Markers - remove extra format argument
[linux-2.6/pdupreez.git] / kernel / sched.c
blobad95cca4e42e19520a01f20fb2c3f8d55c78d0c6
1 /*
2 * kernel/sched.c
4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/kthread.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/reciprocal_div.h>
66 #include <linux/unistd.h>
67 #include <linux/pagemap.h>
68 #include <linux/hrtimer.h>
69 #include <linux/tick.h>
70 #include <linux/bootmem.h>
71 #include <linux/debugfs.h>
72 #include <linux/ctype.h>
73 #include <linux/ftrace.h>
75 #include <asm/tlb.h>
76 #include <asm/irq_regs.h>
79 * Convert user-nice values [ -20 ... 0 ... 19 ]
80 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
81 * and back.
83 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
84 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
85 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
88 * 'User priority' is the nice value converted to something we
89 * can work with better when scaling various scheduler parameters,
90 * it's a [ 0 ... 39 ] range.
92 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
93 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
94 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
97 * Helpers for converting nanosecond timing to jiffy resolution
99 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
101 #define NICE_0_LOAD SCHED_LOAD_SCALE
102 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
105 * These are the 'tuning knobs' of the scheduler:
107 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
108 * Timeslices get refilled after they expire.
110 #define DEF_TIMESLICE (100 * HZ / 1000)
113 * single value that denotes runtime == period, ie unlimited time.
115 #define RUNTIME_INF ((u64)~0ULL)
117 #ifdef CONFIG_SMP
119 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
120 * Since cpu_power is a 'constant', we can use a reciprocal divide.
122 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
124 return reciprocal_divide(load, sg->reciprocal_cpu_power);
128 * Each time a sched group cpu_power is changed,
129 * we must compute its reciprocal value
131 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
133 sg->__cpu_power += val;
134 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
136 #endif
138 static inline int rt_policy(int policy)
140 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
141 return 1;
142 return 0;
145 static inline int task_has_rt_policy(struct task_struct *p)
147 return rt_policy(p->policy);
151 * This is the priority-queue data structure of the RT scheduling class:
153 struct rt_prio_array {
154 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
155 struct list_head queue[MAX_RT_PRIO];
158 struct rt_bandwidth {
159 /* nests inside the rq lock: */
160 spinlock_t rt_runtime_lock;
161 ktime_t rt_period;
162 u64 rt_runtime;
163 struct hrtimer rt_period_timer;
166 static struct rt_bandwidth def_rt_bandwidth;
168 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
170 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
172 struct rt_bandwidth *rt_b =
173 container_of(timer, struct rt_bandwidth, rt_period_timer);
174 ktime_t now;
175 int overrun;
176 int idle = 0;
178 for (;;) {
179 now = hrtimer_cb_get_time(timer);
180 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
182 if (!overrun)
183 break;
185 idle = do_sched_rt_period_timer(rt_b, overrun);
188 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
191 static
192 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
194 rt_b->rt_period = ns_to_ktime(period);
195 rt_b->rt_runtime = runtime;
197 spin_lock_init(&rt_b->rt_runtime_lock);
199 hrtimer_init(&rt_b->rt_period_timer,
200 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
201 rt_b->rt_period_timer.function = sched_rt_period_timer;
202 rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
205 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
207 ktime_t now;
209 if (rt_b->rt_runtime == RUNTIME_INF)
210 return;
212 if (hrtimer_active(&rt_b->rt_period_timer))
213 return;
215 spin_lock(&rt_b->rt_runtime_lock);
216 for (;;) {
217 if (hrtimer_active(&rt_b->rt_period_timer))
218 break;
220 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
221 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
222 hrtimer_start(&rt_b->rt_period_timer,
223 rt_b->rt_period_timer.expires,
224 HRTIMER_MODE_ABS);
226 spin_unlock(&rt_b->rt_runtime_lock);
229 #ifdef CONFIG_RT_GROUP_SCHED
230 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
232 hrtimer_cancel(&rt_b->rt_period_timer);
234 #endif
237 * sched_domains_mutex serializes calls to arch_init_sched_domains,
238 * detach_destroy_domains and partition_sched_domains.
240 static DEFINE_MUTEX(sched_domains_mutex);
242 #ifdef CONFIG_GROUP_SCHED
244 #include <linux/cgroup.h>
246 struct cfs_rq;
248 static LIST_HEAD(task_groups);
250 /* task group related information */
251 struct task_group {
252 #ifdef CONFIG_CGROUP_SCHED
253 struct cgroup_subsys_state css;
254 #endif
256 #ifdef CONFIG_FAIR_GROUP_SCHED
257 /* schedulable entities of this group on each cpu */
258 struct sched_entity **se;
259 /* runqueue "owned" by this group on each cpu */
260 struct cfs_rq **cfs_rq;
261 unsigned long shares;
262 #endif
264 #ifdef CONFIG_RT_GROUP_SCHED
265 struct sched_rt_entity **rt_se;
266 struct rt_rq **rt_rq;
268 struct rt_bandwidth rt_bandwidth;
269 #endif
271 struct rcu_head rcu;
272 struct list_head list;
274 struct task_group *parent;
275 struct list_head siblings;
276 struct list_head children;
279 #ifdef CONFIG_USER_SCHED
282 * Root task group.
283 * Every UID task group (including init_task_group aka UID-0) will
284 * be a child to this group.
286 struct task_group root_task_group;
288 #ifdef CONFIG_FAIR_GROUP_SCHED
289 /* Default task group's sched entity on each cpu */
290 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
291 /* Default task group's cfs_rq on each cpu */
292 static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
293 #endif
295 #ifdef CONFIG_RT_GROUP_SCHED
296 static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
297 static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
298 #endif
299 #else
300 #define root_task_group init_task_group
301 #endif
303 /* task_group_lock serializes add/remove of task groups and also changes to
304 * a task group's cpu shares.
306 static DEFINE_SPINLOCK(task_group_lock);
308 #ifdef CONFIG_FAIR_GROUP_SCHED
309 #ifdef CONFIG_USER_SCHED
310 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
311 #else
312 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
313 #endif
316 * A weight of 0, 1 or ULONG_MAX can cause arithmetics problems.
317 * (The default weight is 1024 - so there's no practical
318 * limitation from this.)
320 #define MIN_SHARES 2
321 #define MAX_SHARES (ULONG_MAX - 1)
323 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
324 #endif
326 /* Default task group.
327 * Every task in system belong to this group at bootup.
329 struct task_group init_task_group;
331 /* return group to which a task belongs */
332 static inline struct task_group *task_group(struct task_struct *p)
334 struct task_group *tg;
336 #ifdef CONFIG_USER_SCHED
337 tg = p->user->tg;
338 #elif defined(CONFIG_CGROUP_SCHED)
339 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
340 struct task_group, css);
341 #else
342 tg = &init_task_group;
343 #endif
344 return tg;
347 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
348 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
350 #ifdef CONFIG_FAIR_GROUP_SCHED
351 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
352 p->se.parent = task_group(p)->se[cpu];
353 #endif
355 #ifdef CONFIG_RT_GROUP_SCHED
356 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
357 p->rt.parent = task_group(p)->rt_se[cpu];
358 #endif
361 #else
363 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
365 #endif /* CONFIG_GROUP_SCHED */
367 /* CFS-related fields in a runqueue */
368 struct cfs_rq {
369 struct load_weight load;
370 unsigned long nr_running;
372 u64 exec_clock;
373 u64 min_vruntime;
375 struct rb_root tasks_timeline;
376 struct rb_node *rb_leftmost;
378 struct list_head tasks;
379 struct list_head *balance_iterator;
382 * 'curr' points to currently running entity on this cfs_rq.
383 * It is set to NULL otherwise (i.e when none are currently running).
385 struct sched_entity *curr, *next;
387 unsigned long nr_spread_over;
389 #ifdef CONFIG_FAIR_GROUP_SCHED
390 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
393 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
394 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
395 * (like users, containers etc.)
397 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
398 * list is used during load balance.
400 struct list_head leaf_cfs_rq_list;
401 struct task_group *tg; /* group that "owns" this runqueue */
403 #ifdef CONFIG_SMP
404 unsigned long task_weight;
405 unsigned long shares;
407 * We need space to build a sched_domain wide view of the full task
408 * group tree, in order to avoid depending on dynamic memory allocation
409 * during the load balancing we place this in the per cpu task group
410 * hierarchy. This limits the load balancing to one instance per cpu,
411 * but more should not be needed anyway.
413 struct aggregate_struct {
415 * load = weight(cpus) * f(tg)
417 * Where f(tg) is the recursive weight fraction assigned to
418 * this group.
420 unsigned long load;
423 * part of the group weight distributed to this span.
425 unsigned long shares;
428 * The sum of all runqueue weights within this span.
430 unsigned long rq_weight;
433 * Weight contributed by tasks; this is the part we can
434 * influence by moving tasks around.
436 unsigned long task_weight;
437 } aggregate;
438 #endif
439 #endif
442 /* Real-Time classes' related field in a runqueue: */
443 struct rt_rq {
444 struct rt_prio_array active;
445 unsigned long rt_nr_running;
446 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
447 int highest_prio; /* highest queued rt task prio */
448 #endif
449 #ifdef CONFIG_SMP
450 unsigned long rt_nr_migratory;
451 int overloaded;
452 #endif
453 int rt_throttled;
454 u64 rt_time;
455 u64 rt_runtime;
456 /* Nests inside the rq lock: */
457 spinlock_t rt_runtime_lock;
459 #ifdef CONFIG_RT_GROUP_SCHED
460 unsigned long rt_nr_boosted;
462 struct rq *rq;
463 struct list_head leaf_rt_rq_list;
464 struct task_group *tg;
465 struct sched_rt_entity *rt_se;
466 #endif
469 #ifdef CONFIG_SMP
472 * We add the notion of a root-domain which will be used to define per-domain
473 * variables. Each exclusive cpuset essentially defines an island domain by
474 * fully partitioning the member cpus from any other cpuset. Whenever a new
475 * exclusive cpuset is created, we also create and attach a new root-domain
476 * object.
479 struct root_domain {
480 atomic_t refcount;
481 cpumask_t span;
482 cpumask_t online;
485 * The "RT overload" flag: it gets set if a CPU has more than
486 * one runnable RT task.
488 cpumask_t rto_mask;
489 atomic_t rto_count;
493 * By default the system creates a single root-domain with all cpus as
494 * members (mimicking the global state we have today).
496 static struct root_domain def_root_domain;
498 #endif
501 * This is the main, per-CPU runqueue data structure.
503 * Locking rule: those places that want to lock multiple runqueues
504 * (such as the load balancing or the thread migration code), lock
505 * acquire operations must be ordered by ascending &runqueue.
507 struct rq {
508 /* runqueue lock: */
509 spinlock_t lock;
512 * nr_running and cpu_load should be in the same cacheline because
513 * remote CPUs use both these fields when doing load calculation.
515 unsigned long nr_running;
516 #define CPU_LOAD_IDX_MAX 5
517 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
518 unsigned char idle_at_tick;
519 #ifdef CONFIG_NO_HZ
520 unsigned long last_tick_seen;
521 unsigned char in_nohz_recently;
522 #endif
523 /* capture load from *all* tasks on this cpu: */
524 struct load_weight load;
525 unsigned long nr_load_updates;
526 u64 nr_switches;
528 struct cfs_rq cfs;
529 struct rt_rq rt;
531 #ifdef CONFIG_FAIR_GROUP_SCHED
532 /* list of leaf cfs_rq on this cpu: */
533 struct list_head leaf_cfs_rq_list;
534 #endif
535 #ifdef CONFIG_RT_GROUP_SCHED
536 struct list_head leaf_rt_rq_list;
537 #endif
540 * This is part of a global counter where only the total sum
541 * over all CPUs matters. A task can increase this counter on
542 * one CPU and if it got migrated afterwards it may decrease
543 * it on another CPU. Always updated under the runqueue lock:
545 unsigned long nr_uninterruptible;
547 struct task_struct *curr, *idle;
548 unsigned long next_balance;
549 struct mm_struct *prev_mm;
551 u64 clock;
553 atomic_t nr_iowait;
555 #ifdef CONFIG_SMP
556 struct root_domain *rd;
557 struct sched_domain *sd;
559 /* For active balancing */
560 int active_balance;
561 int push_cpu;
562 /* cpu of this runqueue: */
563 int cpu;
565 struct task_struct *migration_thread;
566 struct list_head migration_queue;
567 #endif
569 #ifdef CONFIG_SCHED_HRTICK
570 unsigned long hrtick_flags;
571 ktime_t hrtick_expire;
572 struct hrtimer hrtick_timer;
573 #endif
575 #ifdef CONFIG_SCHEDSTATS
576 /* latency stats */
577 struct sched_info rq_sched_info;
579 /* sys_sched_yield() stats */
580 unsigned int yld_exp_empty;
581 unsigned int yld_act_empty;
582 unsigned int yld_both_empty;
583 unsigned int yld_count;
585 /* schedule() stats */
586 unsigned int sched_switch;
587 unsigned int sched_count;
588 unsigned int sched_goidle;
590 /* try_to_wake_up() stats */
591 unsigned int ttwu_count;
592 unsigned int ttwu_local;
594 /* BKL stats */
595 unsigned int bkl_count;
596 #endif
597 struct lock_class_key rq_lock_key;
600 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
602 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
604 rq->curr->sched_class->check_preempt_curr(rq, p);
607 static inline int cpu_of(struct rq *rq)
609 #ifdef CONFIG_SMP
610 return rq->cpu;
611 #else
612 return 0;
613 #endif
617 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
618 * See detach_destroy_domains: synchronize_sched for details.
620 * The domain tree of any CPU may only be accessed from within
621 * preempt-disabled sections.
623 #define for_each_domain(cpu, __sd) \
624 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
626 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
627 #define this_rq() (&__get_cpu_var(runqueues))
628 #define task_rq(p) cpu_rq(task_cpu(p))
629 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
631 static inline void update_rq_clock(struct rq *rq)
633 rq->clock = sched_clock_cpu(cpu_of(rq));
637 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
639 #ifdef CONFIG_SCHED_DEBUG
640 # define const_debug __read_mostly
641 #else
642 # define const_debug static const
643 #endif
646 * runqueue_is_locked
648 * Returns true if the current cpu runqueue is locked.
649 * This interface allows printk to be called with the runqueue lock
650 * held and know whether or not it is OK to wake up the klogd.
652 int runqueue_is_locked(void)
654 int cpu = get_cpu();
655 struct rq *rq = cpu_rq(cpu);
656 int ret;
658 ret = spin_is_locked(&rq->lock);
659 put_cpu();
660 return ret;
664 * Debugging: various feature bits
667 #define SCHED_FEAT(name, enabled) \
668 __SCHED_FEAT_##name ,
670 enum {
671 #include "sched_features.h"
674 #undef SCHED_FEAT
676 #define SCHED_FEAT(name, enabled) \
677 (1UL << __SCHED_FEAT_##name) * enabled |
679 const_debug unsigned int sysctl_sched_features =
680 #include "sched_features.h"
683 #undef SCHED_FEAT
685 #ifdef CONFIG_SCHED_DEBUG
686 #define SCHED_FEAT(name, enabled) \
687 #name ,
689 static __read_mostly char *sched_feat_names[] = {
690 #include "sched_features.h"
691 NULL
694 #undef SCHED_FEAT
696 static int sched_feat_open(struct inode *inode, struct file *filp)
698 filp->private_data = inode->i_private;
699 return 0;
702 static ssize_t
703 sched_feat_read(struct file *filp, char __user *ubuf,
704 size_t cnt, loff_t *ppos)
706 char *buf;
707 int r = 0;
708 int len = 0;
709 int i;
711 for (i = 0; sched_feat_names[i]; i++) {
712 len += strlen(sched_feat_names[i]);
713 len += 4;
716 buf = kmalloc(len + 2, GFP_KERNEL);
717 if (!buf)
718 return -ENOMEM;
720 for (i = 0; sched_feat_names[i]; i++) {
721 if (sysctl_sched_features & (1UL << i))
722 r += sprintf(buf + r, "%s ", sched_feat_names[i]);
723 else
724 r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
727 r += sprintf(buf + r, "\n");
728 WARN_ON(r >= len + 2);
730 r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
732 kfree(buf);
734 return r;
737 static ssize_t
738 sched_feat_write(struct file *filp, const char __user *ubuf,
739 size_t cnt, loff_t *ppos)
741 char buf[64];
742 char *cmp = buf;
743 int neg = 0;
744 int i;
746 if (cnt > 63)
747 cnt = 63;
749 if (copy_from_user(&buf, ubuf, cnt))
750 return -EFAULT;
752 buf[cnt] = 0;
754 if (strncmp(buf, "NO_", 3) == 0) {
755 neg = 1;
756 cmp += 3;
759 for (i = 0; sched_feat_names[i]; i++) {
760 int len = strlen(sched_feat_names[i]);
762 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
763 if (neg)
764 sysctl_sched_features &= ~(1UL << i);
765 else
766 sysctl_sched_features |= (1UL << i);
767 break;
771 if (!sched_feat_names[i])
772 return -EINVAL;
774 filp->f_pos += cnt;
776 return cnt;
779 static struct file_operations sched_feat_fops = {
780 .open = sched_feat_open,
781 .read = sched_feat_read,
782 .write = sched_feat_write,
785 static __init int sched_init_debug(void)
787 debugfs_create_file("sched_features", 0644, NULL, NULL,
788 &sched_feat_fops);
790 return 0;
792 late_initcall(sched_init_debug);
794 #endif
796 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
799 * Number of tasks to iterate in a single balance run.
800 * Limited because this is done with IRQs disabled.
802 const_debug unsigned int sysctl_sched_nr_migrate = 32;
805 * period over which we measure -rt task cpu usage in us.
806 * default: 1s
808 unsigned int sysctl_sched_rt_period = 1000000;
810 static __read_mostly int scheduler_running;
813 * part of the period that we allow rt tasks to run in us.
814 * default: 0.95s
816 int sysctl_sched_rt_runtime = 950000;
818 static inline u64 global_rt_period(void)
820 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
823 static inline u64 global_rt_runtime(void)
825 if (sysctl_sched_rt_period < 0)
826 return RUNTIME_INF;
828 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
831 unsigned long long time_sync_thresh = 100000;
833 static DEFINE_PER_CPU(unsigned long long, time_offset);
834 static DEFINE_PER_CPU(unsigned long long, prev_cpu_time);
837 * Global lock which we take every now and then to synchronize
838 * the CPUs time. This method is not warp-safe, but it's good
839 * enough to synchronize slowly diverging time sources and thus
840 * it's good enough for tracing:
842 static DEFINE_SPINLOCK(time_sync_lock);
843 static unsigned long long prev_global_time;
845 static unsigned long long __sync_cpu_clock(unsigned long long time, int cpu)
848 * We want this inlined, to not get tracer function calls
849 * in this critical section:
851 spin_acquire(&time_sync_lock.dep_map, 0, 0, _THIS_IP_);
852 __raw_spin_lock(&time_sync_lock.raw_lock);
854 if (time < prev_global_time) {
855 per_cpu(time_offset, cpu) += prev_global_time - time;
856 time = prev_global_time;
857 } else {
858 prev_global_time = time;
861 __raw_spin_unlock(&time_sync_lock.raw_lock);
862 spin_release(&time_sync_lock.dep_map, 1, _THIS_IP_);
864 return time;
867 static unsigned long long __cpu_clock(int cpu)
869 unsigned long long now;
872 * Only call sched_clock() if the scheduler has already been
873 * initialized (some code might call cpu_clock() very early):
875 if (unlikely(!scheduler_running))
876 return 0;
878 now = sched_clock_cpu(cpu);
880 return now;
884 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
885 * clock constructed from sched_clock():
887 unsigned long long cpu_clock(int cpu)
889 unsigned long long prev_cpu_time, time, delta_time;
890 unsigned long flags;
892 local_irq_save(flags);
893 prev_cpu_time = per_cpu(prev_cpu_time, cpu);
894 time = __cpu_clock(cpu) + per_cpu(time_offset, cpu);
895 delta_time = time-prev_cpu_time;
897 if (unlikely(delta_time > time_sync_thresh)) {
898 time = __sync_cpu_clock(time, cpu);
899 per_cpu(prev_cpu_time, cpu) = time;
901 local_irq_restore(flags);
903 return time;
905 EXPORT_SYMBOL_GPL(cpu_clock);
907 #ifndef prepare_arch_switch
908 # define prepare_arch_switch(next) do { } while (0)
909 #endif
910 #ifndef finish_arch_switch
911 # define finish_arch_switch(prev) do { } while (0)
912 #endif
914 static inline int task_current(struct rq *rq, struct task_struct *p)
916 return rq->curr == p;
919 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
920 static inline int task_running(struct rq *rq, struct task_struct *p)
922 return task_current(rq, p);
925 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
929 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
931 #ifdef CONFIG_DEBUG_SPINLOCK
932 /* this is a valid case when another task releases the spinlock */
933 rq->lock.owner = current;
934 #endif
936 * If we are tracking spinlock dependencies then we have to
937 * fix up the runqueue lock - which gets 'carried over' from
938 * prev into current:
940 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
942 spin_unlock_irq(&rq->lock);
945 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
946 static inline int task_running(struct rq *rq, struct task_struct *p)
948 #ifdef CONFIG_SMP
949 return p->oncpu;
950 #else
951 return task_current(rq, p);
952 #endif
955 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
957 #ifdef CONFIG_SMP
959 * We can optimise this out completely for !SMP, because the
960 * SMP rebalancing from interrupt is the only thing that cares
961 * here.
963 next->oncpu = 1;
964 #endif
965 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
966 spin_unlock_irq(&rq->lock);
967 #else
968 spin_unlock(&rq->lock);
969 #endif
972 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
974 #ifdef CONFIG_SMP
976 * After ->oncpu is cleared, the task can be moved to a different CPU.
977 * We must ensure this doesn't happen until the switch is completely
978 * finished.
980 smp_wmb();
981 prev->oncpu = 0;
982 #endif
983 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
984 local_irq_enable();
985 #endif
987 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
990 * __task_rq_lock - lock the runqueue a given task resides on.
991 * Must be called interrupts disabled.
993 static inline struct rq *__task_rq_lock(struct task_struct *p)
994 __acquires(rq->lock)
996 for (;;) {
997 struct rq *rq = task_rq(p);
998 spin_lock(&rq->lock);
999 if (likely(rq == task_rq(p)))
1000 return rq;
1001 spin_unlock(&rq->lock);
1006 * task_rq_lock - lock the runqueue a given task resides on and disable
1007 * interrupts. Note the ordering: we can safely lookup the task_rq without
1008 * explicitly disabling preemption.
1010 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1011 __acquires(rq->lock)
1013 struct rq *rq;
1015 for (;;) {
1016 local_irq_save(*flags);
1017 rq = task_rq(p);
1018 spin_lock(&rq->lock);
1019 if (likely(rq == task_rq(p)))
1020 return rq;
1021 spin_unlock_irqrestore(&rq->lock, *flags);
1025 static void __task_rq_unlock(struct rq *rq)
1026 __releases(rq->lock)
1028 spin_unlock(&rq->lock);
1031 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1032 __releases(rq->lock)
1034 spin_unlock_irqrestore(&rq->lock, *flags);
1038 * this_rq_lock - lock this runqueue and disable interrupts.
1040 static struct rq *this_rq_lock(void)
1041 __acquires(rq->lock)
1043 struct rq *rq;
1045 local_irq_disable();
1046 rq = this_rq();
1047 spin_lock(&rq->lock);
1049 return rq;
1052 static void __resched_task(struct task_struct *p, int tif_bit);
1054 static inline void resched_task(struct task_struct *p)
1056 __resched_task(p, TIF_NEED_RESCHED);
1059 #ifdef CONFIG_SCHED_HRTICK
1061 * Use HR-timers to deliver accurate preemption points.
1063 * Its all a bit involved since we cannot program an hrt while holding the
1064 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1065 * reschedule event.
1067 * When we get rescheduled we reprogram the hrtick_timer outside of the
1068 * rq->lock.
1070 static inline void resched_hrt(struct task_struct *p)
1072 __resched_task(p, TIF_HRTICK_RESCHED);
1075 static inline void resched_rq(struct rq *rq)
1077 unsigned long flags;
1079 spin_lock_irqsave(&rq->lock, flags);
1080 resched_task(rq->curr);
1081 spin_unlock_irqrestore(&rq->lock, flags);
1084 enum {
1085 HRTICK_SET, /* re-programm hrtick_timer */
1086 HRTICK_RESET, /* not a new slice */
1087 HRTICK_BLOCK, /* stop hrtick operations */
1091 * Use hrtick when:
1092 * - enabled by features
1093 * - hrtimer is actually high res
1095 static inline int hrtick_enabled(struct rq *rq)
1097 if (!sched_feat(HRTICK))
1098 return 0;
1099 if (unlikely(test_bit(HRTICK_BLOCK, &rq->hrtick_flags)))
1100 return 0;
1101 return hrtimer_is_hres_active(&rq->hrtick_timer);
1105 * Called to set the hrtick timer state.
1107 * called with rq->lock held and irqs disabled
1109 static void hrtick_start(struct rq *rq, u64 delay, int reset)
1111 assert_spin_locked(&rq->lock);
1114 * preempt at: now + delay
1116 rq->hrtick_expire =
1117 ktime_add_ns(rq->hrtick_timer.base->get_time(), delay);
1119 * indicate we need to program the timer
1121 __set_bit(HRTICK_SET, &rq->hrtick_flags);
1122 if (reset)
1123 __set_bit(HRTICK_RESET, &rq->hrtick_flags);
1126 * New slices are called from the schedule path and don't need a
1127 * forced reschedule.
1129 if (reset)
1130 resched_hrt(rq->curr);
1133 static void hrtick_clear(struct rq *rq)
1135 if (hrtimer_active(&rq->hrtick_timer))
1136 hrtimer_cancel(&rq->hrtick_timer);
1140 * Update the timer from the possible pending state.
1142 static void hrtick_set(struct rq *rq)
1144 ktime_t time;
1145 int set, reset;
1146 unsigned long flags;
1148 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1150 spin_lock_irqsave(&rq->lock, flags);
1151 set = __test_and_clear_bit(HRTICK_SET, &rq->hrtick_flags);
1152 reset = __test_and_clear_bit(HRTICK_RESET, &rq->hrtick_flags);
1153 time = rq->hrtick_expire;
1154 clear_thread_flag(TIF_HRTICK_RESCHED);
1155 spin_unlock_irqrestore(&rq->lock, flags);
1157 if (set) {
1158 hrtimer_start(&rq->hrtick_timer, time, HRTIMER_MODE_ABS);
1159 if (reset && !hrtimer_active(&rq->hrtick_timer))
1160 resched_rq(rq);
1161 } else
1162 hrtick_clear(rq);
1166 * High-resolution timer tick.
1167 * Runs from hardirq context with interrupts disabled.
1169 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1171 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1173 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1175 spin_lock(&rq->lock);
1176 update_rq_clock(rq);
1177 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1178 spin_unlock(&rq->lock);
1180 return HRTIMER_NORESTART;
1183 static void hotplug_hrtick_disable(int cpu)
1185 struct rq *rq = cpu_rq(cpu);
1186 unsigned long flags;
1188 spin_lock_irqsave(&rq->lock, flags);
1189 rq->hrtick_flags = 0;
1190 __set_bit(HRTICK_BLOCK, &rq->hrtick_flags);
1191 spin_unlock_irqrestore(&rq->lock, flags);
1193 hrtick_clear(rq);
1196 static void hotplug_hrtick_enable(int cpu)
1198 struct rq *rq = cpu_rq(cpu);
1199 unsigned long flags;
1201 spin_lock_irqsave(&rq->lock, flags);
1202 __clear_bit(HRTICK_BLOCK, &rq->hrtick_flags);
1203 spin_unlock_irqrestore(&rq->lock, flags);
1206 static int
1207 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1209 int cpu = (int)(long)hcpu;
1211 switch (action) {
1212 case CPU_UP_CANCELED:
1213 case CPU_UP_CANCELED_FROZEN:
1214 case CPU_DOWN_PREPARE:
1215 case CPU_DOWN_PREPARE_FROZEN:
1216 case CPU_DEAD:
1217 case CPU_DEAD_FROZEN:
1218 hotplug_hrtick_disable(cpu);
1219 return NOTIFY_OK;
1221 case CPU_UP_PREPARE:
1222 case CPU_UP_PREPARE_FROZEN:
1223 case CPU_DOWN_FAILED:
1224 case CPU_DOWN_FAILED_FROZEN:
1225 case CPU_ONLINE:
1226 case CPU_ONLINE_FROZEN:
1227 hotplug_hrtick_enable(cpu);
1228 return NOTIFY_OK;
1231 return NOTIFY_DONE;
1234 static void init_hrtick(void)
1236 hotcpu_notifier(hotplug_hrtick, 0);
1239 static void init_rq_hrtick(struct rq *rq)
1241 rq->hrtick_flags = 0;
1242 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1243 rq->hrtick_timer.function = hrtick;
1244 rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
1247 void hrtick_resched(void)
1249 struct rq *rq;
1250 unsigned long flags;
1252 if (!test_thread_flag(TIF_HRTICK_RESCHED))
1253 return;
1255 local_irq_save(flags);
1256 rq = cpu_rq(smp_processor_id());
1257 hrtick_set(rq);
1258 local_irq_restore(flags);
1260 #else
1261 static inline void hrtick_clear(struct rq *rq)
1265 static inline void hrtick_set(struct rq *rq)
1269 static inline void init_rq_hrtick(struct rq *rq)
1273 void hrtick_resched(void)
1277 static inline void init_hrtick(void)
1280 #endif
1283 * resched_task - mark a task 'to be rescheduled now'.
1285 * On UP this means the setting of the need_resched flag, on SMP it
1286 * might also involve a cross-CPU call to trigger the scheduler on
1287 * the target CPU.
1289 #ifdef CONFIG_SMP
1291 #ifndef tsk_is_polling
1292 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1293 #endif
1295 static void __resched_task(struct task_struct *p, int tif_bit)
1297 int cpu;
1299 assert_spin_locked(&task_rq(p)->lock);
1301 if (unlikely(test_tsk_thread_flag(p, tif_bit)))
1302 return;
1304 set_tsk_thread_flag(p, tif_bit);
1306 cpu = task_cpu(p);
1307 if (cpu == smp_processor_id())
1308 return;
1310 /* NEED_RESCHED must be visible before we test polling */
1311 smp_mb();
1312 if (!tsk_is_polling(p))
1313 smp_send_reschedule(cpu);
1316 static void resched_cpu(int cpu)
1318 struct rq *rq = cpu_rq(cpu);
1319 unsigned long flags;
1321 if (!spin_trylock_irqsave(&rq->lock, flags))
1322 return;
1323 resched_task(cpu_curr(cpu));
1324 spin_unlock_irqrestore(&rq->lock, flags);
1327 #ifdef CONFIG_NO_HZ
1329 * When add_timer_on() enqueues a timer into the timer wheel of an
1330 * idle CPU then this timer might expire before the next timer event
1331 * which is scheduled to wake up that CPU. In case of a completely
1332 * idle system the next event might even be infinite time into the
1333 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1334 * leaves the inner idle loop so the newly added timer is taken into
1335 * account when the CPU goes back to idle and evaluates the timer
1336 * wheel for the next timer event.
