[JFFS2] Fix race in post-mount node checking
[linux-2.6/pdupreez.git] / fs / jffs2 / gc.c
blob967fb2cf8e21ed849cc330fce8aa7928c51ae0ef
1 /*
2 * JFFS2 -- Journalling Flash File System, Version 2.
4 * Copyright (C) 2001-2003 Red Hat, Inc.
6 * Created by David Woodhouse <dwmw2@infradead.org>
8 * For licensing information, see the file 'LICENCE' in this directory.
10 * $Id: gc.c,v 1.155 2005/11/07 11:14:39 gleixner Exp $
14 #include <linux/kernel.h>
15 #include <linux/mtd/mtd.h>
16 #include <linux/slab.h>
17 #include <linux/pagemap.h>
18 #include <linux/crc32.h>
19 #include <linux/compiler.h>
20 #include <linux/stat.h>
21 #include "nodelist.h"
22 #include "compr.h"
24 static int jffs2_garbage_collect_pristine(struct jffs2_sb_info *c,
25 struct jffs2_inode_cache *ic,
26 struct jffs2_raw_node_ref *raw);
27 static int jffs2_garbage_collect_metadata(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
28 struct jffs2_inode_info *f, struct jffs2_full_dnode *fd);
29 static int jffs2_garbage_collect_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
30 struct jffs2_inode_info *f, struct jffs2_full_dirent *fd);
31 static int jffs2_garbage_collect_deletion_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
32 struct jffs2_inode_info *f, struct jffs2_full_dirent *fd);
33 static int jffs2_garbage_collect_hole(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
34 struct jffs2_inode_info *f, struct jffs2_full_dnode *fn,
35 uint32_t start, uint32_t end);
36 static int jffs2_garbage_collect_dnode(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
37 struct jffs2_inode_info *f, struct jffs2_full_dnode *fn,
38 uint32_t start, uint32_t end);
39 static int jffs2_garbage_collect_live(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
40 struct jffs2_raw_node_ref *raw, struct jffs2_inode_info *f);
42 /* Called with erase_completion_lock held */
43 static struct jffs2_eraseblock *jffs2_find_gc_block(struct jffs2_sb_info *c)
45 struct jffs2_eraseblock *ret;
46 struct list_head *nextlist = NULL;
47 int n = jiffies % 128;
49 /* Pick an eraseblock to garbage collect next. This is where we'll
50 put the clever wear-levelling algorithms. Eventually. */
51 /* We possibly want to favour the dirtier blocks more when the
52 number of free blocks is low. */
53 again:
54 if (!list_empty(&c->bad_used_list) && c->nr_free_blocks > c->resv_blocks_gcbad) {
55 D1(printk(KERN_DEBUG "Picking block from bad_used_list to GC next\n"));
56 nextlist = &c->bad_used_list;
57 } else if (n < 50 && !list_empty(&c->erasable_list)) {
58 /* Note that most of them will have gone directly to be erased.
59 So don't favour the erasable_list _too_ much. */
60 D1(printk(KERN_DEBUG "Picking block from erasable_list to GC next\n"));
61 nextlist = &c->erasable_list;
62 } else if (n < 110 && !list_empty(&c->very_dirty_list)) {
63 /* Most of the time, pick one off the very_dirty list */
64 D1(printk(KERN_DEBUG "Picking block from very_dirty_list to GC next\n"));
65 nextlist = &c->very_dirty_list;
66 } else if (n < 126 && !list_empty(&c->dirty_list)) {
67 D1(printk(KERN_DEBUG "Picking block from dirty_list to GC next\n"));
68 nextlist = &c->dirty_list;
69 } else if (!list_empty(&c->clean_list)) {
70 D1(printk(KERN_DEBUG "Picking block from clean_list to GC next\n"));
71 nextlist = &c->clean_list;
72 } else if (!list_empty(&c->dirty_list)) {
73 D1(printk(KERN_DEBUG "Picking block from dirty_list to GC next (clean_list was empty)\n"));
75 nextlist = &c->dirty_list;
76 } else if (!list_empty(&c->very_dirty_list)) {
77 D1(printk(KERN_DEBUG "Picking block from very_dirty_list to GC next (clean_list and dirty_list were empty)\n"));
78 nextlist = &c->very_dirty_list;
79 } else if (!list_empty(&c->erasable_list)) {
80 D1(printk(KERN_DEBUG "Picking block from erasable_list to GC next (clean_list and {very_,}dirty_list were empty)\n"));
82 nextlist = &c->erasable_list;
83 } else if (!list_empty(&c->erasable_pending_wbuf_list)) {
84 /* There are blocks are wating for the wbuf sync */
85 D1(printk(KERN_DEBUG "Synching wbuf in order to reuse erasable_pending_wbuf_list blocks\n"));
86 spin_unlock(&c->erase_completion_lock);
87 jffs2_flush_wbuf_pad(c);
88 spin_lock(&c->erase_completion_lock);
89 goto again;
90 } else {
91 /* Eep. All were empty */
92 D1(printk(KERN_NOTICE "jffs2: No clean, dirty _or_ erasable blocks to GC from! Where are they all?\n"));
93 return NULL;
96 ret = list_entry(nextlist->next, struct jffs2_eraseblock, list);
97 list_del(&ret->list);
98 c->gcblock = ret;
99 ret->gc_node = ret->first_node;
100 if (!ret->gc_node) {
101 printk(KERN_WARNING "Eep. ret->gc_node for block at 0x%08x is NULL\n", ret->offset);
102 BUG();
105 /* Have we accidentally picked a clean block with wasted space ? */
106 if (ret->wasted_size) {
107 D1(printk(KERN_DEBUG "Converting wasted_size %08x to dirty_size\n", ret->wasted_size));
108 ret->dirty_size += ret->wasted_size;
109 c->wasted_size -= ret->wasted_size;
110 c->dirty_size += ret->wasted_size;
111 ret->wasted_size = 0;
114 return ret;
117 /* jffs2_garbage_collect_pass
118 * Make a single attempt to progress GC. Move one node, and possibly
119 * start erasing one eraseblock.
