .store = cfq_slice_idle_store,
2349 static struct cfq_fs_entry cfq_max_depth_entry = {
2350 .attr = {.name = "max_depth", .mode = S_IRUGO | S_IWUSR },
2351 .show = cfq_max_depth_show,
2352 .store = cfq_max_depth_store,
2355 static struct attribute *default_attrs[] = {
2356 &cfq_quantum_entry.attr,
2357 &cfq_queued_entry.attr,
2358 &cfq_fifo_expire_sync_entry.attr,
2359 &cfq_fifo_expire_async_entry.attr,
2360 &cfq_back_max_entry.attr,
2361 &cfq_back_penalty_entry.attr,
2362 &cfq_slice_sync_entry.attr,
2363 &cfq_slice_async_entry.attr,
2364 &cfq_slice_async_rq_entry.attr,
2365 &cfq_slice_idle_entry.attr,
2366 &cfq_max_depth_entry.attr,
2367 NULL,
2370 #define to_cfq(atr) container_of((atr), struct cfq_fs_entry, attr)
2372 static ssize_t
2373 cfq_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
2375 elevator_t *e = container_of(kobj, elevator_t, kobj);
2376 struct cfq_fs_entry *entry = to_cfq(attr);
2378 if (!entry->show)
2379 return -EIO;
2381 return entry->show(e->elevator_data, page);
2384 static ssize_t
2385 cfq_attr_store(struct kobject *kobj, struct attribute *attr,
2386 const char *page, size_t length)
2388 elevator_t *e = container_of(kobj, elevator_t, kobj);
2389 struct cfq_fs_entry *entry = to_cfq(attr);
2391 if (!entry->store)
2392 return -EIO;
2394 return entry->store(e->elevator_data, page, length);
2397 static struct sysfs_ops cfq_sysfs_ops = {
2398 .show = cfq_attr_show,
2399 .store = cfq_attr_store,
2402 static struct kobj_type cfq_ktype = {
2403 .sysfs_ops = &cfq_sysfs_ops,
2404 .default_attrs = default_attrs,
2407 static struct elevator_type iosched_cfq = {
2408 .ops = {
2409 .elevator_merge_fn = cfq_merge,
2410 .elevator_merged_fn = cfq_merged_request,
2411 .elevator_merge_req_fn = cfq_merged_requests,
2412 .elevator_dispatch_fn = cfq_dispatch_requests,
2413 .elevator_add_req_fn = cfq_insert_request,
2414 .elevator_activate_req_fn = cfq_activate_request,
2415 .elevator_deactivate_req_fn = cfq_deactivate_request,
2416 .elevator_queue_empty_fn = cfq_queue_empty,
2417 .elevator_completed_req_fn = cfq_completed_request,
2418 .elevator_former_req_fn = cfq_former_request,
2419 .elevator_latter_req_fn = cfq_latter_request,
2420 .elevator_set_req_fn = cfq_set_request,
2421 .elevator_put_req_fn = cfq_put_request,
2422 .elevator_may_queue_fn = cfq_may_queue,
2423 .elevator_init_fn = cfq_init_queue,
2424 .elevator_exit_fn = cfq_exit_queue,
2426 .elevator_ktype = &cfq_ktype,
2427 .elevator_name = "cfq",
2428 .elevator_owner = THIS_MODULE,
2431 static int __init cfq_init(void)
2433 int ret;
2436 * could be 0 on HZ < 1000 setups
2438 if (!cfq_slice_async)
2439 cfq_slice_async = 1;
2440 if (!cfq_slice_idle)
2441 cfq_slice_idle = 1;
2443 if (cfq_slab_setup())
2444 return -ENOMEM;
2446 ret = elv_register(&iosched_cfq);
2447 if (ret)
2448 cfq_slab_kill();
2450 return ret;
2453 static void __exit cfq_exit(void)
2455 elv_unregister(&iosched_cfq);
2456 cfq_slab_kill();
2459 module_init(cfq_init);
2460 module_exit(cfq_exit);
2462 MODULE_AUTHOR("Jens Axboe");
2463 MODULE_LICENSE("GPL");
2464 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");