1338 void wake_up_idle_cpu(int cpu)
1340 struct rq *rq = cpu_rq(cpu);
1342 if (cpu == smp_processor_id())
1343 return;
1346 * This is safe, as this function is called with the timer
1347 * wheel base lock of (cpu) held. When the CPU is on the way
1348 * to idle and has not yet set rq->curr to idle then it will
1349 * be serialized on the timer wheel base lock and take the new
1350 * timer into account automatically.
1352 if (rq->curr != rq->idle)
1353 return;
1356 * We can set TIF_RESCHED on the idle task of the other CPU
1357 * lockless. The worst case is that the other CPU runs the
1358 * idle task through an additional NOOP schedule()
1360 set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
1362 /* NEED_RESCHED must be visible before we test polling */
1363 smp_mb();
1364 if (!tsk_is_polling(rq->idle))
1365 smp_send_reschedule(cpu);
1367 #endif
1369 #else
1370 static void __resched_task(struct task_struct *p, int tif_bit)
1372 assert_spin_locked(&task_rq(p)->lock);
1373 set_tsk_thread_flag(p, tif_bit);
1375 #endif
1377 #if BITS_PER_LONG == 32
1378 # define WMULT_CONST (~0UL)
1379 #else
1380 # define WMULT_CONST (1UL << 32)
1381 #endif
1383 #define WMULT_SHIFT 32
1386 * Shift right and round:
1388 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1391 * delta *= weight / lw
1393 static unsigned long
1394 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1395 struct load_weight *lw)
1397 u64 tmp;
1399 if (!lw->inv_weight)
1400 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)/(lw->weight+1);
1402 tmp = (u64)delta_exec * weight;
1404 * Check whether we'd overflow the 64-bit multiplication:
1406 if (unlikely(tmp > WMULT_CONST))
1407 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1408 WMULT_SHIFT/2);
1409 else
1410 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1412 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1415 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1417 lw->weight += inc;
1418 lw->inv_weight = 0;
1421 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1423 lw->weight -= dec;
1424 lw->inv_weight = 0;
1428 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1429 * of tasks with abnormal "nice" values across CPUs the contribution that
1430 * each task makes to its run queue's load is weighted according to its
1431 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1432 * scaled version of the new time slice allocation that they receive on time
1433 * slice expiry etc.
1436 #define WEIGHT_IDLEPRIO 2
1437 #define WMULT_IDLEPRIO (1 << 31)
1440 * Nice levels are multiplicative, with a gentle 10% change for every
1441 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1442 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1443 * that remained on nice 0.
1445 * The "10% effect" is relative and cumulative: from _any_ nice level,
1446 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1447 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1448 * If a task goes up by ~10% and another task goes down by ~10% then
1449 * the relative distance between them is ~25%.)
1451 static const int prio_to_weight[40] = {
1452 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1453 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1454 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1455 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1456 /* 0 */ 1024, 820, 655, 526, 423,
1457 /* 5 */ 335, 272, 215, 172, 137,
1458 /* 10 */ 110, 87, 70, 56, 45,
1459 /* 15 */ 36, 29, 23, 18, 15,
1463 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1465 * In cases where the weight does not change often, we can use the
1466 * precalculated inverse to speed up arithmetics by turning divisions
1467 * into multiplications:
1469 static const u32 prio_to_wmult[40] = {
1470 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1471 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1472 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1473 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1474 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1475 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1476 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1477 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1480 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1483 * runqueue iterator, to support SMP load-balancing between different
1484 * scheduling classes, without having to expose their internal data
1485 * structures to the load-balancing proper:
1487 struct rq_iterator {
1488 void *arg;
1489 struct task_struct *(*start)(void *);
1490 struct task_struct *(*next)(void *);
1493 #ifdef CONFIG_SMP
1494 static unsigned long
1495 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1496 unsigned long max_load_move, struct sched_domain *sd,
1497 enum cpu_idle_type idle, int *all_pinned,
1498 int *this_best_prio, struct rq_iterator *iterator);
1500 static int
1501 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1502 struct sched_domain *sd, enum cpu_idle_type idle,
1503 struct rq_iterator *iterator);
1504 #endif
1506 #ifdef CONFIG_CGROUP_CPUACCT
1507 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1508 #else
1509 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1510 #endif
1512 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1514 update_load_add(&rq->load, load);
1517 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1519 update_load_sub(&rq->load, load);
1522 #ifdef CONFIG_SMP
1523 static unsigned long source_load(int cpu, int type);
1524 static unsigned long target_load(int cpu, int type);
1525 static unsigned long cpu_avg_load_per_task(int cpu);
1526 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1528 #ifdef CONFIG_FAIR_GROUP_SCHED
1531 * Group load balancing.
1533 * We calculate a few balance domain wide aggregate numbers; load and weight.
1534 * Given the pictures below, and assuming each item has equal weight:
1536 * root 1 - thread
1537 * / | \ A - group
1538 * A 1 B
1539 * /|\ / \
1540 * C 2 D 3 4
1541 * | |
1542 * 5 6
1544 * load:
1545 * A and B get 1/3-rd of the total load. C and D get 1/3-rd of A's 1/3-rd,
1546 * which equals 1/9-th of the total load.
1548 * shares:
1549 * The weight of this group on the selected cpus.
1551 * rq_weight:
1552 * Direct sum of all the cpu's their rq weight, e.g. A would get 3 while
1553 * B would get 2.
1555 * task_weight:
1556 * Part of the rq_weight contributed by tasks; all groups except B would
1557 * get 1, B gets 2.
1560 static inline struct aggregate_struct *
1561 aggregate(struct task_group *tg, struct sched_domain *sd)
1563 return &tg->cfs_rq[sd->first_cpu]->aggregate;
1566 typedef void (*aggregate_func)(struct task_group *, struct sched_domain *);
1569 * Iterate the full tree, calling @down when first entering a node and @up when
1570 * leaving it for the final time.
1572 static
1573 void aggregate_walk_tree(aggregate_func down, aggregate_func up,
1574 struct sched_domain *sd)
1576 struct task_group *parent, *child;
1578 rcu_read_lock();
1579 parent = &root_task_group;
1580 down:
1581 (*down)(parent, sd);
1582 list_for_each_entry_rcu(child, &parent->children, siblings) {
1583 parent = child;
1584 goto down;
1587 continue;
1589 (*up)(parent, sd);
1591 child = parent;
1592 parent = parent->parent;
1593 if (parent)
1594 goto up;
1595 rcu_read_unlock();
1599 * Calculate the aggregate runqueue weight.
1601 static
1602 void aggregate_group_weight(struct task_group *tg, struct sched_domain *sd)
1604 unsigned long rq_weight = 0;
1605 unsigned long task_weight = 0;
1606 int i;
1608 for_each_cpu_mask(i, sd->span) {
1609 rq_weight += tg->cfs_rq[i]->load.weight;
1610 task_weight += tg->cfs_rq[i]->task_weight;
1613 aggregate(tg, sd)->rq_weight = rq_weight;
1614 aggregate(tg, sd)->task_weight = task_weight;
1618 * Compute the weight of this group on the given cpus.
1620 static
1621 void aggregate_group_shares(struct task_group *tg, struct sched_domain *sd)
1623 unsigned long shares = 0;
1624 int i;
1626 for_each_cpu_mask(i, sd->span)
1627 shares += tg->cfs_rq[i]->shares;
1629 if ((!shares && aggregate(tg, sd)->rq_weight) || shares > tg->shares)
1630 shares = tg->shares;
1632 aggregate(tg, sd)->shares = shares;
1636 * Compute the load fraction assigned to this group, relies on the aggregate
1637 * weight and this group's parent's load, i.e. top-down.
1639 static
1640 void aggregate_group_load(struct task_group *tg, struct sched_domain *sd)
1642 unsigned long load;
1644 if (!tg->parent) {
1645 int i;
1647 load = 0;
1648 for_each_cpu_mask(i, sd->span)
1649 load += cpu_rq(i)->load.weight;
1651 } else {
1652 load = aggregate(tg->parent, sd)->load;
1655 * shares is our weight in the parent's rq so
1656 * shares/parent->rq_weight gives our fraction of the load
1658 load *= aggregate(tg, sd)->shares;
1659 load /= aggregate(tg->parent, sd)->rq_weight + 1;
1662 aggregate(tg, sd)->load = load;
1665 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1668 * Calculate and set the cpu's group shares.
1670 static void
1671 __update_group_shares_cpu(struct task_group *tg, struct sched_domain *sd,
1672 int tcpu)
1674 int boost = 0;
1675 unsigned long shares;
1676 unsigned long rq_weight;
1678 if (!tg->se[tcpu])
1679 return;
1681 rq_weight = tg->cfs_rq[tcpu]->load.weight;
1684 * If there are currently no tasks on the cpu pretend there is one of
1685 * average load so that when a new task gets to run here it will not
1686 * get delayed by group starvation.
1688 if (!rq_weight) {
1689 boost = 1;
1690 rq_weight = NICE_0_LOAD;
1694 * \Sum shares * rq_weight
1695 * shares = -----------------------
1696 * \Sum rq_weight
1699 shares = aggregate(tg, sd)->shares * rq_weight;
1700 shares /= aggregate(tg, sd)->rq_weight + 1;
1703 * record the actual number of shares, not the boosted amount.
1705 tg->cfs_rq[tcpu]->shares = boost ? 0 : shares;
1707 if (shares < MIN_SHARES)
1708 shares = MIN_SHARES;
1709 else if (shares > MAX_SHARES)
1710 shares = MAX_SHARES;
1712 __set_se_shares(tg->se[tcpu], shares);
1716 * Re-adjust the weights on the cpu the task came from and on the cpu the
1717 * task went to.
1719 static void
1720 __move_group_shares(struct task_group *tg, struct sched_domain *sd,
1721 int scpu, int dcpu)
1723 unsigned long shares;
1725 shares = tg->cfs_rq[scpu]->shares + tg->cfs_rq[dcpu]->shares;
1727 __update_group_shares_cpu(tg, sd, scpu);
1728 __update_group_shares_cpu(tg, sd, dcpu);
1731 * ensure we never loose shares due to rounding errors in the
1732 * above redistribution.
1734 shares -= tg->cfs_rq[scpu]->shares + tg->cfs_rq[dcpu]->shares;
1735 if (shares)
1736 tg->cfs_rq[dcpu]->shares += shares;
1740 * Because changing a group's shares changes the weight of the super-group
1741 * we need to walk up the tree and change all shares until we hit the root.
1743 static void
1744 move_group_shares(struct task_group *tg, struct sched_domain *sd,
1745 int scpu, int dcpu)
1747 while (tg) {
1748 __move_group_shares(tg, sd, scpu, dcpu);
1749 tg = tg->parent;
1753 static
1754 void aggregate_group_set_shares(struct task_group *tg, struct sched_domain *sd)
1756 unsigned long shares = aggregate(tg, sd)->shares;
1757 int i;
1759 for_each_cpu_mask(i, sd->span) {
1760 struct rq *rq = cpu_rq(i);
1761 unsigned long flags;
1763 spin_lock_irqsave(&rq->lock, flags);
1764 __update_group_shares_cpu(tg, sd, i);
1765 spin_unlock_irqrestore(&rq->lock, flags);
1768 aggregate_group_shares(tg, sd);
1771 * ensure we never loose shares due to rounding errors in the
1772 * above redistribution.
1774 shares -= aggregate(tg, sd)->shares;
1775 if (shares) {
1776 tg->cfs_rq[sd->first_cpu]->shares += shares;
1777 aggregate(tg, sd)->shares += shares;
1782 * Calculate the accumulative weight and recursive load of each task group
1783 * while walking down the tree.
1785 static
1786 void aggregate_get_down(struct task_group *tg, struct sched_domain *sd)
1788 aggregate_group_weight(tg, sd);
1789 aggregate_group_shares(tg, sd);
1790 aggregate_group_load(tg, sd);
1794 * Rebalance the cpu shares while walking back up the tree.
1796 static
1797 void aggregate_get_up(struct task_group *tg, struct sched_domain *sd)
1799 aggregate_group_set_shares(tg, sd);
1802 static DEFINE_PER_CPU(spinlock_t, aggregate_lock);
1804 static void __init init_aggregate(void)
1806 int i;
1808 for_each_possible_cpu(i)
1809 spin_lock_init(&per_cpu(aggregate_lock, i));
1812 static int get_aggregate(struct sched_domain *sd)
1814 if (!spin_trylock(&per_cpu(aggregate_lock, sd->first_cpu)))
1815 return 0;
1817 aggregate_walk_tree(aggregate_get_down, aggregate_get_up, sd);
1818 return 1;
1821 static void put_aggregate(struct sched_domain *sd)
1823 spin_unlock(&per_cpu(aggregate_lock, sd->first_cpu));
1826 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1828 cfs_rq->shares = shares;
1831 #else
1833 static inline void init_aggregate(void)
1837 static inline int get_aggregate(struct sched_domain *sd)
1839 return 0;
1842 static inline void put_aggregate(struct sched_domain *sd)
1845 #endif
1847 #else /* CONFIG_SMP */
1849 #ifdef CONFIG_FAIR_GROUP_SCHED
1850 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1853 #endif
1855 #endif /* CONFIG_SMP */
1857 #include "sched_stats.h"
1858 #include "sched_idletask.c"
1859 #include "sched_fair.c"
1860 #include "sched_rt.c"
1861 #ifdef CONFIG_SCHED_DEBUG
1862 # include "sched_debug.c"
1863 #endif
1865 #define sched_class_highest (&rt_sched_class)
1867 static void inc_nr_running(struct rq *rq)
1869 rq->nr_running++;
1872 static void dec_nr_running(struct rq *rq)
1874 rq->nr_running--;
1877 static void set_load_weight(struct task_struct *p)
1879 if (task_has_rt_policy(p)) {
1880 p->se.load.weight = prio_to_weight[0] * 2;
1881 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1882 return;
1886 * SCHED_IDLE tasks get minimal weight:
1888 if (p->policy == SCHED_IDLE) {
1889 p->se.load.weight = WEIGHT_IDLEPRIO;
1890 p->se.load.inv_weight = WMULT_IDLEPRIO;
1891 return;
1894 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1895 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1898 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1900 sched_info_queued(p);
1901 p->sched_class->enqueue_task(rq, p, wakeup);
1902 p->se.on_rq = 1;
1905 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1907 p->sched_class->dequeue_task(rq, p, sleep);
1908 p->se.on_rq = 0;
1912 * __normal_prio - return the priority that is based on the static prio
1914 static inline int __normal_prio(struct task_struct *p)
1916 return p->static_prio;
1920 * Calculate the expected normal priority: i.e. priority
1921 * without taking RT-inheritance into account. Might be
1922 * boosted by interactivity modifiers. Changes upon fork,
1923 * setprio syscalls, and whenever the interactivity
1924 * estimator recalculates.
1926 static inline int normal_prio(struct task_struct *p)
1928 int prio;
1930 if (task_has_rt_policy(p))
1931 prio = MAX_RT_PRIO-1 - p->rt_priority;
1932 else
1933 prio = __normal_prio(p);
1934 return prio;
1938 * Calculate the current priority, i.e. the priority
1939 * taken into account by the scheduler. This value might
1940 * be boosted by RT tasks, or might be boosted by
1941 * interactivity modifiers. Will be RT if the task got
1942 * RT-boosted. If not then it returns p->normal_prio.
1944 static int effective_prio(struct task_struct *p)
1946 p->normal_prio = normal_prio(p);
1948 * If we are RT tasks or we were boosted to RT priority,
1949 * keep the priority unchanged. Otherwise, update priority
1950 * to the normal priority:
1952 if (!rt_prio(p->prio))
1953 return p->normal_prio;
1954 return p->prio;
1958 * activate_task - move a task to the runqueue.
1960 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1962 if (task_contributes_to_load(p))
1963 rq->nr_uninterruptible--;
1965 enqueue_task(rq, p, wakeup);
1966 inc_nr_running(rq);
1970 * deactivate_task - remove a task from the runqueue.
1972 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1974 if (task_contributes_to_load(p))
1975 rq->nr_uninterruptible++;
1977 dequeue_task(rq, p, sleep);
1978 dec_nr_running(rq);
1982 * task_curr - is this task currently executing on a CPU?
1983 * @p: the task in question.
1985 inline int task_curr(const struct task_struct *p)
1987 return cpu_curr(task_cpu(p)) == p;
1990 /* Used instead of source_load when we know the type == 0 */
1991 unsigned long weighted_cpuload(const int cpu)
1993 return cpu_rq(cpu)->load.weight;
1996 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1998 set_task_rq(p, cpu);
1999 #ifdef CONFIG_SMP
2001 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
2002 * successfuly executed on another CPU. We must ensure that updates of
2003 * per-task data have been completed by this moment.
2005 smp_wmb();
2006 task_thread_info(p)->cpu = cpu;
2007 #endif
2010 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2011 const struct sched_class *prev_class,
2012 int oldprio, int running)
2014 if (prev_class != p->sched_class) {
2015 if (prev_class->switched_from)
2016 prev_class->switched_from(rq, p, running);
2017 p->sched_class->switched_to(rq, p, running);
2018 } else
2019 p->sched_class->prio_changed(rq, p, oldprio, running);
2022 #ifdef CONFIG_SMP
2025 * Is this task likely cache-hot:
2027 static int
2028 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2030 s64 delta;
2033 * Buddy candidates are cache hot:
2035 if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
2036 return 1;
2038 if (p->sched_class != &fair_sched_class)
2039 return 0;
2041 if (sysctl_sched_migration_cost == -1)
2042 return 1;
2043 if (sysctl_sched_migration_cost == 0)
2044 return 0;
2046 delta = now - p->se.exec_start;
2048 return delta < (s64)sysctl_sched_migration_cost;
2052 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2054 int old_cpu = task_cpu(p);
2055 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2056 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
2057 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
2058 u64 clock_offset;
2060 clock_offset = old_rq->clock - new_rq->clock;
2062 #ifdef CONFIG_SCHEDSTATS
2063 if (p->se.wait_start)
2064 p->se.wait_start -= clock_offset;
2065 if (p->se.sleep_start)
2066 p->se.sleep_start -= clock_offset;
2067 if (p->se.block_start)
2068 p->se.block_start -= clock_offset;
2069 if (old_cpu != new_cpu) {
2070 schedstat_inc(p, se.nr_migrations);
2071 if (task_hot(p, old_rq->clock, NULL))
2072 schedstat_inc(p, se.nr_forced2_migrations);
2074 #endif
2075 p->se.vruntime -= old_cfsrq->min_vruntime -
2076 new_cfsrq->min_vruntime;
2078 __set_task_cpu(p, new_cpu);
2081 struct migration_req {
2082 struct list_head list;
2084 struct task_struct *task;
2085 int dest_cpu;
2087 struct completion done;
2091 * The task's runqueue lock must be held.
2092 * Returns true if you have to wait for migration thread.
2094 static int
2095 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
2097 struct rq *rq = task_rq(p);
2100 * If the task is not on a runqueue (and not running), then
2101 * it is sufficient to simply update the task's cpu field.
2103 if (!p->se.on_rq && !task_running(rq, p)) {
2104 set_task_cpu(p, dest_cpu);
2105 return 0;
2108 init_completion(&req->done);
2109 req->task = p;
2110 req->dest_cpu = dest_cpu;
2111 list_add(&req->list, &rq->migration_queue);
2113 return 1;
2117 * wait_task_inactive - wait for a thread to unschedule.
2119 * The caller must ensure that the task *will* unschedule sometime soon,
2120 * else this function might spin for a *long* time. This function can't
2121 * be called with interrupts off, or it may introduce deadlock with
2122 * smp_call_function() if an IPI is sent by the same process we are
2123 * waiting to become inactive.
2125 void wait_task_inactive(struct task_struct *p)
2127 unsigned long flags;
2128 int running, on_rq;
2129 struct rq *rq;
2131 for (;;) {
2133 * We do the initial early heuristics without holding
2134 * any task-queue locks at all. We'll only try to get
2135 * the runqueue lock when things look like they will
2136 * work out!
2138 rq = task_rq(p);
2141 * If the task is actively running on another CPU
2142 * still, just relax and busy-wait without holding
2143 * any locks.
2145 * NOTE! Since we don't hold any locks, it's not
2146 * even sure that "rq" stays as the right runqueue!
2147 * But we don't care, since "task_running()" will
2148 * return false if the runqueue has changed and p
2149 * is actually now running somewhere else!
2151 while (task_running(rq, p))
2152 cpu_relax();
2155 * Ok, time to look more closely! We need the rq
2156 * lock now, to be *sure*. If we're wrong, we'll
2157 * just go back and repeat.
2159 rq = task_rq_lock(p, &flags);
2160 running = task_running(rq, p);
2161 on_rq = p->se.on_rq;
2162 task_rq_unlock(rq, &flags);
2165 * Was it really running after all now that we
2166 * checked with the proper locks actually held?
2168 * Oops. Go back and try again..
2170 if (unlikely(running)) {
2171 cpu_relax();
2172 continue;
2176 * It's not enough that it's not actively running,
2177 * it must be off the runqueue _entirely_, and not
2178 * preempted!
2180 * So if it wa still runnable (but just not actively
2181 * running right now), it's preempted, and we should
2182 * yield - it could be a while.
2184 if (unlikely(on_rq)) {
2185 schedule_timeout_uninterruptible(1);
2186 continue;
2190 * Ahh, all good. It wasn't running, and it wasn't
2191 * runnable, which means that it will never become
2192 * running in the future either. We're all done!
2194 break;
2198 /***
2199 * kick_process - kick a running thread to enter/exit the kernel
2200 * @p: the to-be-kicked thread
2202 * Cause a process which is running on another CPU to enter
2203 * kernel-mode, without any delay. (to get signals handled.)
2205 * NOTE: this function doesnt have to take the runqueue lock,
2206 * because all it wants to ensure is that the remote task enters
2207 * the kernel. If the IPI races and the task has been migrated
2208 * to another CPU then no harm is done and the purpose has been
2209 * achieved as well.
2211 void kick_process(struct task_struct *p)
2213 int cpu;
2215 preempt_disable();
2216 cpu = task_cpu(p);
2217 if ((cpu != smp_processor_id()) && task_curr(p))
2218 smp_send_reschedule(cpu);
2219 preempt_enable();
2223 * Return a low guess at the load of a migration-source cpu weighted
2224 * according to the scheduling class and "nice" value.
2226 * We want to under-estimate the load of migration sources, to
2227 * balance conservatively.
2229 static unsigned long source_load(int cpu, int type)
2231 struct rq *rq = cpu_rq(cpu);
2232 unsigned long total = weighted_cpuload(cpu);
2234 if (type == 0)
2235 return total;
2237 return min(rq->cpu_load[type-1], total);
2241 * Return a high guess at the load of a migration-target cpu weighted
2242 * according to the scheduling class and "nice" value.
2244 static unsigned long target_load(int cpu, int type)
2246 struct rq *rq = cpu_rq(cpu);
2247 unsigned long total = weighted_cpuload(cpu);
2249 if (type == 0)
2250 return total;
2252 return max(rq->cpu_load[type-1], total);
2256 * Return the average load per task on the cpu's run queue
2258 static unsigned long cpu_avg_load_per_task(int cpu)
2260 struct rq *rq = cpu_rq(cpu);
2261 unsigned long total = weighted_cpuload(cpu);
2262 unsigned long n = rq->nr_running;
2264 return n ? total / n : SCHED_LOAD_SCALE;
2268 * find_idlest_group finds and returns the least busy CPU group within the
2269 * domain.
2271 static struct sched_group *
2272 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2274 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2275 unsigned long min_load = ULONG_MAX, this_load = 0;
2276 int load_idx = sd->forkexec_idx;
2277 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2279 do {
2280 unsigned long load, avg_load;
2281 int local_group;
2282 int i;
2284 /* Skip over this group if it has no CPUs allowed */
2285 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
2286 continue;
2288 local_group = cpu_isset(this_cpu, group->cpumask);
2290 /* Tally up the load of all CPUs in the group */
2291 avg_load = 0;
2293 for_each_cpu_mask(i, group->cpumask) {
2294 /* Bias balancing toward cpus of our domain */
2295 if (local_group)
2296 load = source_load(i, load_idx);
2297 else
2298 load = target_load(i, load_idx);
2300 avg_load += load;
2303 /* Adjust by relative CPU power of the group */
2304 avg_load = sg_div_cpu_power(group,
2305 avg_load * SCHED_LOAD_SCALE);
2307 if (local_group) {
2308 this_load = avg_load;
2309 this = group;
2310 } else if (avg_load < min_load) {
2311 min_load = avg_load;
2312 idlest = group;
2314 } while (group = group->next, group != sd->groups);
2316 if (!idlest || 100*this_load < imbalance*min_load)
2317 return NULL;
2318 return idlest;
2322 * find_idlest_cpu - find the idlest cpu among the cpus in group.
2324 static int
2325 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
2326 cpumask_t *tmp)
2328 unsigned long load, min_load = ULONG_MAX;
2329 int idlest = -1;
2330 int i;
2332 /* Traverse only the allowed CPUs */
2333 cpus_and(*tmp, group->cpumask, p->cpus_allowed);
2335 for_each_cpu_mask(i, *tmp) {
2336 load = weighted_cpuload(i);
2338 if (load < min_load || (load == min_load && i == this_cpu)) {
2339 min_load = load;
2340 idlest = i;
2344 return idlest;
2348 * sched_balance_self: balance the current task (running on cpu) in domains
2349 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2350 * SD_BALANCE_EXEC.
2352 * Balance, ie. select the least loaded group.
2354 * Returns the target CPU number, or the same CPU if no balancing is needed.
2356 * preempt must be disabled.
2358 static int sched_balance_self(int cpu, int flag)
2360 struct task_struct *t = current;
2361 struct sched_domain *tmp, *sd = NULL;
2363 for_each_domain(cpu, tmp) {
2365 * If power savings logic is enabled for a domain, stop there.
2367 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2368 break;
2369 if (tmp->flags & flag)
2370 sd = tmp;
2373 while (sd) {
2374 cpumask_t span, tmpmask;
2375 struct sched_group *group;
2376 int new_cpu, weight;
2378 if (!(sd->flags & flag)) {
2379 sd = sd->child;
2380 continue;
2383 span = sd->span;
2384 group = find_idlest_group(sd, t, cpu);
2385 if (!group) {
2386 sd = sd->child;
2387 continue;
2390 new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
2391 if (new_cpu == -1 || new_cpu == cpu) {
2392 /* Now try balancing at a lower domain level of cpu */
2393 sd = sd->child;
2394 continue;
2397 /* Now try balancing at a lower domain level of new_cpu */
2398 cpu = new_cpu;
2399 sd = NULL;
2400 weight = cpus_weight(span);
2401 for_each_domain(cpu, tmp) {
2402 if (weight <= cpus_weight(tmp->span))
2403 break;
2404 if (tmp->flags & flag)
2405 sd = tmp;
2407 /* while loop will break here if sd == NULL */
2410 return cpu;
2413 #endif /* CONFIG_SMP */
2415 /***
2416 * try_to_wake_up - wake up a thread
2417 * @p: the to-be-woken-up thread
2418 * @state: the mask of task states that can be woken
2419 * @sync: do a synchronous wakeup?
2421 * Put it on the run-queue if it's not already there. The "current"
2422 * thread is always on the run-queue (except when the actual
2423 * re-schedule is in progress), and as such you're allowed to do
2424 * the simpler "current->state = TASK_RUNNING" to mark yourself
2425 * runnable without the overhead of this.
2427 * returns failure only if the task is already active.
2429 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
2431 int cpu, orig_cpu, this_cpu, success = 0;
2432 unsigned long flags;
2433 long old_state;
2434 struct rq *rq;
2436 if (!sched_feat(SYNC_WAKEUPS))
2437 sync = 0;
2439 smp_wmb();
2440 rq = task_rq_lock(p, &flags);
2441 old_state = p->state;
2442 if (!(old_state & state))
2443 goto out;
2445 if (p->se.on_rq)
2446 goto out_running;
2448 cpu = task_cpu(p);
2449 orig_cpu = cpu;
2450 this_cpu = smp_processor_id();
2452 #ifdef CONFIG_SMP
2453 if (unlikely(task_running(rq, p)))
2454 goto out_activate;
2456 cpu = p->sched_class->select_task_rq(p, sync);
2457 if (cpu != orig_cpu) {
2458 set_task_cpu(p, cpu);
2459 task_rq_unlock(rq, &flags);
2460 /* might preempt at this point */
2461 rq = task_rq_lock(p, &flags);
2462 old_state = p->state;
2463 if (!(old_state & state))
2464 goto out;
2465 if (p->se.on_rq)
2466 goto out_running;
2468 this_cpu = smp_processor_id();
2469 cpu = task_cpu(p);
2472 #ifdef CONFIG_SCHEDSTATS
2473 schedstat_inc(rq, ttwu_count);
2474 if (cpu == this_cpu)
2475 schedstat_inc(rq, ttwu_local);
2476 else {
2477 struct sched_domain *sd;
2478 for_each_domain(this_cpu, sd) {
2479 if (cpu_isset(cpu, sd->span)) {
2480 schedstat_inc(sd, ttwu_wake_remote);
2481 break;
2485 #endif
2487 out_activate:
2488 #endif /* CONFIG_SMP */
2489 schedstat_inc(p, se.nr_wakeups);
2490 if (sync)
2491 schedstat_inc(p, se.nr_wakeups_sync);
2492 if (orig_cpu != cpu)
2493 schedstat_inc(p, se.nr_wakeups_migrate);
2494 if (cpu == this_cpu)
2495 schedstat_inc(p, se.nr_wakeups_local);
2496 else
2497 schedstat_inc(p, se.nr_wakeups_remote);
2498 update_rq_clock(rq);
2499 activate_task(rq, p, 1);
2500 success = 1;
2502 out_running:
2503 ftrace_wake_up_task(rq, p, rq->curr);
2504 check_preempt_curr(rq, p);
2506 p->state = TASK_RUNNING;
2507 #ifdef CONFIG_SMP
2508 if (p->sched_class->task_wake_up)
2509 p->sched_class->task_wake_up(rq, p);
2510 #endif
2511 out:
2512 task_rq_unlock(rq, &flags);
2514 return success;
2517 int wake_up_process(struct task_struct *p)
2519 return try_to_wake_up(p, TASK_ALL, 0);
2521 EXPORT_SYMBOL(wake_up_process);
2523 int wake_up_state(struct task_struct *p, unsigned int state)
2525 return try_to_wake_up(p, state, 0);
2529 * Perform scheduler related setup for a newly forked process p.