121 int jffs2_garbage_collect_pass(struct jffs2_sb_info *c)
123 struct jffs2_inode_info *f;
124 struct jffs2_inode_cache *ic;
125 struct jffs2_eraseblock *jeb;
126 struct jffs2_raw_node_ref *raw;
127 int ret = 0, inum, nlink;
129 if (down_interruptible(&c->alloc_sem))
130 return -EINTR;
132 for (;;) {
133 spin_lock(&c->erase_completion_lock);
134 if (!c->unchecked_size)
135 break;
137 /* We can't start doing GC yet. We haven't finished checking
138 the node CRCs etc. Do it now. */
140 /* checked_ino is protected by the alloc_sem */
141 if (c->checked_ino > c->highest_ino) {
142 printk(KERN_CRIT "Checked all inodes but still 0x%x bytes of unchecked space?\n",
143 c->unchecked_size);
144 jffs2_dbg_dump_block_lists_nolock(c);
145 spin_unlock(&c->erase_completion_lock);
146 BUG();
149 spin_unlock(&c->erase_completion_lock);
151 spin_lock(&c->inocache_lock);
153 ic = jffs2_get_ino_cache(c, c->checked_ino++);
155 if (!ic) {
156 spin_unlock(&c->inocache_lock);
157 continue;
160 if (!ic->nlink) {
161 D1(printk(KERN_DEBUG "Skipping check of ino #%d with nlink zero\n",
162 ic->ino));
163 spin_unlock(&c->inocache_lock);
164 continue;
166 switch(ic->state) {
167 case INO_STATE_CHECKEDABSENT:
168 case INO_STATE_PRESENT:
169 D1(printk(KERN_DEBUG "Skipping ino #%u already checked\n", ic->ino));
170 spin_unlock(&c->inocache_lock);
171 continue;
173 case INO_STATE_GC:
174 case INO_STATE_CHECKING:
175 printk(KERN_WARNING "Inode #%u is in state %d during CRC check phase!\n", ic->ino, ic->state);
176 spin_unlock(&c->inocache_lock);
177 BUG();
179 case INO_STATE_READING:
180 /* We need to wait for it to finish, lest we move on
181 and trigger the BUG() above while we haven't yet
182 finished checking all its nodes */
183 D1(printk(KERN_DEBUG "Waiting for ino #%u to finish reading\n", ic->ino));
184 /* We need to come back again for the _same_ inode. We've
185 made no progress in this case, but that should be OK */
186 c->checked_ino--;
188 up(&c->alloc_sem);
189 sleep_on_spinunlock(&c->inocache_wq, &c->inocache_lock);
190 return 0;
192 default:
193 BUG();
195 case INO_STATE_UNCHECKED:
198 ic->state = INO_STATE_CHECKING;
199 spin_unlock(&c->inocache_lock);
201 D1(printk(KERN_DEBUG "jffs2_garbage_collect_pass() triggering inode scan of ino#%u\n", ic->ino));
203 ret = jffs2_do_crccheck_inode(c, ic);
204 if (ret)
205 printk(KERN_WARNING "Returned error for crccheck of ino #%u. Expect badness...\n", ic->ino);
207 jffs2_set_inocache_state(c, ic, INO_STATE_CHECKEDABSENT);
208 up(&c->alloc_sem);
209 return ret;
212 /* First, work out which block we're garbage-collecting */
213 jeb = c->gcblock;
215 if (!jeb)
216 jeb = jffs2_find_gc_block(c);
218 if (!jeb) {
219 D1 (printk(KERN_NOTICE "jffs2: Couldn't find erase block to garbage collect!\n"));
220 spin_unlock(&c->erase_completion_lock);
221 up(&c->alloc_sem);
222 return -EIO;
225 D1(printk(KERN_DEBUG "GC from block %08x, used_size %08x, dirty_size %08x, free_size %08x\n", jeb->offset, jeb->used_size, jeb->dirty_size, jeb->free_size));
226 D1(if (c->nextblock)
227 printk(KERN_DEBUG "Nextblock at %08x, used_size %08x, dirty_size %08x, wasted_size %08x, free_size %08x\n", c->nextblock->offset, c->nextblock->used_size, c->nextblock->dirty_size, c->nextblock->wasted_size, c->nextblock->free_size));
229 if (!jeb->used_size) {
230 up(&c->alloc_sem);
231 goto eraseit;
234 raw = jeb->gc_node;
236 while(ref_obsolete(raw)) {
237 D1(printk(KERN_DEBUG "Node at 0x%08x is obsolete... skipping\n", ref_offset(raw)));
238 raw = raw->next_phys;
239 if (unlikely(!raw)) {
240 printk(KERN_WARNING "eep. End of raw list while still supposedly nodes to GC\n");
241 printk(KERN_WARNING "erase block at 0x%08x. free_size 0x%08x, dirty_size 0x%08x, used_size 0x%08x\n",
242 jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size);
243 jeb->gc_node = raw;
244 spin_unlock(&c->erase_completion_lock);
245 up(&c->alloc_sem);
246 BUG();
249 jeb->gc_node = raw;
251 D1(printk(KERN_DEBUG "Going to garbage collect node at 0x%08x\n", ref_offset(raw)));
253 if (!raw->next_in_ino) {
254 /* Inode-less node. Clean marker, snapshot or something like that */
255 /* FIXME: If it's something that needs to be copied, including something
256 we don't grok that has JFFS2_NODETYPE_RWCOMPAT_COPY, we should do so */
257 spin_unlock(&c->erase_completion_lock);
258 jffs2_mark_node_obsolete(c, raw);
259 up(&c->alloc_sem);
260 goto eraseit_lock;
263 ic = jffs2_raw_ref_to_ic(raw);
265 /* We need to hold the inocache. Either the erase_completion_lock or
266 the inocache_lock are sufficient; we trade down since the inocache_lock
267 causes less contention. */
268 spin_lock(&c->inocache_lock);
270 spin_unlock(&c->erase_completion_lock);
272 D1(printk(KERN_DEBUG "jffs2_garbage_collect_pass collecting from block @0x%08x. Node @0x%08x(%d), ino #%u\n", jeb->offset, ref_offset(raw), ref_flags(raw), ic->ino));
274 /* Three possibilities:
275 1. Inode is already in-core. We must iget it and do proper
276 updating to its fragtree, etc.
277 2. Inode is not in-core, node is REF_PRISTINE. We lock the
278 inocache to prevent a read_inode(), copy the node intact.
279 3. Inode is not in-core, node is not pristine. We must iget()
280 and take the slow path.
283 switch(ic->state) {
284 case INO_STATE_CHECKEDABSENT:
285 /* It's been checked, but it's not currently in-core.
286 We can just copy any pristine nodes, but have
287 to prevent anyone else from doing read_inode() while
288 we're at it, so we set the state accordingly */
289 if (ref_flags(raw) == REF_PRISTINE)
290 ic->state = INO_STATE_GC;
291 else {
292 D1(printk(KERN_DEBUG "Ino #%u is absent but node not REF_PRISTINE. Reading.\n",
293 ic->ino));
295 break;
297 case INO_STATE_PRESENT:
298 /* It's in-core. GC must iget() it. */
299 break;
301 case INO_STATE_UNCHECKED:
302 case INO_STATE_CHECKING:
303 case INO_STATE_GC:
304 /* Should never happen. We should have finished checking
305 by the time we actually start doing any GC, and since
306 we're holding the alloc_sem, no other garbage collection
307 can happen.
309 printk(KERN_CRIT "Inode #%u already in state %d in jffs2_garbage_collect_pass()!\n",
310 ic->ino, ic->state);
311 up(&c->alloc_sem);
312 spin_unlock(&c->inocache_lock);
313 BUG();
315 case INO_STATE_READING:
316 /* Someone's currently trying to read it. We must wait for
317 them to finish and then go through the full iget() route
318 to do the GC. However, sometimes read_inode() needs to get
319 the alloc_sem() (for marking nodes invalid) so we must
320 drop the alloc_sem before sleeping. */
322 up(&c->alloc_sem);
323 D1(printk(KERN_DEBUG "jffs2_garbage_collect_pass() waiting for ino #%u in state %d\n",
324 ic->ino, ic->state));
325 sleep_on_spinunlock(&c->inocache_wq, &c->inocache_lock);
326 /* And because we dropped the alloc_sem we must start again from the
327 beginning. Ponder chance of livelock here -- we're returning success
328 without actually making any progress.