2530 * p is forked by current.
2532 * __sched_fork() is basic setup used by init_idle() too:
2534 static void __sched_fork(struct task_struct *p)
2536 p->se.exec_start = 0;
2537 p->se.sum_exec_runtime = 0;
2538 p->se.prev_sum_exec_runtime = 0;
2539 p->se.last_wakeup = 0;
2540 p->se.avg_overlap = 0;
2542 #ifdef CONFIG_SCHEDSTATS
2543 p->se.wait_start = 0;
2544 p->se.sum_sleep_runtime = 0;
2545 p->se.sleep_start = 0;
2546 p->se.block_start = 0;
2547 p->se.sleep_max = 0;
2548 p->se.block_max = 0;
2549 p->se.exec_max = 0;
2550 p->se.slice_max = 0;
2551 p->se.wait_max = 0;
2552 #endif
2554 INIT_LIST_HEAD(&p->rt.run_list);
2555 p->se.on_rq = 0;
2556 INIT_LIST_HEAD(&p->se.group_node);
2558 #ifdef CONFIG_PREEMPT_NOTIFIERS
2559 INIT_HLIST_HEAD(&p->preempt_notifiers);
2560 #endif
2563 * We mark the process as running here, but have not actually
2564 * inserted it onto the runqueue yet. This guarantees that
2565 * nobody will actually run it, and a signal or other external
2566 * event cannot wake it up and insert it on the runqueue either.
2568 p->state = TASK_RUNNING;
2572 * fork()/clone()-time setup:
2574 void sched_fork(struct task_struct *p, int clone_flags)
2576 int cpu = get_cpu();
2578 __sched_fork(p);
2580 #ifdef CONFIG_SMP
2581 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2582 #endif
2583 set_task_cpu(p, cpu);
2586 * Make sure we do not leak PI boosting priority to the child:
2588 p->prio = current->normal_prio;
2589 if (!rt_prio(p->prio))
2590 p->sched_class = &fair_sched_class;
2592 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2593 if (likely(sched_info_on()))
2594 memset(&p->sched_info, 0, sizeof(p->sched_info));
2595 #endif
2596 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2597 p->oncpu = 0;
2598 #endif
2599 #ifdef CONFIG_PREEMPT
2600 /* Want to start with kernel preemption disabled. */
2601 task_thread_info(p)->preempt_count = 1;
2602 #endif
2603 put_cpu();
2607 * wake_up_new_task - wake up a newly created task for the first time.
2609 * This function will do some initial scheduler statistics housekeeping
2610 * that must be done for every newly created context, then puts the task
2611 * on the runqueue and wakes it.
2613 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2615 unsigned long flags;
2616 struct rq *rq;
2618 rq = task_rq_lock(p, &flags);
2619 BUG_ON(p->state != TASK_RUNNING);
2620 update_rq_clock(rq);
2622 p->prio = effective_prio(p);
2624 if (!p->sched_class->task_new || !current->se.on_rq) {
2625 activate_task(rq, p, 0);
2626 } else {
2628 * Let the scheduling class do new task startup
2629 * management (if any):
2631 p->sched_class->task_new(rq, p);
2632 inc_nr_running(rq);
2634 ftrace_wake_up_task(rq, p, rq->curr);
2635 check_preempt_curr(rq, p);
2636 #ifdef CONFIG_SMP
2637 if (p->sched_class->task_wake_up)
2638 p->sched_class->task_wake_up(rq, p);
2639 #endif
2640 task_rq_unlock(rq, &flags);
2643 #ifdef CONFIG_PREEMPT_NOTIFIERS
2646 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2647 * @notifier: notifier struct to register
2649 void preempt_notifier_register(struct preempt_notifier *notifier)
2651 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2653 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2656 * preempt_notifier_unregister - no longer interested in preemption notifications
2657 * @notifier: notifier struct to unregister
2659 * This is safe to call from within a preemption notifier.
2661 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2663 hlist_del(&notifier->link);
2665 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2667 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2669 struct preempt_notifier *notifier;
2670 struct hlist_node *node;
2672 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2673 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2676 static void
2677 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2678 struct task_struct *next)
2680 struct preempt_notifier *notifier;
2681 struct hlist_node *node;
2683 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2684 notifier->ops->sched_out(notifier, next);
2687 #else
2689 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2693 static void
2694 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2695 struct task_struct *next)
2699 #endif
2702 * prepare_task_switch - prepare to switch tasks
2703 * @rq: the runqueue preparing to switch
2704 * @prev: the current task that is being switched out
2705 * @next: the task we are going to switch to.
2707 * This is called with the rq lock held and interrupts off. It must
2708 * be paired with a subsequent finish_task_switch after the context
2709 * switch.
2711 * prepare_task_switch sets up locking and calls architecture specific
2712 * hooks.
2714 static inline void
2715 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2716 struct task_struct *next)
2718 fire_sched_out_preempt_notifiers(prev, next);
2719 prepare_lock_switch(rq, next);
2720 prepare_arch_switch(next);
2724 * finish_task_switch - clean up after a task-switch
2725 * @rq: runqueue associated with task-switch
2726 * @prev: the thread we just switched away from.
2728 * finish_task_switch must be called after the context switch, paired
2729 * with a prepare_task_switch call before the context switch.
2730 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2731 * and do any other architecture-specific cleanup actions.
2733 * Note that we may have delayed dropping an mm in context_switch(). If
2734 * so, we finish that here outside of the runqueue lock. (Doing it
2735 * with the lock held can cause deadlocks; see schedule() for
2736 * details.)
2738 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2739 __releases(rq->lock)
2741 struct mm_struct *mm = rq->prev_mm;
2742 long prev_state;
2744 rq->prev_mm = NULL;
2747 * A task struct has one reference for the use as "current".
2748 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2749 * schedule one last time. The schedule call will never return, and
2750 * the scheduled task must drop that reference.
2751 * The test for TASK_DEAD must occur while the runqueue locks are
2752 * still held, otherwise prev could be scheduled on another cpu, die
2753 * there before we look at prev->state, and then the reference would
2754 * be dropped twice.
2755 * Manfred Spraul <manfred@colorfullife.com>
2757 prev_state = prev->state;
2758 finish_arch_switch(prev);
2759 finish_lock_switch(rq, prev);
2760 #ifdef CONFIG_SMP
2761 if (current->sched_class->post_schedule)
2762 current->sched_class->post_schedule(rq);
2763 #endif
2765 fire_sched_in_preempt_notifiers(current);
2766 if (mm)
2767 mmdrop(mm);
2768 if (unlikely(prev_state == TASK_DEAD)) {
2770 * Remove function-return probe instances associated with this
2771 * task and put them back on the free list.
2773 kprobe_flush_task(prev);
2774 put_task_struct(prev);
2779 * schedule_tail - first thing a freshly forked thread must call.
2780 * @prev: the thread we just switched away from.
2782 asmlinkage void schedule_tail(struct task_struct *prev)
2783 __releases(rq->lock)
2785 struct rq *rq = this_rq();
2787 finish_task_switch(rq, prev);
2788 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2789 /* In this case, finish_task_switch does not reenable preemption */
2790 preempt_enable();
2791 #endif
2792 if (current->set_child_tid)
2793 put_user(task_pid_vnr(current), current->set_child_tid);
2797 * context_switch - switch to the new MM and the new
2798 * thread's register state.
2800 static inline void
2801 context_switch(struct rq *rq, struct task_struct *prev,
2802 struct task_struct *next)
2804 struct mm_struct *mm, *oldmm;
2806 prepare_task_switch(rq, prev, next);
2807 ftrace_ctx_switch(rq, prev, next);
2808 mm = next->mm;
2809 oldmm = prev->active_mm;
2811 * For paravirt, this is coupled with an exit in switch_to to
2812 * combine the page table reload and the switch backend into
2813 * one hypercall.
2815 arch_enter_lazy_cpu_mode();
2817 if (unlikely(!mm)) {
2818 next->active_mm = oldmm;
2819 atomic_inc(&oldmm->mm_count);
2820 enter_lazy_tlb(oldmm, next);
2821 } else
2822 switch_mm(oldmm, mm, next);
2824 if (unlikely(!prev->mm)) {
2825 prev->active_mm = NULL;
2826 rq->prev_mm = oldmm;
2829 * Since the runqueue lock will be released by the next
2830 * task (which is an invalid locking op but in the case
2831 * of the scheduler it's an obvious special-case), so we
2832 * do an early lockdep release here:
2834 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2835 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2836 #endif
2838 /* Here we just switch the register state and the stack. */
2839 switch_to(prev, next, prev);
2841 barrier();
2843 * this_rq must be evaluated again because prev may have moved
2844 * CPUs since it called schedule(), thus the 'rq' on its stack
2845 * frame will be invalid.
2847 finish_task_switch(this_rq(), prev);
2851 * nr_running, nr_uninterruptible and nr_context_switches:
2853 * externally visible scheduler statistics: current number of runnable
2854 * threads, current number of uninterruptible-sleeping threads, total
2855 * number of context switches performed since bootup.
2857 unsigned long nr_running(void)
2859 unsigned long i, sum = 0;
2861 for_each_online_cpu(i)
2862 sum += cpu_rq(i)->nr_running;
2864 return sum;
2867 unsigned long nr_uninterruptible(void)
2869 unsigned long i, sum = 0;
2871 for_each_possible_cpu(i)
2872 sum += cpu_rq(i)->nr_uninterruptible;
2875 * Since we read the counters lockless, it might be slightly
2876 * inaccurate. Do not allow it to go below zero though:
2878 if (unlikely((long)sum < 0))
2879 sum = 0;
2881 return sum;
2884 unsigned long long nr_context_switches(void)
2886 int i;
2887 unsigned long long sum = 0;
2889 for_each_possible_cpu(i)
2890 sum += cpu_rq(i)->nr_switches;
2892 return sum;
2895 unsigned long nr_iowait(void)
2897 unsigned long i, sum = 0;
2899 for_each_possible_cpu(i)
2900 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2902 return sum;
2905 unsigned long nr_active(void)
2907 unsigned long i, running = 0, uninterruptible = 0;
2909 for_each_online_cpu(i) {
2910 running += cpu_rq(i)->nr_running;
2911 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2914 if (unlikely((long)uninterruptible < 0))
2915 uninterruptible = 0;
2917 return running + uninterruptible;
2921 * Update rq->cpu_load[] statistics. This function is usually called every
2922 * scheduler tick (TICK_NSEC).
2924 static void update_cpu_load(struct rq *this_rq)
2926 unsigned long this_load = this_rq->load.weight;
2927 int i, scale;
2929 this_rq->nr_load_updates++;
2931 /* Update our load: */
2932 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2933 unsigned long old_load, new_load;
2935 /* scale is effectively 1 << i now, and >> i divides by scale */
2937 old_load = this_rq->cpu_load[i];
2938 new_load = this_load;
2940 * Round up the averaging division if load is increasing. This
2941 * prevents us from getting stuck on 9 if the load is 10, for
2942 * example.
2944 if (new_load > old_load)
2945 new_load += scale-1;
2946 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2950 #ifdef CONFIG_SMP
2953 * double_rq_lock - safely lock two runqueues
2955 * Note this does not disable interrupts like task_rq_lock,
2956 * you need to do so manually before calling.
2958 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2959 __acquires(rq1->lock)
2960 __acquires(rq2->lock)
2962 BUG_ON(!irqs_disabled());
2963 if (rq1 == rq2) {
2964 spin_lock(&rq1->lock);
2965 __acquire(rq2->lock); /* Fake it out ;) */
2966 } else {
2967 if (rq1 < rq2) {
2968 spin_lock(&rq1->lock);
2969 spin_lock(&rq2->lock);
2970 } else {
2971 spin_lock(&rq2->lock);
2972 spin_lock(&rq1->lock);
2975 update_rq_clock(rq1);
2976 update_rq_clock(rq2);
2980 * double_rq_unlock - safely unlock two runqueues
2982 * Note this does not restore interrupts like task_rq_unlock,
2983 * you need to do so manually after calling.
2985 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2986 __releases(rq1->lock)
2987 __releases(rq2->lock)
2989 spin_unlock(&rq1->lock);
2990 if (rq1 != rq2)
2991 spin_unlock(&rq2->lock);
2992 else
2993 __release(rq2->lock);
2997 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2999 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
3000 __releases(this_rq->lock)
3001 __acquires(busiest->lock)
3002 __acquires(this_rq->lock)
3004 int ret = 0;
3006 if (unlikely(!irqs_disabled())) {
3007 /* printk() doesn't work good under rq->lock */
3008 spin_unlock(&this_rq->lock);
3009 BUG_ON(1);
3011 if (unlikely(!spin_trylock(&busiest->lock))) {
3012 if (busiest < this_rq) {
3013 spin_unlock(&this_rq->lock);
3014 spin_lock(&busiest->lock);
3015 spin_lock(&this_rq->lock);
3016 ret = 1;
3017 } else
3018 spin_lock(&busiest->lock);
3020 return ret;
3024 * If dest_cpu is allowed for this process, migrate the task to it.
3025 * This is accomplished by forcing the cpu_allowed mask to only
3026 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
3027 * the cpu_allowed mask is restored.
3029 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
3031 struct migration_req req;
3032 unsigned long flags;
3033 struct rq *rq;
3035 rq = task_rq_lock(p, &flags);
3036 if (!cpu_isset(dest_cpu, p->cpus_allowed)
3037 || unlikely(cpu_is_offline(dest_cpu)))
3038 goto out;
3040 /* force the process onto the specified CPU */
3041 if (migrate_task(p, dest_cpu, &req)) {
3042 /* Need to wait for migration thread (might exit: take ref). */
3043 struct task_struct *mt = rq->migration_thread;
3045 get_task_struct(mt);
3046 task_rq_unlock(rq, &flags);
3047 wake_up_process(mt);
3048 put_task_struct(mt);
3049 wait_for_completion(&req.done);
3051 return;
3053 out:
3054 task_rq_unlock(rq, &flags);
3058 * sched_exec - execve() is a valuable balancing opportunity, because at
3059 * this point the task has the smallest effective memory and cache footprint.
3061 void sched_exec(void)
3063 int new_cpu, this_cpu = get_cpu();
3064 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
3065 put_cpu();
3066 if (new_cpu != this_cpu)
3067 sched_migrate_task(current, new_cpu);
3071 * pull_task - move a task from a remote runqueue to the local runqueue.
3072 * Both runqueues must be locked.
3074 static void pull_task(struct rq *src_rq, struct task_struct *p,
3075 struct rq *this_rq, int this_cpu)
3077 deactivate_task(src_rq, p, 0);
3078 set_task_cpu(p, this_cpu);
3079 activate_task(this_rq, p, 0);
3081 * Note that idle threads have a prio of MAX_PRIO, for this test
3082 * to be always true for them.
3084 check_preempt_curr(this_rq, p);
3088 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3090 static
3091 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
3092 struct sched_domain *sd, enum cpu_idle_type idle,
3093 int *all_pinned)
3096 * We do not migrate tasks that are:
3097 * 1) running (obviously), or
3098 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3099 * 3) are cache-hot on their current CPU.
3101 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
3102 schedstat_inc(p, se.nr_failed_migrations_affine);
3103 return 0;
3105 *all_pinned = 0;
3107 if (task_running(rq, p)) {
3108 schedstat_inc(p, se.nr_failed_migrations_running);
3109 return 0;
3113 * Aggressive migration if:
3114 * 1) task is cache cold, or
3115 * 2) too many balance attempts have failed.
3118 if (!task_hot(p, rq->clock, sd) ||
3119 sd->nr_balance_failed > sd->cache_nice_tries) {
3120 #ifdef CONFIG_SCHEDSTATS
3121 if (task_hot(p, rq->clock, sd)) {
3122 schedstat_inc(sd, lb_hot_gained[idle]);
3123 schedstat_inc(p, se.nr_forced_migrations);
3125 #endif
3126 return 1;
3129 if (task_hot(p, rq->clock, sd)) {
3130 schedstat_inc(p, se.nr_failed_migrations_hot);
3131 return 0;
3133 return 1;
3136 static unsigned long
3137 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3138 unsigned long max_load_move, struct sched_domain *sd,
3139 enum cpu_idle_type idle, int *all_pinned,
3140 int *this_best_prio, struct rq_iterator *iterator)
3142 int loops = 0, pulled = 0, pinned = 0, skip_for_load;
3143 struct task_struct *p;
3144 long rem_load_move = max_load_move;
3146 if (max_load_move == 0)
3147 goto out;
3149 pinned = 1;
3152 * Start the load-balancing iterator:
3154 p = iterator->start(iterator->arg);
3155 next:
3156 if (!p || loops++ > sysctl_sched_nr_migrate)
3157 goto out;
3159 * To help distribute high priority tasks across CPUs we don't
3160 * skip a task if it will be the highest priority task (i.e. smallest
3161 * prio value) on its new queue regardless of its load weight
3163 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
3164 SCHED_LOAD_SCALE_FUZZ;
3165 if ((skip_for_load && p->prio >= *this_best_prio) ||
3166 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3167 p = iterator->next(iterator->arg);
3168 goto next;
3171 pull_task(busiest, p, this_rq, this_cpu);
3172 pulled++;
3173 rem_load_move -= p->se.load.weight;
3176 * We only want to steal up to the prescribed amount of weighted load.
3178 if (rem_load_move > 0) {
3179 if (p->prio < *this_best_prio)
3180 *this_best_prio = p->prio;
3181 p = iterator->next(iterator->arg);
3182 goto next;
3184 out:
3186 * Right now, this is one of only two places pull_task() is called,
3187 * so we can safely collect pull_task() stats here rather than
3188 * inside pull_task().
3190 schedstat_add(sd, lb_gained[idle], pulled);
3192 if (all_pinned)
3193 *all_pinned = pinned;
3195 return max_load_move - rem_load_move;
3199 * move_tasks tries to move up to max_load_move weighted load from busiest to
3200 * this_rq, as part of a balancing operation within domain "sd".
3201 * Returns 1 if successful and 0 otherwise.
3203 * Called with both runqueues locked.
3205 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3206 unsigned long max_load_move,
3207 struct sched_domain *sd, enum cpu_idle_type idle,
3208 int *all_pinned)
3210 const struct sched_class *class = sched_class_highest;
3211 unsigned long total_load_moved = 0;
3212 int this_best_prio = this_rq->curr->prio;
3214 do {
3215 total_load_moved +=
3216 class->load_balance(this_rq, this_cpu, busiest,
3217 max_load_move - total_load_moved,
3218 sd, idle, all_pinned, &this_best_prio);
3219 class = class->next;
3220 } while (class && max_load_move > total_load_moved);
3222 return total_load_moved > 0;
3225 static int
3226 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3227 struct sched_domain *sd, enum cpu_idle_type idle,
3228 struct rq_iterator *iterator)
3230 struct task_struct *p = iterator->start(iterator->arg);
3231 int pinned = 0;
3233 while (p) {
3234 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3235 pull_task(busiest, p, this_rq, this_cpu);
3237 * Right now, this is only the second place pull_task()
3238 * is called, so we can safely collect pull_task()
3239 * stats here rather than inside pull_task().
3241 schedstat_inc(sd, lb_gained[idle]);
3243 return 1;
3245 p = iterator->next(iterator->arg);
3248 return 0;
3252 * move_one_task tries to move exactly one task from busiest to this_rq, as
3253 * part of active balancing operations within "domain".
3254 * Returns 1 if successful and 0 otherwise.
3256 * Called with both runqueues locked.
3258 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3259 struct sched_domain *sd, enum cpu_idle_type idle)
3261 const struct sched_class *class;
3263 for (class = sched_class_highest; class; class = class->next)
3264 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
3265 return 1;
3267 return 0;
3271 * find_busiest_group finds and returns the busiest CPU group within the
3272 * domain. It calculates and returns the amount of weighted load which
3273 * should be moved to restore balance via the imbalance parameter.
3275 static struct sched_group *
3276 find_busiest_group(struct sched_domain *sd, int this_cpu,
3277 unsigned long *imbalance, enum cpu_idle_type idle,
3278 int *sd_idle, const cpumask_t *cpus, int *balance)
3280 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
3281 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
3282 unsigned long max_pull;
3283 unsigned long busiest_load_per_task, busiest_nr_running;
3284 unsigned long this_load_per_task, this_nr_running;
3285 int load_idx, group_imb = 0;
3286 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3287 int power_savings_balance = 1;
3288 unsigned long leader_nr_running = 0, min_load_per_task = 0;
3289 unsigned long min_nr_running = ULONG_MAX;
3290 struct sched_group *group_min = NULL, *group_leader = NULL;
3291 #endif
3293 max_load = this_load = total_load = total_pwr = 0;
3294 busiest_load_per_task = busiest_nr_running = 0;
3295 this_load_per_task = this_nr_running = 0;
3296 if (idle == CPU_NOT_IDLE)
3297 load_idx = sd->busy_idx;
3298 else if (idle == CPU_NEWLY_IDLE)
3299 load_idx = sd->newidle_idx;
3300 else
3301 load_idx = sd->idle_idx;
3303 do {
3304 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
3305 int local_group;
3306 int i;
3307 int __group_imb = 0;
3308 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3309 unsigned long sum_nr_running, sum_weighted_load;
3311 local_group = cpu_isset(this_cpu, group->cpumask);
3313 if (local_group)
3314 balance_cpu = first_cpu(group->cpumask);
3316 /* Tally up the load of all CPUs in the group */
3317 sum_weighted_load = sum_nr_running = avg_load = 0;
3318 max_cpu_load = 0;
3319 min_cpu_load = ~0UL;
3321 for_each_cpu_mask(i, group->cpumask) {
3322 struct rq *rq;
3324 if (!cpu_isset(i, *cpus))
3325 continue;
3327 rq = cpu_rq(i);
3329 if (*sd_idle && rq->nr_running)
3330 *sd_idle = 0;
3332 /* Bias balancing toward cpus of our domain */
3333 if (local_group) {
3334 if (idle_cpu(i) && !first_idle_cpu) {
3335 first_idle_cpu = 1;
3336 balance_cpu = i;
3339 load = target_load(i, load_idx);
3340 } else {
3341 load = source_load(i, load_idx);
3342 if (load > max_cpu_load)
3343 max_cpu_load = load;
3344 if (min_cpu_load > load)
3345 min_cpu_load = load;
3348 avg_load += load;
3349 sum_nr_running += rq->nr_running;
3350 sum_weighted_load += weighted_cpuload(i);
3354 * First idle cpu or the first cpu(busiest) in this sched group
3355 * is eligible for doing load balancing at this and above
3356 * domains. In the newly idle case, we will allow all the cpu's
3357 * to do the newly idle load balance.
3359 if (idle != CPU_NEWLY_IDLE && local_group &&
3360 balance_cpu != this_cpu && balance) {
3361 *balance = 0;
3362 goto ret;
3365 total_load += avg_load;
3366 total_pwr += group->__cpu_power;
3368 /* Adjust by relative CPU power of the group */
3369 avg_load = sg_div_cpu_power(group,
3370 avg_load * SCHED_LOAD_SCALE);
3372 if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
3373 __group_imb = 1;
3375 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3377 if (local_group) {
3378 this_load = avg_load;
3379 this = group;
3380 this_nr_running = sum_nr_running;
3381 this_load_per_task = sum_weighted_load;
3382 } else if (avg_load > max_load &&
3383 (sum_nr_running > group_capacity || __group_imb)) {
3384 max_load = avg_load;
3385 busiest = group;
3386 busiest_nr_running = sum_nr_running;
3387 busiest_load_per_task = sum_weighted_load;
3388 group_imb = __group_imb;
3391 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3393 * Busy processors will not participate in power savings
3394 * balance.
3396 if (idle == CPU_NOT_IDLE ||
3397 !(sd->flags & SD_POWERSAVINGS_BALANCE))
3398 goto group_next;
3401 * If the local group is idle or completely loaded
3402 * no need to do power savings balance at this domain
3404 if (local_group && (this_nr_running >= group_capacity ||
3405 !this_nr_running))
3406 power_savings_balance = 0;
3409 * If a group is already running at full capacity or idle,
3410 * don't include that group in power savings calculations
3412 if (!power_savings_balance || sum_nr_running >= group_capacity
3413 || !sum_nr_running)
3414 goto group_next;
3417 * Calculate the group which has the least non-idle load.
3418 * This is the group from where we need to pick up the load
3419 * for saving power
3421 if ((sum_nr_running < min_nr_running) ||
3422 (sum_nr_running == min_nr_running &&
3423 first_cpu(group->cpumask) <
3424 first_cpu(group_min->cpumask))) {
3425 group_min = group;
3426 min_nr_running = sum_nr_running;
3427 min_load_per_task = sum_weighted_load /
3428 sum_nr_running;
3432 * Calculate the group which is almost near its
3433 * capacity but still has some space to pick up some load
3434 * from other group and save more power
3436 if (sum_nr_running <= group_capacity - 1) {
3437 if (sum_nr_running > leader_nr_running ||
3438 (sum_nr_running == leader_nr_running &&
3439 first_cpu(group->cpumask) >
3440 first_cpu(group_leader->cpumask))) {
3441 group_leader = group;
3442 leader_nr_running = sum_nr_running;
3445 group_next:
3446 #endif
3447 group = group->next;
3448 } while (group != sd->groups);
3450 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
3451 goto out_balanced;
3453 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
3455 if (this_load >= avg_load ||
3456 100*max_load <= sd->imbalance_pct*this_load)
3457 goto out_balanced;
3459 busiest_load_per_task /= busiest_nr_running;
3460 if (group_imb)
3461 busiest_load_per_task = min(busiest_load_per_task, avg_load);
3464 * We're trying to get all the cpus to the average_load, so we don't
3465 * want to push ourselves above the average load, nor do we wish to
3466 * reduce the max loaded cpu below the average load, as either of these
3467 * actions would just result in more rebalancing later, and ping-pong
3468 * tasks around. Thus we look for the minimum possible imbalance.
3469 * Negative imbalances (*we* are more loaded than anyone else) will
3470 * be counted as no imbalance for these purposes -- we can't fix that
3471 * by pulling tasks to us. Be careful of negative numbers as they'll
3472 * appear as very large values with unsigned longs.
3474 if (max_load <= busiest_load_per_task)
3475 goto out_balanced;
3478 * In the presence of smp nice balancing, certain scenarios can have
3479 * max load less than avg load(as we skip the groups at or below
3480 * its cpu_power, while calculating max_load..)
3482 if (max_load < avg_load) {
3483 *imbalance = 0;
3484 goto small_imbalance;
3487 /* Don't want to pull so many tasks that a group would go idle */
3488 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
3490 /* How much load to actually move to equalise the imbalance */
3491 *imbalance = min(max_pull * busiest->__cpu_power,
3492 (avg_load - this_load) * this->__cpu_power)
3493 / SCHED_LOAD_SCALE;
3496 * if *imbalance is less than the average load per runnable task
3497 * there is no gaurantee that any tasks will be moved so we'll have
3498 * a think about bumping its value to force at least one task to be
3499 * moved
3501 if (*imbalance < busiest_load_per_task) {
3502 unsigned long tmp, pwr_now, pwr_move;
3503 unsigned int imbn;
3505 small_imbalance:
3506 pwr_move = pwr_now = 0;
3507 imbn = 2;
3508 if (this_nr_running) {
3509 this_load_per_task /= this_nr_running;
3510 if (busiest_load_per_task > this_load_per_task)
3511 imbn = 1;
3512 } else
3513 this_load_per_task = SCHED_LOAD_SCALE;
3515 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
3516 busiest_load_per_task * imbn) {
3517 *imbalance = busiest_load_per_task;
3518 return busiest;
3522 * OK, we don't have enough imbalance to justify moving tasks,
3523 * however we may be able to increase total CPU power used by
3524 * moving them.
3527 pwr_now += busiest->__cpu_power *
3528 min(busiest_load_per_task, max_load);
3529 pwr_now += this->__cpu_power *
3530 min(this_load_per_task, this_load);
3531 pwr_now /= SCHED_LOAD_SCALE;
3533 /* Amount of load we'd subtract */
3534 tmp = sg_div_cpu_power(busiest,
3535 busiest_load_per_task * SCHED_LOAD_SCALE);
3536 if (max_load > tmp)
3537 pwr_move += busiest->__cpu_power *
3538 min(busiest_load_per_task, max_load - tmp);
3540 /* Amount of load we'd add */
3541 if (max_load * busiest->__cpu_power <
3542 busiest_load_per_task * SCHED_LOAD_SCALE)
3543 tmp = sg_div_cpu_power(this,
3544 max_load * busiest->__cpu_power);
3545 else
3546 tmp = sg_div_cpu_power(this,
3547 busiest_load_per_task * SCHED_LOAD_SCALE);
3548 pwr_move += this->__cpu_power *
3549 min(this_load_per_task, this_load + tmp);
3550 pwr_move /= SCHED_LOAD_SCALE;
3552 /* Move if we gain throughput */
3553 if (pwr_move > pwr_now)
3554 *imbalance = busiest_load_per_task;
3557 return busiest;
3559 out_balanced:
3560 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3561 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3562 goto ret;
3564 if (this == group_leader && group_leader != group_min) {
3565 *imbalance = min_load_per_task;
3566 return group_min;
3568 #endif
3569 ret:
3570 *imbalance = 0;
3571 return NULL;
3575 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3577 static struct rq *
3578 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3579 unsigned long imbalance, const cpumask_t *cpus)
3581 struct rq *busiest = NULL, *rq;
3582 unsigned long max_load = 0;
3583 int i;
3585 for_each_cpu_mask(i, group->cpumask) {
3586 unsigned long wl;
3588 if (!cpu_isset(i, *cpus))
3589 continue;
3591 rq = cpu_rq(i);
3592 wl = weighted_cpuload(i);
3594 if (rq->nr_running == 1 && wl > imbalance)
3595 continue;
3597 if (wl > max_load) {
3598 max_load = wl;
3599 busiest = rq;
3603 return busiest;
3607 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3608 * so long as it is large enough.
3610 #define MAX_PINNED_INTERVAL 512
3613 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3614 * tasks if there is an imbalance.
3616 static int load_balance(int this_cpu, struct rq *this_rq,
3617 struct sched_domain *sd, enum cpu_idle_type idle,
3618 int *balance, cpumask_t *cpus)
3620 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
3621 struct sched_group *group;
3622 unsigned long imbalance;
3623 struct rq *busiest;
3624 unsigned long flags;
3625 int unlock_aggregate;
3627 cpus_setall(*cpus);
3629 unlock_aggregate = get_aggregate(sd);
3632 * When power savings policy is enabled for the parent domain, idle
3633 * sibling can pick up load irrespective of busy siblings. In this case,
3634 * let the state of idle sibling percolate up as CPU_IDLE, instead of
3635 * portraying it as CPU_NOT_IDLE.