330 Q: What are the chances that the inode is back in INO_STATE_READING
331 again by the time we next enter this function? And that this happens
332 enough times to cause a real delay?
334 A: Small enough that I don't care :)
336 return 0;
339 /* OK. Now if the inode is in state INO_STATE_GC, we are going to copy the
340 node intact, and we don't have to muck about with the fragtree etc.
341 because we know it's not in-core. If it _was_ in-core, we go through
342 all the iget() crap anyway */
344 if (ic->state == INO_STATE_GC) {
345 spin_unlock(&c->inocache_lock);
347 ret = jffs2_garbage_collect_pristine(c, ic, raw);
349 spin_lock(&c->inocache_lock);
350 ic->state = INO_STATE_CHECKEDABSENT;
351 wake_up(&c->inocache_wq);
353 if (ret != -EBADFD) {
354 spin_unlock(&c->inocache_lock);
355 goto release_sem;
358 /* Fall through if it wanted us to, with inocache_lock held */
361 /* Prevent the fairly unlikely race where the gcblock is
362 entirely obsoleted by the final close of a file which had
363 the only valid nodes in the block, followed by erasure,
364 followed by freeing of the ic because the erased block(s)
365 held _all_ the nodes of that inode.... never been seen but
366 it's vaguely possible. */
368 inum = ic->ino;
369 nlink = ic->nlink;
370 spin_unlock(&c->inocache_lock);
372 f = jffs2_gc_fetch_inode(c, inum, nlink);
373 if (IS_ERR(f)) {
374 ret = PTR_ERR(f);
375 goto release_sem;
377 if (!f) {
378 ret = 0;
379 goto release_sem;
382 ret = jffs2_garbage_collect_live(c, jeb, raw, f);
384 jffs2_gc_release_inode(c, f);
386 release_sem:
387 up(&c->alloc_sem);
389 eraseit_lock:
390 /* If we've finished this block, start it erasing */
391 spin_lock(&c->erase_completion_lock);
393 eraseit:
394 if (c->gcblock && !c->gcblock->used_size) {
395 D1(printk(KERN_DEBUG "Block at 0x%08x completely obsoleted by GC. Moving to erase_pending_list\n", c->gcblock->offset));
396 /* We're GC'ing an empty block? */
397 list_add_tail(&c->gcblock->list, &c->erase_pending_list);
398 c->gcblock = NULL;
399 c->nr_erasing_blocks++;
400 jffs2_erase_pending_trigger(c);
402 spin_unlock(&c->erase_completion_lock);
404 return ret;
407 static int jffs2_garbage_collect_live(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
408 struct jffs2_raw_node_ref *raw, struct jffs2_inode_info *f)
410 struct jffs2_node_frag *frag;
411 struct jffs2_full_dnode *fn = NULL;
412 struct jffs2_full_dirent *fd;
413 uint32_t start = 0, end = 0, nrfrags = 0;
414 int ret = 0;
416 down(&f->sem);
418 /* Now we have the lock for this inode. Check that it's still the one at the head
419 of the list. */
421 spin_lock(&c->erase_completion_lock);
423 if (c->gcblock != jeb) {
424 spin_unlock(&c->erase_completion_lock);
425 D1(printk(KERN_DEBUG "GC block is no longer gcblock. Restart\n"));
426 goto upnout;
428 if (ref_obsolete(raw)) {
429 spin_unlock(&c->erase_completion_lock);
430 D1(printk(KERN_DEBUG "node to be GC'd was obsoleted in the meantime.\n"));
431 /* They'll call again */
432 goto upnout;
434 spin_unlock(&c->erase_completion_lock);
436 /* OK. Looks safe. And nobody can get us now because we have the semaphore. Move the block */
437 if (f->metadata && f->metadata->raw == raw) {
438 fn = f->metadata;
439 ret = jffs2_garbage_collect_metadata(c, jeb, f, fn);
440 goto upnout;
443 /* FIXME. Read node and do lookup? */
444 for (frag = frag_first(&f->fragtree); frag; frag = frag_next(frag)) {
445 if (frag->node && frag->node->raw == raw) {
446 fn = frag->node;
447 end = frag->ofs + frag->size;
448 if (!nrfrags++)
449 start = frag->ofs;
450 if (nrfrags == frag->node->frags)
451 break; /* We've found them all */
454 if (fn) {
455 if (ref_flags(raw) == REF_PRISTINE) {
456 ret = jffs2_garbage_collect_pristine(c, f->inocache, raw);
457 if (!ret) {
458 /* Urgh. Return it sensibly. */
459 frag->node->raw = f->inocache->nodes;
461 if (ret != -EBADFD)
462 goto upnout;
464 /* We found a datanode. Do the GC */
465 if((start >> PAGE_CACHE_SHIFT) < ((end-1) >> PAGE_CACHE_SHIFT)) {
466 /* It crosses a page boundary. Therefore, it must be a hole. */
467 ret = jffs2_garbage_collect_hole(c, jeb, f, fn, start, end);
468 } else {
469 /* It could still be a hole. But we GC the page this way anyway */
470 ret = jffs2_garbage_collect_dnode(c, jeb, f, fn, start, end);
472 goto upnout;
475 /* Wasn't a dnode. Try dirent */
476 for (fd = f->dents; fd; fd=fd->next) {
477 if (fd->raw == raw)
478 break;
481 if (fd && fd->ino) {
482 ret = jffs2_garbage_collect_dirent(c, jeb, f, fd);
483 } else if (fd) {
484 ret = jffs2_garbage_collect_deletion_dirent(c, jeb, f, fd);
485 } else {
486 printk(KERN_WARNING "Raw node at 0x%08x wasn't in node lists for ino #%u\n",
487 ref_offset(raw), f->inocache->ino);
488 if (ref_obsolete(raw)) {
489 printk(KERN_WARNING "But it's obsolete so we don't mind too much\n");
490 } else {
491 jffs2_dbg_dump_node(c, ref_offset(raw));
492 BUG();
495 upnout:
496 up(&f->sem);
498 return ret;
501 static int jffs2_garbage_collect_pristine(struct jffs2_sb_info *c,
502 struct jffs2_inode_cache *ic,
503 struct jffs2_raw_node_ref *raw)
505 union jffs2_node_union *node;
506 struct jffs2_raw_node_ref *nraw;
507 size_t retlen;
508 int ret;
509 uint32_t phys_ofs, alloclen;
510 uint32_t crc, rawlen;
511 int retried = 0;
513 D1(printk(KERN_DEBUG "Going to GC REF_PRISTINE node at 0x%08x\n", ref_offset(raw)));
515 rawlen = ref_totlen(c, c->gcblock, raw);