3637 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3638 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3639 sd_idle = 1;
3641 schedstat_inc(sd, lb_count[idle]);
3643 redo:
3644 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3645 cpus, balance);
3647 if (*balance == 0)
3648 goto out_balanced;
3650 if (!group) {
3651 schedstat_inc(sd, lb_nobusyg[idle]);
3652 goto out_balanced;
3655 busiest = find_busiest_queue(group, idle, imbalance, cpus);
3656 if (!busiest) {
3657 schedstat_inc(sd, lb_nobusyq[idle]);
3658 goto out_balanced;
3661 BUG_ON(busiest == this_rq);
3663 schedstat_add(sd, lb_imbalance[idle], imbalance);
3665 ld_moved = 0;
3666 if (busiest->nr_running > 1) {
3668 * Attempt to move tasks. If find_busiest_group has found
3669 * an imbalance but busiest->nr_running <= 1, the group is
3670 * still unbalanced. ld_moved simply stays zero, so it is
3671 * correctly treated as an imbalance.
3673 local_irq_save(flags);
3674 double_rq_lock(this_rq, busiest);
3675 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3676 imbalance, sd, idle, &all_pinned);
3677 double_rq_unlock(this_rq, busiest);
3678 local_irq_restore(flags);
3681 * some other cpu did the load balance for us.
3683 if (ld_moved && this_cpu != smp_processor_id())
3684 resched_cpu(this_cpu);
3686 /* All tasks on this runqueue were pinned by CPU affinity */
3687 if (unlikely(all_pinned)) {
3688 cpu_clear(cpu_of(busiest), *cpus);
3689 if (!cpus_empty(*cpus))
3690 goto redo;
3691 goto out_balanced;
3695 if (!ld_moved) {
3696 schedstat_inc(sd, lb_failed[idle]);
3697 sd->nr_balance_failed++;
3699 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
3701 spin_lock_irqsave(&busiest->lock, flags);
3703 /* don't kick the migration_thread, if the curr
3704 * task on busiest cpu can't be moved to this_cpu
3706 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
3707 spin_unlock_irqrestore(&busiest->lock, flags);
3708 all_pinned = 1;
3709 goto out_one_pinned;
3712 if (!busiest->active_balance) {
3713 busiest->active_balance = 1;
3714 busiest->push_cpu = this_cpu;
3715 active_balance = 1;
3717 spin_unlock_irqrestore(&busiest->lock, flags);
3718 if (active_balance)
3719 wake_up_process(busiest->migration_thread);
3722 * We've kicked active balancing, reset the failure
3723 * counter.
3725 sd->nr_balance_failed = sd->cache_nice_tries+1;
3727 } else
3728 sd->nr_balance_failed = 0;
3730 if (likely(!active_balance)) {
3731 /* We were unbalanced, so reset the balancing interval */
3732 sd->balance_interval = sd->min_interval;
3733 } else {
3735 * If we've begun active balancing, start to back off. This
3736 * case may not be covered by the all_pinned logic if there
3737 * is only 1 task on the busy runqueue (because we don't call
3738 * move_tasks).
3740 if (sd->balance_interval < sd->max_interval)
3741 sd->balance_interval *= 2;
3744 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3745 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3746 ld_moved = -1;
3748 goto out;
3750 out_balanced:
3751 schedstat_inc(sd, lb_balanced[idle]);
3753 sd->nr_balance_failed = 0;
3755 out_one_pinned:
3756 /* tune up the balancing interval */
3757 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3758 (sd->balance_interval < sd->max_interval))
3759 sd->balance_interval *= 2;
3761 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3762 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3763 ld_moved = -1;
3764 else
3765 ld_moved = 0;
3766 out:
3767 if (unlock_aggregate)
3768 put_aggregate(sd);
3769 return ld_moved;
3773 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3774 * tasks if there is an imbalance.
3776 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
3777 * this_rq is locked.
3779 static int
3780 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
3781 cpumask_t *cpus)
3783 struct sched_group *group;
3784 struct rq *busiest = NULL;
3785 unsigned long imbalance;
3786 int ld_moved = 0;
3787 int sd_idle = 0;
3788 int all_pinned = 0;
3790 cpus_setall(*cpus);
3793 * When power savings policy is enabled for the parent domain, idle
3794 * sibling can pick up load irrespective of busy siblings. In this case,
3795 * let the state of idle sibling percolate up as IDLE, instead of
3796 * portraying it as CPU_NOT_IDLE.
3798 if (sd->flags & SD_SHARE_CPUPOWER &&
3799 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3800 sd_idle = 1;
3802 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
3803 redo:
3804 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
3805 &sd_idle, cpus, NULL);
3806 if (!group) {
3807 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
3808 goto out_balanced;
3811 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
3812 if (!busiest) {
3813 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
3814 goto out_balanced;
3817 BUG_ON(busiest == this_rq);
3819 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
3821 ld_moved = 0;
3822 if (busiest->nr_running > 1) {
3823 /* Attempt to move tasks */
3824 double_lock_balance(this_rq, busiest);
3825 /* this_rq->clock is already updated */
3826 update_rq_clock(busiest);
3827 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3828 imbalance, sd, CPU_NEWLY_IDLE,
3829 &all_pinned);
3830 spin_unlock(&busiest->lock);
3832 if (unlikely(all_pinned)) {
3833 cpu_clear(cpu_of(busiest), *cpus);
3834 if (!cpus_empty(*cpus))
3835 goto redo;
3839 if (!ld_moved) {
3840 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3841 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3842 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3843 return -1;
3844 } else
3845 sd->nr_balance_failed = 0;
3847 return ld_moved;
3849 out_balanced:
3850 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3851 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3852 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3853 return -1;
3854 sd->nr_balance_failed = 0;
3856 return 0;
3860 * idle_balance is called by schedule() if this_cpu is about to become
3861 * idle. Attempts to pull tasks from other CPUs.
3863 static void idle_balance(int this_cpu, struct rq *this_rq)
3865 struct sched_domain *sd;
3866 int pulled_task = -1;
3867 unsigned long next_balance = jiffies + HZ;
3868 cpumask_t tmpmask;
3870 for_each_domain(this_cpu, sd) {
3871 unsigned long interval;
3873 if (!(sd->flags & SD_LOAD_BALANCE))
3874 continue;
3876 if (sd->flags & SD_BALANCE_NEWIDLE)
3877 /* If we've pulled tasks over stop searching: */
3878 pulled_task = load_balance_newidle(this_cpu, this_rq,
3879 sd, &tmpmask);
3881 interval = msecs_to_jiffies(sd->balance_interval);
3882 if (time_after(next_balance, sd->last_balance + interval))
3883 next_balance = sd->last_balance + interval;
3884 if (pulled_task)
3885 break;
3887 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3889 * We are going idle. next_balance may be set based on
3890 * a busy processor. So reset next_balance.
3892 this_rq->next_balance = next_balance;
3897 * active_load_balance is run by migration threads. It pushes running tasks
3898 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3899 * running on each physical CPU where possible, and avoids physical /
3900 * logical imbalances.
3902 * Called with busiest_rq locked.
3904 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
3906 int target_cpu = busiest_rq->push_cpu;
3907 struct sched_domain *sd;
3908 struct rq *target_rq;
3910 /* Is there any task to move? */
3911 if (busiest_rq->nr_running <= 1)
3912 return;
3914 target_rq = cpu_rq(target_cpu);
3917 * This condition is "impossible", if it occurs
3918 * we need to fix it. Originally reported by
3919 * Bjorn Helgaas on a 128-cpu setup.
3921 BUG_ON(busiest_rq == target_rq);
3923 /* move a task from busiest_rq to target_rq */
3924 double_lock_balance(busiest_rq, target_rq);
3925 update_rq_clock(busiest_rq);
3926 update_rq_clock(target_rq);
3928 /* Search for an sd spanning us and the target CPU. */
3929 for_each_domain(target_cpu, sd) {
3930 if ((sd->flags & SD_LOAD_BALANCE) &&
3931 cpu_isset(busiest_cpu, sd->span))
3932 break;
3935 if (likely(sd)) {
3936 schedstat_inc(sd, alb_count);
3938 if (move_one_task(target_rq, target_cpu, busiest_rq,
3939 sd, CPU_IDLE))
3940 schedstat_inc(sd, alb_pushed);
3941 else
3942 schedstat_inc(sd, alb_failed);
3944 spin_unlock(&target_rq->lock);
3947 #ifdef CONFIG_NO_HZ
3948 static struct {
3949 atomic_t load_balancer;
3950 cpumask_t cpu_mask;
3951 } nohz ____cacheline_aligned = {
3952 .load_balancer = ATOMIC_INIT(-1),
3953 .cpu_mask = CPU_MASK_NONE,
3957 * This routine will try to nominate the ilb (idle load balancing)
3958 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3959 * load balancing on behalf of all those cpus. If all the cpus in the system
3960 * go into this tickless mode, then there will be no ilb owner (as there is
3961 * no need for one) and all the cpus will sleep till the next wakeup event
3962 * arrives...
3964 * For the ilb owner, tick is not stopped. And this tick will be used
3965 * for idle load balancing. ilb owner will still be part of
3966 * nohz.cpu_mask..
3968 * While stopping the tick, this cpu will become the ilb owner if there
3969 * is no other owner. And will be the owner till that cpu becomes busy
3970 * or if all cpus in the system stop their ticks at which point
3971 * there is no need for ilb owner.
3973 * When the ilb owner becomes busy, it nominates another owner, during the
3974 * next busy scheduler_tick()
3976 int select_nohz_load_balancer(int stop_tick)
3978 int cpu = smp_processor_id();
3980 if (stop_tick) {
3981 cpu_set(cpu, nohz.cpu_mask);
3982 cpu_rq(cpu)->in_nohz_recently = 1;
3985 * If we are going offline and still the leader, give up!
3987 if (cpu_is_offline(cpu) &&
3988 atomic_read(&nohz.load_balancer) == cpu) {
3989 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3990 BUG();
3991 return 0;
3994 /* time for ilb owner also to sleep */
3995 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3996 if (atomic_read(&nohz.load_balancer) == cpu)
3997 atomic_set(&nohz.load_balancer, -1);
3998 return 0;
4001 if (atomic_read(&nohz.load_balancer) == -1) {
4002 /* make me the ilb owner */
4003 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
4004 return 1;
4005 } else if (atomic_read(&nohz.load_balancer) == cpu)
4006 return 1;
4007 } else {
4008 if (!cpu_isset(cpu, nohz.cpu_mask))
4009 return 0;
4011 cpu_clear(cpu, nohz.cpu_mask);
4013 if (atomic_read(&nohz.load_balancer) == cpu)
4014 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4015 BUG();
4017 return 0;
4019 #endif
4021 static DEFINE_SPINLOCK(balancing);
4024 * It checks each scheduling domain to see if it is due to be balanced,
4025 * and initiates a balancing operation if so.
4027 * Balancing parameters are set up in arch_init_sched_domains.
4029 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4031 int balance = 1;
4032 struct rq *rq = cpu_rq(cpu);
4033 unsigned long interval;
4034 struct sched_domain *sd;
4035 /* Earliest time when we have to do rebalance again */
4036 unsigned long next_balance = jiffies + 60*HZ;
4037 int update_next_balance = 0;
4038 cpumask_t tmp;
4040 for_each_domain(cpu, sd) {
4041 if (!(sd->flags & SD_LOAD_BALANCE))
4042 continue;
4044 interval = sd->balance_interval;
4045 if (idle != CPU_IDLE)
4046 interval *= sd->busy_factor;
4048 /* scale ms to jiffies */
4049 interval = msecs_to_jiffies(interval);
4050 if (unlikely(!interval))
4051 interval = 1;
4052 if (interval > HZ*NR_CPUS/10)
4053 interval = HZ*NR_CPUS/10;
4056 if (sd->flags & SD_SERIALIZE) {
4057 if (!spin_trylock(&balancing))
4058 goto out;
4061 if (time_after_eq(jiffies, sd->last_balance + interval)) {
4062 if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
4064 * We've pulled tasks over so either we're no
4065 * longer idle, or one of our SMT siblings is
4066 * not idle.
4068 idle = CPU_NOT_IDLE;
4070 sd->last_balance = jiffies;
4072 if (sd->flags & SD_SERIALIZE)
4073 spin_unlock(&balancing);
4074 out:
4075 if (time_after(next_balance, sd->last_balance + interval)) {
4076 next_balance = sd->last_balance + interval;
4077 update_next_balance = 1;
4081 * Stop the load balance at this level. There is another
4082 * CPU in our sched group which is doing load balancing more
4083 * actively.
4085 if (!balance)
4086 break;
4090 * next_balance will be updated only when there is a need.
4091 * When the cpu is attached to null domain for ex, it will not be
4092 * updated.
4094 if (likely(update_next_balance))
4095 rq->next_balance = next_balance;
4099 * run_rebalance_domains is triggered when needed from the scheduler tick.
4100 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4101 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4103 static void run_rebalance_domains(struct softirq_action *h)
4105 int this_cpu = smp_processor_id();
4106 struct rq *this_rq = cpu_rq(this_cpu);
4107 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4108 CPU_IDLE : CPU_NOT_IDLE;
4110 rebalance_domains(this_cpu, idle);
4112 #ifdef CONFIG_NO_HZ
4114 * If this cpu is the owner for idle load balancing, then do the
4115 * balancing on behalf of the other idle cpus whose ticks are
4116 * stopped.
4118 if (this_rq->idle_at_tick &&
4119 atomic_read(&nohz.load_balancer) == this_cpu) {
4120 cpumask_t cpus = nohz.cpu_mask;
4121 struct rq *rq;
4122 int balance_cpu;
4124 cpu_clear(this_cpu, cpus);
4125 for_each_cpu_mask(balance_cpu, cpus) {
4127 * If this cpu gets work to do, stop the load balancing
4128 * work being done for other cpus. Next load
4129 * balancing owner will pick it up.
4131 if (need_resched())
4132 break;
4134 rebalance_domains(balance_cpu, CPU_IDLE);
4136 rq = cpu_rq(balance_cpu);
4137 if (time_after(this_rq->next_balance, rq->next_balance))
4138 this_rq->next_balance = rq->next_balance;
4141 #endif
4145 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4147 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4148 * idle load balancing owner or decide to stop the periodic load balancing,
4149 * if the whole system is idle.
4151 static inline void trigger_load_balance(struct rq *rq, int cpu)
4153 #ifdef CONFIG_NO_HZ
4155 * If we were in the nohz mode recently and busy at the current
4156 * scheduler tick, then check if we need to nominate new idle
4157 * load balancer.
4159 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4160 rq->in_nohz_recently = 0;
4162 if (atomic_read(&nohz.load_balancer) == cpu) {
4163 cpu_clear(cpu, nohz.cpu_mask);
4164 atomic_set(&nohz.load_balancer, -1);
4167 if (atomic_read(&nohz.load_balancer) == -1) {
4169 * simple selection for now: Nominate the
4170 * first cpu in the nohz list to be the next
4171 * ilb owner.
4173 * TBD: Traverse the sched domains and nominate
4174 * the nearest cpu in the nohz.cpu_mask.
4176 int ilb = first_cpu(nohz.cpu_mask);
4178 if (ilb < nr_cpu_ids)
4179 resched_cpu(ilb);
4184 * If this cpu is idle and doing idle load balancing for all the
4185 * cpus with ticks stopped, is it time for that to stop?
4187 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4188 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
4189 resched_cpu(cpu);
4190 return;
4194 * If this cpu is idle and the idle load balancing is done by
4195 * someone else, then no need raise the SCHED_SOFTIRQ
4197 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4198 cpu_isset(cpu, nohz.cpu_mask))
4199 return;
4200 #endif
4201 if (time_after_eq(jiffies, rq->next_balance))
4202 raise_softirq(SCHED_SOFTIRQ);
4205 #else /* CONFIG_SMP */
4208 * on UP we do not need to balance between CPUs:
4210 static inline void idle_balance(int cpu, struct rq *rq)
4214 #endif
4216 DEFINE_PER_CPU(struct kernel_stat, kstat);
4218 EXPORT_PER_CPU_SYMBOL(kstat);
4221 * Return p->sum_exec_runtime plus any more ns on the sched_clock
4222 * that have not yet been banked in case the task is currently running.
4224 unsigned long long task_sched_runtime(struct task_struct *p)
4226 unsigned long flags;
4227 u64 ns, delta_exec;
4228 struct rq *rq;
4230 rq = task_rq_lock(p, &flags);
4231 ns = p->se.sum_exec_runtime;
4232 if (task_current(rq, p)) {
4233 update_rq_clock(rq);
4234 delta_exec = rq->clock - p->se.exec_start;
4235 if ((s64)delta_exec > 0)
4236 ns += delta_exec;
4238 task_rq_unlock(rq, &flags);
4240 return ns;
4244 * Account user cpu time to a process.
4245 * @p: the process that the cpu time gets accounted to
4246 * @cputime: the cpu time spent in user space since the last update
4248 void account_user_time(struct task_struct *p, cputime_t cputime)
4250 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4251 cputime64_t tmp;
4253 p->utime = cputime_add(p->utime, cputime);
4255 /* Add user time to cpustat. */
4256 tmp = cputime_to_cputime64(cputime);
4257 if (TASK_NICE(p) > 0)
4258 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4259 else
4260 cpustat->user = cputime64_add(cpustat->user, tmp);
4264 * Account guest cpu time to a process.
4265 * @p: the process that the cpu time gets accounted to
4266 * @cputime: the cpu time spent in virtual machine since the last update
4268 static void account_guest_time(struct task_struct *p, cputime_t cputime)
4270 cputime64_t tmp;
4271 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4273 tmp = cputime_to_cputime64(cputime);
4275 p->utime = cputime_add(p->utime, cputime);
4276 p->gtime = cputime_add(p->gtime, cputime);
4278 cpustat->user = cputime64_add(cpustat->user, tmp);
4279 cpustat->guest = cputime64_add(cpustat->guest, tmp);
4283 * Account scaled user cpu time to a process.
4284 * @p: the process that the cpu time gets accounted to
4285 * @cputime: the cpu time spent in user space since the last update
4287 void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
4289 p->utimescaled = cputime_add(p->utimescaled, cputime);
4293 * Account system cpu time to a process.
4294 * @p: the process that the cpu time gets accounted to
4295 * @hardirq_offset: the offset to subtract from hardirq_count()
4296 * @cputime: the cpu time spent in kernel space since the last update
4298 void account_system_time(struct task_struct *p, int hardirq_offset,
4299 cputime_t cputime)
4301 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4302 struct rq *rq = this_rq();
4303 cputime64_t tmp;
4305 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
4306 account_guest_time(p, cputime);
4307 return;
4310 p->stime = cputime_add(p->stime, cputime);
4312 /* Add system time to cpustat. */
4313 tmp = cputime_to_cputime64(cputime);
4314 if (hardirq_count() - hardirq_offset)
4315 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4316 else if (softirq_count())
4317 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
4318 else if (p != rq->idle)
4319 cpustat->system = cputime64_add(cpustat->system, tmp);
4320 else if (atomic_read(&rq->nr_iowait) > 0)
4321 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4322 else
4323 cpustat->idle = cputime64_add(cpustat->idle, tmp);
4324 /* Account for system time used */
4325 acct_update_integrals(p);
4329 * Account scaled system cpu time to a process.
4330 * @p: the process that the cpu time gets accounted to
4331 * @hardirq_offset: the offset to subtract from hardirq_count()
4332 * @cputime: the cpu time spent in kernel space since the last update
4334 void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
4336 p->stimescaled = cputime_add(p->stimescaled, cputime);
4340 * Account for involuntary wait time.
4341 * @p: the process from which the cpu time has been stolen
4342 * @steal: the cpu time spent in involuntary wait
4344 void account_steal_time(struct task_struct *p, cputime_t steal)
4346 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4347 cputime64_t tmp = cputime_to_cputime64(steal);
4348 struct rq *rq = this_rq();
4350 if (p == rq->idle) {
4351 p->stime = cputime_add(p->stime, steal);
4352 if (atomic_read(&rq->nr_iowait) > 0)
4353 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4354 else
4355 cpustat->idle = cputime64_add(cpustat->idle, tmp);
4356 } else
4357 cpustat->steal = cputime64_add(cpustat->steal, tmp);
4361 * This function gets called by the timer code, with HZ frequency.
4362 * We call it with interrupts disabled.
4364 * It also gets called by the fork code, when changing the parent's
4365 * timeslices.
4367 void scheduler_tick(void)
4369 int cpu = smp_processor_id();
4370 struct rq *rq = cpu_rq(cpu);
4371 struct task_struct *curr = rq->curr;
4373 sched_clock_tick();
4375 spin_lock(&rq->lock);
4376 update_rq_clock(rq);
4377 update_cpu_load(rq);
4378 curr->sched_class->task_tick(rq, curr, 0);
4379 spin_unlock(&rq->lock);
4381 #ifdef CONFIG_SMP
4382 rq->idle_at_tick = idle_cpu(cpu);
4383 trigger_load_balance(rq, cpu);
4384 #endif
4387 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4388 defined(CONFIG_PREEMPT_TRACER))
4390 static inline unsigned long get_parent_ip(unsigned long addr)
4392 if (in_lock_functions(addr)) {
4393 addr = CALLER_ADDR2;
4394 if (in_lock_functions(addr))
4395 addr = CALLER_ADDR3;
4397 return addr;
4400 void __kprobes add_preempt_count(int val)
4402 #ifdef CONFIG_DEBUG_PREEMPT
4404 * Underflow?
4406 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4407 return;
4408 #endif
4409 preempt_count() += val;
4410 #ifdef CONFIG_DEBUG_PREEMPT
4412 * Spinlock count overflowing soon?
4414 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4415 PREEMPT_MASK - 10);
4416 #endif
4417 if (preempt_count() == val)
4418 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
4420 EXPORT_SYMBOL(add_preempt_count);
4422 void __kprobes sub_preempt_count(int val)
4424 #ifdef CONFIG_DEBUG_PREEMPT
4426 * Underflow?
4428 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4429 return;
4431 * Is the spinlock portion underflowing?
4433 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4434 !(preempt_count() & PREEMPT_MASK)))
4435 return;
4436 #endif
4438 if (preempt_count() == val)
4439 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
4440 preempt_count() -= val;
4442 EXPORT_SYMBOL(sub_preempt_count);
4444 #endif
4447 * Print scheduling while atomic bug:
4449 static noinline void __schedule_bug(struct task_struct *prev)
4451 struct pt_regs *regs = get_irq_regs();
4453 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4454 prev->comm, prev->pid, preempt_count());
4456 debug_show_held_locks(prev);
4457 if (irqs_disabled())
4458 print_irqtrace_events(prev);
4460 if (regs)
4461 show_regs(regs);
4462 else
4463 dump_stack();
4467 * Various schedule()-time debugging checks and statistics:
4469 static inline void schedule_debug(struct task_struct *prev)
4472 * Test if we are atomic. Since do_exit() needs to call into
4473 * schedule() atomically, we ignore that path for now.
4474 * Otherwise, whine if we are scheduling when we should not be.
4476 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
4477 __schedule_bug(prev);
4479 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4481 schedstat_inc(this_rq(), sched_count);
4482 #ifdef CONFIG_SCHEDSTATS
4483 if (unlikely(prev->lock_depth >= 0)) {
4484 schedstat_inc(this_rq(), bkl_count);
4485 schedstat_inc(prev, sched_info.bkl_count);
4487 #endif
4491 * Pick up the highest-prio task:
4493 static inline struct task_struct *
4494 pick_next_task(struct rq *rq, struct task_struct *prev)
4496 const struct sched_class *class;
4497 struct task_struct *p;
4500 * Optimization: we know that if all tasks are in
4501 * the fair class we can call that function directly:
4503 if (likely(rq->nr_running == rq->cfs.nr_running)) {
4504 p = fair_sched_class.pick_next_task(rq);
4505 if (likely(p))
4506 return p;
4509 class = sched_class_highest;
4510 for ( ; ; ) {
4511 p = class->pick_next_task(rq);
4512 if (p)
4513 return p;
4515 * Will never be NULL as the idle class always
4516 * returns a non-NULL p:
4518 class = class->next;
4523 * schedule() is the main scheduler function.
4525 asmlinkage void __sched schedule(void)
4527 struct task_struct *prev, *next;
4528 unsigned long *switch_count;
4529 struct rq *rq;
4530 int cpu;
4532 need_resched:
4533 preempt_disable();
4534 cpu = smp_processor_id();
4535 rq = cpu_rq(cpu);
4536 rcu_qsctr_inc(cpu);
4537 prev = rq->curr;
4538 switch_count = &prev->nivcsw;
4540 release_kernel_lock(prev);
4541 need_resched_nonpreemptible:
4543 schedule_debug(prev);
4545 hrtick_clear(rq);
4548 * Do the rq-clock update outside the rq lock:
4550 local_irq_disable();
4551 update_rq_clock(rq);
4552 spin_lock(&rq->lock);
4553 clear_tsk_need_resched(prev);
4555 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
4556 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
4557 signal_pending(prev))) {
4558 prev->state = TASK_RUNNING;
4559 } else {
4560 deactivate_task(rq, prev, 1);
4562 switch_count = &prev->nvcsw;
4565 #ifdef CONFIG_SMP
4566 if (prev->sched_class->pre_schedule)
4567 prev->sched_class->pre_schedule(rq, prev);
4568 #endif
4570 if (unlikely(!rq->nr_running))
4571 idle_balance(cpu, rq);
4573 prev->sched_class->put_prev_task(rq, prev);
4574 next = pick_next_task(rq, prev);
4576 if (likely(prev != next)) {
4577 sched_info_switch(prev, next);
4579 rq->nr_switches++;
4580 rq->curr = next;
4581 ++*switch_count;
4583 context_switch(rq, prev, next); /* unlocks the rq */
4585 * the context switch might have flipped the stack from under
4586 * us, hence refresh the local variables.
4588 cpu = smp_processor_id();
4589 rq = cpu_rq(cpu);
4590 } else
4591 spin_unlock_irq(&rq->lock);
4593 hrtick_set(rq);
4595 if (unlikely(reacquire_kernel_lock(current) < 0))
4596 goto need_resched_nonpreemptible;
4598 preempt_enable_no_resched();
4599 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
4600 goto need_resched;
4602 EXPORT_SYMBOL(schedule);
4604 #ifdef CONFIG_PREEMPT
4606 * this is the entry point to schedule() from in-kernel preemption
4607 * off of preempt_enable. Kernel preemptions off return from interrupt
4608 * occur there and call schedule directly.
4610 asmlinkage void __sched preempt_schedule(void)
4612 struct thread_info *ti = current_thread_info();
4615 * If there is a non-zero preempt_count or interrupts are disabled,
4616 * we do not want to preempt the current task. Just return..
4618 if (likely(ti->preempt_count || irqs_disabled()))
4619 return;
4621 do {
4622 add_preempt_count(PREEMPT_ACTIVE);
4623 schedule();
4624 sub_preempt_count(PREEMPT_ACTIVE);
4627 * Check again in case we missed a preemption opportunity
4628 * between schedule and now.
4630 barrier();
4631 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
4633 EXPORT_SYMBOL(preempt_schedule);
4636 * this is the entry point to schedule() from kernel preemption
4637 * off of irq context.
4638 * Note, that this is called and return with irqs disabled. This will
4639 * protect us against recursive calling from irq.
4641 asmlinkage void __sched preempt_schedule_irq(void)
4643 struct thread_info *ti = current_thread_info();
4645 /* Catch callers which need to be fixed */
4646 BUG_ON(ti->preempt_count || !irqs_disabled());
4648 do {
4649 add_preempt_count(PREEMPT_ACTIVE);
4650 local_irq_enable();
4651 schedule();
4652 local_irq_disable();
4653 sub_preempt_count(PREEMPT_ACTIVE);
4656 * Check again in case we missed a preemption opportunity
4657 * between schedule and now.
4659 barrier();
4660 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
4663 #endif /* CONFIG_PREEMPT */
4665 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
4666 void *key)
4668 return try_to_wake_up(curr->private, mode, sync);
4670 EXPORT_SYMBOL(default_wake_function);
4673 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4674 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
4675 * number) then we wake all the non-exclusive tasks and one exclusive task.
4677 * There are circumstances in which we can try to wake a task which has already
4678 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4679 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4681 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4682 int nr_exclusive, int sync, void *key)
4684 wait_queue_t *curr, *next;
4686 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4687 unsigned flags = curr->flags;
4689 if (curr->func(curr, mode, sync, key) &&
4690 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
4691 break;
4696 * __wake_up - wake up threads blocked on a waitqueue.
4697 * @q: the waitqueue
4698 * @mode: which threads
4699 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4700 * @key: is directly passed to the wakeup function
4702 void __wake_up(wait_queue_head_t *q, unsigned int mode,
4703 int nr_exclusive, void *key)
4705 unsigned long flags;
4707 spin_lock_irqsave(&q->lock, flags);
4708 __wake_up_common(q, mode, nr_exclusive, 0, key);
4709 spin_unlock_irqrestore(&q->lock, flags);
4711 EXPORT_SYMBOL(__wake_up);
4714 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4716 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
4718 __wake_up_common(q, mode, 1, 0, NULL);
4722 * __wake_up_sync - wake up threads blocked on a waitqueue.
4723 * @q: the waitqueue
4724 * @mode: which threads
4725 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4727 * The sync wakeup differs that the waker knows that it will schedule
4728 * away soon, so while the target thread will be woken up, it will not
4729 * be migrated to another CPU - ie. the two threads are 'synchronized'
4730 * with each other. This can prevent needless bouncing between CPUs.
4732 * On UP it can prevent extra preemption.