517 /* Ask for a small amount of space (or the totlen if smaller) because we
518 don't want to force wastage of the end of a block if splitting would
519 work. */
520 ret = jffs2_reserve_space_gc(c, min_t(uint32_t, sizeof(struct jffs2_raw_inode) +
521 JFFS2_MIN_DATA_LEN, rawlen), &phys_ofs, &alloclen, rawlen);
522 /* this is not the exact summary size of it,
523 it is only an upper estimation */
525 if (ret)
526 return ret;
528 if (alloclen < rawlen) {
529 /* Doesn't fit untouched. We'll go the old route and split it */
530 return -EBADFD;
533 node = kmalloc(rawlen, GFP_KERNEL);
534 if (!node)
535 return -ENOMEM;
537 ret = jffs2_flash_read(c, ref_offset(raw), rawlen, &retlen, (char *)node);
538 if (!ret && retlen != rawlen)
539 ret = -EIO;
540 if (ret)
541 goto out_node;
543 crc = crc32(0, node, sizeof(struct jffs2_unknown_node)-4);
544 if (je32_to_cpu(node->u.hdr_crc) != crc) {
545 printk(KERN_WARNING "Header CRC failed on REF_PRISTINE node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
546 ref_offset(raw), je32_to_cpu(node->u.hdr_crc), crc);
547 goto bail;
550 switch(je16_to_cpu(node->u.nodetype)) {
551 case JFFS2_NODETYPE_INODE:
552 crc = crc32(0, node, sizeof(node->i)-8);
553 if (je32_to_cpu(node->i.node_crc) != crc) {
554 printk(KERN_WARNING "Node CRC failed on REF_PRISTINE data node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
555 ref_offset(raw), je32_to_cpu(node->i.node_crc), crc);
556 goto bail;
559 if (je32_to_cpu(node->i.dsize)) {
560 crc = crc32(0, node->i.data, je32_to_cpu(node->i.csize));
561 if (je32_to_cpu(node->i.data_crc) != crc) {
562 printk(KERN_WARNING "Data CRC failed on REF_PRISTINE data node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
563 ref_offset(raw), je32_to_cpu(node->i.data_crc), crc);
564 goto bail;
567 break;
569 case JFFS2_NODETYPE_DIRENT:
570 crc = crc32(0, node, sizeof(node->d)-8);
571 if (je32_to_cpu(node->d.node_crc) != crc) {
572 printk(KERN_WARNING "Node CRC failed on REF_PRISTINE dirent node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
573 ref_offset(raw), je32_to_cpu(node->d.node_crc), crc);
574 goto bail;
577 if (node->d.nsize) {
578 crc = crc32(0, node->d.name, node->d.nsize);
579 if (je32_to_cpu(node->d.name_crc) != crc) {
580 printk(KERN_WARNING "Name CRC failed on REF_PRISTINE dirent ode at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
581 ref_offset(raw), je32_to_cpu(node->d.name_crc), crc);
582 goto bail;
585 break;
586 default:
587 printk(KERN_WARNING "Unknown node type for REF_PRISTINE node at 0x%08x: 0x%04x\n",
588 ref_offset(raw), je16_to_cpu(node->u.nodetype));
589 goto bail;
592 nraw = jffs2_alloc_raw_node_ref();
593 if (!nraw) {
594 ret = -ENOMEM;
595 goto out_node;
598 /* OK, all the CRCs are good; this node can just be copied as-is. */
599 retry:
600 nraw->flash_offset = phys_ofs;
601 nraw->__totlen = rawlen;
602 nraw->next_phys = NULL;
604 ret = jffs2_flash_write(c, phys_ofs, rawlen, &retlen, (char *)node);
606 if (ret || (retlen != rawlen)) {
607 printk(KERN_NOTICE "Write of %d bytes at 0x%08x failed. returned %d, retlen %zd\n",
608 rawlen, phys_ofs, ret, retlen);
609 if (retlen) {
610 /* Doesn't belong to any inode */
611 nraw->next_in_ino = NULL;
613 nraw->flash_offset |= REF_OBSOLETE;
614 jffs2_add_physical_node_ref(c, nraw);
615 jffs2_mark_node_obsolete(c, nraw);
616 } else {
617 printk(KERN_NOTICE "Not marking the space at 0x%08x as dirty because the flash driver returned retlen zero\n", nraw->flash_offset);
618 jffs2_free_raw_node_ref(nraw);
620 if (!retried && (nraw = jffs2_alloc_raw_node_ref())) {
621 /* Try to reallocate space and retry */
622 uint32_t dummy;
623 struct jffs2_eraseblock *jeb = &c->blocks[phys_ofs / c->sector_size];
625 retried = 1;
627 D1(printk(KERN_DEBUG "Retrying failed write of REF_PRISTINE node.\n"));
629 jffs2_dbg_acct_sanity_check(c,jeb);
630 jffs2_dbg_acct_paranoia_check(c, jeb);
632 ret = jffs2_reserve_space_gc(c, rawlen, &phys_ofs, &dummy, rawlen);
633 /* this is not the exact summary size of it,
634 it is only an upper estimation */
636 if (!ret) {
637 D1(printk(KERN_DEBUG "Allocated space at 0x%08x to retry failed write.\n", phys_ofs));
639 jffs2_dbg_acct_sanity_check(c,jeb);
640 jffs2_dbg_acct_paranoia_check(c, jeb);
642 goto retry;
644 D1(printk(KERN_DEBUG "Failed to allocate space to retry failed write: %d!\n", ret));
645 jffs2_free_raw_node_ref(nraw);
648 jffs2_free_raw_node_ref(nraw);
649 if (!ret)
650 ret = -EIO;
651 goto out_node;
653 nraw->flash_offset |= REF_PRISTINE;
654 jffs2_add_physical_node_ref(c, nraw);
656 /* Link into per-inode list. This is safe because of the ic
657 state being INO_STATE_GC. Note that if we're doing this
658 for an inode which is in-core, the 'nraw' pointer is then
659 going to be fetched from ic->nodes by our caller. */
660 spin_lock(&c->erase_completion_lock);
661 nraw->next_in_ino = ic->nodes;
662 ic->nodes = nraw;
663 spin_unlock(&c->erase_completion_lock);
665 jffs2_mark_node_obsolete(c, raw);
666 D1(printk(KERN_DEBUG "WHEEE! GC REF_PRISTINE node at 0x%08x succeeded\n", ref_offset(raw)));
668 out_node:
669 kfree(node);
670 return ret;
671 bail:
672 ret = -EBADFD;
673 goto out_node;
676 static int jffs2_garbage_collect_metadata(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
677 struct jffs2_inode_info *f, struct jffs2_full_dnode *fn)
679 struct jffs2_full_dnode *new_fn;
680 struct jffs2_raw_inode ri;
681 struct jffs2_node_frag *last_frag;
682 jint16_t dev;
683 char *mdata = NULL, mdatalen = 0;
684 uint32_t alloclen, phys_ofs, ilen;
685 int ret;
687 if (S_ISBLK(JFFS2_F_I_MODE(f)) ||
688 S_ISCHR(JFFS2_F_I_MODE(f)) ) {
689 /* For these, we don't actually need to read the old node */
690 /* FIXME: for minor or major > 255. */
691 dev = cpu_to_je16(((JFFS2_F_I_RDEV_MAJ(f) << 8) |
692 JFFS2_F_I_RDEV_MIN(f)));
693 mdata = (char *)&dev;
694 mdatalen = sizeof(dev);
695 D1(printk(KERN_DEBUG "jffs2_garbage_collect_metadata(): Writing %d bytes of kdev_t\n", mdatalen));
696 } else if (S_ISLNK(JFFS2_F_I_MODE(f))) {
697 mdatalen = fn->size;
698 mdata = kmalloc(fn->size, GFP_KERNEL);
699 if (!mdata) {
700 printk(KERN_WARNING "kmalloc of mdata failed in jffs2_garbage_collect_metadata()\n");
701 return -ENOMEM;
703 ret = jffs2_read_dnode(c, f, fn, mdata, 0, mdatalen);
704 if (ret) {
705 printk(KERN_WARNING "read of old metadata failed in jffs2_garbage_collect_metadata(): %d\n", ret);
706 kfree(mdata);
707 return ret;
709 D1(printk(KERN_DEBUG "jffs2_garbage_collect_metadata(): Writing %d bites of symlink target\n", mdatalen));
713 ret = jffs2_reserve_space_gc(c, sizeof(ri) + mdatalen, &phys_ofs, &alloclen,
714 JFFS2_SUMMARY_INODE_SIZE);
715 if (ret) {
716 printk(KERN_WARNING "jffs2_reserve_space_gc of %zd bytes for garbage_collect_metadata failed: %d\n",
717 sizeof(ri)+ mdatalen, ret);
718 goto out;
721 last_frag = frag_last(&f->fragtree);
722 if (last_frag)
723 /* Fetch the inode length from the fragtree rather then
724 * from i_size since i_size may have not been updated yet */
725 ilen = last_frag->ofs + last_frag->size;
726 else
727 ilen = JFFS2_F_I_SIZE(f);
729 memset(&ri, 0, sizeof(ri));
730 ri.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
731 ri.nodetype = cpu_to_je16(JFFS2_NODETYPE_INODE);
732 ri.totlen = cpu_to_je32(sizeof(ri) + mdatalen);
733 ri.hdr_crc = cpu_to_je32(crc32(0, &ri, sizeof(struct jffs2_unknown_node)-4));
735 ri.ino = cpu_to_je32(f->inocache->ino);
736 ri.version = cpu_to_je32(++f->highest_version);
737 ri.mode = cpu_to_jemode(JFFS2_F_I_MODE(f));
738 ri.uid = cpu_to_je16(JFFS2_F_I_UID(f));
739 ri.gid = cpu_to_je16(JFFS2_F_I_GID(f));
740 ri.isize = cpu_to_je32(ilen);
741 ri.atime = cpu_to_je32(JFFS2_F_I_ATIME(f));
742 ri.ctime = cpu_to_je32(JFFS2_F_I_CTIME(f));
743 ri.mtime = cpu_to_je32(JFFS2_F_I_MTIME(f));
744 ri.offset = cpu_to_je32(0);
745 ri.csize = cpu_to_je32(mdatalen);
746 ri.dsize = cpu_to_je32(mdatalen);
747 ri.compr = JFFS2_COMPR_NONE;
748 ri.node_crc = cpu_to_je32(crc32(0, &ri, sizeof(ri)-8));
749 ri.data_crc = cpu_to_je32(crc32(0, mdata, mdatalen));
751 new_fn = jffs2_write_dnode(c, f, &ri, mdata, mdatalen, phys_ofs, ALLOC_GC);
753 if (IS_ERR(new_fn)) {
754 printk(KERN_WARNING "Error writing new dnode: %ld\n", PTR_ERR(new_fn));
755 ret = PTR_ERR(new_fn);
756 goto out;
758 jffs2_mark_node_obsolete(c, fn->raw);
759 jffs2_free_full_dnode(fn);
760 f->metadata = new_fn;
761 out:
762 if (S_ISLNK(JFFS2_F_I_MODE(f)))
763 kfree(mdata);
764 return ret;
767 static int jffs2_garbage_collect_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
768 struct jffs2_inode_info *f, struct jffs2_full_dirent *fd)
770 struct jffs2_full_dirent *new_fd;
771 struct jffs2_raw_dirent rd;
772 uint32_t alloclen, phys_ofs;
773 int ret;
775 rd.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
776 rd.nodetype = cpu_to_je16(JFFS2_NODETYPE_DIRENT);
777 rd.nsize = strlen(fd->name);
778 rd.totlen = cpu_to_je32(sizeof(rd) + rd.nsize);
779 rd.hdr_crc = cpu_to_je32(crc32(0, &rd, sizeof(struct jffs2_unknown_node)-4));
781 rd.pino = cpu_to_je32(f->inocache->ino);
782 rd.version = cpu_to_je32(++f->highest_version);
783 rd.ino = cpu_to_je32(fd->ino);
784 /* If the times on this inode were set by explicit utime() they can be different,
785 so refrain from splatting them. */
786 if (JFFS2_F_I_MTIME(f) == JFFS2_F_I_CTIME(f))
787 rd.mctime = cpu_to_je32(JFFS2_F_I_MTIME(f));
788 else
789 rd.mctime = cpu_to_je32(0);
790 rd.type = fd->type;
791 rd.node_crc = cpu_to_je32(crc32(0, &rd, sizeof(rd)-8));
792 rd.name_crc = cpu_to_je32(crc32(0, fd->name, rd.nsize));
794 ret = jffs2_reserve_space_gc(c, sizeof(rd)+rd.nsize, &phys_ofs, &alloclen,
795 JFFS2_SUMMARY_DIRENT_SIZE(rd.nsize));
796 if (ret) {
797 printk(KERN_WARNING "jffs2_reserve_space_gc of %zd bytes for garbage_collect_dirent failed: %d\n",
798 sizeof(rd)+rd.nsize, ret);
799 return ret;
801 new_fd = jffs2_write_dirent(c, f, &rd, fd->name, rd.nsize, phys_ofs, ALLOC_GC);
803 if (IS_ERR(new_fd)) {
804 printk(KERN_WARNING "jffs2_write_dirent in garbage_collect_dirent failed: %ld\n", PTR_ERR(new_fd));
805 return PTR_ERR(new_fd);
807 jffs2_add_fd_to_list(c, new_fd, &f->dents);
808 return 0;
811 static int jffs2_garbage_collect_deletion_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
812 struct jffs2_inode_info *f, struct jffs2_full_dirent *fd)
814 struct jffs2_full_dirent **fdp = &f->dents;
815 int found = 0;
817 /* On a medium where we can't actually mark nodes obsolete
818 pernamently, such as NAND flash, we need to work out
819 whether this deletion dirent is still needed to actively
820 delete a 'real' dirent with the same name that's still
821 somewhere else on the flash. */
822 if (!jffs2_can_mark_obsolete(c)) {
823 struct jffs2_raw_dirent *rd;
824 struct jffs2_raw_node_ref *raw;
825 int ret;
826 size_t retlen;
827 int name_len = strlen(fd->name);
828 uint32_t name_crc = crc32(0, fd->name, name_len);