4734 void
4735 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4737 unsigned long flags;
4738 int sync = 1;
4740 if (unlikely(!q))
4741 return;
4743 if (unlikely(!nr_exclusive))
4744 sync = 0;
4746 spin_lock_irqsave(&q->lock, flags);
4747 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
4748 spin_unlock_irqrestore(&q->lock, flags);
4750 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4752 void complete(struct completion *x)
4754 unsigned long flags;
4756 spin_lock_irqsave(&x->wait.lock, flags);
4757 x->done++;
4758 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
4759 spin_unlock_irqrestore(&x->wait.lock, flags);
4761 EXPORT_SYMBOL(complete);
4763 void complete_all(struct completion *x)
4765 unsigned long flags;
4767 spin_lock_irqsave(&x->wait.lock, flags);
4768 x->done += UINT_MAX/2;
4769 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
4770 spin_unlock_irqrestore(&x->wait.lock, flags);
4772 EXPORT_SYMBOL(complete_all);
4774 static inline long __sched
4775 do_wait_for_common(struct completion *x, long timeout, int state)
4777 if (!x->done) {
4778 DECLARE_WAITQUEUE(wait, current);
4780 wait.flags |= WQ_FLAG_EXCLUSIVE;
4781 __add_wait_queue_tail(&x->wait, &wait);
4782 do {
4783 if ((state == TASK_INTERRUPTIBLE &&
4784 signal_pending(current)) ||
4785 (state == TASK_KILLABLE &&
4786 fatal_signal_pending(current))) {
4787 __remove_wait_queue(&x->wait, &wait);
4788 return -ERESTARTSYS;
4790 __set_current_state(state);
4791 spin_unlock_irq(&x->wait.lock);
4792 timeout = schedule_timeout(timeout);
4793 spin_lock_irq(&x->wait.lock);
4794 if (!timeout) {
4795 __remove_wait_queue(&x->wait, &wait);
4796 return timeout;
4798 } while (!x->done);
4799 __remove_wait_queue(&x->wait, &wait);
4801 x->done--;
4802 return timeout;
4805 static long __sched
4806 wait_for_common(struct completion *x, long timeout, int state)
4808 might_sleep();
4810 spin_lock_irq(&x->wait.lock);
4811 timeout = do_wait_for_common(x, timeout, state);
4812 spin_unlock_irq(&x->wait.lock);
4813 return timeout;
4816 void __sched wait_for_completion(struct completion *x)
4818 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
4820 EXPORT_SYMBOL(wait_for_completion);
4822 unsigned long __sched
4823 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
4825 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
4827 EXPORT_SYMBOL(wait_for_completion_timeout);
4829 int __sched wait_for_completion_interruptible(struct completion *x)
4831 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4832 if (t == -ERESTARTSYS)
4833 return t;
4834 return 0;
4836 EXPORT_SYMBOL(wait_for_completion_interruptible);
4838 unsigned long __sched
4839 wait_for_completion_interruptible_timeout(struct completion *x,
4840 unsigned long timeout)
4842 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
4844 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4846 int __sched wait_for_completion_killable(struct completion *x)
4848 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4849 if (t == -ERESTARTSYS)
4850 return t;
4851 return 0;
4853 EXPORT_SYMBOL(wait_for_completion_killable);
4855 static long __sched
4856 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
4858 unsigned long flags;
4859 wait_queue_t wait;
4861 init_waitqueue_entry(&wait, current);
4863 __set_current_state(state);
4865 spin_lock_irqsave(&q->lock, flags);
4866 __add_wait_queue(q, &wait);
4867 spin_unlock(&q->lock);
4868 timeout = schedule_timeout(timeout);
4869 spin_lock_irq(&q->lock);
4870 __remove_wait_queue(q, &wait);
4871 spin_unlock_irqrestore(&q->lock, flags);
4873 return timeout;
4876 void __sched interruptible_sleep_on(wait_queue_head_t *q)
4878 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4880 EXPORT_SYMBOL(interruptible_sleep_on);
4882 long __sched
4883 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
4885 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
4887 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4889 void __sched sleep_on(wait_queue_head_t *q)
4891 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4893 EXPORT_SYMBOL(sleep_on);
4895 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
4897 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
4899 EXPORT_SYMBOL(sleep_on_timeout);
4901 #ifdef CONFIG_RT_MUTEXES
4904 * rt_mutex_setprio - set the current priority of a task
4905 * @p: task
4906 * @prio: prio value (kernel-internal form)
4908 * This function changes the 'effective' priority of a task. It does
4909 * not touch ->normal_prio like __setscheduler().
4911 * Used by the rt_mutex code to implement priority inheritance logic.
4913 void rt_mutex_setprio(struct task_struct *p, int prio)
4915 unsigned long flags;
4916 int oldprio, on_rq, running;
4917 struct rq *rq;
4918 const struct sched_class *prev_class = p->sched_class;
4920 BUG_ON(prio < 0 || prio > MAX_PRIO);
4922 rq = task_rq_lock(p, &flags);
4923 update_rq_clock(rq);
4925 oldprio = p->prio;
4926 on_rq = p->se.on_rq;
4927 running = task_current(rq, p);
4928 if (on_rq)
4929 dequeue_task(rq, p, 0);
4930 if (running)
4931 p->sched_class->put_prev_task(rq, p);
4933 if (rt_prio(prio))
4934 p->sched_class = &rt_sched_class;
4935 else
4936 p->sched_class = &fair_sched_class;
4938 p->prio = prio;
4940 if (running)
4941 p->sched_class->set_curr_task(rq);
4942 if (on_rq) {
4943 enqueue_task(rq, p, 0);
4945 check_class_changed(rq, p, prev_class, oldprio, running);
4947 task_rq_unlock(rq, &flags);
4950 #endif
4952 void set_user_nice(struct task_struct *p, long nice)
4954 int old_prio, delta, on_rq;
4955 unsigned long flags;
4956 struct rq *rq;
4958 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4959 return;
4961 * We have to be careful, if called from sys_setpriority(),
4962 * the task might be in the middle of scheduling on another CPU.
4964 rq = task_rq_lock(p, &flags);
4965 update_rq_clock(rq);
4967 * The RT priorities are set via sched_setscheduler(), but we still
4968 * allow the 'normal' nice value to be set - but as expected
4969 * it wont have any effect on scheduling until the task is
4970 * SCHED_FIFO/SCHED_RR:
4972 if (task_has_rt_policy(p)) {
4973 p->static_prio = NICE_TO_PRIO(nice);
4974 goto out_unlock;
4976 on_rq = p->se.on_rq;
4977 if (on_rq)
4978 dequeue_task(rq, p, 0);
4980 p->static_prio = NICE_TO_PRIO(nice);
4981 set_load_weight(p);
4982 old_prio = p->prio;
4983 p->prio = effective_prio(p);
4984 delta = p->prio - old_prio;
4986 if (on_rq) {
4987 enqueue_task(rq, p, 0);
4989 * If the task increased its priority or is running and
4990 * lowered its priority, then reschedule its CPU:
4992 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4993 resched_task(rq->curr);
4995 out_unlock:
4996 task_rq_unlock(rq, &flags);
4998 EXPORT_SYMBOL(set_user_nice);
5001 * can_nice - check if a task can reduce its nice value
5002 * @p: task
5003 * @nice: nice value
5005 int can_nice(const struct task_struct *p, const int nice)
5007 /* convert nice value [19,-20] to rlimit style value [1,40] */
5008 int nice_rlim = 20 - nice;
5010 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
5011 capable(CAP_SYS_NICE));
5014 #ifdef __ARCH_WANT_SYS_NICE
5017 * sys_nice - change the priority of the current process.
5018 * @increment: priority increment
5020 * sys_setpriority is a more generic, but much slower function that
5021 * does similar things.
5023 asmlinkage long sys_nice(int increment)
5025 long nice, retval;
5028 * Setpriority might change our priority at the same moment.
5029 * We don't have to worry. Conceptually one call occurs first
5030 * and we have a single winner.
5032 if (increment < -40)
5033 increment = -40;
5034 if (increment > 40)
5035 increment = 40;
5037 nice = PRIO_TO_NICE(current->static_prio) + increment;
5038 if (nice < -20)
5039 nice = -20;
5040 if (nice > 19)
5041 nice = 19;
5043 if (increment < 0 && !can_nice(current, nice))
5044 return -EPERM;
5046 retval = security_task_setnice(current, nice);
5047 if (retval)
5048 return retval;
5050 set_user_nice(current, nice);
5051 return 0;
5054 #endif
5057 * task_prio - return the priority value of a given task.
5058 * @p: the task in question.
5060 * This is the priority value as seen by users in /proc.
5061 * RT tasks are offset by -200. Normal tasks are centered
5062 * around 0, value goes from -16 to +15.
5064 int task_prio(const struct task_struct *p)
5066 return p->prio - MAX_RT_PRIO;
5070 * task_nice - return the nice value of a given task.
5071 * @p: the task in question.
5073 int task_nice(const struct task_struct *p)
5075 return TASK_NICE(p);
5077 EXPORT_SYMBOL(task_nice);
5080 * idle_cpu - is a given cpu idle currently?
5081 * @cpu: the processor in question.
5083 int idle_cpu(int cpu)
5085 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
5089 * idle_task - return the idle task for a given cpu.
5090 * @cpu: the processor in question.
5092 struct task_struct *idle_task(int cpu)
5094 return cpu_rq(cpu)->idle;
5098 * find_process_by_pid - find a process with a matching PID value.
5099 * @pid: the pid in question.
5101 static struct task_struct *find_process_by_pid(pid_t pid)
5103 return pid ? find_task_by_vpid(pid) : current;
5106 /* Actually do priority change: must hold rq lock. */
5107 static void
5108 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
5110 BUG_ON(p->se.on_rq);
5112 p->policy = policy;
5113 switch (p->policy) {
5114 case SCHED_NORMAL:
5115 case SCHED_BATCH:
5116 case SCHED_IDLE:
5117 p->sched_class = &fair_sched_class;
5118 break;
5119 case SCHED_FIFO:
5120 case SCHED_RR:
5121 p->sched_class = &rt_sched_class;
5122 break;
5125 p->rt_priority = prio;
5126 p->normal_prio = normal_prio(p);
5127 /* we are holding p->pi_lock already */
5128 p->prio = rt_mutex_getprio(p);
5129 set_load_weight(p);
5133 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5134 * @p: the task in question.
5135 * @policy: new policy.
5136 * @param: structure containing the new RT priority.
5138 * NOTE that the task may be already dead.
5140 int sched_setscheduler(struct task_struct *p, int policy,
5141 struct sched_param *param)
5143 int retval, oldprio, oldpolicy = -1, on_rq, running;
5144 unsigned long flags;
5145 const struct sched_class *prev_class = p->sched_class;
5146 struct rq *rq;
5148 /* may grab non-irq protected spin_locks */
5149 BUG_ON(in_interrupt());
5150 recheck:
5151 /* double check policy once rq lock held */
5152 if (policy < 0)
5153 policy = oldpolicy = p->policy;
5154 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
5155 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
5156 policy != SCHED_IDLE)
5157 return -EINVAL;
5159 * Valid priorities for SCHED_FIFO and SCHED_RR are
5160 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5161 * SCHED_BATCH and SCHED_IDLE is 0.
5163 if (param->sched_priority < 0 ||
5164 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
5165 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
5166 return -EINVAL;
5167 if (rt_policy(policy) != (param->sched_priority != 0))
5168 return -EINVAL;
5171 * Allow unprivileged RT tasks to decrease priority:
5173 if (!capable(CAP_SYS_NICE)) {
5174 if (rt_policy(policy)) {
5175 unsigned long rlim_rtprio;
5177 if (!lock_task_sighand(p, &flags))
5178 return -ESRCH;
5179 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
5180 unlock_task_sighand(p, &flags);
5182 /* can't set/change the rt policy */
5183 if (policy != p->policy && !rlim_rtprio)
5184 return -EPERM;
5186 /* can't increase priority */
5187 if (param->sched_priority > p->rt_priority &&
5188 param->sched_priority > rlim_rtprio)
5189 return -EPERM;
5192 * Like positive nice levels, dont allow tasks to
5193 * move out of SCHED_IDLE either:
5195 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
5196 return -EPERM;
5198 /* can't change other user's priorities */
5199 if ((current->euid != p->euid) &&
5200 (current->euid != p->uid))
5201 return -EPERM;
5204 #ifdef CONFIG_RT_GROUP_SCHED
5206 * Do not allow realtime tasks into groups that have no runtime
5207 * assigned.
5209 if (rt_policy(policy) && task_group(p)->rt_bandwidth.rt_runtime == 0)
5210 return -EPERM;
5211 #endif
5213 retval = security_task_setscheduler(p, policy, param);
5214 if (retval)
5215 return retval;
5217 * make sure no PI-waiters arrive (or leave) while we are
5218 * changing the priority of the task:
5220 spin_lock_irqsave(&p->pi_lock, flags);
5222 * To be able to change p->policy safely, the apropriate
5223 * runqueue lock must be held.
5225 rq = __task_rq_lock(p);
5226 /* recheck policy now with rq lock held */
5227 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5228 policy = oldpolicy = -1;
5229 __task_rq_unlock(rq);
5230 spin_unlock_irqrestore(&p->pi_lock, flags);
5231 goto recheck;
5233 update_rq_clock(rq);
5234 on_rq = p->se.on_rq;
5235 running = task_current(rq, p);
5236 if (on_rq)
5237 deactivate_task(rq, p, 0);
5238 if (running)
5239 p->sched_class->put_prev_task(rq, p);
5241 oldprio = p->prio;
5242 __setscheduler(rq, p, policy, param->sched_priority);
5244 if (running)
5245 p->sched_class->set_curr_task(rq);
5246 if (on_rq) {
5247 activate_task(rq, p, 0);
5249 check_class_changed(rq, p, prev_class, oldprio, running);
5251 __task_rq_unlock(rq);
5252 spin_unlock_irqrestore(&p->pi_lock, flags);
5254 rt_mutex_adjust_pi(p);
5256 return 0;
5258 EXPORT_SYMBOL_GPL(sched_setscheduler);
5260 static int
5261 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5263 struct sched_param lparam;
5264 struct task_struct *p;
5265 int retval;
5267 if (!param || pid < 0)
5268 return -EINVAL;
5269 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5270 return -EFAULT;
5272 rcu_read_lock();
5273 retval = -ESRCH;
5274 p = find_process_by_pid(pid);
5275 if (p != NULL)
5276 retval = sched_setscheduler(p, policy, &lparam);
5277 rcu_read_unlock();
5279 return retval;
5283 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5284 * @pid: the pid in question.
5285 * @policy: new policy.
5286 * @param: structure containing the new RT priority.
5288 asmlinkage long
5289 sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5291 /* negative values for policy are not valid */
5292 if (policy < 0)
5293 return -EINVAL;
5295 return do_sched_setscheduler(pid, policy, param);
5299 * sys_sched_setparam - set/change the RT priority of a thread
5300 * @pid: the pid in question.
5301 * @param: structure containing the new RT priority.
5303 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
5305 return do_sched_setscheduler(pid, -1, param);
5309 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5310 * @pid: the pid in question.
5312 asmlinkage long sys_sched_getscheduler(pid_t pid)
5314 struct task_struct *p;
5315 int retval;
5317 if (pid < 0)
5318 return -EINVAL;
5320 retval = -ESRCH;
5321 read_lock(&tasklist_lock);
5322 p = find_process_by_pid(pid);
5323 if (p) {
5324 retval = security_task_getscheduler(p);
5325 if (!retval)
5326 retval = p->policy;
5328 read_unlock(&tasklist_lock);
5329 return retval;
5333 * sys_sched_getscheduler - get the RT priority of a thread
5334 * @pid: the pid in question.
5335 * @param: structure containing the RT priority.
5337 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
5339 struct sched_param lp;
5340 struct task_struct *p;
5341 int retval;
5343 if (!param || pid < 0)
5344 return -EINVAL;
5346 read_lock(&tasklist_lock);
5347 p = find_process_by_pid(pid);
5348 retval = -ESRCH;
5349 if (!p)
5350 goto out_unlock;
5352 retval = security_task_getscheduler(p);
5353 if (retval)
5354 goto out_unlock;
5356 lp.sched_priority = p->rt_priority;
5357 read_unlock(&tasklist_lock);
5360 * This one might sleep, we cannot do it with a spinlock held ...
5362 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5364 return retval;
5366 out_unlock:
5367 read_unlock(&tasklist_lock);
5368 return retval;
5371 long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
5373 cpumask_t cpus_allowed;
5374 cpumask_t new_mask = *in_mask;
5375 struct task_struct *p;
5376 int retval;
5378 get_online_cpus();
5379 read_lock(&tasklist_lock);
5381 p = find_process_by_pid(pid);
5382 if (!p) {
5383 read_unlock(&tasklist_lock);
5384 put_online_cpus();
5385 return -ESRCH;
5389 * It is not safe to call set_cpus_allowed with the
5390 * tasklist_lock held. We will bump the task_struct's
5391 * usage count and then drop tasklist_lock.
5393 get_task_struct(p);
5394 read_unlock(&tasklist_lock);
5396 retval = -EPERM;
5397 if ((current->euid != p->euid) && (current->euid != p->uid) &&
5398 !capable(CAP_SYS_NICE))
5399 goto out_unlock;
5401 retval = security_task_setscheduler(p, 0, NULL);
5402 if (retval)
5403 goto out_unlock;
5405 cpuset_cpus_allowed(p, &cpus_allowed);
5406 cpus_and(new_mask, new_mask, cpus_allowed);
5407 again:
5408 retval = set_cpus_allowed_ptr(p, &new_mask);
5410 if (!retval) {
5411 cpuset_cpus_allowed(p, &cpus_allowed);
5412 if (!cpus_subset(new_mask, cpus_allowed)) {
5414 * We must have raced with a concurrent cpuset
5415 * update. Just reset the cpus_allowed to the
5416 * cpuset's cpus_allowed
5418 new_mask = cpus_allowed;
5419 goto again;
5422 out_unlock:
5423 put_task_struct(p);
5424 put_online_cpus();
5425 return retval;
5428 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5429 cpumask_t *new_mask)
5431 if (len < sizeof(cpumask_t)) {
5432 memset(new_mask, 0, sizeof(cpumask_t));
5433 } else if (len > sizeof(cpumask_t)) {
5434 len = sizeof(cpumask_t);
5436 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5440 * sys_sched_setaffinity - set the cpu affinity of a process
5441 * @pid: pid of the process
5442 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5443 * @user_mask_ptr: user-space pointer to the new cpu mask
5445 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
5446 unsigned long __user *user_mask_ptr)
5448 cpumask_t new_mask;
5449 int retval;
5451 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
5452 if (retval)
5453 return retval;
5455 return sched_setaffinity(pid, &new_mask);
5459 * Represents all cpu's present in the system
5460 * In systems capable of hotplug, this map could dynamically grow
5461 * as new cpu's are detected in the system via any platform specific
5462 * method, such as ACPI for e.g.
5465 cpumask_t cpu_present_map __read_mostly;
5466 EXPORT_SYMBOL(cpu_present_map);
5468 #ifndef CONFIG_SMP
5469 cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
5470 EXPORT_SYMBOL(cpu_online_map);
5472 cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
5473 EXPORT_SYMBOL(cpu_possible_map);
5474 #endif
5476 long sched_getaffinity(pid_t pid, cpumask_t *mask)
5478 struct task_struct *p;
5479 int retval;
5481 get_online_cpus();
5482 read_lock(&tasklist_lock);
5484 retval = -ESRCH;
5485 p = find_process_by_pid(pid);
5486 if (!p)
5487 goto out_unlock;
5489 retval = security_task_getscheduler(p);
5490 if (retval)
5491 goto out_unlock;
5493 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
5495 out_unlock:
5496 read_unlock(&tasklist_lock);
5497 put_online_cpus();
5499 return retval;
5503 * sys_sched_getaffinity - get the cpu affinity of a process
5504 * @pid: pid of the process
5505 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5506 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5508 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
5509 unsigned long __user *user_mask_ptr)
5511 int ret;
5512 cpumask_t mask;
5514 if (len < sizeof(cpumask_t))
5515 return -EINVAL;
5517 ret = sched_getaffinity(pid, &mask);
5518 if (ret < 0)
5519 return ret;
5521 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
5522 return -EFAULT;
5524 return sizeof(cpumask_t);
5528 * sys_sched_yield - yield the current processor to other threads.
5530 * This function yields the current CPU to other tasks. If there are no
5531 * other threads running on this CPU then this function will return.
5533 asmlinkage long sys_sched_yield(void)
5535 struct rq *rq = this_rq_lock();
5537 schedstat_inc(rq, yld_count);
5538 current->sched_class->yield_task(rq);
5541 * Since we are going to call schedule() anyway, there's
5542 * no need to preempt or enable interrupts:
5544 __release(rq->lock);
5545 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
5546 _raw_spin_unlock(&rq->lock);
5547 preempt_enable_no_resched();
5549 schedule();
5551 return 0;
5554 static void __cond_resched(void)
5556 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5557 __might_sleep(__FILE__, __LINE__);
5558 #endif
5560 * The BKS might be reacquired before we have dropped
5561 * PREEMPT_ACTIVE, which could trigger a second
5562 * cond_resched() call.
5564 do {
5565 add_preempt_count(PREEMPT_ACTIVE);
5566 schedule();
5567 sub_preempt_count(PREEMPT_ACTIVE);
5568 } while (need_resched());
5571 int __sched _cond_resched(void)
5573 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
5574 system_state == SYSTEM_RUNNING) {
5575 __cond_resched();
5576 return 1;
5578 return 0;
5580 EXPORT_SYMBOL(_cond_resched);
5583 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
5584 * call schedule, and on return reacquire the lock.
5586 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5587 * operations here to prevent schedule() from being called twice (once via
5588 * spin_unlock(), once by hand).
5590 int cond_resched_lock(spinlock_t *lock)
5592 int resched = need_resched() && system_state == SYSTEM_RUNNING;
5593 int ret = 0;
5595 if (spin_needbreak(lock) || resched) {
5596 spin_unlock(lock);
5597 if (resched && need_resched())
5598 __cond_resched();
5599 else
5600 cpu_relax();
5601 ret = 1;
5602 spin_lock(lock);
5604 return ret;
5606 EXPORT_SYMBOL(cond_resched_lock);
5608 int __sched cond_resched_softirq(void)
5610 BUG_ON(!in_softirq());
5612 if (need_resched() && system_state == SYSTEM_RUNNING) {
5613 local_bh_enable();
5614 __cond_resched();
5615 local_bh_disable();
5616 return 1;
5618 return 0;
5620 EXPORT_SYMBOL(cond_resched_softirq);
5623 * yield - yield the current processor to other threads.
5625 * This is a shortcut for kernel-space yielding - it marks the
5626 * thread runnable and calls sys_sched_yield().
5628 void __sched yield(void)
5630 set_current_state(TASK_RUNNING);
5631 sys_sched_yield();
5633 EXPORT_SYMBOL(yield);
5636 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5637 * that process accounting knows that this is a task in IO wait state.
5639 * But don't do that if it is a deliberate, throttling IO wait (this task
5640 * has set its backing_dev_info: the queue against which it should throttle)
5642 void __sched io_schedule(void)
5644 struct rq *rq = &__raw_get_cpu_var(runqueues);
5646 delayacct_blkio_start();
5647 atomic_inc(&rq->nr_iowait);
5648 schedule();
5649 atomic_dec(&rq->nr_iowait);
5650 delayacct_blkio_end();
5652 EXPORT_SYMBOL(io_schedule);
5654 long __sched io_schedule_timeout(long timeout)
5656 struct rq *rq = &__raw_get_cpu_var(runqueues);
5657 long ret;
5659 delayacct_blkio_start();
5660 atomic_inc(&rq->nr_iowait);
5661 ret = schedule_timeout(timeout);
5662 atomic_dec(&rq->nr_iowait);
5663 delayacct_blkio_end();
5664 return ret;
5668 * sys_sched_get_priority_max - return maximum RT priority.
5669 * @policy: scheduling class.
5671 * this syscall returns the maximum rt_priority that can be used
5672 * by a given scheduling class.
5674 asmlinkage long sys_sched_get_priority_max(int policy)
5676 int ret = -EINVAL;
5678 switch (policy) {
5679 case SCHED_FIFO:
5680 case SCHED_RR:
5681 ret = MAX_USER_RT_PRIO-1;
5682 break;
5683 case SCHED_NORMAL:
5684 case SCHED_BATCH:
5685 case SCHED_IDLE:
5686 ret = 0;
5687 break;
5689 return ret;
5693 * sys_sched_get_priority_min - return minimum RT priority.
5694 * @policy: scheduling class.
5696 * this syscall returns the minimum rt_priority that can be used
5697 * by a given scheduling class.
5699 asmlinkage long sys_sched_get_priority_min(int policy)
5701 int ret = -EINVAL;
5703 switch (policy) {
5704 case SCHED_FIFO:
5705 case SCHED_RR:
5706 ret = 1;
5707 break;
5708 case SCHED_NORMAL:
5709 case SCHED_BATCH:
5710 case SCHED_IDLE:
5711 ret = 0;
5713 return ret;
5717 * sys_sched_rr_get_interval - return the default timeslice of a process.
5718 * @pid: pid of the process.
5719 * @interval: userspace pointer to the timeslice value.
5721 * this syscall writes the default timeslice value of a given process
5722 * into the user-space timespec buffer. A value of '0' means infinity.
5724 asmlinkage
5725 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
5727 struct task_struct *p;
5728 unsigned int time_slice;
5729 int retval;
5730 struct timespec t;
5732 if (pid < 0)
5733 return -EINVAL;
5735 retval = -ESRCH;
5736 read_lock(&tasklist_lock);
5737 p = find_process_by_pid(pid);
5738 if (!p)
5739 goto out_unlock;
5741 retval = security_task_getscheduler(p);
5742 if (retval)
5743 goto out_unlock;
5746 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5747 * tasks that are on an otherwise idle runqueue:
5749 time_slice = 0;
5750 if (p->policy == SCHED_RR) {
5751 time_slice = DEF_TIMESLICE;
5752 } else if (p->policy != SCHED_FIFO) {
5753 struct sched_entity *se = &p->se;
5754 unsigned long flags;
5755 struct rq *rq;
5757 rq = task_rq_lock(p, &flags);
5758 if (rq->cfs.load.weight)
5759 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
5760 task_rq_unlock(rq, &flags);
5762 read_unlock(&tasklist_lock);
5763 jiffies_to_timespec(time_slice, &t);
5764 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5765 return retval;
5767 out_unlock:
5768 read_unlock(&tasklist_lock);
5769 return retval;
5772 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5774 void sched_show_task(struct task_struct *p)
5776 unsigned long free = 0;
5777 unsigned state;
5779 state = p->state ? __ffs(p->state) + 1 : 0;
5780 printk(KERN_INFO "%-13.13s %c", p->comm,
5781 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5782 #if BITS_PER_LONG == 32
5783 if (state == TASK_RUNNING)
5784 printk(KERN_CONT " running ");
5785 else
5786 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5787 #else
5788 if (state == TASK_RUNNING)
5789 printk(KERN_CONT " running task ");
5790 else
5791 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5792 #endif
5793 #ifdef CONFIG_DEBUG_STACK_USAGE
5795 unsigned long *n = end_of_stack(p);
5796 while (!*n)
5797 n++;
5798 free = (unsigned long)n - (unsigned long)end_of_stack(p);
5800 #endif
5801 printk(KERN_CONT "%5lu %5d %6d\n", free,
5802 task_pid_nr(p), task_pid_nr(p->real_parent));
5804 show_stack(p, NULL);
5807 void show_state_filter(unsigned long state_filter)
5809 struct task_struct *g, *p;
5811 #if BITS_PER_LONG == 32
5812 printk(KERN_INFO
5813 " task PC stack pid father\n");
5814 #else
5815 printk(KERN_INFO
5816 " task PC stack pid father\n");
5817 #endif
5818 read_lock(&tasklist_lock);
5819 do_each_thread(g, p) {
5821 * reset the NMI-timeout, listing all files on a slow
5822 * console might take alot of time:
5824 touch_nmi_watchdog();
5825 if (!state_filter || (p->state & state_filter))
5826 sched_show_task(p);
5827 } while_each_thread(g, p);
5829 touch_all_softlockup_watchdogs();
5831 #ifdef CONFIG_SCHED_DEBUG
5832 sysrq_sched_debug_show();
5833 #endif
5834 read_unlock(&tasklist_lock);
5836 * Only show locks if all tasks are dumped:
5838 if (state_filter == -1)
5839 debug_show_all_locks();
5842 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5844 idle->sched_class = &idle_sched_class;
5848 * init_idle - set up an idle thread for a given CPU
5849 * @idle: task in question
5850 * @cpu: cpu the idle task belongs to
5852 * NOTE: this function does not set the idle thread's NEED_RESCHED
5853 * flag, to make booting more robust.
5855 void __cpuinit init_idle(struct task_struct *idle, int cpu)
5857 struct rq *rq = cpu_rq(cpu);
5858 unsigned long flags;
5860 __sched_fork(idle);
5861 idle->se.exec_start = sched_clock();
5863 idle->prio = idle->normal_prio = MAX_PRIO;
5864 idle->cpus_allowed = cpumask_of_cpu(cpu);
5865 __set_task_cpu(idle, cpu);
5867 spin_lock_irqsave(&rq->lock, flags);
5868 rq->curr = rq->idle = idle;
5869 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5870 idle->oncpu = 1;
5871 #endif
5872 spin_unlock_irqrestore(&rq->lock, flags);
5874 /* Set the preempt count _outside_ the spinlocks! */
5875 #if defined(CONFIG_PREEMPT)
5876 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5877 #else
5878 task_thread_info(idle)->preempt_count = 0;
5879 #endif
5881 * The idle tasks have their own, simple scheduling class:
5883 idle->sched_class = &idle_sched_class;
5887 * In a system that switches off the HZ timer nohz_cpu_mask
5888 * indicates which cpus entered this state. This is used
5889 * in the rcu update to wait only for active cpus. For system
5890 * which do not switch off the HZ timer nohz_cpu_mask should
5891 * always be CPU_MASK_NONE.
5893 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
5896 * Increase the granularity value when there are more CPUs,
5897 * because with more CPUs the 'effective latency' as visible
5898 * to users decreases. But the relationship is not linear,
5899 * so pick a second-best guess by going with the log2 of the
5900 * number of CPUs.
5902 * This idea comes from the SD scheduler of Con Kolivas:
5904 static inline void sched_init_granularity(void)
5906 unsigned int factor = 1 + ilog2(num_online_cpus());
5907 const unsigned long limit = 200000000;
5909 sysctl_sched_min_granularity *= factor;
5910 if (sysctl_sched_min_granularity > limit)
5911 sysctl_sched_min_granularity = limit;
5913 sysctl_sched_latency *= factor;
5914 if (sysctl_sched_latency > limit)
5915 sysctl_sched_latency = limit;
5917 sysctl_sched_wakeup_granularity *= factor;
5920 #ifdef CONFIG_SMP
5922 * This is how migration works:
5924 * 1) we queue a struct migration_req structure in the source CPU's
5925 * runqueue and wake up that CPU's migration thread.
5926 * 2) we down() the locked semaphore => thread blocks.
5927 * 3) migration thread wakes up (implicitly it forces the migrated
5928 * thread off the CPU)
5929 * 4) it gets the migration request and checks whether the migrated
5930 * task is still in the wrong runqueue.
5931 * 5) if it's in the wrong runqueue then the migration thread removes
5932 * it and puts it into the right queue.
5933 * 6) migration thread up()s the semaphore.
5934 * 7) we wake up and the migration is done.
5938 * Change a given task's CPU affinity. Migrate the thread to a
5939 * proper CPU and schedule it away if the CPU it's executing on
5940 * is removed from the allowed bitmask.
5942 * NOTE: the caller must have a valid reference to the task, the
5943 * task must not exit() & deallocate itself prematurely. The
5944 * call is not atomic; no spinlocks may be held.
5946 int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
5948 struct migration_req req;
5949 unsigned long flags;
5950 struct rq *rq;
5951 int ret = 0;
5953 rq = task_rq_lock(p, &flags);
5954 if (!cpus_intersects(*new_mask, cpu_online_map)) {
5955 ret = -EINVAL;
5956 goto out;
5959 if (p->sched_class->set_cpus_allowed)
5960 p->sched_class->set_cpus_allowed(p, new_mask);
5961 else {
5962 p->cpus_allowed = *new_mask;
5963 p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
5966 /* Can the task run on the task's current CPU? If so, we're done */
5967 if (cpu_isset(task_cpu(p), *new_mask))
5968 goto out;
5970 if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
5971 /* Need help from migration thread: drop lock and wait. */
5972 task_rq_unlock(rq, &flags);
5973 wake_up_process(rq->migration_thread);
5974 wait_for_completion(&req.done);
5975 tlb_migrate_finish(p->mm);
5976 return 0;
5978 out:
5979 task_rq_unlock(rq, &flags);
5981 return ret;
5983 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
5986 * Move (not current) task off this cpu, onto dest cpu. We're doing
5987 * this because either it can't run here any more (set_cpus_allowed()
5988 * away from this CPU, or CPU going down), or because we're
5989 * attempting to rebalance this task on exec (sched_exec).
5991 * So we race with normal scheduler movements, but that's OK, as long
5992 * as the task is no longer on this CPU.
5994 * Returns non-zero if task was successfully migrated.
5996 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5998 struct rq *rq_dest, *rq_src;
5999 int ret = 0, on_rq;
6001 if (unlikely(cpu_is_offline(dest_cpu)))
6002 return ret;
6004 rq_src = cpu_rq(src_cpu);
6005 rq_dest = cpu_rq(dest_cpu);
6007 double_rq_lock(rq_src, rq_dest);
6008 /* Already moved. */
6009 if (task_cpu(p) != src_cpu)
6010 goto out;
6011 /* Affinity changed (again). */
6012 if (!cpu_isset(dest_cpu, p->cpus_allowed))
6013 goto out;
6015 on_rq = p->se.on_rq;
6016 if (on_rq)
6017 deactivate_task(rq_src, p, 0);
6019 set_task_cpu(p, dest_cpu);
6020 if (on_rq) {
6021 activate_task(rq_dest, p, 0);
6022 check_preempt_curr(rq_dest, p);
6024 ret = 1;
6025 out:
6026 double_rq_unlock(rq_src, rq_dest);
6027 return ret;
6031 * migration_thread - this is a highprio system thread that performs
6032 * thread migration by bumping thread off CPU then 'pushing' onto
6033 * another runqueue.
6035 static int migration_thread(void *data)
6037 int cpu = (long)data;
6038 struct rq *rq;
6040 rq = cpu_rq(cpu);
6041 BUG_ON(rq->migration_thread != current);
6043 set_current_state(TASK_INTERRUPTIBLE);
6044 while (!kthread_should_stop()) {
6045 struct migration_req *req;
6046 struct list_head *head;
6048 spin_lock_irq(&rq->lock);
6050 if (cpu_is_offline(cpu)) {
6051 spin_unlock_irq(&rq->lock);
6052 goto wait_to_die;
6055 if (rq->active_balance) {
6056 active_load_balance(rq, cpu);
6057 rq->active_balance = 0;
6060 head = &rq->migration_queue;
6062 if (list_empty(head)) {
6063 spin_unlock_irq(&rq->lock);
6064 schedule();
6065 set_current_state(TASK_INTERRUPTIBLE);
6066 continue;
6068 req = list_entry(head->next, struct migration_req, list);
6069 list_del_init(head->next);
6071 spin_unlock(&rq->lock);
6072 __migrate_task(req->task, cpu, req->dest_cpu);
6073 local_irq_enable();
6075 complete(&req->done);
6077 __set_current_state(TASK_RUNNING);
6078 return 0;
6080 wait_to_die:
6081 /* Wait for kthread_stop */
6082 set_current_state(TASK_INTERRUPTIBLE);
6083 while (!kthread_should_stop()) {
6084 schedule();
6085 set_current_state(TASK_INTERRUPTIBLE);
6087 __set_current_state(TASK_RUNNING);
6088 return 0;
6091 #ifdef CONFIG_HOTPLUG_CPU
6093 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
6095 int ret;
6097 local_irq_disable();
6098 ret = __migrate_task(p, src_cpu, dest_cpu);
6099 local_irq_enable();
6100 return ret;
6104 * Figure out where task on dead CPU should go, use force if necessary.
6105 * NOTE: interrupts should be disabled by the caller
6107 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
6109 unsigned long flags;
6110 cpumask_t mask;
6111 struct rq *rq;
6112 int dest_cpu;
6114 do {
6115 /* On same node? */
6116 mask = node_to_cpumask(cpu_to_node(dead_cpu));
6117 cpus_and(mask, mask, p->cpus_allowed);
6118 dest_cpu = any_online_cpu(mask);
6120 /* On any allowed CPU? */
6121 if (dest_cpu >= nr_cpu_ids)
6122 dest_cpu = any_online_cpu(p->cpus_allowed);
6124 /* No more Mr. Nice Guy. */
6125 if (dest_cpu >= nr_cpu_ids) {
6126 cpumask_t cpus_allowed;
6128 cpuset_cpus_allowed_locked(p, &cpus_allowed);
6130 * Try to stay on the same cpuset, where the
6131 * current cpuset may be a subset of all cpus.
6132 * The cpuset_cpus_allowed_locked() variant of
6133 * cpuset_cpus_allowed() will not block. It must be
6134 * called within calls to cpuset_lock/cpuset_unlock.
6136 rq = task_rq_lock(p, &flags);
6137 p->cpus_allowed = cpus_allowed;
6138 dest_cpu = any_online_cpu(p->cpus_allowed);
6139 task_rq_unlock(rq, &flags);
6142 * Don't tell them about moving exiting tasks or
6143 * kernel threads (both mm NULL), since they never
6144 * leave kernel.
6146 if (p->mm && printk_ratelimit()) {
6147 printk(KERN_INFO "process %d (%s) no "
6148 "longer affine to cpu%d\n",
6149 task_pid_nr(p), p->comm, dead_cpu);
6152 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
6156 * While a dead CPU has no uninterruptible tasks queued at this point,
6157 * it might still have a nonzero ->nr_uninterruptible counter, because
6158 * for performance reasons the counter is not stricly tracking tasks to
6159 * their home CPUs. So we just add the counter to another CPU's counter,
6160 * to keep the global sum constant after CPU-down:
6162 static void migrate_nr_uninterruptible(struct rq *rq_src)
6164 struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
6165 unsigned long flags;
6167 local_irq_save(flags);
6168 double_rq_lock(rq_src, rq_dest);
6169 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6170 rq_src->nr_uninterruptible = 0;
6171 double_rq_unlock(rq_src, rq_dest);
6172 local_irq_restore(flags);
6175 /* Run through task list and migrate tasks from the dead cpu. */
6176 static void migrate_live_tasks(int src_cpu)
6178 struct task_struct *p, *t;
6180 read_lock(&tasklist_lock);
6182 do_each_thread(t, p) {
6183 if (p == current)
6184 continue;
6186 if (task_cpu(p) == src_cpu)
6187 move_task_off_dead_cpu(src_cpu, p);
6188 } while_each_thread(t, p);
6190 read_unlock(&tasklist_lock);
6194 * Schedules idle task to be the next runnable task on current CPU.
6195 * It does so by boosting its priority to highest possible.
6196 * Used by CPU offline code.
6198 void sched_idle_next(void)
6200 int this_cpu = smp_processor_id();
6201 struct rq *rq = cpu_rq(this_cpu);
6202 struct task_struct *p = rq->idle;
6203 unsigned long flags;
6205 /* cpu has to be offline */
6206 BUG_ON(cpu_online(this_cpu));
6209 * Strictly not necessary since rest of the CPUs are stopped by now
6210 * and interrupts disabled on the current cpu.
6212 spin_lock_irqsave(&rq->lock, flags);
6214 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6216 update_rq_clock(rq);
6217 activate_task(rq, p, 0);
6219 spin_unlock_irqrestore(&rq->lock, flags);
6223 * Ensures that the idle task is using init_mm right before its cpu goes
6224 * offline.
6226 void idle_task_exit(void)
6228 struct mm_struct *mm = current->active_mm;
6230 BUG_ON(cpu_online(smp_processor_id()));
6232 if (mm != &init_mm)
6233 switch_mm(mm, &init_mm, current);
6234 mmdrop(mm);
6237 /* called under rq->lock with disabled interrupts */
6238 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
6240 struct rq *rq = cpu_rq(dead_cpu);
6242 /* Must be exiting, otherwise would be on tasklist. */
6243 BUG_ON(!p->exit_state);
6245 /* Cannot have done final schedule yet: would have vanished. */
6246 BUG_ON(p->state == TASK_DEAD);
6248 get_task_struct(p);
6251 * Drop lock around migration; if someone else moves it,
6252 * that's OK. No task can be added to this CPU, so iteration is
6253 * fine.
6255 spin_unlock_irq(&rq->lock);
6256 move_task_off_dead_cpu(dead_cpu, p);
6257 spin_lock_irq(&rq->lock);
6259 put_task_struct(p);
6262 /* release_task() removes task from tasklist, so we won't find dead tasks. */
6263 static void migrate_dead_tasks(unsigned int dead_cpu)
6265 struct rq *rq = cpu_rq(dead_cpu);
6266 struct task_struct *next;
6268 for ( ; ; ) {
6269 if (!rq->nr_running)
6270 break;
6271 update_rq_clock(rq);
6272 next = pick_next_task(rq, rq->curr);
6273 if (!next)
6274 break;
6275 migrate_dead(dead_cpu, next);
6279 #endif /* CONFIG_HOTPLUG_CPU */
6281 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6283 static struct ctl_table sd_ctl_dir[] = {
6285 .procname = "sched_domain",
6286 .mode = 0555,
6288 {0, },
6291 static struct ctl_table sd_ctl_root[] = {
6293 .ctl_name = CTL_KERN,
6294 .procname = "kernel",
6295 .mode = 0555,
6296 .child = sd_ctl_dir,
6298 {0, },
6301 static struct ctl_table *sd_alloc_ctl_entry(int n)
6303 struct ctl_table *entry =
6304 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
6306 return entry;
6309 static void sd_free_ctl_entry(struct ctl_table **tablep)
6311 struct ctl_table *entry;
6314 * In the intermediate directories, both the child directory and
6315 * procname are dynamically allocated and could fail but the mode
6316 * will always be set. In the lowest directory the names are
6317 * static strings and all have proc handlers.
6319 for (entry = *tablep; entry->mode; entry++) {
6320 if (entry->child)
6321 sd_free_ctl_entry(&entry->child);
6322 if (entry->proc_handler == NULL)
6323 kfree(entry->procname);
6326 kfree(*tablep);
6327 *tablep = NULL;
6330 static void
6331 set_table_entry(struct ctl_table *entry,
6332 const char *procname, void *data, int maxlen,
6333 mode_t mode, proc_handler *proc_handler)
6335 entry->procname = procname;
6336 entry->data = data;
6337 entry->maxlen = maxlen;
6338 entry->mode = mode;
6339 entry->proc_handler = proc_handler;
6342 static struct ctl_table *
6343 sd_alloc_ctl_domain_table(struct sched_domain *sd)
6345 struct ctl_table *table = sd_alloc_ctl_entry(12);
6347 if (table == NULL)
6348 return NULL;
6350 set_table_entry(&table[0], "min_interval", &sd->min_interval,
6351 sizeof(long), 0644, proc_doulongvec_minmax);
6352 set_table_entry(&table[1], "max_interval", &sd->max_interval,
6353 sizeof(long), 0644, proc_doulongvec_minmax);
6354 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
6355 sizeof(int), 0644, proc_dointvec_minmax);
6356 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
6357 sizeof(int), 0644, proc_dointvec_minmax);
6358 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
6359 sizeof(int), 0644, proc_dointvec_minmax);
6360 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
6361 sizeof(int), 0644, proc_dointvec_minmax);
6362 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
6363 sizeof(int), 0644, proc_dointvec_minmax);
6364 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
6365 sizeof(int), 0644, proc_dointvec_minmax);
6366 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
6367 sizeof(int), 0644, proc_dointvec_minmax);
6368 set_table_entry(&table[9], "cache_nice_tries",
6369 &sd->cache_nice_tries,
6370 sizeof(int), 0644, proc_dointvec_minmax);
6371 set_table_entry(&table[10], "flags", &sd->flags,
6372 sizeof(int), 0644, proc_dointvec_minmax);
6373 /* &table[11] is terminator */
6375 return table;
6378 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
6380 struct ctl_table *entry, *table;
6381 struct sched_domain *sd;
6382 int domain_num = 0, i;
6383 char buf[32];
6385 for_each_domain(cpu, sd)
6386 domain_num++;
6387 entry = table = sd_alloc_ctl_entry(domain_num + 1);
6388 if (table == NULL)
6389 return NULL;
6391 i = 0;
6392 for_each_domain(cpu, sd) {
6393 snprintf(buf, 32, "domain%d", i);
6394 entry->procname = kstrdup(buf, GFP_KERNEL);
6395 entry->mode = 0555;
6396 entry->child = sd_alloc_ctl_domain_table(sd);
6397 entry++;
6398 i++;
6400 return table;
6403 static struct ctl_table_header *sd_sysctl_header;
6404 static void register_sched_domain_sysctl(void)
6406 int i, cpu_num = num_online_cpus();
6407 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6408 char buf[32];
6410 WARN_ON(sd_ctl_dir[0].child);
6411 sd_ctl_dir[0].child = entry;
6413 if (entry == NULL)
6414 return;
6416 for_each_online_cpu(i) {
6417 snprintf(buf, 32, "cpu%d", i);
6418 entry->procname = kstrdup(buf, GFP_KERNEL);
6419 entry->mode = 0555;
6420 entry->child = sd_alloc_ctl_cpu_table(i);
6421 entry++;
6424 WARN_ON(sd_sysctl_header);
6425 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6428 /* may be called multiple times per register */
6429 static void unregister_sched_domain_sysctl(void)
6431 if (sd_sysctl_header)
6432 unregister_sysctl_table(sd_sysctl_header);
6433 sd_sysctl_header = NULL;
6434 if (sd_ctl_dir[0].child)
6435 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6437 #else
6438 static void register_sched_domain_sysctl(void)
6441 static void unregister_sched_domain_sysctl(void)
6444 #endif
6447 * migration_call - callback that gets triggered when a CPU is added.
6448 * Here we can start up the necessary migration thread for the new CPU.
6450 static int __cpuinit
6451 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
6453 struct task_struct *p;
6454 int cpu = (long)hcpu;
6455 unsigned long flags;
6456 struct rq *rq;
6458 switch (action) {
6460 case CPU_UP_PREPARE:
6461 case CPU_UP_PREPARE_FROZEN:
6462 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
6463 if (IS_ERR(p))
6464 return NOTIFY_BAD;
6465 kthread_bind(p, cpu);
6466 /* Must be high prio: stop_machine expects to yield to it. */
6467 rq = task_rq_lock(p, &flags);
6468 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6469 task_rq_unlock(rq, &flags);
6470 cpu_rq(cpu)->migration_thread = p;
6471 break;
6473 case CPU_ONLINE:
6474 case CPU_ONLINE_FROZEN:
6475 /* Strictly unnecessary, as first user will wake it. */
6476 wake_up_process(cpu_rq(cpu)->migration_thread);
6478 /* Update our root-domain */
6479 rq = cpu_rq(cpu);
6480 spin_lock_irqsave(&rq->lock, flags);
6481 if (rq->rd) {
6482 BUG_ON(!cpu_isset(cpu, rq->rd->span));
6483 cpu_set(cpu, rq->rd->online);
6485 spin_unlock_irqrestore(&rq->lock, flags);
6486 break;
6488 #ifdef CONFIG_HOTPLUG_CPU
6489 case CPU_UP_CANCELED:
6490 case CPU_UP_CANCELED_FROZEN:
6491 if (!cpu_rq(cpu)->migration_thread)
6492 break;
6493 /* Unbind it from offline cpu so it can run. Fall thru. */
6494 kthread_bind(cpu_rq(cpu)->migration_thread,
6495 any_online_cpu(cpu_online_map));
6496 kthread_stop(cpu_rq(cpu)->migration_thread);
6497 cpu_rq(cpu)->migration_thread = NULL;
6498 break;
6500 case CPU_DEAD:
6501 case CPU_DEAD_FROZEN:
6502 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
6503 migrate_live_tasks(cpu);
6504 rq = cpu_rq(cpu);
6505 kthread_stop(rq->migration_thread);
6506 rq->migration_thread = NULL;
6507 /* Idle task back to normal (off runqueue, low prio) */
6508 spin_lock_irq(&rq->lock);
6509 update_rq_clock(rq);
6510 deactivate_task(rq, rq->idle, 0);
6511 rq->idle->static_prio = MAX_PRIO;
6512 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
6513 rq->idle->sched_class = &idle_sched_class;
6514 migrate_dead_tasks(cpu);
6515 spin_unlock_irq(&rq->lock);
6516 cpuset_unlock();
6517 migrate_nr_uninterruptible(rq);
6518 BUG_ON(rq->nr_running != 0);
6521 * No need to migrate the tasks: it was best-effort if
6522 * they didn't take sched_hotcpu_mutex. Just wake up
6523 * the requestors.
6525 spin_lock_irq(&rq->lock);
6526 while (!list_empty(&rq->migration_queue)) {
6527 struct migration_req *req;
6529 req = list_entry(rq->migration_queue.next,
6530 struct migration_req, list);
6531 list_del_init(&req->list);
6532 complete(&req->done);
6534 spin_unlock_irq(&rq->lock);
6535 break;
6537 case CPU_DYING:
6538 case CPU_DYING_FROZEN:
6539 /* Update our root-domain */
6540 rq = cpu_rq(cpu);
6541 spin_lock_irqsave(&rq->lock, flags);
6542 if (rq->rd) {
6543 BUG_ON(!cpu_isset(cpu, rq->rd->span));
6544 cpu_clear(cpu, rq->rd->online);
6546 spin_unlock_irqrestore(&rq->lock, flags);
6547 break;
6548 #endif
6550 return NOTIFY_OK;
6553 /* Register at highest priority so that task migration (migrate_all_tasks)
6554 * happens before everything else.
6556 static struct notifier_block __cpuinitdata migration_notifier = {
6557 .notifier_call = migration_call,
6558 .priority = 10
6561 void __init migration_init(void)
6563 void *cpu = (void *)(long)smp_processor_id();
6564 int err;
6566 /* Start one for the boot CPU: */
6567 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6568 BUG_ON(err == NOTIFY_BAD);
6569 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6570 register_cpu_notifier(&migration_notifier);
6572 #endif
6574 #ifdef CONFIG_SMP
6576 #ifdef CONFIG_SCHED_DEBUG
6578 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6579 cpumask_t *groupmask)
6581 struct sched_group *group = sd->groups;
6582 char str[256];
6584 cpulist_scnprintf(str, sizeof(str), sd->span);
6585 cpus_clear(*groupmask);
6587 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6589 if (!(sd->flags & SD_LOAD_BALANCE)) {
6590 printk("does not load-balance\n");
6591 if (sd->parent)
6592 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6593 " has parent");
6594 return -1;
6597 printk(KERN_CONT "span %s\n", str);
6599 if (!cpu_isset(cpu, sd->span)) {
6600 printk(KERN_ERR "ERROR: domain->span does not contain "
6601 "CPU%d\n", cpu);
6603 if (!cpu_isset(cpu, group->cpumask)) {
6604 printk(KERN_ERR "ERROR: domain->groups does not contain"
6605 " CPU%d\n", cpu);
6608 printk(KERN_DEBUG "%*s groups:", level + 1, "");
6609 do {
6610 if (!group) {
6611 printk("\n");
6612 printk(KERN_ERR "ERROR: group is NULL\n");
6613 break;
6616 if (!group->__cpu_power) {
6617 printk(KERN_CONT "\n");
6618 printk(KERN_ERR "ERROR: domain->cpu_power not "
6619 "set\n");
6620 break;
6623 if (!cpus_weight(group->cpumask)) {
6624 printk(KERN_CONT "\n");
6625 printk(KERN_ERR "ERROR: empty group\n");
6626 break;
6629 if (cpus_intersects(*groupmask, group->cpumask)) {
6630 printk(KERN_CONT "\n");
6631 printk(KERN_ERR "ERROR: repeated CPUs\n");
6632 break;
6635 cpus_or(*groupmask, *groupmask, group->cpumask);
6637 cpulist_scnprintf(str, sizeof(str), group->cpumask);
6638 printk(KERN_CONT " %s", str);
6640 group = group->next;
6641 } while (group != sd->groups);
6642 printk(KERN_CONT "\n");
6644 if (!cpus_equal(sd->span, *groupmask))
6645 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
6647 if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
6648 printk(KERN_ERR "ERROR: parent span is not a superset "
6649 "of domain->span\n");
6650 return 0;
6653 static void sched_domain_debug(struct sched_domain *sd, int cpu)
6655 cpumask_t *groupmask;
6656 int level = 0;
6658 if (!sd) {
6659 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6660 return;
6663 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6665 groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
6666 if (!groupmask) {
6667 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6668 return;
6671 for (;;) {
6672 if (sched_domain_debug_one(sd, cpu, level, groupmask))
6673 break;
6674 level++;
6675 sd = sd->parent;
6676 if (!sd)
6677 break;
6679 kfree(groupmask);
6681 #else
6682 # define sched_domain_debug(sd, cpu) do { } while (0)
6683 #endif
6685 static int sd_degenerate(struct sched_domain *sd)
6687 if (cpus_weight(sd->span) == 1)
6688 return 1;
6690 /* Following flags need at least 2 groups */
6691 if (sd->flags & (SD_LOAD_BALANCE |
6692 SD_BALANCE_NEWIDLE |
6693 SD_BALANCE_FORK |
6694 SD_BALANCE_EXEC |
6695 SD_SHARE_CPUPOWER |
6696 SD_SHARE_PKG_RESOURCES)) {
6697 if (sd->groups != sd->groups->next)
6698 return 0;
6701 /* Following flags don't use groups */
6702 if (sd->flags & (SD_WAKE_IDLE |
6703 SD_WAKE_AFFINE |
6704 SD_WAKE_BALANCE))
6705 return 0;
6707 return 1;
6710 static int
6711 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6713 unsigned long cflags = sd->flags, pflags = parent->flags;
6715 if (sd_degenerate(parent))
6716 return 1;
6718 if (!cpus_equal(sd->span, parent->span))
6719 return 0;
6721 /* Does parent contain flags not in child? */
6722 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6723 if (cflags & SD_WAKE_AFFINE)
6724 pflags &= ~SD_WAKE_BALANCE;
6725 /* Flags needing groups don't count if only 1 group in parent */
6726 if (parent->groups == parent->groups->next) {
6727 pflags &= ~(SD_LOAD_BALANCE |
6728 SD_BALANCE_NEWIDLE |
6729 SD_BALANCE_FORK |
6730 SD_BALANCE_EXEC |
6731 SD_SHARE_CPUPOWER |
6732 SD_SHARE_PKG_RESOURCES);
6734 if (~cflags & pflags)
6735 return 0;
6737 return 1;
6740 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6742 unsigned long flags;
6743 const struct sched_class *class;
6745 spin_lock_irqsave(&rq->lock, flags);
6747 if (rq->rd) {
6748 struct root_domain *old_rd = rq->rd;
6750 for (class = sched_class_highest; class; class = class->next) {
6751 if (class->leave_domain)
6752 class->leave_domain(rq);
6755 cpu_clear(rq->cpu, old_rd->span);
6756 cpu_clear(rq->cpu, old_rd->online);
6758 if (atomic_dec_and_test(&old_rd->refcount))
6759 kfree(old_rd);
6762 atomic_inc(&rd->refcount);
6763 rq->rd = rd;
6765 cpu_set(rq->cpu, rd->span);
6766 if (cpu_isset(rq->cpu, cpu_online_map))
6767 cpu_set(rq->cpu, rd->online);
6769 for (class = sched_class_highest; class; class = class->next) {
6770 if (class->join_domain)
6771 class->join_domain(rq);
6774 spin_unlock_irqrestore(&rq->lock, flags);
6777 static void init_rootdomain(struct root_domain *rd)
6779 memset(rd, 0, sizeof(*rd));
6781 cpus_clear(rd->span);
6782 cpus_clear(rd->online);
6785 static void init_defrootdomain(void)
6787 init_rootdomain(&def_root_domain);
6788 atomic_set(&def_root_domain.refcount, 1);
6791 static struct root_domain *alloc_rootdomain(void)
6793 struct root_domain *rd;
6795 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6796 if (!rd)
6797 return NULL;
6799 init_rootdomain(rd);
6801 return rd;
6805 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6806 * hold the hotplug lock.
6808 static void
6809 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6811 struct rq *rq = cpu_rq(cpu);
6812 struct sched_domain *tmp;
6814 /* Remove the sched domains which do not contribute to scheduling. */
6815 for (tmp = sd; tmp; tmp = tmp->parent) {
6816 struct sched_domain *parent = tmp->parent;
6817 if (!parent)
6818 break;
6819 if (sd_parent_degenerate(tmp, parent)) {
6820 tmp->parent = parent->parent;
6821 if (parent->parent)
6822 parent->parent->child = tmp;
6826 if (sd && sd_degenerate(sd)) {
6827 sd = sd->parent;
6828 if (sd)
6829 sd->child = NULL;
6832 sched_domain_debug(sd, cpu);
6834 rq_attach_root(rq, rd);
6835 rcu_assign_pointer(rq->sd, sd);
6838 /* cpus with isolated domains */
6839 static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
6841 /* Setup the mask of cpus configured for isolated domains */
6842 static int __init isolated_cpu_setup(char *str)
6844 int ints[NR_CPUS], i;
6846 str = get_options(str, ARRAY_SIZE(ints), ints);
6847 cpus_clear(cpu_isolated_map);
6848 for (i = 1; i <= ints[0]; i++)
6849 if (ints[i] < NR_CPUS)
6850 cpu_set(ints[i], cpu_isolated_map);
6851 return 1;
6854 __setup("isolcpus=", isolated_cpu_setup);
6857 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6858 * to a function which identifies what group(along with sched group) a CPU
6859 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
6860 * (due to the fact that we keep track of groups covered with a cpumask_t).
6862 * init_sched_build_groups will build a circular linked list of the groups
6863 * covered by the given span, and will set each group's ->cpumask correctly,
6864 * and ->cpu_power to 0.
6866 static void
6867 init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
6868 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
6869 struct sched_group **sg,
6870 cpumask_t *tmpmask),
6871 cpumask_t *covered, cpumask_t *tmpmask)
6873 struct sched_group *first = NULL, *last = NULL;
6874 int i;
6876 cpus_clear(*covered);
6878 for_each_cpu_mask(i, *span) {
6879 struct sched_group *sg;
6880 int group = group_fn(i, cpu_map, &sg, tmpmask);
6881 int j;
6883 if (cpu_isset(i, *covered))
6884 continue;
6886 cpus_clear(sg->cpumask);
6887 sg->__cpu_power = 0;
6889 for_each_cpu_mask(j, *span) {
6890 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
6891 continue;
6893 cpu_set(j, *covered);
6894 cpu_set(j, sg->cpumask);
6896 if (!first)
6897 first = sg;
6898 if (last)
6899 last->next = sg;
6900 last = sg;
6902 last->next = first;
6905 #define SD_NODES_PER_DOMAIN 16
6907 #ifdef CONFIG_NUMA
6910 * find_next_best_node - find the next node to include in a sched_domain
6911 * @node: node whose sched_domain we're building
6912 * @used_nodes: nodes already in the sched_domain
6914 * Find the next node to include in a given scheduling domain. Simply
6915 * finds the closest node not already in the @used_nodes map.
6917 * Should use nodemask_t.
6919 static int find_next_best_node(int node, nodemask_t *used_nodes)
6921 int i, n, val, min_val, best_node = 0;
6923 min_val = INT_MAX;
6925 for (i = 0; i < MAX_NUMNODES; i++) {
6926 /* Start at @node */
6927 n = (node + i) % MAX_NUMNODES;
6929 if (!nr_cpus_node(n))
6930 continue;
6932 /* Skip already used nodes */
6933 if (node_isset(n, *used_nodes))
6934 continue;
6936 /* Simple min distance search */
6937 val = node_distance(node, n);
6939 if (val < min_val) {
6940 min_val = val;
6941 best_node = n;
6945 node_set(best_node, *used_nodes);
6946 return best_node;
6950 * sched_domain_node_span - get a cpumask for a node's sched_domain
6951 * @node: node whose cpumask we're constructing
6952 * @span: resulting cpumask
6954 * Given a node, construct a good cpumask for its sched_domain to span. It
6955 * should be one that prevents unnecessary balancing, but also spreads tasks
6956 * out optimally.
6958 static void sched_domain_node_span(int node, cpumask_t *span)
6960 nodemask_t used_nodes;
6961 node_to_cpumask_ptr(nodemask, node);
6962 int i;
6964 cpus_clear(*span);
6965 nodes_clear(used_nodes);
6967 cpus_or(*span, *span, *nodemask);
6968 node_set(node, used_nodes);
6970 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6971 int next_node = find_next_best_node(node, &used_nodes);
6973 node_to_cpumask_ptr_next(nodemask, next_node);
6974 cpus_or(*span, *span, *nodemask);
6977 #endif
6979 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6982 * SMT sched-domains:
6984 #ifdef CONFIG_SCHED_SMT
6985 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6986 static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
6988 static int
6989 cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6990 cpumask_t *unused)
6992 if (sg)
6993 *sg = &per_cpu(sched_group_cpus, cpu);
6994 return cpu;
6996 #endif
6999 * multi-core sched-domains:
7001 #ifdef CONFIG_SCHED_MC
7002 static DEFINE_PER_CPU(struct sched_domain, core_domains);
7003 static DEFINE_PER_CPU(struct sched_group, sched_group_core);
7004 #endif
7006 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
7007 static int
7008 cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7009 cpumask_t *mask)
7011 int group;
7013 *mask = per_cpu(cpu_sibling_map, cpu);
7014 cpus_and(*mask, *mask, *cpu_map);
7015 group = first_cpu(*mask);
7016 if (sg)
7017 *sg = &per_cpu(sched_group_core, group);
7018 return group;
7020 #elif defined(CONFIG_SCHED_MC)
7021 static int
7022 cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7023 cpumask_t *unused)
7025 if (sg)
7026 *sg = &per_cpu(sched_group_core, cpu);
7027 return cpu;
7029 #endif
7031 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
7032 static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
7034 static int
7035 cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7036 cpumask_t *mask)
7038 int group;
7039 #ifdef CONFIG_SCHED_MC
7040 *mask = cpu_coregroup_map(cpu);
7041 cpus_and(*mask, *mask, *cpu_map);
7042 group = first_cpu(*mask);
7043 #elif defined(CONFIG_SCHED_SMT)
7044 *mask = per_cpu(cpu_sibling_map, cpu);
7045 cpus_and(*mask, *mask, *cpu_map);
7046 group = first_cpu(*mask);
7047 #else
7048 group = cpu;
7049 #endif
7050 if (sg)
7051 *sg = &per_cpu(sched_group_phys, group);
7052 return group;
7055 #ifdef CONFIG_NUMA
7057 * The init_sched_build_groups can't handle what we want to do with node
7058 * groups, so roll our own. Now each node has its own list of groups which
7059 * gets dynamically allocated.