829 uint32_t rawlen = ref_totlen(c, jeb, fd->raw);
831 rd = kmalloc(rawlen, GFP_KERNEL);
832 if (!rd)
833 return -ENOMEM;
835 /* Prevent the erase code from nicking the obsolete node refs while
836 we're looking at them. I really don't like this extra lock but
837 can't see any alternative. Suggestions on a postcard to... */
838 down(&c->erase_free_sem);
840 for (raw = f->inocache->nodes; raw != (void *)f->inocache; raw = raw->next_in_ino) {
842 /* We only care about obsolete ones */
843 if (!(ref_obsolete(raw)))
844 continue;
846 /* Any dirent with the same name is going to have the same length... */
847 if (ref_totlen(c, NULL, raw) != rawlen)
848 continue;
850 /* Doesn't matter if there's one in the same erase block. We're going to
851 delete it too at the same time. */
852 if (SECTOR_ADDR(raw->flash_offset) == SECTOR_ADDR(fd->raw->flash_offset))
853 continue;
855 D1(printk(KERN_DEBUG "Check potential deletion dirent at %08x\n", ref_offset(raw)));
857 /* This is an obsolete node belonging to the same directory, and it's of the right
858 length. We need to take a closer look...*/
859 ret = jffs2_flash_read(c, ref_offset(raw), rawlen, &retlen, (char *)rd);
860 if (ret) {
861 printk(KERN_WARNING "jffs2_g_c_deletion_dirent(): Read error (%d) reading obsolete node at %08x\n", ret, ref_offset(raw));
862 /* If we can't read it, we don't need to continue to obsolete it. Continue */
863 continue;
865 if (retlen != rawlen) {
866 printk(KERN_WARNING "jffs2_g_c_deletion_dirent(): Short read (%zd not %u) reading header from obsolete node at %08x\n",
867 retlen, rawlen, ref_offset(raw));
868 continue;
871 if (je16_to_cpu(rd->nodetype) != JFFS2_NODETYPE_DIRENT)
872 continue;
874 /* If the name CRC doesn't match, skip */
875 if (je32_to_cpu(rd->name_crc) != name_crc)
876 continue;
878 /* If the name length doesn't match, or it's another deletion dirent, skip */
879 if (rd->nsize != name_len || !je32_to_cpu(rd->ino))
880 continue;
882 /* OK, check the actual name now */
883 if (memcmp(rd->name, fd->name, name_len))
884 continue;
886 /* OK. The name really does match. There really is still an older node on
887 the flash which our deletion dirent obsoletes. So we have to write out
888 a new deletion dirent to replace it */
889 up(&c->erase_free_sem);
891 D1(printk(KERN_DEBUG "Deletion dirent at %08x still obsoletes real dirent \"%s\" at %08x for ino #%u\n",
892 ref_offset(fd->raw), fd->name, ref_offset(raw), je32_to_cpu(rd->ino)));
893 kfree(rd);
895 return jffs2_garbage_collect_dirent(c, jeb, f, fd);
898 up(&c->erase_free_sem);
899 kfree(rd);
902 /* FIXME: If we're deleting a dirent which contains the current mtime and ctime,
903 we should update the metadata node with those times accordingly */
905 /* No need for it any more. Just mark it obsolete and remove it from the list */
906 while (*fdp) {
907 if ((*fdp) == fd) {
908 found = 1;
909 *fdp = fd->next;
910 break;
912 fdp = &(*fdp)->next;
914 if (!found) {
915 printk(KERN_WARNING "Deletion dirent \"%s\" not found in list for ino #%u\n", fd->name, f->inocache->ino);
917 jffs2_mark_node_obsolete(c, fd->raw);
918 jffs2_free_full_dirent(fd);
919 return 0;
922 static int jffs2_garbage_collect_hole(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
923 struct jffs2_inode_info *f, struct jffs2_full_dnode *fn,
924 uint32_t start, uint32_t end)
926 struct jffs2_raw_inode ri;
927 struct jffs2_node_frag *frag;
928 struct jffs2_full_dnode *new_fn;
929 uint32_t alloclen, phys_ofs, ilen;
930 int ret;
932 D1(printk(KERN_DEBUG "Writing replacement hole node for ino #%u from offset 0x%x to 0x%x\n",
933 f->inocache->ino, start, end));
935 memset(&ri, 0, sizeof(ri));
937 if(fn->frags > 1) {
938 size_t readlen;
939 uint32_t crc;
940 /* It's partially obsoleted by a later write. So we have to
941 write it out again with the _same_ version as before */
942 ret = jffs2_flash_read(c, ref_offset(fn->raw), sizeof(ri), &readlen, (char *)&ri);
943 if (readlen != sizeof(ri) || ret) {
944 printk(KERN_WARNING "Node read failed in jffs2_garbage_collect_hole. Ret %d, retlen %zd. Data will be lost by writing new hole node\n", ret, readlen);
945 goto fill;
947 if (je16_to_cpu(ri.nodetype) != JFFS2_NODETYPE_INODE) {
948 printk(KERN_WARNING "jffs2_garbage_collect_hole: Node at 0x%08x had node type 0x%04x instead of JFFS2_NODETYPE_INODE(0x%04x)\n",
949 ref_offset(fn->raw),
950 je16_to_cpu(ri.nodetype), JFFS2_NODETYPE_INODE);
951 return -EIO;
953 if (je32_to_cpu(ri.totlen) != sizeof(ri)) {
954 printk(KERN_WARNING "jffs2_garbage_collect_hole: Node at 0x%08x had totlen 0x%x instead of expected 0x%zx\n",
955 ref_offset(fn->raw),
956 je32_to_cpu(ri.totlen), sizeof(ri));
957 return -EIO;
959 crc = crc32(0, &ri, sizeof(ri)-8);
960 if (crc != je32_to_cpu(ri.node_crc)) {
961 printk(KERN_WARNING "jffs2_garbage_collect_hole: Node at 0x%08x had CRC 0x%08x which doesn't match calculated CRC 0x%08x\n",
962 ref_offset(fn->raw),
963 je32_to_cpu(ri.node_crc), crc);
964 /* FIXME: We could possibly deal with this by writing new holes for each frag */
965 printk(KERN_WARNING "Data in the range 0x%08x to 0x%08x of inode #%u will be lost\n",
966 start, end, f->inocache->ino);
967 goto fill;
969 if (ri.compr != JFFS2_COMPR_ZERO) {
970 printk(KERN_WARNING "jffs2_garbage_collect_hole: Node 0x%08x wasn't a hole node!\n", ref_offset(fn->raw));
971 printk(KERN_WARNING "Data in the range 0x%08x to 0x%08x of inode #%u will be lost\n",