7061 static DEFINE_PER_CPU(struct sched_domain, node_domains);
7062 static struct sched_group ***sched_group_nodes_bycpu;
7064 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
7065 static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
7067 static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
7068 struct sched_group **sg, cpumask_t *nodemask)
7070 int group;
7072 *nodemask = node_to_cpumask(cpu_to_node(cpu));
7073 cpus_and(*nodemask, *nodemask, *cpu_map);
7074 group = first_cpu(*nodemask);
7076 if (sg)
7077 *sg = &per_cpu(sched_group_allnodes, group);
7078 return group;
7081 static void init_numa_sched_groups_power(struct sched_group *group_head)
7083 struct sched_group *sg = group_head;
7084 int j;
7086 if (!sg)
7087 return;
7088 do {
7089 for_each_cpu_mask(j, sg->cpumask) {
7090 struct sched_domain *sd;
7092 sd = &per_cpu(phys_domains, j);
7093 if (j != first_cpu(sd->groups->cpumask)) {
7095 * Only add "power" once for each
7096 * physical package.
7098 continue;
7101 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
7103 sg = sg->next;
7104 } while (sg != group_head);
7106 #endif
7108 #ifdef CONFIG_NUMA
7109 /* Free memory allocated for various sched_group structures */
7110 static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
7112 int cpu, i;
7114 for_each_cpu_mask(cpu, *cpu_map) {
7115 struct sched_group **sched_group_nodes
7116 = sched_group_nodes_bycpu[cpu];
7118 if (!sched_group_nodes)
7119 continue;
7121 for (i = 0; i < MAX_NUMNODES; i++) {
7122 struct sched_group *oldsg, *sg = sched_group_nodes[i];
7124 *nodemask = node_to_cpumask(i);
7125 cpus_and(*nodemask, *nodemask, *cpu_map);
7126 if (cpus_empty(*nodemask))
7127 continue;
7129 if (sg == NULL)
7130 continue;
7131 sg = sg->next;
7132 next_sg:
7133 oldsg = sg;
7134 sg = sg->next;
7135 kfree(oldsg);
7136 if (oldsg != sched_group_nodes[i])
7137 goto next_sg;
7139 kfree(sched_group_nodes);
7140 sched_group_nodes_bycpu[cpu] = NULL;
7143 #else
7144 static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
7147 #endif
7150 * Initialize sched groups cpu_power.
7152 * cpu_power indicates the capacity of sched group, which is used while
7153 * distributing the load between different sched groups in a sched domain.
7154 * Typically cpu_power for all the groups in a sched domain will be same unless
7155 * there are asymmetries in the topology. If there are asymmetries, group
7156 * having more cpu_power will pickup more load compared to the group having
7157 * less cpu_power.
7159 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
7160 * the maximum number of tasks a group can handle in the presence of other idle
7161 * or lightly loaded groups in the same sched domain.
7163 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7165 struct sched_domain *child;
7166 struct sched_group *group;
7168 WARN_ON(!sd || !sd->groups);
7170 if (cpu != first_cpu(sd->groups->cpumask))
7171 return;
7173 child = sd->child;
7175 sd->groups->__cpu_power = 0;
7178 * For perf policy, if the groups in child domain share resources
7179 * (for example cores sharing some portions of the cache hierarchy
7180 * or SMT), then set this domain groups cpu_power such that each group
7181 * can handle only one task, when there are other idle groups in the
7182 * same sched domain.
7184 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
7185 (child->flags &
7186 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
7187 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
7188 return;
7192 * add cpu_power of each child group to this groups cpu_power
7194 group = child->groups;
7195 do {
7196 sg_inc_cpu_power(sd->groups, group->__cpu_power);
7197 group = group->next;
7198 } while (group != child->groups);
7202 * Initializers for schedule domains
7203 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7206 #define SD_INIT(sd, type) sd_init_##type(sd)
7207 #define SD_INIT_FUNC(type) \
7208 static noinline void sd_init_##type(struct sched_domain *sd) \
7210 memset(sd, 0, sizeof(*sd)); \
7211 *sd = SD_##type##_INIT; \
7212 sd->level = SD_LV_##type; \
7215 SD_INIT_FUNC(CPU)
7216 #ifdef CONFIG_NUMA
7217 SD_INIT_FUNC(ALLNODES)
7218 SD_INIT_FUNC(NODE)
7219 #endif
7220 #ifdef CONFIG_SCHED_SMT
7221 SD_INIT_FUNC(SIBLING)
7222 #endif
7223 #ifdef CONFIG_SCHED_MC
7224 SD_INIT_FUNC(MC)
7225 #endif
7228 * To minimize stack usage kmalloc room for cpumasks and share the
7229 * space as the usage in build_sched_domains() dictates. Used only
7230 * if the amount of space is significant.
7232 struct allmasks {
7233 cpumask_t tmpmask; /* make this one first */
7234 union {
7235 cpumask_t nodemask;
7236 cpumask_t this_sibling_map;
7237 cpumask_t this_core_map;
7239 cpumask_t send_covered;
7241 #ifdef CONFIG_NUMA
7242 cpumask_t domainspan;
7243 cpumask_t covered;
7244 cpumask_t notcovered;
7245 #endif
7248 #if NR_CPUS > 128
7249 #define SCHED_CPUMASK_ALLOC 1
7250 #define SCHED_CPUMASK_FREE(v) kfree(v)
7251 #define SCHED_CPUMASK_DECLARE(v) struct allmasks *v
7252 #else
7253 #define SCHED_CPUMASK_ALLOC 0
7254 #define SCHED_CPUMASK_FREE(v)
7255 #define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v
7256 #endif
7258 #define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \
7259 ((unsigned long)(a) + offsetof(struct allmasks, v))
7261 static int default_relax_domain_level = -1;
7263 static int __init setup_relax_domain_level(char *str)
7265 default_relax_domain_level = simple_strtoul(str, NULL, 0);
7266 return 1;
7268 __setup("relax_domain_level=", setup_relax_domain_level);
7270 static void set_domain_attribute(struct sched_domain *sd,
7271 struct sched_domain_attr *attr)
7273 int request;
7275 if (!attr || attr->relax_domain_level < 0) {
7276 if (default_relax_domain_level < 0)
7277 return;
7278 else
7279 request = default_relax_domain_level;
7280 } else
7281 request = attr->relax_domain_level;
7282 if (request < sd->level) {
7283 /* turn off idle balance on this domain */
7284 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
7285 } else {
7286 /* turn on idle balance on this domain */
7287 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
7292 * Build sched domains for a given set of cpus and attach the sched domains
7293 * to the individual cpus
7295 static int __build_sched_domains(const cpumask_t *cpu_map,
7296 struct sched_domain_attr *attr)
7298 int i;
7299 struct root_domain *rd;
7300 SCHED_CPUMASK_DECLARE(allmasks);
7301 cpumask_t *tmpmask;
7302 #ifdef CONFIG_NUMA
7303 struct sched_group **sched_group_nodes = NULL;
7304 int sd_allnodes = 0;
7307 * Allocate the per-node list of sched groups
7309 sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
7310 GFP_KERNEL);
7311 if (!sched_group_nodes) {
7312 printk(KERN_WARNING "Can not alloc sched group node list\n");
7313 return -ENOMEM;
7315 #endif
7317 rd = alloc_rootdomain();
7318 if (!rd) {
7319 printk(KERN_WARNING "Cannot alloc root domain\n");
7320 #ifdef CONFIG_NUMA
7321 kfree(sched_group_nodes);
7322 #endif
7323 return -ENOMEM;
7326 #if SCHED_CPUMASK_ALLOC
7327 /* get space for all scratch cpumask variables */
7328 allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
7329 if (!allmasks) {
7330 printk(KERN_WARNING "Cannot alloc cpumask array\n");
7331 kfree(rd);
7332 #ifdef CONFIG_NUMA
7333 kfree(sched_group_nodes);
7334 #endif
7335 return -ENOMEM;
7337 #endif
7338 tmpmask = (cpumask_t *)allmasks;
7341 #ifdef CONFIG_NUMA
7342 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
7343 #endif
7346 * Set up domains for cpus specified by the cpu_map.
7348 for_each_cpu_mask(i, *cpu_map) {
7349 struct sched_domain *sd = NULL, *p;
7350 SCHED_CPUMASK_VAR(nodemask, allmasks);
7352 *nodemask = node_to_cpumask(cpu_to_node(i));
7353 cpus_and(*nodemask, *nodemask, *cpu_map);
7355 #ifdef CONFIG_NUMA
7356 if (cpus_weight(*cpu_map) >
7357 SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
7358 sd = &per_cpu(allnodes_domains, i);
7359 SD_INIT(sd, ALLNODES);
7360 set_domain_attribute(sd, attr);
7361 sd->span = *cpu_map;
7362 sd->first_cpu = first_cpu(sd->span);
7363 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
7364 p = sd;
7365 sd_allnodes = 1;
7366 } else
7367 p = NULL;
7369 sd = &per_cpu(node_domains, i);
7370 SD_INIT(sd, NODE);
7371 set_domain_attribute(sd, attr);
7372 sched_domain_node_span(cpu_to_node(i), &sd->span);
7373 sd->first_cpu = first_cpu(sd->span);
7374 sd->parent = p;
7375 if (p)
7376 p->child = sd;
7377 cpus_and(sd->span, sd->span, *cpu_map);
7378 #endif
7380 p = sd;
7381 sd = &per_cpu(phys_domains, i);
7382 SD_INIT(sd, CPU);
7383 set_domain_attribute(sd, attr);
7384 sd->span = *nodemask;
7385 sd->first_cpu = first_cpu(sd->span);
7386 sd->parent = p;
7387 if (p)
7388 p->child = sd;
7389 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
7391 #ifdef CONFIG_SCHED_MC
7392 p = sd;
7393 sd = &per_cpu(core_domains, i);
7394 SD_INIT(sd, MC);
7395 set_domain_attribute(sd, attr);
7396 sd->span = cpu_coregroup_map(i);
7397 sd->first_cpu = first_cpu(sd->span);
7398 cpus_and(sd->span, sd->span, *cpu_map);
7399 sd->parent = p;
7400 p->child = sd;
7401 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
7402 #endif
7404 #ifdef CONFIG_SCHED_SMT
7405 p = sd;
7406 sd = &per_cpu(cpu_domains, i);
7407 SD_INIT(sd, SIBLING);
7408 set_domain_attribute(sd, attr);
7409 sd->span = per_cpu(cpu_sibling_map, i);
7410 sd->first_cpu = first_cpu(sd->span);
7411 cpus_and(sd->span, sd->span, *cpu_map);
7412 sd->parent = p;
7413 p->child = sd;
7414 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
7415 #endif
7418 #ifdef CONFIG_SCHED_SMT
7419 /* Set up CPU (sibling) groups */
7420 for_each_cpu_mask(i, *cpu_map) {
7421 SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
7422 SCHED_CPUMASK_VAR(send_covered, allmasks);
7424 *this_sibling_map = per_cpu(cpu_sibling_map, i);
7425 cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
7426 if (i != first_cpu(*this_sibling_map))
7427 continue;
7429 init_sched_build_groups(this_sibling_map, cpu_map,
7430 &cpu_to_cpu_group,
7431 send_covered, tmpmask);
7433 #endif
7435 #ifdef CONFIG_SCHED_MC
7436 /* Set up multi-core groups */
7437 for_each_cpu_mask(i, *cpu_map) {
7438 SCHED_CPUMASK_VAR(this_core_map, allmasks);
7439 SCHED_CPUMASK_VAR(send_covered, allmasks);
7441 *this_core_map = cpu_coregroup_map(i);
7442 cpus_and(*this_core_map, *this_core_map, *cpu_map);
7443 if (i != first_cpu(*this_core_map))
7444 continue;
7446 init_sched_build_groups(this_core_map, cpu_map,
7447 &cpu_to_core_group,
7448 send_covered, tmpmask);
7450 #endif
7452 /* Set up physical groups */
7453 for (i = 0; i < MAX_NUMNODES; i++) {
7454 SCHED_CPUMASK_VAR(nodemask, allmasks);
7455 SCHED_CPUMASK_VAR(send_covered, allmasks);
7457 *nodemask = node_to_cpumask(i);
7458 cpus_and(*nodemask, *nodemask, *cpu_map);
7459 if (cpus_empty(*nodemask))
7460 continue;
7462 init_sched_build_groups(nodemask, cpu_map,
7463 &cpu_to_phys_group,
7464 send_covered, tmpmask);
7467 #ifdef CONFIG_NUMA
7468 /* Set up node groups */
7469 if (sd_allnodes) {
7470 SCHED_CPUMASK_VAR(send_covered, allmasks);
7472 init_sched_build_groups(cpu_map, cpu_map,
7473 &cpu_to_allnodes_group,
7474 send_covered, tmpmask);
7477 for (i = 0; i < MAX_NUMNODES; i++) {
7478 /* Set up node groups */
7479 struct sched_group *sg, *prev;
7480 SCHED_CPUMASK_VAR(nodemask, allmasks);
7481 SCHED_CPUMASK_VAR(domainspan, allmasks);
7482 SCHED_CPUMASK_VAR(covered, allmasks);
7483 int j;
7485 *nodemask = node_to_cpumask(i);
7486 cpus_clear(*covered);
7488 cpus_and(*nodemask, *nodemask, *cpu_map);
7489 if (cpus_empty(*nodemask)) {
7490 sched_group_nodes[i] = NULL;
7491 continue;
7494 sched_domain_node_span(i, domainspan);
7495 cpus_and(*domainspan, *domainspan, *cpu_map);
7497 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
7498 if (!sg) {
7499 printk(KERN_WARNING "Can not alloc domain group for "
7500 "node %d\n", i);
7501 goto error;
7503 sched_group_nodes[i] = sg;
7504 for_each_cpu_mask(j, *nodemask) {
7505 struct sched_domain *sd;
7507 sd = &per_cpu(node_domains, j);
7508 sd->groups = sg;
7510 sg->__cpu_power = 0;
7511 sg->cpumask = *nodemask;
7512 sg->next = sg;
7513 cpus_or(*covered, *covered, *nodemask);
7514 prev = sg;
7516 for (j = 0; j < MAX_NUMNODES; j++) {
7517 SCHED_CPUMASK_VAR(notcovered, allmasks);
7518 int n = (i + j) % MAX_NUMNODES;
7519 node_to_cpumask_ptr(pnodemask, n);
7521 cpus_complement(*notcovered, *covered);
7522 cpus_and(*tmpmask, *notcovered, *cpu_map);
7523 cpus_and(*tmpmask, *tmpmask, *domainspan);
7524 if (cpus_empty(*tmpmask))
7525 break;
7527 cpus_and(*tmpmask, *tmpmask, *pnodemask);
7528 if (cpus_empty(*tmpmask))
7529 continue;
7531 sg = kmalloc_node(sizeof(struct sched_group),
7532 GFP_KERNEL, i);
7533 if (!sg) {
7534 printk(KERN_WARNING
7535 "Can not alloc domain group for node %d\n", j);
7536 goto error;
7538 sg->__cpu_power = 0;
7539 sg->cpumask = *tmpmask;
7540 sg->next = prev->next;
7541 cpus_or(*covered, *covered, *tmpmask);
7542 prev->next = sg;
7543 prev = sg;
7546 #endif
7548 /* Calculate CPU power for physical packages and nodes */
7549 #ifdef CONFIG_SCHED_SMT
7550 for_each_cpu_mask(i, *cpu_map) {
7551 struct sched_domain *sd = &per_cpu(cpu_domains, i);
7553 init_sched_groups_power(i, sd);
7555 #endif
7556 #ifdef CONFIG_SCHED_MC
7557 for_each_cpu_mask(i, *cpu_map) {
7558 struct sched_domain *sd = &per_cpu(core_domains, i);
7560 init_sched_groups_power(i, sd);
7562 #endif
7564 for_each_cpu_mask(i, *cpu_map) {
7565 struct sched_domain *sd = &per_cpu(phys_domains, i);
7567 init_sched_groups_power(i, sd);
7570 #ifdef CONFIG_NUMA
7571 for (i = 0; i < MAX_NUMNODES; i++)
7572 init_numa_sched_groups_power(sched_group_nodes[i]);
7574 if (sd_allnodes) {
7575 struct sched_group *sg;
7577 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
7578 tmpmask);
7579 init_numa_sched_groups_power(sg);
7581 #endif
7583 /* Attach the domains */
7584 for_each_cpu_mask(i, *cpu_map) {
7585 struct sched_domain *sd;
7586 #ifdef CONFIG_SCHED_SMT
7587 sd = &per_cpu(cpu_domains, i);
7588 #elif defined(CONFIG_SCHED_MC)
7589 sd = &per_cpu(core_domains, i);
7590 #else
7591 sd = &per_cpu(phys_domains, i);
7592 #endif
7593 cpu_attach_domain(sd, rd, i);
7596 SCHED_CPUMASK_FREE((void *)allmasks);
7597 return 0;
7599 #ifdef CONFIG_NUMA
7600 error:
7601 free_sched_groups(cpu_map, tmpmask);
7602 SCHED_CPUMASK_FREE((void *)allmasks);
7603 return -ENOMEM;
7604 #endif
7607 static int build_sched_domains(const cpumask_t *cpu_map)
7609 return __build_sched_domains(cpu_map, NULL);
7612 static cpumask_t *doms_cur; /* current sched domains */
7613 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
7614 static struct sched_domain_attr *dattr_cur; /* attribues of custom domains
7615 in 'doms_cur' */
7618 * Special case: If a kmalloc of a doms_cur partition (array of
7619 * cpumask_t) fails, then fallback to a single sched domain,
7620 * as determined by the single cpumask_t fallback_doms.
7622 static cpumask_t fallback_doms;
7624 void __attribute__((weak)) arch_update_cpu_topology(void)
7629 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7630 * For now this just excludes isolated cpus, but could be used to
7631 * exclude other special cases in the future.
7633 static int arch_init_sched_domains(const cpumask_t *cpu_map)
7635 int err;
7637 arch_update_cpu_topology();
7638 ndoms_cur = 1;
7639 doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
7640 if (!doms_cur)
7641 doms_cur = &fallback_doms;
7642 cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
7643 dattr_cur = NULL;
7644 err = build_sched_domains(doms_cur);
7645 register_sched_domain_sysctl();
7647 return err;
7650 static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
7651 cpumask_t *tmpmask)
7653 free_sched_groups(cpu_map, tmpmask);
7657 * Detach sched domains from a group of cpus specified in cpu_map
7658 * These cpus will now be attached to the NULL domain
7660 static void detach_destroy_domains(const cpumask_t *cpu_map)
7662 cpumask_t tmpmask;
7663 int i;
7665 unregister_sched_domain_sysctl();
7667 for_each_cpu_mask(i, *cpu_map)
7668 cpu_attach_domain(NULL, &def_root_domain, i);
7669 synchronize_sched();
7670 arch_destroy_sched_domains(cpu_map, &tmpmask);
7673 /* handle null as "default" */
7674 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7675 struct sched_domain_attr *new, int idx_new)
7677 struct sched_domain_attr tmp;
7679 /* fast path */
7680 if (!new && !cur)
7681 return 1;
7683 tmp = SD_ATTR_INIT;
7684 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7685 new ? (new + idx_new) : &tmp,
7686 sizeof(struct sched_domain_attr));
7690 * Partition sched domains as specified by the 'ndoms_new'
7691 * cpumasks in the array doms_new[] of cpumasks. This compares
7692 * doms_new[] to the current sched domain partitioning, doms_cur[].
7693 * It destroys each deleted domain and builds each new domain.
7695 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
7696 * The masks don't intersect (don't overlap.) We should setup one
7697 * sched domain for each mask. CPUs not in any of the cpumasks will
7698 * not be load balanced. If the same cpumask appears both in the
7699 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7700 * it as it is.
7702 * The passed in 'doms_new' should be kmalloc'd. This routine takes
7703 * ownership of it and will kfree it when done with it. If the caller
7704 * failed the kmalloc call, then it can pass in doms_new == NULL,
7705 * and partition_sched_domains() will fallback to the single partition
7706 * 'fallback_doms'.
7708 * Call with hotplug lock held
7710 void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
7711 struct sched_domain_attr *dattr_new)
7713 int i, j;
7715 mutex_lock(&sched_domains_mutex);
7717 /* always unregister in case we don't destroy any domains */
7718 unregister_sched_domain_sysctl();
7720 if (doms_new == NULL) {
7721 ndoms_new = 1;
7722 doms_new = &fallback_doms;
7723 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
7724 dattr_new = NULL;
7727 /* Destroy deleted domains */
7728 for (i = 0; i < ndoms_cur; i++) {
7729 for (j = 0; j < ndoms_new; j++) {
7730 if (cpus_equal(doms_cur[i], doms_new[j])
7731 && dattrs_equal(dattr_cur, i, dattr_new, j))
7732 goto match1;
7734 /* no match - a current sched domain not in new doms_new[] */
7735 detach_destroy_domains(doms_cur + i);
7736 match1:
7740 /* Build new domains */
7741 for (i = 0; i < ndoms_new; i++) {
7742 for (j = 0; j < ndoms_cur; j++) {
7743 if (cpus_equal(doms_new[i], doms_cur[j])
7744 && dattrs_equal(dattr_new, i, dattr_cur, j))
7745 goto match2;
7747 /* no match - add a new doms_new */
7748 __build_sched_domains(doms_new + i,
7749 dattr_new ? dattr_new + i : NULL);
7750 match2:
7754 /* Remember the new sched domains */
7755 if (doms_cur != &fallback_doms)
7756 kfree(doms_cur);
7757 kfree(dattr_cur); /* kfree(NULL) is safe */
7758 doms_cur = doms_new;
7759 dattr_cur = dattr_new;
7760 ndoms_cur = ndoms_new;
7762 register_sched_domain_sysctl();
7764 mutex_unlock(&sched_domains_mutex);
7767 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7768 int arch_reinit_sched_domains(void)
7770 int err;
7772 get_online_cpus();
7773 mutex_lock(&sched_domains_mutex);
7774 detach_destroy_domains(&cpu_online_map);
7775 err = arch_init_sched_domains(&cpu_online_map);
7776 mutex_unlock(&sched_domains_mutex);
7777 put_online_cpus();
7779 return err;
7782 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7784 int ret;
7786 if (buf[0] != '0' && buf[0] != '1')
7787 return -EINVAL;
7789 if (smt)
7790 sched_smt_power_savings = (buf[0] == '1');
7791 else
7792 sched_mc_power_savings = (buf[0] == '1');
7794 ret = arch_reinit_sched_domains();
7796 return ret ? ret : count;
7799 #ifdef CONFIG_SCHED_MC
7800 static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
7802 return sprintf(page, "%u\n", sched_mc_power_savings);
7804 static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
7805 const char *buf, size_t count)
7807 return sched_power_savings_store(buf, count, 0);
7809 static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
7810 sched_mc_power_savings_store);
7811 #endif
7813 #ifdef CONFIG_SCHED_SMT
7814 static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
7816 return sprintf(page, "%u\n", sched_smt_power_savings);
7818 static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
7819 const char *buf, size_t count)
7821 return sched_power_savings_store(buf, count, 1);
7823 static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
7824 sched_smt_power_savings_store);
7825 #endif
7827 int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7829 int err = 0;
7831 #ifdef CONFIG_SCHED_SMT
7832 if (smt_capable())
7833 err = sysfs_create_file(&cls->kset.kobj,
7834 &attr_sched_smt_power_savings.attr);
7835 #endif
7836 #ifdef CONFIG_SCHED_MC
7837 if (!err && mc_capable())
7838 err = sysfs_create_file(&cls->kset.kobj,
7839 &attr_sched_mc_power_savings.attr);
7840 #endif
7841 return err;
7843 #endif
7846 * Force a reinitialization of the sched domains hierarchy. The domains
7847 * and groups cannot be updated in place without racing with the balancing
7848 * code, so we temporarily attach all running cpus to the NULL domain
7849 * which will prevent rebalancing while the sched domains are recalculated.
7851 static int update_sched_domains(struct notifier_block *nfb,
7852 unsigned long action, void *hcpu)
7854 switch (action) {
7855 case CPU_UP_PREPARE:
7856 case CPU_UP_PREPARE_FROZEN:
7857 case CPU_DOWN_PREPARE:
7858 case CPU_DOWN_PREPARE_FROZEN:
7859 detach_destroy_domains(&cpu_online_map);
7860 return NOTIFY_OK;
7862 case CPU_UP_CANCELED:
7863 case CPU_UP_CANCELED_FROZEN:
7864 case CPU_DOWN_FAILED:
7865 case CPU_DOWN_FAILED_FROZEN:
7866 case CPU_ONLINE:
7867 case CPU_ONLINE_FROZEN:
7868 case CPU_DEAD:
7869 case CPU_DEAD_FROZEN:
7871 * Fall through and re-initialise the domains.
7873 break;
7874 default:
7875 return NOTIFY_DONE;
7878 /* The hotplug lock is already held by cpu_up/cpu_down */
7879 arch_init_sched_domains(&cpu_online_map);
7881 return NOTIFY_OK;
7884 void __init sched_init_smp(void)
7886 cpumask_t non_isolated_cpus;
7888 #if defined(CONFIG_NUMA)
7889 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7890 GFP_KERNEL);
7891 BUG_ON(sched_group_nodes_bycpu == NULL);
7892 #endif
7893 get_online_cpus();
7894 mutex_lock(&sched_domains_mutex);
7895 arch_init_sched_domains(&cpu_online_map);
7896 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
7897 if (cpus_empty(non_isolated_cpus))
7898 cpu_set(smp_processor_id(), non_isolated_cpus);
7899 mutex_unlock(&sched_domains_mutex);
7900 put_online_cpus();
7901 /* XXX: Theoretical race here - CPU may be hotplugged now */
7902 hotcpu_notifier(update_sched_domains, 0);
7903 init_hrtick();
7905 /* Move init over to a non-isolated CPU */
7906 if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
7907 BUG();
7908 sched_init_granularity();
7910 #else
7911 void __init sched_init_smp(void)
7913 sched_init_granularity();
7915 #endif /* CONFIG_SMP */
7917 int in_sched_functions(unsigned long addr)
7919 return in_lock_functions(addr) ||
7920 (addr >= (unsigned long)__sched_text_start
7921 && addr < (unsigned long)__sched_text_end);
7924 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
7926 cfs_rq->tasks_timeline = RB_ROOT;
7927 INIT_LIST_HEAD(&cfs_rq->tasks);
7928 #ifdef CONFIG_FAIR_GROUP_SCHED
7929 cfs_rq->rq = rq;
7930 #endif
7931 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7934 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7936 struct rt_prio_array *array;
7937 int i;
7939 array = &rt_rq->active;
7940 for (i = 0; i < MAX_RT_PRIO; i++) {
7941 INIT_LIST_HEAD(array->queue + i);
7942 __clear_bit(i, array->bitmap);
7944 /* delimiter for bitsearch: */
7945 __set_bit(MAX_RT_PRIO, array->bitmap);
7947 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
7948 rt_rq->highest_prio = MAX_RT_PRIO;
7949 #endif
7950 #ifdef CONFIG_SMP
7951 rt_rq->rt_nr_migratory = 0;
7952 rt_rq->overloaded = 0;
7953 #endif
7955 rt_rq->rt_time = 0;
7956 rt_rq->rt_throttled = 0;
7957 rt_rq->rt_runtime = 0;
7958 spin_lock_init(&rt_rq->rt_runtime_lock);
7960 #ifdef CONFIG_RT_GROUP_SCHED
7961 rt_rq->rt_nr_boosted = 0;
7962 rt_rq->rq = rq;
7963 #endif
7966 #ifdef CONFIG_FAIR_GROUP_SCHED
7967 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7968 struct sched_entity *se, int cpu, int add,
7969 struct sched_entity *parent)
7971 struct rq *rq = cpu_rq(cpu);
7972 tg->cfs_rq[cpu] = cfs_rq;
7973 init_cfs_rq(cfs_rq, rq);
7974 cfs_rq->tg = tg;
7975 if (add)
7976 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7978 tg->se[cpu] = se;
7979 /* se could be NULL for init_task_group */
7980 if (!se)
7981 return;
7983 if (!parent)
7984 se->cfs_rq = &rq->cfs;
7985 else
7986 se->cfs_rq = parent->my_q;
7988 se->my_q = cfs_rq;
7989 se->load.weight = tg->shares;
7990 se->load.inv_weight = 0;
7991 se->parent = parent;
7993 #endif
7995 #ifdef CONFIG_RT_GROUP_SCHED
7996 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
7997 struct sched_rt_entity *rt_se, int cpu, int add,
7998 struct sched_rt_entity *parent)
8000 struct rq *rq = cpu_rq(cpu);
8002 tg->rt_rq[cpu] = rt_rq;
8003 init_rt_rq(rt_rq, rq);
8004 rt_rq->tg = tg;
8005 rt_rq->rt_se = rt_se;
8006 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
8007 if (add)
8008 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
8010 tg->rt_se[cpu] = rt_se;
8011 if (!rt_se)
8012 return;
8014 if (!parent)
8015 rt_se->rt_rq = &rq->rt;
8016 else
8017 rt_se->rt_rq = parent->my_q;
8019 rt_se->rt_rq = &rq->rt;
8020 rt_se->my_q = rt_rq;
8021 rt_se->parent = parent;
8022 INIT_LIST_HEAD(&rt_se->run_list);
8024 #endif
8026 void __init sched_init(void)
8028 int i, j;
8029 unsigned long alloc_size = 0, ptr;
8031 #ifdef CONFIG_FAIR_GROUP_SCHED
8032 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8033 #endif
8034 #ifdef CONFIG_RT_GROUP_SCHED
8035 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8036 #endif
8037 #ifdef CONFIG_USER_SCHED
8038 alloc_size *= 2;
8039 #endif
8041 * As sched_init() is called before page_alloc is setup,
8042 * we use alloc_bootmem().