972 start, end, f->inocache->ino);
973 goto fill;
975 } else {
976 fill:
977 ri.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
978 ri.nodetype = cpu_to_je16(JFFS2_NODETYPE_INODE);
979 ri.totlen = cpu_to_je32(sizeof(ri));
980 ri.hdr_crc = cpu_to_je32(crc32(0, &ri, sizeof(struct jffs2_unknown_node)-4));
982 ri.ino = cpu_to_je32(f->inocache->ino);
983 ri.version = cpu_to_je32(++f->highest_version);
984 ri.offset = cpu_to_je32(start);
985 ri.dsize = cpu_to_je32(end - start);
986 ri.csize = cpu_to_je32(0);
987 ri.compr = JFFS2_COMPR_ZERO;
990 frag = frag_last(&f->fragtree);
991 if (frag)
992 /* Fetch the inode length from the fragtree rather then
993 * from i_size since i_size may have not been updated yet */
994 ilen = frag->ofs + frag->size;
995 else
996 ilen = JFFS2_F_I_SIZE(f);
998 ri.mode = cpu_to_jemode(JFFS2_F_I_MODE(f));
999 ri.uid = cpu_to_je16(JFFS2_F_I_UID(f));
1000 ri.gid = cpu_to_je16(JFFS2_F_I_GID(f));
1001 ri.isize = cpu_to_je32(ilen);
1002 ri.atime = cpu_to_je32(JFFS2_F_I_ATIME(f));
1003 ri.ctime = cpu_to_je32(JFFS2_F_I_CTIME(f));
1004 ri.mtime = cpu_to_je32(JFFS2_F_I_MTIME(f));
1005 ri.data_crc = cpu_to_je32(0);
1006 ri.node_crc = cpu_to_je32(crc32(0, &ri, sizeof(ri)-8));
1008 ret = jffs2_reserve_space_gc(c, sizeof(ri), &phys_ofs, &alloclen,
1009 JFFS2_SUMMARY_INODE_SIZE);
1010 if (ret) {
1011 printk(KERN_WARNING "jffs2_reserve_space_gc of %zd bytes for garbage_collect_hole failed: %d\n",
1012 sizeof(ri), ret);
1013 return ret;
1015 new_fn = jffs2_write_dnode(c, f, &ri, NULL, 0, phys_ofs, ALLOC_GC);
1017 if (IS_ERR(new_fn)) {
1018 printk(KERN_WARNING "Error writing new hole node: %ld\n", PTR_ERR(new_fn));
1019 return PTR_ERR(new_fn);
1021 if (je32_to_cpu(ri.version) == f->highest_version) {
1022 jffs2_add_full_dnode_to_inode(c, f, new_fn);
1023 if (f->metadata) {
1024 jffs2_mark_node_obsolete(c, f->metadata->raw);
1025 jffs2_free_full_dnode(f->metadata);
1026 f->metadata = NULL;
1028 return 0;
1032 * We should only get here in the case where the node we are
1033 * replacing had more than one frag, so we kept the same version
1034 * number as before. (Except in case of error -- see 'goto fill;'
1035 * above.)
1037 D1(if(unlikely(fn->frags <= 1)) {
1038 printk(KERN_WARNING "jffs2_garbage_collect_hole: Replacing fn with %d frag(s) but new ver %d != highest_version %d of ino #%d\n",
1039 fn->frags, je32_to_cpu(ri.version), f->highest_version,
1040 je32_to_cpu(ri.ino));
1043 /* This is a partially-overlapped hole node. Mark it REF_NORMAL not REF_PRISTINE */
1044 mark_ref_normal(new_fn->raw);
1046 for (frag = jffs2_lookup_node_frag(&f->fragtree, fn->ofs);
1047 frag; frag = frag_next(frag)) {
1048 if (frag->ofs > fn->size + fn->ofs)
1049 break;
1050 if (frag->node == fn) {
1051 frag->node = new_fn;
1052 new_fn->frags++;
1053 fn->frags--;
1056 if (fn->frags) {
1057 printk(KERN_WARNING "jffs2_garbage_collect_hole: Old node still has frags!\n");
1058 BUG();
1060 if (!new_fn->frags) {
1061 printk(KERN_WARNING "jffs2_garbage_collect_hole: New node has no frags!\n");
1062 BUG();
1065 jffs2_mark_node_obsolete(c, fn->raw);
1066 jffs2_free_full_dnode(fn);
1068 return 0;
1071 static int jffs2_garbage_collect_dnode(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
1072 struct jffs2_inode_info *f, struct jffs2_full_dnode *fn,
1073 uint32_t start, uint32_t end)
1075 struct jffs2_full_dnode *new_fn;
1076 struct jffs2_raw_inode ri;
1077 uint32_t alloclen, phys_ofs, offset, orig_end, orig_start;
1078 int ret = 0;
1079 unsigned char *comprbuf = NULL, *writebuf;
1080 unsigned long pg;
1081 unsigned char *pg_ptr;
1083 memset(&ri, 0, sizeof(ri));
1085 D1(printk(KERN_DEBUG "Writing replacement dnode for ino #%u from offset 0x%x to 0x%x\n",
1086 f->inocache->ino, start, end));
1088 orig_end = end;
1089 orig_start = start;
1091 if (c->nr_free_blocks + c->nr_erasing_blocks > c->resv_blocks_gcmerge) {
1092 /* Attempt to do some merging. But only expand to cover logically
1093 adjacent frags if the block containing them is already considered
1094 to be dirty. Otherwise we end up with GC just going round in
1095 circles dirtying the nodes it already wrote out, especially
1096 on NAND where we have small eraseblocks and hence a much higher
1097 chance of nodes having to be split to cross boundaries. */
1099 struct jffs2_node_frag *frag;
1100 uint32_t min, max;
1102 min = start & ~(PAGE_CACHE_SIZE-1);
1103 max = min + PAGE_CACHE_SIZE;
1105 frag = jffs2_lookup_node_frag(&f->fragtree, start);
1107 /* BUG_ON(!frag) but that'll happen anyway... */
1109 BUG_ON(frag->ofs != start);
1111 /* First grow down... */
1112 while((frag = frag_prev(frag)) && frag->ofs >= min) {
1114 /* If the previous frag doesn't even reach the beginning, there's
1115 excessive fragmentation. Just merge. */
1116 if (frag->ofs > min) {
1117 D1(printk(KERN_DEBUG "Expanding down to cover partial frag (0x%x-0x%x)\n",
1118 frag->ofs, frag->ofs+frag->size));
1119 start = frag->ofs;
1120 continue;
1122 /* OK. This frag holds the first byte of the page. */
1123 if (!frag->node || !frag->node->raw) {
1124 D1(printk(KERN_DEBUG "First frag in page is hole (0x%x-0x%x). Not expanding down.\n",
1125 frag->ofs, frag->ofs+frag->size));
1126 break;
1127 } else {
1129 /* OK, it's a frag which extends to the beginning of the page. Does it live
1130 in a block which is still considered clean? If so, don't obsolete it.
1131 If not, cover it anyway. */
1133 struct jffs2_raw_node_ref *raw = frag->node->raw;
1134 struct jffs2_eraseblock *jeb;
1136 jeb = &c->blocks[raw->flash_offset / c->sector_size];
1138 if (jeb == c->gcblock) {
1139 D1(printk(KERN_DEBUG "Expanding down to cover frag (0x%x-0x%x) in gcblock at %08x\n",
1140 frag->ofs, frag->ofs+frag->size, ref_offset(raw)));
1141 start = frag->ofs;
1142 break;
1144 if (!ISDIRTY(jeb->dirty_size + jeb->wasted_size)) {
1145 D1(printk(KERN_DEBUG "Not expanding down to cover frag (0x%x-0x%x) in clean block %08x\n",
1146 frag->ofs, frag->ofs+frag->size, jeb->offset));
1147 break;
1150 D1(printk(KERN_DEBUG "Expanding down to cover frag (0x%x-0x%x) in dirty block %08x\n",
1151 frag->ofs, frag->ofs+frag->size, jeb->offset));
1152 start = frag->ofs;
1153 break;
1157 /* ... then up */
1159 /* Find last frag which is actually part of the node we're to GC. */
1160 frag = jffs2_lookup_node_frag(&f->fragtree, end-1);
1162 while((frag = frag_next(frag)) && frag->ofs+frag->size <= max) {
1164 /* If the previous frag doesn't even reach the beginning, there's lots
1165 of fragmentation. Just merge. */
1166 if (frag->ofs+frag->size < max) {
1167 D1(printk(KERN_DEBUG "Expanding up to cover partial frag (0x%x-0x%x)\n",
1168 frag->ofs, frag->ofs+frag->size));
1169 end = frag->ofs + frag->size;
1170 continue;
1173 if (!frag->node || !frag->node->raw) {
1174 D1(printk(KERN_DEBUG "Last frag in page is hole (0x%x-0x%x). Not expanding up.\n",
1175 frag->ofs, frag->ofs+frag->size));
1176 break;
1177 } else {
1179 /* OK, it's a frag which extends to the beginning of the page. Does it live
1180 in a block which is still considered clean? If so, don't obsolete it.
1181 If not, cover it anyway. */
1183 struct jffs2_raw_node_ref *raw = frag->node->raw;
1184 struct jffs2_eraseblock *jeb;
1186 jeb = &c->blocks[raw->flash_offset / c->sector_size];
1188 if (jeb == c->gcblock) {
1189 D1(printk(KERN_DEBUG "Expanding up to cover frag (0x%x-0x%x) in gcblock at %08x\n",
1190 frag->ofs, frag->ofs+frag->size, ref_offset(raw)));
1191 end = frag->ofs + frag->size;
1192 break;
1194 if (!ISDIRTY(jeb->dirty_size + jeb->wasted_size)) {
1195 D1(printk(KERN_DEBUG "Not expanding up to cover frag (0x%x-0x%x) in clean block %08x\n",
1196 frag->ofs, frag->ofs+frag->size, jeb->offset));
1197 break;
1200 D1(printk(KERN_DEBUG "Expanding up to cover frag (0x%x-0x%x) in dirty block %08x\n",
1201 frag->ofs, frag->ofs+frag->size, jeb->offset));
1202 end = frag->ofs + frag->size;
1203 break;
1206 D1(printk(KERN_DEBUG "Expanded dnode to write from (0x%x-0x%x) to (0x%x-0x%x)\n",
1207 orig_start, orig_end, start, end));
1209 D1(BUG_ON(end > frag_last(&f->fragtree)->ofs + frag_last(&f->fragtree)->size));
1210 BUG_ON(end < orig_end);
1211 BUG_ON(start > orig_start);
1214 /* First, use readpage() to read the appropriate page into the page cache */
1215 /* Q: What happens if we actually try to GC the _same_ page for which commit_write()
1216 * triggered garbage collection in the first place?
1217 * A: I _think_ it's OK. read_cache_page shouldn't deadlock, we'll write out the
1218 * page OK. We'll actually write it out again in commit_write, which is a little
1219 * suboptimal, but at least we're correct.
1221 pg_ptr = jffs2_gc_fetch_page(c, f, start, &pg);
1223 if (IS_ERR(pg_ptr)) {
1224 printk(KERN_WARNING "read_cache_page() returned error: %ld\n", PTR_ERR(pg_ptr));
1225 return PTR_ERR(pg_ptr);
1228 offset = start;
1229 while(offset < orig_end) {
1230 uint32_t datalen;
1231 uint32_t cdatalen;
1232 uint16_t comprtype = JFFS2_COMPR_NONE;
1234 ret = jffs2_reserve_space_gc(c, sizeof(ri) + JFFS2_MIN_DATA_LEN, &phys_ofs,
1235 &alloclen, JFFS2_SUMMARY_INODE_SIZE);
1237 if (ret) {
1238 printk(KERN_WARNING "jffs2_reserve_space_gc of %zd bytes for garbage_collect_dnode failed: %d\n",
1239 sizeof(ri)+ JFFS2_MIN_DATA_LEN, ret);
1240 break;
1242 cdatalen = min_t(uint32_t, alloclen - sizeof(ri), end - offset);
1243 datalen = end - offset;
1245 writebuf = pg_ptr + (offset & (PAGE_CACHE_SIZE -1));
1247 comprtype = jffs2_compress(c, f, writebuf, &comprbuf, &datalen, &cdatalen);
1249 ri.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
1250 ri.nodetype = cpu_to_je16(JFFS2_NODETYPE_INODE);
1251 ri.totlen = cpu_to_je32(sizeof(ri) + cdatalen);
1252 ri.hdr_crc = cpu_to_je32(crc32(0, &ri, sizeof(struct jffs2_unknown_node)-4));
1254 ri.ino = cpu_to_je32(f->inocache->ino);
1255 ri.version = cpu_to_je32(++f->highest_version);
1256 ri.mode = cpu_to_jemode(JFFS2_F_I_MODE(f));
1257 ri.uid = cpu_to_je16(JFFS2_F_I_UID(f));
1258 ri.gid = cpu_to_je16(JFFS2_F_I_GID(f));
1259 ri.isize = cpu_to_je32(JFFS2_F_I_SIZE(f));
1260 ri.atime = cpu_to_je32(JFFS2_F_I_ATIME(f));
1261 ri.ctime = cpu_to_je32(JFFS2_F_I_CTIME(f));
1262 ri.mtime = cpu_to_je32(JFFS2_F_I_MTIME(f));
1263 ri.offset = cpu_to_je32(offset);
1264 ri.csize = cpu_to_je32(cdatalen);
1265 ri.dsize = cpu_to_je32(datalen);
1266 ri.compr = comprtype & 0xff;
1267 ri.usercompr = (comprtype >> 8) & 0xff;
1268 ri.node_crc = cpu_to_je32(crc32(0, &ri, sizeof(ri)-8));
1269 ri.data_crc = cpu_to_je32(crc32(0, comprbuf, cdatalen));
1271 new_fn = jffs2_write_dnode(c, f, &ri, comprbuf, cdatalen, phys_ofs, ALLOC_GC);
1273 jffs2_free_comprbuf(comprbuf, writebuf);
1275 if (IS_ERR(new_fn)) {
1276 printk(KERN_WARNING "Error writing new dnode: %ld\n", PTR_ERR(new_fn));
1277 ret = PTR_ERR(new_fn);
1278 break;
1280 ret = jffs2_add_full_dnode_to_inode(c, f, new_fn);
1281 offset += datalen;
1282 if (f->metadata) {
1283 jffs2_mark_node_obsolete(c, f->metadata->raw);
1284 jffs2_free_full_dnode(f->metadata);
1285 f->metadata = NULL;
1289 jffs2_gc_release_page(c, pg_ptr, &pg);
1290 return ret;