8044 if (alloc_size) {
8045 ptr = (unsigned long)alloc_bootmem(alloc_size);
8047 #ifdef CONFIG_FAIR_GROUP_SCHED
8048 init_task_group.se = (struct sched_entity **)ptr;
8049 ptr += nr_cpu_ids * sizeof(void **);
8051 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
8052 ptr += nr_cpu_ids * sizeof(void **);
8054 #ifdef CONFIG_USER_SCHED
8055 root_task_group.se = (struct sched_entity **)ptr;
8056 ptr += nr_cpu_ids * sizeof(void **);
8058 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8059 ptr += nr_cpu_ids * sizeof(void **);
8060 #endif
8061 #endif
8062 #ifdef CONFIG_RT_GROUP_SCHED
8063 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
8064 ptr += nr_cpu_ids * sizeof(void **);
8066 init_task_group.rt_rq = (struct rt_rq **)ptr;
8067 ptr += nr_cpu_ids * sizeof(void **);
8069 #ifdef CONFIG_USER_SCHED
8070 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8071 ptr += nr_cpu_ids * sizeof(void **);
8073 root_task_group.rt_rq = (struct rt_rq **)ptr;
8074 ptr += nr_cpu_ids * sizeof(void **);
8075 #endif
8076 #endif
8079 #ifdef CONFIG_SMP
8080 init_aggregate();
8081 init_defrootdomain();
8082 #endif
8084 init_rt_bandwidth(&def_rt_bandwidth,
8085 global_rt_period(), global_rt_runtime());
8087 #ifdef CONFIG_RT_GROUP_SCHED
8088 init_rt_bandwidth(&init_task_group.rt_bandwidth,
8089 global_rt_period(), global_rt_runtime());
8090 #ifdef CONFIG_USER_SCHED
8091 init_rt_bandwidth(&root_task_group.rt_bandwidth,
8092 global_rt_period(), RUNTIME_INF);
8093 #endif
8094 #endif
8096 #ifdef CONFIG_GROUP_SCHED
8097 list_add(&init_task_group.list, &task_groups);
8098 INIT_LIST_HEAD(&init_task_group.children);
8100 #ifdef CONFIG_USER_SCHED
8101 INIT_LIST_HEAD(&root_task_group.children);
8102 init_task_group.parent = &root_task_group;
8103 list_add(&init_task_group.siblings, &root_task_group.children);
8104 #endif
8105 #endif
8107 for_each_possible_cpu(i) {
8108 struct rq *rq;
8110 rq = cpu_rq(i);
8111 spin_lock_init(&rq->lock);
8112 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
8113 rq->nr_running = 0;
8114 init_cfs_rq(&rq->cfs, rq);
8115 init_rt_rq(&rq->rt, rq);
8116 #ifdef CONFIG_FAIR_GROUP_SCHED
8117 init_task_group.shares = init_task_group_load;
8118 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
8119 #ifdef CONFIG_CGROUP_SCHED
8121 * How much cpu bandwidth does init_task_group get?
8123 * In case of task-groups formed thr' the cgroup filesystem, it
8124 * gets 100% of the cpu resources in the system. This overall
8125 * system cpu resource is divided among the tasks of
8126 * init_task_group and its child task-groups in a fair manner,
8127 * based on each entity's (task or task-group's) weight
8128 * (se->load.weight).
8130 * In other words, if init_task_group has 10 tasks of weight
8131 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8132 * then A0's share of the cpu resource is:
8134 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8136 * We achieve this by letting init_task_group's tasks sit
8137 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
8139 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
8140 #elif defined CONFIG_USER_SCHED
8141 root_task_group.shares = NICE_0_LOAD;
8142 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
8144 * In case of task-groups formed thr' the user id of tasks,
8145 * init_task_group represents tasks belonging to root user.
8146 * Hence it forms a sibling of all subsequent groups formed.
8147 * In this case, init_task_group gets only a fraction of overall
8148 * system cpu resource, based on the weight assigned to root
8149 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
8150 * by letting tasks of init_task_group sit in a separate cfs_rq
8151 * (init_cfs_rq) and having one entity represent this group of
8152 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
8154 init_tg_cfs_entry(&init_task_group,
8155 &per_cpu(init_cfs_rq, i),
8156 &per_cpu(init_sched_entity, i), i, 1,
8157 root_task_group.se[i]);
8159 #endif
8160 #endif /* CONFIG_FAIR_GROUP_SCHED */
8162 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
8163 #ifdef CONFIG_RT_GROUP_SCHED
8164 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
8165 #ifdef CONFIG_CGROUP_SCHED
8166 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
8167 #elif defined CONFIG_USER_SCHED
8168 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
8169 init_tg_rt_entry(&init_task_group,
8170 &per_cpu(init_rt_rq, i),
8171 &per_cpu(init_sched_rt_entity, i), i, 1,
8172 root_task_group.rt_se[i]);
8173 #endif
8174 #endif
8176 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8177 rq->cpu_load[j] = 0;
8178 #ifdef CONFIG_SMP
8179 rq->sd = NULL;
8180 rq->rd = NULL;
8181 rq->active_balance = 0;
8182 rq->next_balance = jiffies;
8183 rq->push_cpu = 0;
8184 rq->cpu = i;
8185 rq->migration_thread = NULL;
8186 INIT_LIST_HEAD(&rq->migration_queue);
8187 rq_attach_root(rq, &def_root_domain);
8188 #endif
8189 init_rq_hrtick(rq);
8190 atomic_set(&rq->nr_iowait, 0);
8193 set_load_weight(&init_task);
8195 #ifdef CONFIG_PREEMPT_NOTIFIERS
8196 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8197 #endif
8199 #ifdef CONFIG_SMP
8200 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
8201 #endif
8203 #ifdef CONFIG_RT_MUTEXES
8204 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
8205 #endif
8208 * The boot idle thread does lazy MMU switching as well:
8210 atomic_inc(&init_mm.mm_count);
8211 enter_lazy_tlb(&init_mm, current);
8214 * Make us the idle thread. Technically, schedule() should not be
8215 * called from this thread, however somewhere below it might be,
8216 * but because we are the idle thread, we just pick up running again
8217 * when this runqueue becomes "idle".
8219 init_idle(current, smp_processor_id());
8221 * During early bootup we pretend to be a normal task:
8223 current->sched_class = &fair_sched_class;
8225 scheduler_running = 1;
8228 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8229 void __might_sleep(char *file, int line)
8231 #ifdef in_atomic
8232 static unsigned long prev_jiffy; /* ratelimiting */
8234 if ((in_atomic() || irqs_disabled()) &&
8235 system_state == SYSTEM_RUNNING && !oops_in_progress) {
8236 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8237 return;
8238 prev_jiffy = jiffies;
8239 printk(KERN_ERR "BUG: sleeping function called from invalid"
8240 " context at %s:%d\n", file, line);
8241 printk("in_atomic():%d, irqs_disabled():%d\n",
8242 in_atomic(), irqs_disabled());
8243 debug_show_held_locks(current);
8244 if (irqs_disabled())
8245 print_irqtrace_events(current);
8246 dump_stack();
8248 #endif
8250 EXPORT_SYMBOL(__might_sleep);
8251 #endif
8253 #ifdef CONFIG_MAGIC_SYSRQ
8254 static void normalize_task(struct rq *rq, struct task_struct *p)
8256 int on_rq;
8258 update_rq_clock(rq);
8259 on_rq = p->se.on_rq;
8260 if (on_rq)
8261 deactivate_task(rq, p, 0);
8262 __setscheduler(rq, p, SCHED_NORMAL, 0);
8263 if (on_rq) {
8264 activate_task(rq, p, 0);
8265 resched_task(rq->curr);
8269 void normalize_rt_tasks(void)
8271 struct task_struct *g, *p;
8272 unsigned long flags;
8273 struct rq *rq;
8275 read_lock_irqsave(&tasklist_lock, flags);
8276 do_each_thread(g, p) {
8278 * Only normalize user tasks:
8280 if (!p->mm)
8281 continue;
8283 p->se.exec_start = 0;
8284 #ifdef CONFIG_SCHEDSTATS
8285 p->se.wait_start = 0;
8286 p->se.sleep_start = 0;
8287 p->se.block_start = 0;
8288 #endif
8290 if (!rt_task(p)) {
8292 * Renice negative nice level userspace
8293 * tasks back to 0:
8295 if (TASK_NICE(p) < 0 && p->mm)
8296 set_user_nice(p, 0);
8297 continue;
8300 spin_lock(&p->pi_lock);
8301 rq = __task_rq_lock(p);
8303 normalize_task(rq, p);
8305 __task_rq_unlock(rq);
8306 spin_unlock(&p->pi_lock);
8307 } while_each_thread(g, p);
8309 read_unlock_irqrestore(&tasklist_lock, flags);
8312 #endif /* CONFIG_MAGIC_SYSRQ */
8314 #ifdef CONFIG_IA64
8316 * These functions are only useful for the IA64 MCA handling.
8318 * They can only be called when the whole system has been
8319 * stopped - every CPU needs to be quiescent, and no scheduling
8320 * activity can take place. Using them for anything else would
8321 * be a serious bug, and as a result, they aren't even visible
8322 * under any other configuration.
8326 * curr_task - return the current task for a given cpu.
8327 * @cpu: the processor in question.
8329 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8331 struct task_struct *curr_task(int cpu)
8333 return cpu_curr(cpu);
8337 * set_curr_task - set the current task for a given cpu.
8338 * @cpu: the processor in question.
8339 * @p: the task pointer to set.
8341 * Description: This function must only be used when non-maskable interrupts
8342 * are serviced on a separate stack. It allows the architecture to switch the
8343 * notion of the current task on a cpu in a non-blocking manner. This function
8344 * must be called with all CPU's synchronized, and interrupts disabled, the
8345 * and caller must save the original value of the current task (see
8346 * curr_task() above) and restore that value before reenabling interrupts and
8347 * re-starting the system.
8349 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8351 void set_curr_task(int cpu, struct task_struct *p)
8353 cpu_curr(cpu) = p;
8356 #endif
8358 #ifdef CONFIG_FAIR_GROUP_SCHED
8359 static void free_fair_sched_group(struct task_group *tg)
8361 int i;
8363 for_each_possible_cpu(i) {
8364 if (tg->cfs_rq)
8365 kfree(tg->cfs_rq[i]);
8366 if (tg->se)
8367 kfree(tg->se[i]);
8370 kfree(tg->cfs_rq);
8371 kfree(tg->se);
8374 static
8375 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8377 struct cfs_rq *cfs_rq;
8378 struct sched_entity *se, *parent_se;
8379 struct rq *rq;
8380 int i;
8382 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8383 if (!tg->cfs_rq)
8384 goto err;
8385 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8386 if (!tg->se)
8387 goto err;
8389 tg->shares = NICE_0_LOAD;
8391 for_each_possible_cpu(i) {
8392 rq = cpu_rq(i);
8394 cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
8395 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8396 if (!cfs_rq)
8397 goto err;
8399 se = kmalloc_node(sizeof(struct sched_entity),
8400 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8401 if (!se)
8402 goto err;
8404 parent_se = parent ? parent->se[i] : NULL;
8405 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
8408 return 1;
8410 err:
8411 return 0;
8414 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8416 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8417 &cpu_rq(cpu)->leaf_cfs_rq_list);
8420 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8422 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8424 #else
8425 static inline void free_fair_sched_group(struct task_group *tg)
8429 static inline
8430 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8432 return 1;
8435 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8439 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8442 #endif
8444 #ifdef CONFIG_RT_GROUP_SCHED
8445 static void free_rt_sched_group(struct task_group *tg)
8447 int i;
8449 destroy_rt_bandwidth(&tg->rt_bandwidth);
8451 for_each_possible_cpu(i) {
8452 if (tg->rt_rq)
8453 kfree(tg->rt_rq[i]);
8454 if (tg->rt_se)
8455 kfree(tg->rt_se[i]);
8458 kfree(tg->rt_rq);
8459 kfree(tg->rt_se);
8462 static
8463 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8465 struct rt_rq *rt_rq;
8466 struct sched_rt_entity *rt_se, *parent_se;
8467 struct rq *rq;
8468 int i;
8470 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8471 if (!tg->rt_rq)
8472 goto err;
8473 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8474 if (!tg->rt_se)
8475 goto err;
8477 init_rt_bandwidth(&tg->rt_bandwidth,
8478 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8480 for_each_possible_cpu(i) {
8481 rq = cpu_rq(i);
8483 rt_rq = kmalloc_node(sizeof(struct rt_rq),
8484 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8485 if (!rt_rq)
8486 goto err;
8488 rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
8489 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8490 if (!rt_se)
8491 goto err;
8493 parent_se = parent ? parent->rt_se[i] : NULL;
8494 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
8497 return 1;
8499 err:
8500 return 0;
8503 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8505 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8506 &cpu_rq(cpu)->leaf_rt_rq_list);
8509 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8511 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8513 #else
8514 static inline void free_rt_sched_group(struct task_group *tg)
8518 static inline
8519 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8521 return 1;
8524 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8528 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8531 #endif
8533 #ifdef CONFIG_GROUP_SCHED
8534 static void free_sched_group(struct task_group *tg)
8536 free_fair_sched_group(tg);
8537 free_rt_sched_group(tg);
8538 kfree(tg);
8541 /* allocate runqueue etc for a new task group */
8542 struct task_group *sched_create_group(struct task_group *parent)
8544 struct task_group *tg;
8545 unsigned long flags;
8546 int i;
8548 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8549 if (!tg)
8550 return ERR_PTR(-ENOMEM);
8552 if (!alloc_fair_sched_group(tg, parent))
8553 goto err;
8555 if (!alloc_rt_sched_group(tg, parent))
8556 goto err;
8558 spin_lock_irqsave(&task_group_lock, flags);
8559 for_each_possible_cpu(i) {
8560 register_fair_sched_group(tg, i);
8561 register_rt_sched_group(tg, i);
8563 list_add_rcu(&tg->list, &task_groups);
8565 WARN_ON(!parent); /* root should already exist */
8567 tg->parent = parent;
8568 list_add_rcu(&tg->siblings, &parent->children);
8569 INIT_LIST_HEAD(&tg->children);
8570 spin_unlock_irqrestore(&task_group_lock, flags);
8572 return tg;
8574 err:
8575 free_sched_group(tg);
8576 return ERR_PTR(-ENOMEM);
8579 /* rcu callback to free various structures associated with a task group */
8580 static void free_sched_group_rcu(struct rcu_head *rhp)
8582 /* now it should be safe to free those cfs_rqs */
8583 free_sched_group(container_of(rhp, struct task_group, rcu));
8586 /* Destroy runqueue etc associated with a task group */
8587 void sched_destroy_group(struct task_group *tg)
8589 unsigned long flags;
8590 int i;
8592 spin_lock_irqsave(&task_group_lock, flags);
8593 for_each_possible_cpu(i) {
8594 unregister_fair_sched_group(tg, i);
8595 unregister_rt_sched_group(tg, i);
8597 list_del_rcu(&tg->list);
8598 list_del_rcu(&tg->siblings);
8599 spin_unlock_irqrestore(&task_group_lock, flags);
8601 /* wait for possible concurrent references to cfs_rqs complete */
8602 call_rcu(&tg->rcu, free_sched_group_rcu);
8605 /* change task's runqueue when it moves between groups.
8606 * The caller of this function should have put the task in its new group
8607 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8608 * reflect its new group.
8610 void sched_move_task(struct task_struct *tsk)
8612 int on_rq, running;
8613 unsigned long flags;
8614 struct rq *rq;
8616 rq = task_rq_lock(tsk, &flags);
8618 update_rq_clock(rq);
8620 running = task_current(rq, tsk);
8621 on_rq = tsk->se.on_rq;
8623 if (on_rq)
8624 dequeue_task(rq, tsk, 0);
8625 if (unlikely(running))
8626 tsk->sched_class->put_prev_task(rq, tsk);
8628 set_task_rq(tsk, task_cpu(tsk));
8630 #ifdef CONFIG_FAIR_GROUP_SCHED
8631 if (tsk->sched_class->moved_group)
8632 tsk->sched_class->moved_group(tsk);
8633 #endif
8635 if (unlikely(running))
8636 tsk->sched_class->set_curr_task(rq);
8637 if (on_rq)
8638 enqueue_task(rq, tsk, 0);
8640 task_rq_unlock(rq, &flags);
8642 #endif
8644 #ifdef CONFIG_FAIR_GROUP_SCHED
8645 static void __set_se_shares(struct sched_entity *se, unsigned long shares)
8647 struct cfs_rq *cfs_rq = se->cfs_rq;
8648 int on_rq;
8650 on_rq = se->on_rq;
8651 if (on_rq)
8652 dequeue_entity(cfs_rq, se, 0);
8654 se->load.weight = shares;
8655 se->load.inv_weight = 0;
8657 if (on_rq)
8658 enqueue_entity(cfs_rq, se, 0);
8661 static void set_se_shares(struct sched_entity *se, unsigned long shares)
8663 struct cfs_rq *cfs_rq = se->cfs_rq;
8664 struct rq *rq = cfs_rq->rq;
8665 unsigned long flags;
8667 spin_lock_irqsave(&rq->lock, flags);
8668 __set_se_shares(se, shares);
8669 spin_unlock_irqrestore(&rq->lock, flags);
8672 static DEFINE_MUTEX(shares_mutex);
8674 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8676 int i;
8677 unsigned long flags;
8680 * We can't change the weight of the root cgroup.
8682 if (!tg->se[0])
8683 return -EINVAL;
8685 if (shares < MIN_SHARES)
8686 shares = MIN_SHARES;
8687 else if (shares > MAX_SHARES)
8688 shares = MAX_SHARES;
8690 mutex_lock(&shares_mutex);
8691 if (tg->shares == shares)
8692 goto done;
8694 spin_lock_irqsave(&task_group_lock, flags);
8695 for_each_possible_cpu(i)
8696 unregister_fair_sched_group(tg, i);
8697 list_del_rcu(&tg->siblings);
8698 spin_unlock_irqrestore(&task_group_lock, flags);
8700 /* wait for any ongoing reference to this group to finish */
8701 synchronize_sched();
8704 * Now we are free to modify the group's share on each cpu
8705 * w/o tripping rebalance_share or load_balance_fair.
8707 tg->shares = shares;
8708 for_each_possible_cpu(i) {
8710 * force a rebalance
8712 cfs_rq_set_shares(tg->cfs_rq[i], 0);
8713 set_se_shares(tg->se[i], shares);
8717 * Enable load balance activity on this group, by inserting it back on
8718 * each cpu's rq->leaf_cfs_rq_list.
8720 spin_lock_irqsave(&task_group_lock, flags);
8721 for_each_possible_cpu(i)
8722 register_fair_sched_group(tg, i);
8723 list_add_rcu(&tg->siblings, &tg->parent->children);
8724 spin_unlock_irqrestore(&task_group_lock, flags);
8725 done:
8726 mutex_unlock(&shares_mutex);
8727 return 0;
8730 unsigned long sched_group_shares(struct task_group *tg)
8732 return tg->shares;
8734 #endif
8736 #ifdef CONFIG_RT_GROUP_SCHED
8738 * Ensure that the real time constraints are schedulable.
8740 static DEFINE_MUTEX(rt_constraints_mutex);
8742 static unsigned long to_ratio(u64 period, u64 runtime)
8744 if (runtime == RUNTIME_INF)
8745 return 1ULL << 16;
8747 return div64_u64(runtime << 16, period);
8750 #ifdef CONFIG_CGROUP_SCHED
8751 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8753 struct task_group *tgi, *parent = tg->parent;
8754 unsigned long total = 0;
8756 if (!parent) {
8757 if (global_rt_period() < period)
8758 return 0;
8760 return to_ratio(period, runtime) <
8761 to_ratio(global_rt_period(), global_rt_runtime());
8764 if (ktime_to_ns(parent->rt_bandwidth.rt_period) < period)
8765 return 0;
8767 rcu_read_lock();
8768 list_for_each_entry_rcu(tgi, &parent->children, siblings) {
8769 if (tgi == tg)
8770 continue;
8772 total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
8773 tgi->rt_bandwidth.rt_runtime);
8775 rcu_read_unlock();
8777 return total + to_ratio(period, runtime) <
8778 to_ratio(ktime_to_ns(parent->rt_bandwidth.rt_period),
8779 parent->rt_bandwidth.rt_runtime);
8781 #elif defined CONFIG_USER_SCHED
8782 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8784 struct task_group *tgi;
8785 unsigned long total = 0;
8786 unsigned long global_ratio =
8787 to_ratio(global_rt_period(), global_rt_runtime());
8789 rcu_read_lock();
8790 list_for_each_entry_rcu(tgi, &task_groups, list) {
8791 if (tgi == tg)
8792 continue;
8794 total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
8795 tgi->rt_bandwidth.rt_runtime);
8797 rcu_read_unlock();
8799 return total + to_ratio(period, runtime) < global_ratio;
8801 #endif
8803 /* Must be called with tasklist_lock held */
8804 static inline int tg_has_rt_tasks(struct task_group *tg)
8806 struct task_struct *g, *p;
8807 do_each_thread(g, p) {
8808 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8809 return 1;
8810 } while_each_thread(g, p);
8811 return 0;
8814 static int tg_set_bandwidth(struct task_group *tg,
8815 u64 rt_period, u64 rt_runtime)
8817 int i, err = 0;
8819 mutex_lock(&rt_constraints_mutex);
8820 read_lock(&tasklist_lock);
8821 if (rt_runtime == 0 && tg_has_rt_tasks(tg)) {
8822 err = -EBUSY;
8823 goto unlock;
8825 if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
8826 err = -EINVAL;
8827 goto unlock;
8830 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8831 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8832 tg->rt_bandwidth.rt_runtime = rt_runtime;
8834 for_each_possible_cpu(i) {
8835 struct rt_rq *rt_rq = tg->rt_rq[i];
8837 spin_lock(&rt_rq->rt_runtime_lock);
8838 rt_rq->rt_runtime = rt_runtime;
8839 spin_unlock(&rt_rq->rt_runtime_lock);
8841 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8842 unlock:
8843 read_unlock(&tasklist_lock);
8844 mutex_unlock(&rt_constraints_mutex);
8846 return err;
8849 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8851 u64 rt_runtime, rt_period;
8853 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8854 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8855 if (rt_runtime_us < 0)
8856 rt_runtime = RUNTIME_INF;
8858 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8861 long sched_group_rt_runtime(struct task_group *tg)
8863 u64 rt_runtime_us;
8865 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
8866 return -1;
8868 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
8869 do_div(rt_runtime_us, NSEC_PER_USEC);
8870 return rt_runtime_us;
8873 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8875 u64 rt_runtime, rt_period;
8877 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8878 rt_runtime = tg->rt_bandwidth.rt_runtime;
8880 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8883 long sched_group_rt_period(struct task_group *tg)
8885 u64 rt_period_us;
8887 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8888 do_div(rt_period_us, NSEC_PER_USEC);
8889 return rt_period_us;
8892 static int sched_rt_global_constraints(void)
8894 int ret = 0;
8896 mutex_lock(&rt_constraints_mutex);
8897 if (!__rt_schedulable(NULL, 1, 0))
8898 ret = -EINVAL;
8899 mutex_unlock(&rt_constraints_mutex);
8901 return ret;
8903 #else
8904 static int sched_rt_global_constraints(void)
8906 unsigned long flags;
8907 int i;
8909 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8910 for_each_possible_cpu(i) {
8911 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8913 spin_lock(&rt_rq->rt_runtime_lock);
8914 rt_rq->rt_runtime = global_rt_runtime();
8915 spin_unlock(&rt_rq->rt_runtime_lock);
8917 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8919 return 0;
8921 #endif
8923 int sched_rt_handler(struct ctl_table *table, int write,
8924 struct file *filp, void __user *buffer, size_t *lenp,
8925 loff_t *ppos)
8927 int ret;
8928 int old_period, old_runtime;
8929 static DEFINE_MUTEX(mutex);
8931 mutex_lock(&mutex);
8932 old_period = sysctl_sched_rt_period;
8933 old_runtime = sysctl_sched_rt_runtime;
8935 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
8937 if (!ret && write) {
8938 ret = sched_rt_global_constraints();
8939 if (ret) {
8940 sysctl_sched_rt_period = old_period;
8941 sysctl_sched_rt_runtime = old_runtime;
8942 } else {
8943 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8944 def_rt_bandwidth.rt_period =
8945 ns_to_ktime(global_rt_period());
8948 mutex_unlock(&mutex);
8950 return ret;
8953 #ifdef CONFIG_CGROUP_SCHED
8955 /* return corresponding task_group object of a cgroup */
8956 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
8958 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8959 struct task_group, css);
8962 static struct cgroup_subsys_state *
8963 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
8965 struct task_group *tg, *parent;
8967 if (!cgrp->parent) {
8968 /* This is early initialization for the top cgroup */
8969 init_task_group.css.cgroup = cgrp;
8970 return &init_task_group.css;
8973 parent = cgroup_tg(cgrp->parent);
8974 tg = sched_create_group(parent);
8975 if (IS_ERR(tg))
8976 return ERR_PTR(-ENOMEM);
8978 /* Bind the cgroup to task_group object we just created */
8979 tg->css.cgroup = cgrp;
8981 return &tg->css;
8984 static void
8985 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8987 struct task_group *tg = cgroup_tg(cgrp);
8989 sched_destroy_group(tg);
8992 static int
8993 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8994 struct task_struct *tsk)
8996 #ifdef CONFIG_RT_GROUP_SCHED
8997 /* Don't accept realtime tasks when there is no way for them to run */
8998 if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
8999 return -EINVAL;
9000 #else
9001 /* We don't support RT-tasks being in separate groups */
9002 if (tsk->sched_class != &fair_sched_class)
9003 return -EINVAL;
9004 #endif
9006 return 0;
9009 static void
9010 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9011 struct cgroup *old_cont, struct task_struct *tsk)
9013 sched_move_task(tsk);
9016 #ifdef CONFIG_FAIR_GROUP_SCHED
9017 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
9018 u64 shareval)
9020 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
9023 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
9025 struct task_group *tg = cgroup_tg(cgrp);
9027 return (u64) tg->shares;
9029 #endif
9031 #ifdef CONFIG_RT_GROUP_SCHED
9032 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
9033 s64 val)
9035 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
9038 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
9040 return sched_group_rt_runtime(cgroup_tg(cgrp));
9043 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9044 u64 rt_period_us)
9046 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9049 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9051 return sched_group_rt_period(cgroup_tg(cgrp));
9053 #endif
9055 static struct cftype cpu_files[] = {
9056 #ifdef CONFIG_FAIR_GROUP_SCHED
9058 .name = "shares",
9059 .read_u64 = cpu_shares_read_u64,
9060 .write_u64 = cpu_shares_write_u64,
9062 #endif
9063 #ifdef CONFIG_RT_GROUP_SCHED
9065 .name = "rt_runtime_us",
9066 .read_s64 = cpu_rt_runtime_read,
9067 .write_s64 = cpu_rt_runtime_write,
9070 .name = "rt_period_us",
9071 .read_u64 = cpu_rt_period_read_uint,
9072 .write_u64 = cpu_rt_period_write_uint,
9074 #endif
9077 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9079 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
9082 struct cgroup_subsys cpu_cgroup_subsys = {
9083 .name = "cpu",
9084 .create = cpu_cgroup_create,
9085 .destroy = cpu_cgroup_destroy,
9086 .can_attach = cpu_cgroup_can_attach,
9087 .attach = cpu_cgroup_attach,
9088 .populate = cpu_cgroup_populate,
9089 .subsys_id = cpu_cgroup_subsys_id,
9090 .early_init = 1,
9093 #endif /* CONFIG_CGROUP_SCHED */
9095 #ifdef CONFIG_CGROUP_CPUACCT
9098 * CPU accounting code for task groups.
9100 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9101 * (balbir@in.ibm.com).
9104 /* track cpu usage of a group of tasks */
9105 struct cpuacct {
9106 struct cgroup_subsys_state css;
9107 /* cpuusage holds pointer to a u64-type object on every cpu */
9108 u64 *cpuusage;
9111 struct cgroup_subsys cpuacct_subsys;
9113 /* return cpu accounting group corresponding to this container */
9114 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
9116 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
9117 struct cpuacct, css);
9120 /* return cpu accounting group to which this task belongs */
9121 static inline struct cpuacct *task_ca(struct task_struct *tsk)
9123 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9124 struct cpuacct, css);
9127 /* create a new cpu accounting group */
9128 static struct cgroup_subsys_state *cpuacct_create(
9129 struct cgroup_subsys *ss, struct cgroup *cgrp)
9131 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
9133 if (!ca)
9134 return ERR_PTR(-ENOMEM);
9136 ca->cpuusage = alloc_percpu(u64);
9137 if (!ca->cpuusage) {
9138 kfree(ca);
9139 return ERR_PTR(-ENOMEM);
9142 return &ca->css;
9145 /* destroy an existing cpu accounting group */
9146 static void
9147 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9149 struct cpuacct *ca = cgroup_ca(cgrp);
9151 free_percpu(ca->cpuusage);
9152 kfree(ca);
9155 /* return total cpu usage (in nanoseconds) of a group */
9156 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
9158 struct cpuacct *ca = cgroup_ca(cgrp);
9159 u64 totalcpuusage = 0;
9160 int i;
9162 for_each_possible_cpu(i) {
9163 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
9166 * Take rq->lock to make 64-bit addition safe on 32-bit
9167 * platforms.
9169 spin_lock_irq(&cpu_rq(i)->lock);
9170 totalcpuusage += *cpuusage;
9171 spin_unlock_irq(&cpu_rq(i)->lock);
9174 return totalcpuusage;
9177 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9178 u64 reset)
9180 struct cpuacct *ca = cgroup_ca(cgrp);
9181 int err = 0;
9182 int i;
9184 if (reset) {
9185 err = -EINVAL;
9186 goto out;
9189 for_each_possible_cpu(i) {
9190 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
9192 spin_lock_irq(&cpu_rq(i)->lock);
9193 *cpuusage = 0;
9194 spin_unlock_irq(&cpu_rq(i)->lock);
9196 out:
9197 return err;
9200 static struct cftype files[] = {
9202 .name = "usage",
9203 .read_u64 = cpuusage_read,
9204 .write_u64 = cpuusage_write,
9208 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9210 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9214 * charge this task's execution time to its accounting group.
9216 * called with rq->lock held.
9218 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9220 struct cpuacct *ca;
9222 if (!cpuacct_subsys.active)
9223 return;
9225 ca = task_ca(tsk);
9226 if (ca) {
9227 u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
9229 *cpuusage += cputime;
9233 struct cgroup_subsys cpuacct_subsys = {
9234 .name = "cpuacct",
9235 .create = cpuacct_create,
9236 .destroy = cpuacct_destroy,
9237 .populate = cpuacct_populate,
9238 .subsys_id = cpuacct_subsys_id,
9240 #endif /* CONFIG_CGROUP_CPUACCT */